EP1588201A1 - Cable a fibres optiques avec gaine de maintien - Google Patents

Cable a fibres optiques avec gaine de maintien

Info

Publication number
EP1588201A1
EP1588201A1 EP03815702A EP03815702A EP1588201A1 EP 1588201 A1 EP1588201 A1 EP 1588201A1 EP 03815702 A EP03815702 A EP 03815702A EP 03815702 A EP03815702 A EP 03815702A EP 1588201 A1 EP1588201 A1 EP 1588201A1
Authority
EP
European Patent Office
Prior art keywords
outer layer
cable
retaining sheath
cable according
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP03815702A
Other languages
German (de)
English (en)
Inventor
Patrick Jamet
Nathalie Lecourtier
Daniel Bernier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silec Cable SAS
Original Assignee
Sagem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem SA filed Critical Sagem SA
Publication of EP1588201A1 publication Critical patent/EP1588201A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4438Means specially adapted for strengthening or protecting the cables for facilitating insertion by fluid drag in ducts or capillaries
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/52Underground or underwater installation; Installation through tubing, conduits or ducts using fluid, e.g. air

Definitions

  • the present invention relates to a fiber optic telecommunication cable, particularly for connecting user telecommunication installations to switching and routing centers.
  • connection of user installations by optical fibers is planned to be carried out at the request of users, using individual micro-pipes or mini-pipes to be allocated to users respectively.
  • the telecommunications operator managing these user connection lines only connects users who request them, which is more economical than pre-wiring a priori potentially "connectable" user installations without being certain that the users of these installations are interested in a connection line to one or more optical fibers.
  • each MCO micro-conductor or mini-conductor contains an MCA micro-cable or mini-cable dedicated to a user or a group of users and installed at the request of the user or group of users.
  • Two micro-cables or mini-cables are shown in Figure 1, and five micro-cables or mini-cables MCO are awaiting the installation of micro-cables or mini-cables.
  • a sheath G can coat the assembly of MCO microconduits or mini-conduits so as to constitute a “multi-micro-conduits” or “ulti- ini-conduits” system, as shown in FIG. 1.
  • micro -conduits have an internal diameter between 3 mm and 5 mm and an external diameter between 5 mm and 8 mm and each include a micro-cable having an external diameter less than or equal to 3 mm, in general from 0.8 mm to 2 mm.
  • the mini-pipes and mini-cables have larger sections than the micro-pipes and micro-cables.
  • mini-pipes have an internal diameter between 6 mm and 12 mm and an external diameter between 8 mm and 15 mm.
  • the mini-cables have an external diameter less than or equal to 11 mm, in general from 3 mm to 10 mm.
  • each micro-cable in a micro-pipe or each mini-cable in a mini-pipe is generally installed by blowing or by portage.
  • Figure 2 shows schematically the installation of a micro cable or a mini cable
  • micro-cable or mini-cable MCA in a micro-pipe or mini-pipe MCO by a blowing technique.
  • the micro-cable or mini-cable MCA is unwound from a loose wheel R around which the micro-cable or the mini-cable is wound in a coil and which turns freely around the axis of a support SU placed on the ground.
  • One free end of the micro-cable or the mini-cable MCA is provided with an OB shell having a section substantially smaller than that of the micro-pipe or the mini-pipe MCO.
  • micro-cable or mini-cable is pulled by the shell and is thus unwound from the wheel R thanks to a thrust exerted by an air flow AC tablet exerted behind the OB shell, following the FT traction arrow longitudinally to the micro-pipe or mini-pipe.
  • FIG. 3 schematically shows an installation of a micro-cable or a mini-cable MCA by porting in a micro-pipe or a mini-pipe MCO.
  • the mini-cable or micro-cable is unwound from a wheel R mounted madly on a support SU resting on the ground, thanks to two rollers RO rotating in opposite directions which pull the micro-cable or the mini-cable MCA in the micro-conduct or mini-conduct MCO.
  • a FL fluid such as air or water, to be injected under pressure into the micro-pipe or the MCO mini-pipe allows the micro-cable or the mini-cable to "float" in the micro-pipe or the - mini - driving, while being pushed by the two RO rollers. Carrying provides much less mechanical stress on the micro-cable or mini-cable than the blowing shown in Figure 2.
  • the mini-cables and micro-cables of optical fiber telecommunications intended to be installed respectively in the micro-pipes and the micro-pipes include a thin sheath of support which offers a relatively high coefficient of friction on the micro- hard plastic pipes and mini-pipes. Consequently the retaining sheath relatively brakes the progression of the micro-cable or the mini-cable in the micro-pipe or in the mini-pipe by blowing compressed air or by floating in the fluid and pushed by the rollers.
  • the retaining sheath offers a low stiffness which generates a collapse of the micro-cable or the mini-cable which is all the more pronounced as the latter. spans a great length in the micro-pipe or mini-pipe. Any exaggerated support of the retaining sheath against the wall of the microconduit or of the mini-pipe slows down the advance of the micro-cable or the mini-cable.
  • the main objective of the invention is to reduce the friction of a fiber optic cable when it is laid in a pipe, particularly by blowing or carrying, while maintaining cohesion of the various elements making up the cable and a high compactness of the cable and without degrading the transmission quality and the lifetime of the optical fibers included in the cable.
  • a telecommunication cable having optical fibers contained in a thin retaining sheath is characterized in that it comprises an external layer surrounding the retaining sheath and having a coefficient of friction lower than that of the retaining sheath.
  • the outer layer is the component of the cable which can be in direct contact with the wall of a micro-pipe or a mini-pipe, the reduction of the coefficient of friction of the cable by a choice of the coefficient of friction of the layer external external lower than that of the current holding sheaths reduces the tensile forces exerted on the cable during installation by blowing or carrying.
  • the thickness of the outer layer is a few tenths of a millimeter and thus of the same order as the thickness of the retaining sheath, which keeps a compactness high to cable. This high compactness is even higher if the optical fibers are clamped in the holding sheath by mechanical coupling therewith or by means of the holding sheath enclosing optical fiber modules, and by mechanical coupling of the outer layer and of the retaining sheath surrounded by the outer layer.
  • a second objective of the invention is to increase the stiffness of the telecommunication fiber optic cable in order to facilitate the linear behavior of the cable in a micro-pipe or mini-pipe over a great length from several tens to hundreds of meters, while avoiding curvatures or folds of the assembly with retaining sheath and external layer generating a straw effect.
  • the stiffness of the outer layer is greater than the stiffness of the retaining sheath surrounded by the outer layer.
  • FIG. 1 is a section of an existing pipe containing seven micro-pipes or mini-pipes, two of which each contain a micro-cable or a mini-cable with optical fibers, according to the prior art already discussed;
  • FIG. 2 schematically shows an installation for laying by blowing a micro-cable in a micro-pipe or a mini-cable in a mini-pipe according to the prior art already discussed;
  • FIG. 3 schematically shows an installation for laying by carrying a micro-cable in a micro-pipe or a mini-cable in a mini-pipe according to the prior art already discussed;
  • - Figure 4 is a very large section of a micro-cable with three optical fibers and a mechanical reinforcing fiber according to the invention
  • - Figure 5 shows schematically an isntallation for measuring a coefficient of friction of a cable according to the invention
  • FIG. 6 is a diagram of a tensile force exerted on a cable sample in the installation according to Figure 5 as a function of the movement of the cable sample;
  • FIG. 7 and 8 schematically show a test installation for measuring the stiffness of a fiber optic cable respectively before and after that one end of the cable is subjected to a predetermined bending force
  • FIG. 9 is a large-scale section of a mini-cable according to the invention, including seven modules each with twelve optical fibers and mechanical reinforcement fibers.
  • a telecommunication micro-cable 1 essentially comprises several optical fibers 2, a retaining sheath 3 and an external layer 4, as shown in FIG. 4.
  • the mini-cable 1 without the external layer is analogous to a module , also called micro-module, enveloped by the retaining sheath 3 of small thickness which is easily tearable and contains a series of optical fibers, as disclosed in European patent EP-0468878.
  • Each optical fiber 2 is typically composed of a silica core 5 having a cross section SI with a diameter of approximately 0.125 mm, and a colored identification coating 6 having a thickness of 0.062 mm, ie a diameter of optical fiber 2 of about 0.250 mm.
  • the mini-cable 1 can for example comprise 2 to 12 optical fibers, and the substantially oval or circular section of the mini-cable is adapted to the number of optical fibers.
  • 3 to 4 optical fibers are provided inside the retaining sheath 3.
  • the layers 6 of the optical fibers have different colors from each other to better distinguish them during a connection.
  • the retaining sheath 3 called “microgain” ( ⁇ sheath (registered trademark)), is thin and easily tearable and generally has a substantially cylindrical shape enveloping the optical fibers 2.
