EP1591360B1 - Vorrichtung zum Handhaben und Verpacken von spröden Tabletten - Google Patents

Vorrichtung zum Handhaben und Verpacken von spröden Tabletten Download PDF

Info

Publication number
EP1591360B1
EP1591360B1 EP04025128A EP04025128A EP1591360B1 EP 1591360 B1 EP1591360 B1 EP 1591360B1 EP 04025128 A EP04025128 A EP 04025128A EP 04025128 A EP04025128 A EP 04025128A EP 1591360 B1 EP1591360 B1 EP 1591360B1
Authority
EP
European Patent Office
Prior art keywords
tablets
dosage forms
assembly
packaging
laning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04025128A
Other languages
English (en)
French (fr)
Other versions
EP1591360A3 (de
EP1591360A2 (de
Inventor
Jerry Amborn
Vern Tiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cima Labs Inc
Original Assignee
Cima Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cima Labs Inc filed Critical Cima Labs Inc
Priority claimed from EP99914893A external-priority patent/EP1107911B1/de
Publication of EP1591360A2 publication Critical patent/EP1591360A2/de
Publication of EP1591360A3 publication Critical patent/EP1591360A3/de
Application granted granted Critical
Publication of EP1591360B1 publication Critical patent/EP1591360B1/de
Priority to CY20071101475T priority Critical patent/CY1107443T1/el
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B35/00Supplying, feeding, arranging or orientating articles to be packaged
    • B65B35/30Arranging and feeding articles in groups
    • B65B35/44Arranging and feeding articles in groups by endless belts or chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/10Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles
    • B65B5/101Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles by gravity
    • B65B5/103Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles by gravity for packaging pills or tablets