  • the retaining sheath 3 encloses the fibers optics 2 which are in a determined number, for example equal to four, or six, or eight or twelve to keep the optical fibers grouped and thus to constitute a compact module, also called "micromodule”.
  • the retaining sheath 3 is in contact with the optical fibers and is mechanically coupled with the optical fibers 2. In practice, when the number of optical fibers 2 contained in the retaining sheath 3 is relatively high, only the optical fibers at the periphery external of the module are in contact with the sheath 3.
  • the previous coupling between the optical fibers 2 and the retaining sheath 3 is defined as a mechanical coupling between two elements meaning that any stress applied to one of the elements is passed on to the other element, or when one of the elements is requested, the other is also required without requiring bonding or any other fixing of one of the elements to the other.
  • a tensile force exerted on the retaining sheath 3 integrally translates the optical fibers 2 contained in the retaining sheath with the latter, and conversely a tensile force exerted on all of the optical fibers integrally translates the sheath holding with said assembly; said tensile forces are of course limited to the maximum admissible values before rupture by the components 2, 3 on which they are exerted.
  • the mechanical coupling between the retaining sheath and the optical fibers ensures cohesion of the retaining sheath and of the fibers that it contains and ensures a high compactness of the module thus formed.
  • the retaining sheath 3 is relatively thin and has a thickness of the order of a few tenths of a millimeter, typically 0.25 mm.
  • a microgaine used in practice in a telecommunications cable according to the aforementioned European patent, ie in practice 0.15 mm, is therefore thinner than the retaining sheath 3 in a cable according to the invention.
  • the retaining sheath 3 with this thickness constitutes a cushioning pad for any stresses exerted by the thinner outer layer 4.
  • the retaining sheath 3 is adapted to the characteristics of the materials constituting the optical fibers which enclose them by mechanical coupling so that the expansion and retraction forces due to temperature variations are much less than the stresses leading to degradation of the optical fibers.
  • the relatively small thickness of the retaining sheath avoids subjecting the fibers to elongation and compression stresses during thermal cycles.
  • the material of the retaining sheath 3 is typically an amorphous thermoplastic material, or an elastomer, or a thermoplastic material which may contain mineral fillers.
  • the retaining sheath 3 is preferably put in place by extrusion around the optical fiber module 2, simultaneously with the pulling and assembly of the optical fibers 2 which may be twisted alternately in SZ periodically.
  • the interior of the retaining sheath 3 can be filled with a filling material 7, such as a gel or a silicone or synthetic oil or grease, with which the optical fibers are coated prior to their passage through a die. extrusion of the retaining sheath.
  • the filling material 5 longitudinally seals the interior of the sheath.
  • the retaining sheath 3 contains, in addition to the optical fibers 2, one or more mechanical reinforcement fibers 8, called stabilization fibers, as defined in the international patent application WO 98/21615.
  • the total number of reinforcing fibers 8 can be less than or equal to or greater than the total number of optical fibers 2 in a retaining sheath 3.
  • the reinforcing fibers 8 have a diameter substantially equal to that of optical fibers 2 and have mechanical properties similar to optical fibers so that they are interchangeable with them.
  • the reinforcing fibers are glass fibers, carbon fibers or aramide fibers.
  • the reinforcing fibers 8 are also mechanically coupled, with the optical fibers 2 to the retaining sheath 3.
  • the reinforcing fibers have a coefficient of thermal expansion preferably less than or equivalent to that of optical fibers.
  • the reinforcing fibers 8 preferably have a coefficient of thermal expansion less than the assembly with retaining sheath 3 and external layer 4, or even lower than that of the optical fibers, in order to exert resistance to possible variations in length of the assembly 3-4 so that the overall thermal coefficient resulting from the assembly 3-4 and of the reinforcing fibers 8 is substantially equal to that of the optical fibers 2.
  • the reinforcing fibers 8 ensure a longitudinal coupling with the assembly 3-4 in which the optical fibers as well as the reinforcing fibers are arranged without an excess length, that is to say with a longitudinal coupling of so that a mechanical or thermal stress generating an elongation or a compression of the assembly 3-4 leads to a homogeneous elongation or a homogeneous compression of the assembly 3-4 and of the optical fibers.
  • the retaining sheath 3 in the micro-cable 1 having N optical fibers 2 has mechanical characteristics defined relative to those of the optical fibers, particularly to prevent micro-bending in the optical fibers when the mini-cable is subjected to temperature variations from -40 ° C to +85 ° C approximately.
  • the following inequality is satisfied: ( ⁇ 3.E3.S3) ⁇ [( ⁇ 5.E5.S5) + ( ⁇ 6.E6.S6)] (N / 14) + ' ( ⁇ 7.E7.
  • ⁇ 3, E3 and S3 denote a coefficient of thermal expansion / compression, a Young's modulus in tension and a section of the holding sheath 3, ⁇ 5, E5 and S5 denote a thermal expansion / compression coefficient, a Young modulus in tension and a section of the core 5 of each optical fiber 2, ⁇ 6, E6 and S ⁇ denote a thermal expansion / compression coefficient, a Young modulus in tension and a section of the coating 6 of each optical fiber, and ⁇ 7, E7 and S7 denote a coefficient of thermal expansion / compression, a Young's modulus in traction and a section of the filling material 7 corresponding to the internal cutting surface of the retaining sheath 3 without the sections of the optical fibers 2.
  • the retaining sheath 3 has a coefficient of expansion / compression ⁇ 3 less than approximately 80.10 / ° C for a temperature between -40 ° C and +80 ° C, a Young's modulus in traction E3 less than approximately 10 MPa , thickness less than about 0.35 mm, a Young's modulus in bending less than about 50 MPa and a hardness less than about 45 Shore D units.
  • the outer layer 4 has an extremely low coefficient of friction so as to limit the tensile forces exerted on the micro-cable 1 during the laying of the latter in great length in an MCO micro-pipe as well by blowing as shown in Figure 2, only by carrying in a fluid such as air or water under pressure, as shown in Figure 3.
  • the coefficient of friction of the outer layer 4 is less than about 0.060 so that the mini-cable slides almost without friction in an MCO micro-pipe made of high density polyethylene (HDPE).
  • the outer layer is made of a polyamide, or of a polyester, or of a polyfluoroethene such as polytetrafluoroethylene (PTFE).
  • the coefficient of friction of the outer layer 4 is significantly lower than that of the retaining sheath 3 which is typically of the order of 0.1 to 0.2, that is to say the coefficient of friction of the layer external 4 is at least substantially less than half the coefficient of friction of the retaining sheath 3.
  • the coefficient of friction f of the outer layer 4 of the micro-cable 1, that is to say the coefficient of friction of the micro-cable 1, can be measured as follows, with reference to FIG. 5.
  • a sample of smooth circular micro-pipe MCO in high density polyethylene with an internal diameter greater than the diameter of the micro-cable 1 is wound on 2.75 turns on a rigid circular fixed support S with a diameter of 500 mm.
  • the internal and external diameters of the MCO micro-pipe are 3.8 mm and 5.0 mm.
  • a sample of micro-cable 1 for example including 12 optical fibers and having an external diameter of 2 , 0 mm and a length of about ten meters is introduced by sliding into the micro-pipe, as shown in Figure 5.
  • the other end of the micro-cable sample is connected to a traction machine MT applying a controlled traction force T.
  • the test consists of pulling on the micro-cable sample at a predetermined speed V typically of 1000 mm / min imparted by the traction machine MT and taking up the tensile force T necessary for the movement X of the micro-cable.
  • the length of the displacement is sufficient to be able to correctly establish a permanent displacement regime, and is typically of the order of 500 mm.
  • FIG. 6 shows an example of a recorded curve of the displacement X expressed in millimeters as a function of the tensile force T expressed in Newton.
  • the thickness of the external layer 4 is small and clearly less than that of the retaining sheath 3. Since the materials with a low coefficient of friction are generally hard, even rigid, the invention takes care to avoid any risk of straw at the curvature or the fold of the micro-cable.
  • the thickness of the layer 4 must nevertheless be sufficient to increase the stiffness of the micro-cable without however being too flexible in order to install the micro-cable by carrying it in a fluid, as shown in FIG. 3.
  • the thickness of the outer layer 4 is typically between approximately 20 ⁇ m and approximately 100 ⁇ m for a Young's modulus in tension between approximately 40 MPa and approximately 100 MPa, and for a Young's modulus in bending comprised between 800 MPa approximately and 2500 MPa approximately.
  • the hardness of the outer layer 4 is greater than about 80 Shore D units, that is to say between 100 and 200 Rockwell R units approximately. The hardness of the outer layer 4 is thus significantly greater than the hardness of the retaining sheath 3, in a ratio of at least approximately 2.
  • the stiffness of the external layer 4 is thus greater than the stiffness of the retaining sheath 3 in order to increase the stiffness of the micro-cable compared to a cable only with the microgain 3 containing the same number of optical fibers 2.
  • the stiffness of the micro-cable 1 is measured as follows with reference to FIGS. 7 and 8. A sample of micro-cable 1 is mounted cantilevered and fixed in a clamp P so that a predetermined length L of l the micro cable sample protrudes from the clamp, as shown in figure 7. At the free end of the length L of the micro cable sample is applied a vertical force F perpendicular to the sample and the displacement Y which result is measured, as shown in figure 8.
  • the predetermined length L is equal to 0.2 m and the applied force F is equal to 0.08 N for a micro-cable with twelve optical fibers having an external diameter 2.0 mm OD.
  • the stiffness B of the micro-cable 1 with the outer layer 4 is approximately twice superior to that of a known micro-cable with 12 optical fibers and support sheath without external layer.
  • the stiffness B is naturally dependent on the diameter of the micro-cable. According to the invention, the stiffness of the micro-cable corresponds to the following inequality:
  • the material of the outer layer 4 has a coefficient of thermal expansion / compression between approximately 100.10 / ° C and approximately 300.10 / ° C for temperatures between approximately -40 ° C and approximately +80 ° C.
  • the coefficient of expansion / compression of the complete micro-cable is not increased too much thanks to the thinness of the external layer 4 compared to a known module with support sheath, which gives acceptable opto-thermal performance of the micro-cable.
  • the outer layer 4 has at least one of the following characteristics: Young's modulus in tension, Young's modulus in bending, coefficient of expansion / compression and hardness, greater than that of the retaining sheath 3 surrounded by the outer layer.
  • the outer layer 4 is deposited by extrusion around the retaining sheath 3.
  • the retaining sheath 3 and the outer layer 4 are put in place by extrusion around the module consisting of all of the optical fibers 2 and any mechanical reinforcement fibers 8.
  • the retaining sheath 3 and the external layer 4 can be produced simultaneously with the assembly of the optical fibers 2 in module.
  • the outer layer 4 is mechanically coupled to the retaining sheath 3 in the direction of the mechanical coupling as defined above so that the assembly 3-4 encloses the assembly of optical fibers 2 and any reinforcing fibers 8 and confers mechanical cohesion between elements 2, 3 and 4 and compactness with the micro-cable 1.
  • the mechanical coupling between the retaining sheath 3 and the external layer 4 prevents the retaining sheath from undergoing compressions and extensions which are dangerously repercussions in the optical fibers 2; the harder and stiffer outer layer 4 attenuates such constraints when, according to the invention, it is mechanically coupled to the optical fibers 2 via the retaining sheath 3.
  • the push rollers RO would advance the outer layer 4 relative to the assembly 2-3 if the outer layer 4 was not coupled to the retaining sheath 3.
  • a telecommunication cable constitutes a mini-cable 9 with optical fibers analogous to a super-module as disclosed in the international patent application WO 02/31568, but with an outer layer according to the invention.
  • the mini-cable 9 comprises several fiber optic modules 10, for example seven in number as shown in FIG. 9, and more generally at least two fiber optic modules 10. The relatively small number of modules 10 in the mini-cable 9 makes it possible to clearly distinguish the modules from each other.
  • Each optical fiber module 10 constitutes a micro-cable similar to that shown in FIG. 4, but without an external layer 4.
  • each module 10 comprises several optical fibers 2 each having a silica core 5 coated with a colored identification layer 6, and a retaining sheath 3, called "microgaine", which has a small thickness, which is easily tearable and which is mechanically coupled with all of the optical fibers that it contains in order to enclose them.
  • a module 10 comprises 2 to 12 optical fibers.
  • a module 10 can comprise a filling material 7 as a sealant and one or more mechanical reinforcing fibers 8 contained in the module, for example two reinforcing fibers for ten optical fibers per module.
  • the filling material 7 fills the entire space between the optical fibers 2 and any mechanical reinforcement fibers 8 in the retaining sheath 4.
  • the mini-cable 9 includes a retaining sheath 11 surrounding all the modules 10 contained in the mini-cable so as to group them together and keep them together.
  • the retaining sheath 11 is in contact with the retaining sheaths 3 of the modules 10 which are located at the periphery of the mini-cable, and is mechanically coupled with the retaining sheaths 3 of the modules 10 to enclose these.
  • the mechanical coupling between the holding sheaths 3 and the holding sheath 11 must be understood according to the definition set out above, that is to say any stress such as traction applied to the holding sheath 11 of the mini-cable 9 and passed on on the holding sheaths 3 of the modules 10, and conversely any stress applied on the holding sheaths 3 of the modules 10 is passed on to the holding sheath 11 of the mini-cable 9.
  • the retaining sheath 11 of the mini-cable 9 has physical characteristics analogous to the retaining sheaths 3 of the modules 10, that is to say to the retaining sheath 3 of the micro-cable 1.
  • the sheath of maintenance 11 has a Young's modulus in tension of less than approximately 10 MPa, a coefficient of thermal expansion / compression of less than 80.10 / ° C for a temperature between - 40 ° C to +80 ° C, a thickness between 0 , Approximately 10 mm and approximately 0.50 mm, a Young's modulus in bending less than approximately 50 MPa, and a hardness less than approximately 45 Shore D units.
  • the mini-cable 9 also includes an outer layer 12 which is mechanically coupled to the holding sheath 11 of the mini-cable.
  • the outer layer 12 of the mini-cable 9 has physical characteristics analogous to the outer layer 4 of the micro-cable 1.
  • the outer layer 12 has a Young's modulus in tension of between approximately 40 MPa and approximately 100 MPa, a expansion / compression coefficient between approximately 100.10 / ° C and 300.10 / ° C, for a temperature between approximately -40 ° C and approximately +80 ° C, a Young's modulus in flexion between approximately 800 MPa and approximately 2500 MPa , and a hardness greater than about 45 Shore D units, that is to say between 100 and 200 Rockwell R units approximately.
  • the outer layer 12 has a coefficient of friction f of less than about 0.060.
  • the mini-cable 9 has a stiffness B greater than
  • the external diameter of the mini-cable 9 for 144 optical fibers being significantly larger than the external diameter of the micro-cable 1 which is typically 2.0 mm for twelve optical fibers
  • the external retaining sheath 11 and the external layer 12 of the mini - ' cable 9 are generally thicker than the retaining sheaths 3 of the optical fiber modules 10 and the outer layer 4 of the micro-cable 1.
  • the thickness of the retaining sheath 11 or of the outer layer 12 is between 0.10 mm approximately and 0.50 mm approximately.
  • a filling material 13 can fill the entire space between the modules 10 and the retaining sheath 11 in the mini-cable 9, the modules 10 being coated with the material 13 before they pass through an extrusion die of the retaining sheath 11 and the outer layer 12.
  • the filling material 13 is a sealant, such as gel or oil or silicone or synthetic grease.
  • the retaining sheaths 3 of the modules 10 are coated with the sealant 13 prior to their passage through a die to simultaneously put in place by extrusion the outer layer 12 and the retaining sheath 11 around the modules 10.
  • the sheath holding 11 and the outer layer 12 are produced simultaneously with a drawing and an assembly of the modules 10, and therefore simultaneously with a drawing and an assembly of the optical fibers of each module.
  • the modules 10 can be twisted in SZ so that all the modules have the same length and are stressed homogeneously during mechanical stresses such as bending in particular.
  • the filling material 13, like the filling material 7 in a sheath 3 of a module 10 or of a micro-cable 1, is produced by "dry process” by combining powder swelling and / or swelling strings and / or swelling ribbons in the presence of water so as to form a plug.
  • the plug prevents spread water on the one hand between the optical fibers 2 inside the holding sheath 3 of each module 10 or micro-cable 1, on the other hand between the modules 10 inside the sheath of holding 11 of the mini-cable 9.
  • the external layer 4 of the micro-cable 1 or the external layer 12 of the mini cable 9 may include an identification means for identifying the micro-cable or mini-cable and distinguishing it from other micro-cables or mini-cables.
  • the identification means is for example a colored external identification film coating fixed to the external layer 4, 12 or integrated into the mass of the external layer 4, 12.
  • the identification means can be constituted by one or more nets or bands having predetermined colors different from each other and extending longitudinally or helically on the outer layer 4, 12. These external threads or bands can be extruded simultaneously with the outer layer 4, 12, or be printed for example with a or different indelible inks or paints on the outer layer.
  • the means of identifying the micro-cable or the mini-cable 9 comprises a mark or sign which is composed of alpha-numeric characters and which is marked on the external layer 4, 12 preferably periodically and longitudinally and / or helically.
  • the mark is preferably fluorescent so that it is more visible in low light.
  • the material of the outer layer 4, 12 is translucent, for example made of polyamide or polyester.
  • a mark such as one or more nets or bands or marks or signs is printed in ink on the retaining sheath 3, 11 surrounded by the outer layer and is readable through the outer layer 4, 12. In this way, the ink marking thus produced is resistant to abrasion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