Definitions

  • the present invention relates to an assembly for guiding pharmaceutical dosage forms in a packaging assembly in accordance with the preamble of claim 1.
  • Such an assembly is known from DE-A-4406089 .
  • the present invention can be applied to systems or assemblies for packaging essentially any dosage form.
  • Such systems may include a forming device such as a tablet press, an infeed structure, a laning structure, robotic devices for handling or carrying dosage forms, and a packaging machine.
  • a series of conveyor belts and ramps transport the dosage forms through the packaging system. After the dosage forms are made, they proceed through the system and are controlled and organized for receipt by a packaging machine.
  • a robotic handler may be used to transport dosage forms to the packaging machine. If the system packages dosage forms into blister packages, a robotic handler may be used to transport dosage forms to a sheet of packaging material, which will be sealed with a second sheet of material to form packages of the dosage forms.
  • the dosage forms travel through the packaging system rapidly and in large volumes. As many as 800 to 1,440 tablets per minute, or more, may be assembled into 240 packages of tablets per minute, or more. Hence, a displaced machine part, one of the dosage forms, or other debris anywhere in the system can cause dosage forms to break and improperly formed packages. Some systems must be shut down so that the jammed product or other debris may be cleared manually. This results in a loss of the product in large numbers before the system can be interrupted and the problem remedied.
  • the present invention provides an assembly for guiding pharmaceutical dosage forms in a packaging assembly, comprising a surface movable in a downstream direction, a laning structure extending in a lateral direction transverse to the downstream direction and defining a plurality of laterally spaced lanes extending in the downstream direction.
  • the assembly also comprises guide wall structures including a curved portion and a wall structure defining a plenum upstream of the laning structure.
  • the curved portion guides the dosage forms carried by said surface so that dosage forms enter the plenum structure at a plenum entry adjacent a first side of the laning structure and travel laterally toward a second side of the laning structure before entering the lanes.
  • the assembly preferably includes a form handling device for receiving dosage forms and transporting dosage forms from the laning structure to a packaging device.
  • the packaging device may include a top plate and a bottom plate for engaging a packaging material and a lid stock therebetween to seal the packaging material and lid stock together, forming packaged dosage forms.
  • the assembly may include a top plate and bottom plate including a plurality of blocks and a base for floatably supporting the blocks.
  • the lanes may have a downstream end and the assembly may further comprise a dump gate at the downstream end, having an open position and a closed position.
  • a timed controller may be provided for opening the dump gate after the handling device receives dosage forms so that debris will be carried downstream out of the laning structure.
  • FIG. 1-9 One embodiment of an assembly for handling and packaging dosage forms is depicted in Figs. 1-9.
  • An infeed structure 22, a laning structure 35 and a plenum structure 32 extending between the infeed structure and the laning structure arrange dosage forms such as tablets into rows so that they can be arranged into packages.
  • the dosage forms handled by the assembly may be any type of dosage form, including tablets, capsules, pills, pellets, and other forms.
  • the assembly is particularly useful for fragile dosage forms.
  • the tablets are transported throughout the assembly on a movable surface or conveyance device, such as a conventional conveyor belt.
  • a rotating drum or disk may also be used.
  • the conveyor belt is driven by any conventional means 13 such as an electric motor or other conventional drive so that the upper run 10 of the belt moves in a downstream direction 11.
  • the motor is controlled by a switch and a control device for starting and stopping the conveyor belt and varying the speed of the conveyor belt.
  • the conveyor belt is adjacent a tablet press 12 which forms tablets 15.
  • the tablets travel from the tablet press down a ramp 21 to the conveyor belt.
  • the ramps, as well as the other surfaces used in the assembly which contact the tablets are preferably made of a smooth material which will not interfere with the sliding of the tablets to the next stage of the system. Many plastics and other materials may be used.
  • the ramps and other surfaces may be coated with a smooth material such as a fluoropolymer of the type sold under the trademark TEFLON to promote the sliding of the tablets.
  • the upper run 10 of the belt receives tablets 15 from the tablet press 12 and conveys the tablets in the downstream direction 11.
  • the infeed structure 22 includes a guide wall structure 14 is disposed over the upper run 10 of the conveyor belt, and guides the tablets as they move downstream with the belt.
  • the speed of the conveyor belt is variable in a range from about 0.2 to 0.5 m/s (40 to 100 feet per minute).
  • the guide wall structure 14 defines a channel 20 over the upper run 10 of the belt extending from the tablet press to the laning structure.