Un câble de télécommunication (1) du type micro-câble ou mini-câble ayant des fibres optiques (2) contenues dans une gaine de maintien de faible épaisseur (3) comprend une couche externe (4) entourant la gaine de maintien (3). La couche externe a un coefficient de frottement inférieur à celui de la gaine de maintien et une raideur supérieure à celle de la gaine de maintien. Ces caractéristiques réduisent le frottement et augmentent la raideur du câble lors de la pose de celui-ci par soufflage ou portage dans une conduite.

Description

DESCRIPTION
La présente invention concerne un câble de télécommunication à fibres optiques, particulièrement pour raccorder des installations de télécommunication d'usager à des centres de commutation et de routage.
Pour des raisons essentiellement économiques, le raccordement d'installations d'usager par des fibres optiques est prévu d'être réalisé à la demande des usagers, en utilisant des micro-conduites ou des mini-conduites individuelles à allouer respectivement aux usagers. L'opérateur de télécommunication gérant ces lignes de raccordement d'usager ne raccorde que les usagers qui en font la demande, ce qui est plus économique que de pré-câbler a priori des installations d'usager potentiellement "raccordables" sans être certain que les usagers de ces installations soient intéressés par une ligne de raccordement à une ou plusieurs fibres optiques .
Selon une variante de concentration des lignes d'usager montré à la figure 1, des micro-conduites ou mini-conduites individuelles MCO dédiées respectivement à des usagers ou à des groupes d'usagers sont contenues ensemble dans une conduite existante CD afin de réduire le coût de génie civil pour l'installation de lignes d'usager. Chaque microconduite ou mini-conduite MCO contient un micro-câble ou un mini-câble MCA dédié à un usager ou un groupe d'usagers et installé à la demande de l'usager ou du groupe d'usagers. Deux micro-câbles ou mini-câbles sont représentés dans la figure 1, et cinq microconduites ou mini-conduites MCO sont en attente d'installation de micro-câbles ou mini-câbles. Une gaine G peut revêtir l'assemblage des microconduites ou mini-conduites MCO de façon à constituer un système à "multi-micro-conduites" ou à " ulti- ini-conduites", comme montré à la figure 1. Typiquement, les micro-conduites ont un diamètre interne compris entre 3 mm et 5 mm et un diamètre externe compris entre 5 mm et 8 mm et comprennent chacune un micro-câble ayant un diamètre externe inférieur ou égal à 3 mm, en général de 0,8 mm à 2 mm. Les mini-conduites et les mini-câbles ont des sections plus grandes que les micro-conduites et micro-câbles. Typiquement les mini-conduites ont un diamètre interne compris entre 6 mm et 12 mm et un diamètre externe compris entre 8 mm et 15 mm. Les mini-câbles ont un diamètre externe inférieur ou égal à 11 mm, en général de 3 mm à 10 mm..
A cause des sections petites des micro-câbles et mini-câbles ainsi que des micro-conduites et des mini-conduites, chaque micro-câble dans une micro- conduite ou chaque mini-câble dans une mini-conduite est en général installé par soufflage ou par portage.
La figure 2 montre schématiquement l'installation d'un micro-câble ou d'un mini-câble
MCA dans une micro-conduite ou mini-conduite MCO par une technique de soufflage. Le micro-câble ou le mini-câble MCA est déroulé depuis une roue folle R autour de laquelle le micro-câble ou le mini-câble est enroulé en bobine et qui tourne librement autour de l'axe d'un support SU posé sur le sol. Une extrémité libre du micro-câble ou du mini-câble MCA est doté d'un obus OB ayant une section sensiblement inférieure à celle de la micro-conduite ou de la mini-conduite MCO. Le micro-câble ou le mini-câble est tiré par l'obus et est ainsi dévidé de la roue R grâce à une poussée exercée par un flux d'air comprimé AC exercé derrière l'obus OB, suivant la flèche de traction FT longitudinalement à la microconduite ou mini-conduite.
La figure 3 montre schématiquement une installation d'un micro-câble ou d'un mini-câble MCA par portage dans une micro-conduite ou une miniconduite MCO. Le mini-câble ou le micro-câble est dévidé d'une roue R montée folle sur un support SU reposant sur le sol, grâce à deux rouleaux RO tournant en sens inverse qui tirent le micro-câble ou le mini-câble MCA dans la micro-conduite ou la miniconduite MCO. Un fluide FL, tel que de l'air ou de l'eau, à injecter sous pression dans la microconduite ou la mini-conduite MCO permet au micro- câble ou au mini-câble de "flotter" dans la microconduite ou la - mini-conduite, tout en étant poussé par les deux rouleaux RO. Le portage confère beaucoup moins de contraintes mécaniques exercées sur le micro-câble ou le mini-câble que le soufflage montré à la figure 2.
Les mini-câbles et les micro-câbles de télécommunication à fibres optiques destinés à' être installés respectivement dans les micro-conduites et les micro-conduites comprennent une gaine de maintien de faible épaisseur qui offre un coefficient de frottement relativement élevé sur les micro-conduites et mini-conduites en matériau plastique dur. Par conséquent la gaine de maintien freine relativement la progression du micro-câble ou du mini-câble dans la micro-conduite ou dans la mini-conduite par soufflage d'air comprimé ou par flottaison dans le fluide et poussée par les rouleaux.
En outre, la gaine de maintien offre une raideur faible qui engendre un affaissement du micro-câble ou du mini-câble d'autant plus prononcé que celui-ci s'étend sur une grande longueur dans la microconduite ou la mini-conduite. Tout appui exagéré de la gaine de maintien contre la paroi de la microconduite ou de la mini-conduite freine l'avancée du micro-câble ou du mini-câble.
L'objectif principal de l'invention est de réduire le frottement d'un câble à fibres optiques lors de sa pose dans une conduite, particulièrement par soufflage ou portage, tout en conservant une cohésion des divers éléments composant le câble et une compacité élevée du câble et sans dégrader la qualité de transmission et la durée de vie des fibres optiques incluses dans le câble.
Pour atteindre cet objectif, un câble de télécommunication ayant des fibres optiques contenues dans une gaine de maintien de faible épaisseur, est caractérisé en ce qu'il comprend une couche externe entourant la gaine de maintien et ayant un coefficient de frottement inférieur à celui de la gaine de maintien.
Puisque la couche externe est le composant du câble qui peut être directement en contact avec la paroi d'une micro-conduite ou d'une mini-conduite, la réduction du coefficient de frottement du câble par un choix du coefficient de frottement de la couche externe inférieur à celui des gaines de maintien actuelles diminue les efforts de traction exercés sur le câble lors d'une pose par soufflage ou par portage.
Comme on le verra dans la suite, l'épaisseur de la couche externe est de quelques dixièmes de millimètres et ainsi du même ordre que l'épaisseur de la gaine de maintien, ce qui conserve une compacité élevée au câble. Cette compacité élevée est encore plus élevée si les fibres optiques sont enserrées dans la gaine de maintien par couplage mécanique avec celle-ci ou par l'intermédiaire de gaine de maintien enfermant des modules de fibres optiques, et par couplage mécanique de la couche externe et de la gaine de maintien entourée par la couche externe.
Un deuxième objectif de l'invention est d'augmenter la raideur du câble de télécommunication à fibres optiques afin de faciliter la tenue linéaire du câble dans une micro-conduite ou une mini-conduite sur une grande longueur de plusieurs dizaines à centaines de mètre, tout en évitant des courbures ou pliures de l'ensemble à gaine de maintien et couche externe engendrant un effet de paille. A cette fin, la raideur de la couche externe est supérieure à la raideur de la gaine de maintien entourée par la couche externe.
On notera que le remplacement d'une gaine de maintien externe d'un micro-câble ou d'un micro-câble connu seulement par une couche externe selon l'invention mettrait les fibres optiques au contact d'un matériau trop raide et dur, ce qui engendrait un risque de mise en contrainte des fibres optiques pouvant se traduire par une dégradation mécanique et/ou une dégradation des performances de transmission de signaux optiques dans les fibres optiques. L'interposition de la gaine de maintien entre les fibres optiques ou des modules de fibres optiques et la couche externe selon l'invention produit un effet d'amortissement pour les fibres optiques relativement à des contraintes exercées sur la couche externe. D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention en référence aux dessins annexés correspondants dans lesquels :