  • the channel 20 has a top wall 17, a first side wall 18, a second sidewall 19 and an open bottom 16, as shown in Fig. 5.
  • the open bottom 16 of the channel 20 faces toward the upper run 10 of the conveyor belt, so that tablets 15 disposed on the belt are moved downstream within the channel 20 and are guided by the top wall 17, first sidewall 18, and second sidewall 19.
  • the guide wall structure 14 includes a guide portion 25, having an entry 26 adjacent the tablet press 12 and an exit 27 adjacent a plenum structure 32.
  • the guide wall structure also defines the plenum structure 32, having a plenum entry 28 adjacent the exit 27 and a transitional portion 33, as depicted in Figs. 2-4.
  • the transitional portion guides tablets into the laning structure which is typically wider than the guide portion 25, which causes tablets to back up to the juncture between the guide portion and transitional portion.
  • the guide portion 25 includes a curved portion 45 of the guide wall structure 14 provided for guiding the tablets into the wider transitional portion 33 of the plenum structure 32.
  • the transitional portion 33 is adjacent an inlet end 34 of the laning structure 35.
  • the laning structure 35 has a first side 46 and a second side 47 and includes a series of finger members 36.
  • the finger members 36 extend in a downstream direction 11 from the inlet end 34 of the laning structure to a downstream end 38 of the laning structure 35.
  • the finger members 36 define lanes 40 which are spaced from each other in a lateral direction 43 transverse to the downstream direction 11. The lanes arrange the tablets into rows 42.
  • the dimensions of the guide wall structure depends upon the size of the tablet or other dosage form.
  • the embodiment shown in Figs. 1-9 is designed to handle tablets having a 6.4 mm (1/4") diameter, but the dimensions provided below may be varied for tablets having a 17.5 mm (11/16)", 12.7 mm (1/2"), or 15.9 mm (5/8") diameter, or other sizes and types of dosage forms.
  • the thickness of the tablets range from about 2.5 mm (0.100") to 8.1 mm (0.320").
  • the channel 20 in the embodiment of Figs. 1-9 has a width of 149 mm (5-7/8") at the section shown in Fig.
  • the curved portion 45 has the same width as the channel 20 and is defined by the guide wall structure 14.
  • the transition portion 33 in the embodiment of Fig. 4 has a width of 378 mm (14-7/8"). The width of the transitional portion is the dimension transverse to the downstream direction 11.
  • the lanes 40 depicted in Fig. 4, extend in the downstream direction 11 and are spaced apart from one another in the lateral direction 43.
  • the finger members 36 of the laning structure 35 preferably comprise vibrating guide members 36 which assist in moving the tablets downstream.
  • the lanes for the 6.4 mm (1/4") tablets are 15.9 mm (5/8") wide and 308 mm (12-1/8") long.
  • the vibrating members are attached to a selectively operable actuator or actuators 78 such as a solenoid, electric motor operated actuator, hydraulic cylinder or, most preferably, an air cylinder for vibrating the guide members 36.
  • the vibrating members agitate the tablets so that they move downstream within the lanes to the downstream end 38.
  • the vibrating members which define the lanes are preferably formed with an aperture separating two side bars, so that each bar can be replaced in the event that they become warped or otherwise damaged.
  • a dump gate 80 is positioned at the downstream end 38 of the laning structure 35. Adjacent the downstream end 38 is a tablet pickup area 82 of the lanes 40. Adjacent the dump gate on a side of the dump gate opposite the pickup area 82, is a discard ramp 81. In the closed position illustrated in Fig. 4, the dump gate blocks the downstream end 38 of each lane 40.
  • the downstream motion of the conveyor belt beneath the laning structure carries tablets downstream until the leading or most downstream tablet in each lane stops against the closed dump gate.
  • the laning structure includes a surface beneath the lanes which is sloped in the downstream direction 11 to encourage tablets and other debris to move toward the downstream end 38 of the laning structure 35.
  • a form handling device 38 is disposed above the pickup area 82 of the lanes 40.
  • the form handling device 38 comprises a robotic handler including an array of finger-like channels 64, a soft rubber suction cup 65 on each such finger 64, and a vacuum pump connected to the finger-like channels 64 for applying suction through the suction cups so that the suction cups can receive and lift the tablets 15.
  • the robotic handler 83 receives the tablets and transports them to the packaging machine, where the tablets are released by releasing the vacuum.
  • other "pick and place" form handlers are used to transport tablets from pickup area 82 to the packaging machine.
  • the array of finger-like channels 64 preferably comprises a two-dimensional array of the channels 64, arranged in a carriage assembly connected to an arm 66 rotatable around a vertical axis.
  • a suction cup 65 of each channel 64 corresponds to a tablet arranged in the pickup area 82 of the lanes, as depicted in Fig. 4A.
  • the arm 66 of the robotic hander After lifting the tablets, the arm 66 of the robotic hander carries the tablets to the packaging machine.
  • the dump gate is attached to a selectively operable actuator 79 such as a solenoid, electric motor operated actuator, hydraulic cylinder or, most preferably, an air cylinder for opening and closing the dump gate.
  • a selectively operable actuator 79 such as a solenoid, electric motor operated actuator, hydraulic cylinder or, most preferably, an air cylinder for opening and closing the dump gate.
  • a number of air cylinder models may be used and the type of air cylinder depends upon the size tablet being packaged.
  • the actuator is linked to a control device such as a mechanical, fluidic, electronic or electromechanical controller of known type which is also linked to the robotic handler.
  • the controller is a programmable, computer actuated controller having functions controlled by software.
  • a detection system with three (3) sensors spaced along the infeed structure 22 is provided for detecting a backup of tablets in the guide wall structure 14.
  • the first sensor 51 is located adjacent the exit 27 of the guide portion proximate to the curved portion 45, as depicted in Fig. 2.
  • the first sensor 51 provides an indication that the curved portion 45 is clear and to turn on the tablet press 12 and commence flow of tablets through the packaging system.
  • the second sensor 52 produces an indication that the tablets have backed up from the exit 27 to the second sensor 52 and that the tablet press rate should be reduced.
  • the third sensor 53 located at the entry 26 of the guide portion 25, produces an indication that the tablets backed up to the third sensor 53 and to turn off the tablet press.
  • Software and computer hardware may be provided to receive the indications from the sensors and to control the operation of the tablet press.
  • preferred embodiments include a guide wall structure 14 having vacuum holes 50 for dedusting the channel 20.
  • a vacuum is preferably attached to the top wall 17 of the guide wall structure 14 for this purpose.
  • the guide wall structure 14 is preferably formed from a plastic material which is also preferably transparent for visual observation of the tablets transported within the system.
  • tablets are carried in the downstream direction 11 on the upper run 10 of the conveyor belt, through the guide wall structure 14.
  • the tablets are guided through the curved portion 45 to the plenum structure 32 and travel through the transitional portion 33.
  • the tablets In the transitional portion 33, the tablets generally travel from the first side 46 in the lateral direction 43 toward the second side 47 of the laning structure 35 before entering the lanes 40.
  • the tablets Upon entering the lanes, the tablets travel in the downstream direction 11.
  • a row 42 of tablets stack up in upstream-to-downstream order within the tablet pickup area 82 of each lane 40.
  • the form handling device 83 engages the tablets 15 stacked within the various lanes 40 and lifts a predetermined number of tablets out of each lane during each cycle of operation.
  • the operation of the embodiment having the robotic tablet handler will now be described. As depicted in Fig. 4A, the robotic tablet handler descends from a first position 83A to a second position 83b to receive the tablets within the lanes 40. For ease of illustration, only a few of the lanes 40 depicted in Fig. 4 are depicted in Fig. 4A.
  • the vacuum is applied and the tablets are received within the suction cups 65.
  • the arm 66 raises the array of finger-like channels 64 and suction cups 65 to position 83a and rotates 180° to position 83C, over the packaging machine 90.
  • the tablet 15b immediately after the last tablet 15a lifted by the robotic handler 83 then becomes the leading tablet of the next group to be received be the robotic tablet hander 83.
  • the controller operates the actuator in synchronism with the handler 83 or other form handling device so that the dump gate 80 opens after the handler 83 has engaged a group of tablets and remains open for a preselected open time after the handler 83 has lifted that group of tablets out of the laning structure 35. While the dump gate is open, debris accumulated in each lane moves downstream, past the dump gate 80 and down the discard ramp 81, where debris is collected for disposal. The next group of tablets move downstream to the downstream end 38.
  • the open time of the dump gate 80 is selected so that it is just slightly less than the time required for the leading tablet of the next group to reach the downstream end 38 of the lane 40. Thus, the dump gate 80 returns to the closed position just before the leading tablet (for example, tablet 15b) of the next group arrives at the dump gate 80. This cycle of operations is repeated.
  • the dump date may be manually operated in some embodiments, which is less preferred. Attempts have been made heretofore to use a dump gate which is manually actuated by an operator in response to visible accumulation of debris in the lanes, or which is actuated at some lengthy intervals. Where the dump gate is manually operated, debris such as tablets or parts of tablets missed by the robotic tablet handler interfere with the next set of tablets preceding to the pickup area 82 through the lanes 40. Breakage of tablets occurs in the laning area before a human operator is alerted who can operate the dump gate. Also, when the manually operated dump gate is held open, some good tablets pass out of the dump gate and are wasted. By contrast, in the preferred systems according to this aspect of the invention, debris is cleared during each cycle of the handler, without wasting good tablets.
  • inventions include an infeed structure, a plenum structure and a laning structure adapted to different sized tablets and different types of dosage forms.