- la figure 1 est une section d'une conduite existante contenant sept micro-conduites ou miniconduites dont deux contiennent chacune un micro- câble ou un mini-câble à fibres optiques, selon la technique antérieure déjà commentée ;
- la figure 2 montre schématiquement une installation pour poser par soufflage un micro-câble dans une micro-conduite ou un mini-câble dans une mini-conduite selon la technique antérieure déjà commentée ;
- la figure 3 montre schématiquement une installation pour poser par portage un micro-câble dans une micro-conduite ou un mini-câble dans une mini-conduite selon la technique antérieure déjà commentée ;
- la figure 4 est une section à très grande échelle d'un micro-câble à trois fibres optiques et une fibre de renfort mécanique selon l'invention ; - La figure 5 montre schématiquement une isntallation pour mesurer un coefficient de frottement d'un câble selon l'invention ;
- la figure 6 est un diagramme d'une force de traction exercée sur un échantillon de câble dans l'installation selon la figure 5 en fonction du déplacement de l'échantillon de câble ;
- les figures 7 et 8 montrent schématiquement une installation d'essai pour mesurer la raideur d'un câble à fibres optiques respectivement avant et après qu'une extrémité du câble soit soumise à une force de flexion prédéterminée ; et
- la figure 9 est une section à grande échelle d'un mini-câble selon l'invention, incluant sept modules chacun à douze fibres optiques et fibres de renfort mécanique.
Un micro-câble de télécommunication 1 selon l'invention comprend essentiellement plusieurs fibres optiques 2, une gaine de maintien 3 et une couche externe 4, comme montré à la figure 4. Le mini-câble 1 sans la couche externe est analogue à un module, dit également micro-module, enveloppé par la gaine de maintien 3 de faible épaisseur facilement dechirable et contenant une série de fibres optiques, tels que divulgués dans le brevet européen EP-0468878.
Chaque fibre optique 2 est composée typiquement d'un cœur en silice 5 ayant une section SI d'un diamètre de 0,125 mm environ, et d'un revêtement d'identification coloré 6 ayant une épaisseur de 0,062 mm, soit un diamètre de fibre optique 2 de 0,250 mm environ. Le mini-câble 1 peut comporter par exemple 2 à 12 fibres optiques, et la section sensiblement ovale ou circulaire du mini-câble est adaptée au nombre de fibres optiques . Afin de ne pas surcharger la figure 1, 3 à 4 fibres optiques sont prévues à l'intérieur de la gaine de maintien 3. Les couches 6 des fibres optiques ont des couleurs différentes les unes des autres pour mieux les distinguer au cours d'un raccordement.
La gaine de maintien 3, dite "microgaine" (μGaine (marque déposée) ) , est mince et facilement dechirable et présente généralement une forme sensiblement cylindrique enveloppant les fibres optiques 2. La gaine de maintien 3 enserre les fibres optiques 2 qui sont en nombre déterminé, par exemple égal à quatre, ou six, ou huit ou douze pour maintenir groupées les fibres optiques et ainsi pour constituer un module compact, appelé également "micromodule". La gaine de maintien 3 est en contact avec les fibres optiques et est couplée mécaniquement avec les fibres optiques 2. En pratique, lorsque le nombre de fibres optiques 2 contenues dans la gaine de maintien 3 est relativement élevé, seulement les fibres optiques à la périphérie externe du module sont en contact avec la gaine 3.
Le couplage précédent entre les fibres optiques 2 et la gaine de maintien 3 est défini comme un couplage mécanique entre deux éléments signifiant que toute contrainte appliquée sur l'un des éléments est répercutée sur l'autre élément, ou lorsque l'un des éléments est sollicité, l'autre l'est également sans nécessiter un collage ou toute autre fixation de l'un des éléments à l'autre. Par exemple, un effort de traction exercé sur la gaine de maintien 3 translate solidairement les fibres optiques 2 contenues dans la gaine de maintien avec celle-ci, et inversement un effort de traction exercé sur l'ensemble des fibres optiques translate solidairement la gaine de maintien avec ledit ensemble ; lesdits efforts de traction sont bien entendu limités aux valeurs maximales admissibles avant rupture par les constituants 2, 3 sur lesquels ils sont exercés. Le couplage mécanique entre la gaine de maintien et les fibres optiques assure une cohésion de la gaine de maintien et des fibres qu'elle contient et assure une compacité élevée du module ainsi formé.
La gaine de maintien 3 est relativement mince et a une épaisseur de l'ordre de quelques dixièmes de millimètres, typiquement 0,25 mm. Une microgaine utilisée en pratique dans un câble de télécommunication selon le brevet européen précité, soit en pratique 0,15 mm, est donc moins épaisse que la gaine de maintien 3 dans un câble selon l'invention. La gaine de maintien 3 avec cette épaisseur constitue un matelas amortisseur d'éventuelles contraintes exercées par la couche externe 4 plus mince.
La gaine de maintien 3 est adaptée aux caractéristiques des matériaux constitutifs des fibres optiques qui les enserrent par couplage mécanique de façon que les efforts de dilatation et de rétraction dus aux variations de température soient très inférieures aux contraintes conduisant à une dégradation des fibres optiques. La relative faible épaisseur de la gaine de maintien évite de soumettre les fibres à des contraintes d'élongation et de compression lors de cycles thermiques.
La matière de la gaine de maintien 3 est typiquement une matière amorphe thermoplastique, ou en élastomère, ou une matière thermoplastique pouvant contenir des charges minérales. La gaine de maintien 3 est mise en place de préférence par extrusion autour du module de fibre optique 2, simultanément au tirage et à l'assemblage des fibres optiques 2 éventuellement torsadées à sens alternés en SZ périodiquement .
L'intérieur de la gaine de maintien 3 peut être rempli d'un matériau de remplissage 7, tel qu'un gel ou une huile ou graisse silicone ou synthétique, avec lequel les fibres optiques sont enduites préalablement à leur passage dans une filière d' extrusion de la gaine de maintien. Le matériau de remplissage 5 assure longitudinalement l'étanchéité de l'intérieur de la gaine. En variante, la gaine de maintien 3 renferme, outre des fibres optiques 2, une ou plusieurs fibres de renfort mécanique 8, dites fibres de stabilisation, telles que définies dans la demande de brevet internationale WO 98/21615. En pratique, le nombre total des fibres de renfort 8 peut être inférieur ou égal ou supérieur au nombre total des fibres optiques 2 dans une gaine de maintien 3. Les fibres de renfort 8 ont un diamètre sensiblement égal à celui des fibres optiques 2 et ont des propriétés mécaniques voisines des fibres optiques de sorte qu'elles sont interchangeables avec celles-ci. Par exemple les ' fibres de renfort sont des fibres de verre, des fibres de carbone ou des fibres d'aramide. Les fibres de renfort 8 sont également couplées mécaniquement, avec les fibres optiques 2 à la gaine de maintien 3.
Les fibres de renfort ont un coefficient de dilatation thermique de préférence inférieur ou équivalent à celui des fibres optiques. Lorsque la gaine 3 et la couche externe 4 ont un coefficient de dilatation thermique supérieur aux fibres optiques 2, les fibres de renfort 8 ont de préférence un coefficient de dilatation thermique inférieur à l'ensemble à gaine de maintien 3 et couche externe 4, ou même inférieur à celui des fibres optiques, afin d'exercer une résistance aux éventuelles variations de longueur de l'ensemble 3-4 pour que le coefficient thermique global résultant de l'ensemble 3-4 et des fibres de renfort 8 soit sensiblement égal à celui des fibres optiques 2. Les fibres de renfort 8 assurent un couplage longitudinal avec l'ensemble 3-4 dans lequel les fibres optiques ainsi que les fibres de renfort sont disposées sans surlongueur, c'est-à- dire avec un couplage longitudinal de façon telle qu'une contrainte mécanique ou thermique générant un allongement ou une compression de l'ensemble 3-4 entraîne un allongement homogène ou une compression homogène de l'ensemble 3-4 et des fibres optiques.
De préférence, la gaine de maintien 3 dans le micro-câble 1 ayant N fibres optiques 2 présente des caractéristiques mécaniques définies relativement à celles des fibres optiques, particulièrement pour empêcher les micro-courbures dans les fibres optiques lorsque le mini-câble est soumis à des variations de température de -40 °C à +85 °C environ. A cette fin, conformément à la demande de brevet internationale WO 00/29892, l'inégalité suivante est satisfaite : (α3.E3.S3) < [ (α5.E5.S5) + (α6.E6.S6) ] (N/14) +'(α7.E7. S7) , dans laquelle α3, E3 et S3 dénotent un coefficient de dilatation/compression thermique, un module d'Young en traction et une section de la gaine de maintien 3, α5, E5 et S5 dénotent un coefficient de dilation/compression thermique, un module d'Young en traction et une section du cœur 5 de chaque fibre optique 2, α6, E6 et Sβ dénotent un coefficient de dilation/compression thermique, un module d'Young en traction et une section du revêtement 6 de chaque fibre optique, et α7, E7 et S7 dénotent un coefficient de dilation/compression thermique, un module de Young en traction et une section de la matière de remplissage 7 correspondant à la surface interne de coupe de la gaine de maintien 3 sans les sections des fibres optiques 2.