  • Certain preferred embodiments also include a member 60, preferably having a triangular shape, at the juncture of the guide portion 25 and the plenum structure 32.
  • the triangle 60 alleviates jamming of the tablets at this juncture. It has been found that this triangular member 60 is not required for 6.4 mm (1/4") tablets in the embodiment of Figs. 1-9, but is preferred for larger tablets. For example, in packaging 12.7 mm (1/2") tablets, a stationary triangular member is preferably used to alleviate jamming.
  • a triangular member which is spring-loaded is preferably used.
  • the triangular member depicted in Figs. 10 and 11, has a first leg 61 and a second leg 62 facing upstream and a third leg 63 facing downstream, facing the laning structure 35.
  • the spring-loaded triangular member 60 is moveable from side to side in traverse directions 71 and 72 shown in Fig. 11, transverse to the downstream direction 11.
  • the triangle is biased in a central position 70 by a biasing means 73, including a spring or other conventional biasing devices.
  • the tablets bounce off the triangle, which alleviates jamming of the tablets in the plenum entry 28.
  • Tablets entering the plenum entry may slide along the first leg 61 and second leg 62 and proceed to the transitional portion 33. However, in the event that tablets 15 begin to jam up, the tablets apply a small force upon the triangular member, which compresses the biasing device or spring 73. As shown in Fig. 11, the triangle may be moved to one side or the other to offset positions 70a or 70b. The spring reacts, relieving the force of the tablets. The compressibility of the spring must be such that the tablets are not broken.
  • a packaging device for sealing the tablets into packages 110 is depicted in Figs. 7-9. After the tablets are sealed into packages, the packages are cut into separate cards which are arranged into boxes.
  • the packaging device 90 includes a sealing machine 91 for forming packaged dosage forms.
  • the packages are comprised of first and second sheets of packaging material, preferably foil laminate, which are sealed together in the sealing machine.
  • An example of this type of packaging machine is a Clockner blister-forming machine. Model No. CP11.4 may be used.
  • Blisters 111 which are essentially cup-shaped depressions in the packaging material, have been provided in at least one of the sheets for holding the tablets. In the finished package, which is depicted in Fig. 6, each tablet occupies a pocket formed by the blisters 111.
  • blister packages of the type described concerning certain embodiments of copending, commonly assigned United States patent application Serial No. 09/053,298, filed April 1, 1998 may be used.
  • the packaging device 90 is generally of the type known as a "form, fill and seal" machine.
  • the machine forms a web of a packaging material into blisters, whereupon the form handler 83 places the tablets in the blisters.
  • each suction cup 65 of the robotic handler corresponds to a blister 111 in the packaging material, as depicted in Fig. 4A.
  • the robotic handler received tablets at the pickup area 82 and rotates 180° from position 83C to position 83D, toward the packaging material 112 on support 114. After the arm 66 lowers to the packaging material, the tablets are release into blisters 111.
  • the packaging material advances along a conveyor belt, series of rollers or a similar conveyance device 68 to a sealing machine through a series of checking systems which ensure that the first sheet is free from displaced tablets and debris prior to reaching the sealing machine.
  • the packaging material is sealed to a web or sheet of lid stock so that the lid stock closes the blisters and holds the tablets in the blisters.
  • the sealing machine includes a top and bottom plate.
  • the top and bottom plates of the sealing machine each have sealing faces, for engaging the lid stock and packaging material, respectively.
  • blister cavities 115 are provided in the sealing face 116 of the bottom plate 113.
  • the top plate may include blister cavities, as well.
  • the plates preferably have registration markers 17 so that the top and bottom plates can be properly aligned. At least one of the plates, typically the top plate, is heated so that a heat-activated material in the packaging material or lid stock seals the tablet package when the top and bottom plates are brought into engagement. Most preferably, the bottom plate is also heated.
  • the heaters are connected to controllers for controlling the heating of the plates in the conventional manner.
  • the web of the packaging material is transferred from support 114 to the sealing face 116 of the bottom plate 113 so that the blisters 111 rest in the blister cavities 115 of the bottom plate 113.
  • the lid stock is placed on the packaging material, overlying the tablets in the blisters and the sealing machine urges the top plate and bottom plate together, so that these plates engage the package material and lid stock therebetween.
  • the top and bottom plates are brought together to seal the packaging material.
  • sealing occurs according to three (3) parameters: heat, pressure and time.
  • At least the bottom plate is designed with recessed regions 120 depicted in Fig. 7.
  • the recessed regions apply no pressure to the blister pack material and the sealing face 116 comprises relatively raised regions where the seal is to be formed. This feature focuses the force and heat of the sealing device on the portions of the blister pack where sealing is desired.
  • the plates are disengaged and the sealed blister pack 110 is transported to a blister pack card punch and thereafter to a cartoner for arrangement in boxes.
  • Fig. 6 depicts a blister package for 12.7 mm (1/2") tablets.
  • At least one of the top and bottom plates is designed to evenly distribute the force and heat of the sealing machine along the sealing faces of the plates.
  • the present invention addresses this problem by providing, rather than one continuous bottom plate 113, a plate comprised of a plurality of blocks 122 which can move with respect to one another over a range of motion.
  • a plate comprised of a plurality of blocks 122 which can move with respect to one another over a range of motion.
  • four movable blocks 122 are provided.
  • Each block 122 depicted in Fig. 9, has a rear face 123 opposite the sealing face 116 and a circular depression 125 in the rear face.
  • Each block also has a compartment cut out for heaters which communicate with controls for heating the plate, as discussed above.
  • the blocks 122 are formed from metals such as steel, aluminum or the like which are selected according to conventional criteria such as wear resistance and good heat transfer.
  • Each block 122 rests on a ball-like member 126, depicted in Fig. 8, which is attached to a base 128 so that the ball 126 is engaged by the circular depression 125 and each block 122 is floatably supported by the base 128.
  • the spacing of the blocks 122 on the base accommodates individual tilting of each block with respect to the horizontal plane.
  • each block 122 is free to tilt around any horizontal axis. This design has the benefit of achieving better sealing in the tablet packages.
  • the various blocks constituting the bottom plate 122 tilt and adjust to achieve an evenly distributed pressure over the blister pack material. After a predetermined sealing time, the plates are released from the package 110, which proceeds to the cartoner.
  • each block can be mounted to the base by a pad of a resilient material such as a high-temperature silicone rubber, or by a set of springs, so that each block is free to move relative to the base in a limited range of tilting movement.
  • a dual-gimbal mount wherein each block is pivotally mounted to a gimbal frame for tilting movement around a first horizontal axis, and the gimbal frame is pivotally mounted to the base for tilting movement around a second horizontal axis perpendicular to the first horizontal axis.
  • each block can be mounted to the base by a pad of a resilient material such as a high-temperature silicone rubber, or by a set of springs, so that each block is free to move relative to the base in a limited range of tilting movement.
  • the bottom plate has individual blocks, whereas the top plate is a unitary, solid part.
  • the reverse arrangement with a solid bottom plate and a top plate composed of movable parts, can also be employed.
  • both plates can be formed with movable parts.
  • An assembly for handling and packaging pharmaceutical dosage forms may include:
  • said timed controller further comprises a computer communicating with said form handling device and said dump gate.
  • the assembly may comprise a guide wall structure defining said guide portion and including a curved portion.
  • said guide wall structure also defines said plenum structure, said plenum structure including a plenum entry and said guide wall structure being shaped to guide dosage forms so that dosage forms enter said plenum structure at said plenum entry adjacent a first side of said laning structure and travel in a lateral direction transverse to said downstream direction toward a second side of said laning structure before entering said lanes.
  • said curved portion includes a member adjacent said plenum entry for relieving jamming of dosage forms.
  • said member comprises a movable member and further comprising a biasing means for vibrating said movable member to agitate dosage forms.
  • said laning structure includes a surface for supporting dosage forms, said surface sloping in said downstream direction to said dump gate so that debris is carried out of said laning structure by said surface when the dump gate is in the open position.
  • the packaging device may comprise a top plate and a bottom plate for engaging a packaging material and a lid stock therebetween to seal said packaging material and said lid stock to one another, wherein at least one of said top plate and said bottom plate is comprised of a plurality of blocks and a base for supporting said plurality of blocks thereon, said blocks being floatably supported by said base and individually movable with respect to the base, for evenly distributing pressure applied to said package material and said lid stock by said top and bottom plates.
  • each of said blocks has a first surface on which said packaging material is engaged, and wherein each of said blocks is free to tilt relative to said base in all directions.
  • said base includes a ball-like member for each said block, each said block including a circular cavity formed thereon at a second surface of each said block opposite said first surface for receiving said ball-like member.
  • At least one of said top plate and said bottom plate is heated for sealing said packaging material and said lid stock together.
  • the present invention can be applied in the packaging of pharmaceuticals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Basic Packing Technique (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Claims (6)