Typiquement, la gaine de maintien 3 présente un coefficient de dilatation/compression α3 inférieur à 80.10 /°C environ pour une température comprise entre -40 °C et +80 °C, un module d'Young en traction E3 inférieur à 10 MPa environ, une épaisseur inférieure à 0,35 mm environ, un module d'Young en flexion inférieur à 50 MPa environ et une dureté inférieure à 45 unités Shore D environ.
La couche externe 4 selon l'invention présente un coefficient de frottement extrêmement faible de manière à limiter les efforts de traction exercés sur le micro-câble 1 lors de la pose de celui-ci en grande longueur dans une micro-conduite MCO aussi bien par soufflage comme montré à la figure 2, que par portage dans un fluide tel qu'air ou eau sous pression, comme montré à la figure 3. Le coefficient de frottement de la couche externe 4 est inférieur à 0,060 environ afin que le mini-câble glisse quasiment sans frottement dans une micro-conduite MCO en polyéthylène à haute densité (PEHD) . Par exemple la couche externe est en un polyamide, ou en un polyester, ou en un polyfluoroéthène tel que le polytétrafluoroéthylène (PTFE) . Le coefficient de frottement de la couche externe 4 est nettement inférieur à celui de la gaine de maintien 3 qui est typiquement de l'ordre de 0,1 à 0,2, c'est-à-dire le coefficient de frottement de la couche externe 4 est au moins sensiblement inférieur à la moitié du coefficient de frottement de la gaine de maintien 3.
Le coefficient de frottement f de la couche externe 4 du micro-câble 1, c'est-à-dire le coefficient de frottement du micro-câble 1, peut être mesuré de la façon suivante, en référence à la figure 5.
Un échantillon de micro-conduite circulaire lisse MCO en polyéthylène à haute densité de diamètre intérieur supérieur au diamètre du micro-câble 1 est enroulé sur 2,75 tours sur un support S rigide circulaire fixe d'un diamètre de 500 mm. Typiquement, les diamètres interne et externe de la micro-conduite MCO sont de 3,8 mm et 5,0 mm. Après s'être assuré que l'état de surface intérieure de la micro-conduite MCO est propre, sec, non lubrifié et non marqué, .un échantillon de micro-câble 1 par exemple incluant 12 fibres optiques et ayant un diamètre externe de 2,0 mm et une longueur de dix mètres environ est introduit par glissement dans la micro-conduite, comme montré à la figure 5. A l'une des extrémités de l'échantillon de micro-câble est appliqué une tension d'entrée To = 9,81 x 0,2 = 1,962 daN, à l'aide d'une masse M, typiquement de 200 grammes, fixée à cette extrémité et ayant une valeur suffisante pour bien plaquer l'échantillon de micro-câble 1 au fond de la micro-conduite MCO. L'autre extrémité de l'échantillon de micro-câble est reliée à une machine de traction MT appliquant une force de traction contrôlée T.
L'essai consiste à tirer sur l'échantillon de micro-câble à une vitesse prédéterminée V typiquement de 1000 mm/mn conférée par la machine de traction MT et à relever l'effort de traction T nécessaire au déplacement X du micro-câble. La longueur du déplacement est suffisante pour pouvoir établir correctement un régime de déplacement permanent, et est typiquement de l'ordre de 500 mm. La figure 6 montre un exemple de courbe enregistrée du déplacement X exprimé en millimètre en fonction de la force de traction T exprimée en Newton. Le coefficient de frottement f est calculé à partir de l'effort de traction mesuré à l'aide de la formule suivante : f = (1/α) x In (T/TQ), avec f = coefficient de frottement, In = logarithme népérien, T = effort de traction mesuré en régime permanent en daN,
To = tension appliquée = 9,81 x M (kg), et α = angle de frottement en radian.
L'épaisseur de la couche externe 4 est faible et nettement inférieure à celle de la gaine de maintien 3. Les matériaux à faible coefficient de frottement étant généralement durs, voire rigides, l'invention prend soin d'éviter tout risque d'effet de paille à la courbure ou à la pliure du micro-câble.
L'épaisseur de la couche 4 doit être néanmoins suffisante pour augmenter la raideur du micro-câble sans toutefois être trop souple afin d'installer le micro-câble par portage dans un fluide, comme montré à la figure 3.
L'épaisseur de la couche externe 4 est typiquement comprise entre 20 um environ et 100 um environ pour un module d'Young en traction compris entre 40 MPa environ et 100 MPa environ, et pour un module d'Young en flexion compris entre 800 MPa environ et 2500 MPa environ. La dureté de la couche externe 4 est supérieure à 80 unités Shore D environ, c'est-à-dire comprise entre 100 et 200 unités Rockwell R environ. La dureté de la couche externe 4 est ainsi nettement plus grande que la dureté de la gaine de maintien 3, dans un rapport au moins égale 2 environ.
La raideur de la couche externe 4 est ainsi supérieure à la raideur de la gaine de maintien 3 afin d'augmenter la -raideur du micro-câble comparativement à un câble seulement avec la microgaine 3 contenant le même nombre de fibres optiques 2. La raideur du micro-câble 1 est mesurée de la façon suivante en référence aux figures 7 et 8. Un échantillon de micro-câble 1 est monté en porte à faux et fixé dans une pince P de manière qu'une longueur prédéterminée L de l'échantillon de microcâble dépasse de la pince, comme montré à la figure 7. A l'extrémité libre de la longueur L de l'échantillon de micro-câble est appliquée une force F verticale perpendiculaire à l'échantillon et le déplacement Y qui en résulte est mesuré, comme montré à la figure 8. Par exemple, la longueur prédéterminée L est égale à 0,2 m et la force appliquée F est égale à 0,08 N pour un micro-câble à douze fibres optiques ayant un diamètre externe DE de 2,0 mm. La raideur B du micro-câble est exprimée par la formule suivante : B = (L x F) / (3 x Y) , avec F = force en Newton, L = longueur de câble en porte à faux en m, Y = déplacement d'extrémité en m, et
2 B = raideur exprimée en N.m .
Typiquement, la raideur du micro-câble 1 avec la
-3 2 couche externe 4 est supérieure à 2,6.10 N.m , c'est-à-dire nettement supérieure à la raideur de la gaine de maintien 3. La raideur B du micro-câble 1 avec la couche externe 4 est environ deux fois supérieure à celle d'un micro-câble connu à 12 fibres optiques et gaine de maintien sans couche externe.
A matériaux constants des éléments inclus dans le micro-câble, la raideur B est naturellement dépendante du diamètre du micro-câble. Selon l'invention, la raideur du micro-câble correspond à l'inégalité suivante :
2 -3
1053 DE - 1,6.10 ≤ B ≤ 0,1 N.m , dans laquelle DE est le diamètre externe de la couche externe 4 et 70446
16
donc du micro-câble 1 exprimé en mètre. Cette inégalité résulte de la pose de quelques micro-câbles et mini-câbles selon l'invention par soufflage et par portage dans une micro-conduite d'essai. De préférence, la matière de la couche externe 4 présente un coefficient de dilatation/compression thermique compris entre 100.10 /°C environ et 300.10 /°C environ pour des températures comprises entre -40 °C environ et +80 °C environ. Le coefficient de dilatation/compression du micro-câble complet n'est pas trop augmenté grâce à la minceur de la couche externe 4 par rapport à un module connu à gaine de maintien, ce qui confère des performances opto-thermiques acceptables du micro-câble. Plus généralement, la couche externe 4 a au moins l'une des caractéristiques suivantes : module d'Young en traction, module d'Young en flexion, coefficient de dilatation/compression et dureté, supérieure à celle de la gaine de maintien 3 entourée par la couche externe.
La couche externe 4 est déposée par extrusion autour de la gaine de maintien 3. De préférence, la gaine de maintien 3 et la couche externe 4 sont mises en place par extrusion autour du module constitué par l'ensemble des fibres optiques 2 et d'éventuelles fibres de renfort mécanique 8. La gaine de maintien 3 et la couche externe 4 peuvent être réalisées simultanément à l'assemblage des fibres optiques 2 en module. La couche externe 4 est couplée mécaniquement à la gaine de maintien 3 au sens du couplage mécanique tel que défini ci-dessus afin que l'ensemble 3-4 enserre l'ensemble de fibres optiques 2 et d'éventuelles fibres de renfort 8 et confère une cohésion mécanique entre les éléments 2, 3 et 4 et une compacité au micro-câble 1. Le couplage mécanique entre la gaine de maintien 3 et la couche externe 4 évite que la gaine de maintien subisse à froid des compressions et extensions répercutables dangereusement dans les fibres optiques 2 ; la couche externe 4 plus dure et raide atténue de telles contraintes lorsque, selon l'invention, elle est couplée mécaniquement aux fibres optiques 2 via la gaine de maintien 3. En outre, pour une pose par portage (figure 3) , les rouleaux pousseurs RO feraient avancer la couche externe 4 par rapport à l'ensemble 2-3 si la couche externe 4 n'était pas couplée à la gaine de maintien 3.
Selon une deuxième réalisation de l'invention, un câble de télécommunication constitue un mini-câble 9 à fibres optiques analogue à un super-module tel que divulgué dans la demande de brevet internationale WO 02/31568, mais avec une couche externe selon l'invention. Le mini-câble 9 comporte plusieurs modules à fibres optiques 10, par exemple au nombre de sept comme montré à la figure 9, et plus généralement au moins deux modules à fibres optiques 10. Le nombre relativement faible de modules 10 dans le mini-câble 9 permet de distinguer nettement les modules entre eux.
Chaque module à fibres optiques 10 constitue un micro-câble analogue à celui montré à la figure 4, mais sans couche externe 4. Ainsi chaque module 10 comporte plusieurs fibres optiques 2 ayant chacune un cœur en silice 5 revêtu par une couche d'identification colorée 6, et une gaine de maintien 3 , dite "microgaine", qui a une faible épaisseur, qui est facilement dechirable et qui est couplée mécaniquement avec l'ensemble des fibres optiques qu'elle contient afin de les enserrer. Par exemple, un module 10 comprend 2 à 12 fibres optiques.
Comme dans la première réalisation montrée à la figure 4, un module 10 peut comprendre une matière de remplissage 7 en tant que produit d'étanchéité et une ou plusieurs fibres de renfort mécanique 8 contenus dans le module, par exemple deux fibres de renfort pour dix fibres optiques par module. La matière de remplissage 7 remplit tout l'espace compris entre les fibres optiques 2 et les éventuelles fibres de renfort mécanique 8 dans la gaine de maintien 4.
De manière analogue au couplage mécanique et à la composition des fibres optiques 2 dans un microcâble 1 ou un module 10, le mini-câble 9 comporte une gaine de maintien 11 entourant tous les modules 10 contenus dans le mini-câble de manière à les regrouper et à les maintenir ensemble. La gaine de maintien 11 est en contact avec les gaines de maintien 3 des modules 10 qui sont situées à la périphérie du mini-câble, et est couplée mécaniquement avec les gaines de maintien 3 des modules 10 pour enserrer ceux-ci. Le couplage mécanique entre les gaines de maintien 3 et la gaine de maintien 11 doit être compris selon la définition énoncée précédemment, c'est-à-dire toute contrainte telle que traction appliquée sur la gaine de maintien 11 du mini-câble 9 et répercutée sur les gaines de maintien 3 des modules 10, et inversement toute contrainte appliquée sur les gaines de maintien 3 des modules 10 est répercutée sur la gaine de maintien 11 du mini-câble 9.
La gaine de maintien 11 du mini-câble 9 présente des caractéristiques physiques analogues aux gaines de maintien 3 des modules 10, c'est-à-dire à la gaine de maintien 3 du micro-câble 1. Ainsi la gaine de maintien 11 présente un module d'Young en traction inférieur à 10 MPa environ, un coefficient de dilatation/compression thermique inférieur à 80.10 /°C environ pour une température comprise entre - 40 °C à +80 °C, une épaisseur comprise entre 0,10 mm environ et 0,50 mm environ, un module d'Young en flexion inférieur à 50 MPa environ, et une dureté inférieure à 45 unités Shore D environ.
Le mini-câble 9 comprend également une couche externe 12 qui est couplée mécaniquement à la gaine de maintien 11 du mini-câble. La couche externe 12 du mini-câble 9 présente des caractéristiques physiques analogues à la couche externe 4 du micro-câble 1. Ainsi, la couche externe 12 a un module d'Young en traction compris entre 40 MPa environ et 100 MPa evniron, un coefficient de dilatation/compression compris entre 100.10 /°C environ et 300.10 /°C, pour une température entre -40 °C environ et +80 °C environ, un module d'Young en flexion compris entre 800 MPa environ et 2500 MPa environ, et une dureté supérieure à environ 45 unités Shore D, c'est-à-dire comprise entre 100 et 200 unités Rockwell R environ. En outre, la couche externe 12 présente un coefficient de frottement f inférieur à 0,060 environ. Le mini-câble 9 a une raideur B supérieure à
-3 2 2,6 x 10 N.m environ, typiquement une raideur de
-3 2 50 x 10 N.m pour un mini-câble contenant 144 fibres optiques à raison de douze fibres optiques 2 contenues dans chacun des douze modules 10, pour un diamètre externe de 7,0 mm du mini-câble 9.
Le diamètre externe du mini-câble 9 pour 144 fibres optiques étant nettement plus grand que le diamètre externe du micro-câble 1 qui est typiquement 2,0 mm pour douze fibres optiques, la gaine de maintien externe 11 et la couche externe 12 du mini-' câble 9 sont en général plus épaisses que les gaines de maintien 3 des modules de fibres optiques 10 et la couche externe 4 du micro-câble 1. Typiquement, l'épaisseur de la gaine de maintien 11 ou de la couche externe 12 est comprise entre 0,10 mm environ et 0,50 mm environ.
Une matière de remplissage 13 peut remplir tout l'espace compris entre les modules 10 et la gaine de maintien 11 dans le mini-câble 9, les modules 10 étant enduits de la matière 13 préalablement à leur traversée d'une filière d' extrusion de la gaine de maintien 11 et de la couche externe 12. La matière de remplissage 13 est un produit d' étanchéité, tel que gel ou huile ou graisse silicone ou synthétique. Les gaines de maintien 3 des modules 10 sont enduites du produit d' étanchéité 13 préalablement à leur passage dans une filière pour mettre en place par extrusion simultanément la couche externe 12 et la gaine de maintien 11 autour des modules 10. De préférence, la gaine de maintien 11 et la couche externe 12 sont réalisées simultanément à un tirage et un assemblage des modules 10, et donc simultanément à un tirage et un assemblage des fibres optiques de chaque module. Les modules 10 peuvent être torsadés en SZ de façon à ce que tous les modules aient la même longueur et soient sollicités de façon homogène lors de contraintes mécaniques telles que courbures notamment .
Toutefois, selon d'autres variantes, la matière de remplissage 13, comme la matière de remplissage 7 dans une gaine 3 d'un module 10 ou d'un micro-câble 1, est réalisée par "voie sèche" en associant de la poudre gonflante et/ou des ficelles gonflantes et/ou des rubans gonflants en présence d'eau de manière à former un bouchon. Le bouchon empêche la propagation de l'eau d'une part entre les fibres optiques 2 à l'intérieur de la gaine de maintien 3 de chaque module 10 ou de micro-câble 1, d'autre part entre les modules 10 à l'intérieur de la gaine de maintien 11 du mini-câble 9.
D'une manière analogue au revêtement 6 d'une fibre optique 2 dans une gaine de maintien 3, ou à une gaine de maintien 3 d'un module 10, la couche externe 4 du micro-câble 1 ou la couche externe 12 du mini-câble 9 peut comporter un moyen d'identification pour identifier le micro-câble ou mini-câble et le distinguer d'autres micro-câbles ou mini-câbles. Le moyen d'identification est par exemple un revêtement pelliculaire d'identification externe coloré fixé sur la couche externe 4, 12 ou intégré dans la masse de la couche externe 4, 12. Le moyen d'identification peut être constitué par un ou plusieurs filets ou bandes ayant des couleurs prédéterminées différentes les unes des autres et s 'étendant longitudinalement ou hélicoïdalement sur la couche externe 4, 12. Ces filets ou bandes externes peuvent être extrudés simultanément avec la couche externe 4, 12, ou être imprimés par exemple avec une ou des encres ou peintures indélébiles différentes sur la couche externe.
Selon une autre variante, le moyen d'identification du micro-câble ou du mini-câble 9 comprend un repère ou signe qui est composé de caractères alpha-numériques et qui est marqué sur la couche externe 4, 12 de préférence périodiquement et longitudinalement et/ou hélicoïdalement. Le repère est de préférence fluorescent afin qu'il soit plus visible sous faible luminosité. Selon une autre variante, le matériau de la couche externe 4, 12 est translucide, par exemple en polyamide ou polyester. Une marque telle qu'un ou plusieurs filets ou bandes ou repères ou signes est imprimée à l'encre sur la gaine de maintien 3, 11 entourée par la couche externe et est lisible à travers la couche externe 4, 12. De la sorte, le marquage à l'encre ainsi réalisé est résistant à 1 ' abrasion.