  1. Anordnung zur Führung pharmazeutischer Dosierungsformen in einer Verpackungsanordnung, umfassend:
    (a) eine Oberfläche (10), beweglich in einer nachgelagerten Richtung (11);
    (b) ein Spurwerk (35), das sich in einer seitlichen Richtung ausdehnt, die quer zur nachgelagerten Richtung (11) liegt, und die eine Mehrzahl von seitlich verteilten Spuren (40) bildet, die sich in der nachgelagerten Richtung (11) ausdehnen; und gekennzeichnet, durch
    (c) Leitwandstrukturen (14), mit einem gebogenen Bereich (45) und einer Wandstruktur, die eine Verteilerstruktur (32) bildet, die dem Spurwerk (35) vorgelagert ist, wobei der gebogene Bereich (45) Dosierungsformen führt, die durch die Oberfläche (10) getragen werden, so daß Dosierungsformen in die Verteilerstruktur (32) an einem Verteilereingang in Nähe einer ersten Seite (46) des Spurwerks (35) eintreten, und sich seitlich zu einer zweiten Seite (47) des Spurwerks (35) bewegen, bevor sie in die Spuren (40) eintreten.
  2. Anordnung nach Anspruch 1, mit einer Formhandhabungsvorrichtung (38) zum Empfangen von Dosierungsformen und Transportieren von Dosierungsformen vom Spurwerk (35) zu einer Verpackungsvorrichtung (90).
  3. Anordnung nach Anspruch 2, wobei die Verpackungsvorrichtung (90) eine obere Platte und eine untere Platte (113) beinhaltet, um ein Verpackungsmaterial und eine Abdeckung dazwischen aufzunehmen und das Verpackungsmaterial und die Abdeckung zu versiegeln, wobei verpackte Dosierungsformen gebildet werden.
  4. Anordnung nach Anspruch 3, wobei mindestens eine der oberen Platte und, der unteren Platte (113) eine Mehrzahl von Blöcken (122) und einen Sockel (128) zum Lagern der Mehrzahl von Blöcken (122) umfaßt, wobei die Blöcke schwimmend auf dem Sockel (128) gelagert und einzeln gegenüber dem Sockel (128) beweglich sind.
  5. Anordnung nach Anspruch 4, wobei die Spuren (40) ein nachgelagertes Ende haben und die Anordnung eine Ausschußöffnung (80) am nachgelagerten Ende mit einer offenen Position und einer geschlossenen Position umfaßt.
  6. Anordnung nach Anspruch 5, mit einer getakteten Steuereinrichtung zum Öffnen der Ausschußöffnung (80) nachdem die Handhabungsvorrichtung (38) Dosierungsformen empfängt.
EP04025128A 1998-03-09 1999-03-09 Vorrichtung zum Handhaben und Verpacken von spröden Tabletten Expired - Lifetime EP1591360B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CY20071101475T CY1107443T1 (el) 1998-03-09 2007-11-14 Συσκευη για χειρισμο και συσκευασια ευθραστων δισκιων

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7736398P 1998-03-09 1998-03-09
US77363P 1998-03-09
EP99914893A EP1107911B1 (de) 1998-03-09 1999-03-09 Vorrichtung zum handhaben und verpacken von spröden tabletten

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP99914893A Division EP1107911B1 (de) 1998-03-09 1999-03-09 Vorrichtung zum handhaben und verpacken von spröden tabletten

Publications (3)

Publication Number Publication Date
EP1591360A2 EP1591360A2 (de) 2005-11-02
EP1591360A3 EP1591360A3 (de) 2006-04-12
EP1591360B1 true EP1591360B1 (de) 2007-08-22

Family

ID=35052535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04025128A Expired - Lifetime EP1591360B1 (de) 1998-03-09 1999-03-09 Vorrichtung zum Handhaben und Verpacken von spröden Tabletten

Country Status (1)

Country Link
EP (1) EP1591360B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2544125A (en) * 1944-12-26 1951-03-06 Joseph C Bain Packaging machine having article receiving and transferring sections for handling articles in group formation
US3490197A (en) * 1968-04-15 1970-01-20 American Home Prod Tablet counting and bottling machine
DE4406089C2 (de) * 1994-02-24 1996-04-11 Lingenfelder Oli Spezialanlage Vorrichtung zum Abfüllen von Tabletten oder dergleichen in Tablettenröhrchen

Also Published As

Publication number Publication date
EP1591360A3 (de) 2006-04-12
EP1591360A2 (de) 2005-11-02

Similar Documents

Publication Publication Date Title
EP1107911B1 (de) Vorrichtung zum handhaben und verpacken von spröden tabletten
US5607282A (en) Depalletizing and dispensing apparatus and method
EP1986941B1 (de) Pick-and-place-handhabungsvorrichtung und verfahren zur deren benutzung
US4620826A (en) Materials handling apparatus
US5060455A (en) Robotic case packing system and method
US5765337A (en) Apparatus and method for stacking and boxing stackable articles
US4259826A (en) Case packing machine
JP2530208Y2 (ja) シート状ブランクを容器へ充填する装置
US20020194815A1 (en) Apparatus for handling and packaging friable tablets
EP1591360B1 (de) Vorrichtung zum Handhaben und Verpacken von spröden Tabletten
JPH072229A (ja) 液体容器搬送処理装置
GB2435252A (en) Improved pick and place handling device
KR950000538A (ko) 포장재 제거장치
JPH11513648A (ja) 缶蓋の供給装置
JP2001002033A (ja) 連続した個装袋の分配装置
JP3589541B2 (ja) 搬送コンベアにおける搬送物の停止装置及び該搬送物の方向転換装置
JPH0672814U (ja) 除包機
KR101974969B1 (ko) 로봇 백 플레이서 및 이의 제어방법
JPH03147197A (ja) 自動販売機の商品搬出装置
JPH0516604U (ja) ロール製品箱詰め機
AU4053893A (en) Apparatus and process for packaging articles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1107911

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIC1 Information provided on ipc code assigned before grant

Ipc: B65B 51/14 20060101ALI20060221BHEP

Ipc: B65B 7/28 20060101AFI20060221BHEP

Ipc: B65B 23/00 20060101ALI20060221BHEP

Ipc: B65B 35/30 20060101ALI20060221BHEP

Ipc: B65B 5/10 20060101ALI20060221BHEP

17P Request for examination filed

Effective date: 20061011

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1107911

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070402666

Country of ref document: GR

REF Corresponds to:

Ref document number: 69936949

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070926

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ARNOLD & SIEDSMA AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2293145

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080309

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180321

Year of fee payment: 20

Ref country code: DE

Payment date: 20180322

Year of fee payment: 20

Ref country code: CH

Payment date: 20180321

Year of fee payment: 20

Ref country code: LU

Payment date: 20180321

Year of fee payment: 20

Ref country code: DK

Payment date: 20180321

Year of fee payment: 20

Ref country code: NL

Payment date: 20180321

Year of fee payment: 20

Ref country code: FI

Payment date: 20180322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20180316

Year of fee payment: 20

Ref country code: MC

Payment date: 20180314

Year of fee payment: 20

Ref country code: IE

Payment date: 20180323

Year of fee payment: 20

Ref country code: BE

Payment date: 20180321

Year of fee payment: 20

Ref country code: SE

Payment date: 20180321

Year of fee payment: 20

Ref country code: AT

Payment date: 20180322

Year of fee payment: 20

Ref country code: FR

Payment date: 20180323

Year of fee payment: 20

Ref country code: PT

Payment date: 20180305

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180430

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20180308

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69936949

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20190309

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20190308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190308

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 370889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190309

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190308

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190309

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20190309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190310