Claims

REVENDICATIONS
1 - Câble de télécommunication (1, 9) ayant des fibres optiques (2) contenues dans une gaine de maintien de faible épaisseur (3, 11), caractérisé en ce qu'il comprend une couche externe (4, 12) entourant la gaine de maintien (3, 11) et ayant un coefficient de frottement inférieur à celui de la gaine de maintien.
2 - Câble conforme à la revendication 1, dans lequel le coefficient de frottement de la couche externe (4, 12) est inférieur à 0,060 environ.
3 - Câble conforme à la revendication 1 ou 2, dans lequel la couche externe (4, 12) a une raideur supérieure à celle de la gaine de maintien (3, 11) .
4 - Câble conforme à l'une quelconque des revendications 1 à 3, ayant une raideur supérieure à
-3 2 2,6.10 N.m environ.
5 - Câble conforme à l'une quelconque des revendications 1 à 4, ayant une raideur supérieure à
2 -3 2 1053 DE - 1,6.10 N.m , DE dénotant le diamètre externe de la couche externe (4, 12) .
6 - Câble conforme à l'une quelconque des revendications 1 à 5, dans lequel la couche externe (4, 12) est couplée mécaniquement à la gaine de maintien (3, 11) entourée par la couche externe.
7 - Câble conforme à l'une quelconque des revendications 1 à 6, dans lequel la couche externe (4, 12) a au moins l'une des caractéristiques suivantes : module d'Young en traction, module d'Young en flexion, coefficient de dilatation/compression et dureté, supérieure à celle de la gaine de maintien (3, 11) entourée par la couche externe .
8 - Câble conforme à l'une quelconque des revendications 1 à 7, dans lequel la couche externe (4, 12) présente au moins l'une des caractéristiques physiques suivantes : un module d'Young en traction compris entre 40 MPa environ et 100 MPa environ, un coefficient de dilatation/compression compris entre
-6 -6
100.10 /°C environ et 300.10 /°C, un module d'Young en flexion compris entre 800 MPa environ et 2500 MPa environ, et une dureté supérieure à 80 unités Shore D environ.
9 - Câble conforme à l'une quelconque des revendications 1 à 8, dans lequel la couche externe (4) est moins épaisse que la gaine de maintien (3) .
10 - Câble conforme à l'une quelconque des revendications 1 à 9, dans lequel l'épaisseur de la couche externe (4) est comprise entre 0,02 mm environ et 0,10 mm environ.
11 - Câble conforme à l'une quelconque des revendications 1 à 10, dans lequel la gaine de maintien (3) et la couche externe (4) sont mises en place par extrusion autour des fibres optiques (2).
12 - Câble conforme à l'une quelconque des revendications 1 à 11, dans lequel la couche externe (4) et la gaine de maintien (3) sont réalisées simultanément à un tirage et un assemblage des fibres optiques (2) .
13 - Câble (9) conforme à l'une quelconque des revendications 1 à 9, comprenant plusieurs gaines de maintien (3) qui enserrent chacune par couplage mécanique un module respectif (10) de plusieurs fibres optiques (2) et qui sont couplées mécaniquement à la gaine de maintien (11) entourée par la couche externe (12) .
14 - Câble conforme à la revendication 13, dans lequel la couche externe (12) et la gaine de maintien
(11) entourée par la couche externe sont chacune plus épaisses que les gaines de maintien (3) des modules de fibres optiques (10) .
15 - Câble conforme à la revendication 13 ou 14, dans lequel l'épaisseur de la couche externe (12) est comprise entre 0,10 mm environ et 0,50 mm environ.
16 - Câble conforme à l'une quelconque des revendications 13 à 15, dans lequel la couche externe
(12) et la gaine de maintien (11) entourée par la couche externe sont mises en place par extrusion autour des modules (10) .
17 - Câble conforme à l'une quelconque des revendications 13 à 16, dans lequel la couche externe (12) et la gaine de maintien (11) entourée par la couche externe sont réalisées simultanément à un tirage et un assemblage des modules (10) .
18 - Câble conforme à l'une quelconque des revendications 1 à 17, comprenant un ou plusieurs filets colorés ayant des couleurs différentes les unes des autres sur la couche externe (4, 12) pour identifier le câble.
19 - Câble conforme à l'une quelconque des revendications 1 à 18, comprenant un repère de préférence marqué périodiquement sur la couche externe (4, 12) pour identifier le câble.
20 - Câble conforme à l'une quelconque des revendications 1 à 17, comprenant un marquage sur la gaine de maintien (3, 11) entourée par la couche externe (4, 12) qui est translucide.
EP03815702A 2003-01-09 2003-12-26 Cable a fibres optiques avec gaine de maintien Ceased EP1588201A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0300204A FR2849929B1 (fr) 2003-01-09 2003-01-09 Cable a fibres optiques avec gaine de maintien
FR0300204 2003-01-09
PCT/FR2003/003920 WO2004070446A1 (fr) 2003-01-09 2003-12-26 Cable a fibres optiques avec gaine de maintien

Publications (1)

Publication Number Publication Date
EP1588201A1 true EP1588201A1 (fr) 2005-10-26

Family

ID=32524792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03815702A Ceased EP1588201A1 (fr) 2003-01-09 2003-12-26 Cable a fibres optiques avec gaine de maintien

Country Status (5)

Country Link
US (1) US7082241B2 (fr)
EP (1) EP1588201A1 (fr)
AU (1) AU2003303881A1 (fr)
FR (1) FR2849929B1 (fr)
WO (1) WO2004070446A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600801B1 (fr) 2002-08-10 2016-04-13 Emtelle UK Limited Ensemble de câbles à fibres optiques pour installation de soufflage

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479742B2 (ja) * 2007-01-24 2014-04-23 古河電気工業株式会社 光ファイバケーブル
FR2914752B1 (fr) * 2007-04-06 2009-07-03 Draka Comteq France Cable de telecommunication a fibres optiques
WO2009037742A1 (fr) * 2007-09-19 2009-03-26 Asahi Kasei E-Materials Corporation Câble de fibre optique plastique souple
JP5320088B2 (ja) * 2009-01-28 2013-10-23 株式会社フジクラ 光ファイバケーブルの布設方法
AU2009352951B2 (en) 2009-09-28 2015-03-26 Prysmian S.P.A. Optical communication cable and manufacturing process
GB0919902D0 (en) * 2009-11-13 2009-12-30 Qinetiq Ltd Improvements in fibre optic cables for distributed sensing
AU2010321863B2 (en) * 2009-11-20 2014-09-25 Adc Telecommunications, Inc. Fiber optic cable
US11287589B2 (en) 2012-09-26 2022-03-29 Corning Optical Communications LLC Binder film for a fiber optic cable
US8620124B1 (en) 2012-09-26 2013-12-31 Corning Cable Systems Llc Binder film for a fiber optic cable
US9091830B2 (en) 2012-09-26 2015-07-28 Corning Cable Systems Llc Binder film for a fiber optic cable
CN103852840A (zh) * 2012-11-29 2014-06-11 陈下放 一种抗压耐磨的多芯光纤
MX2015014641A (es) 2013-04-17 2016-07-18 Dow Global Technologies Llc Composiciones polimericas con silicona y amida de acido graso como agente deslizante.
WO2015014385A1 (fr) * 2013-07-29 2015-02-05 Prysmian S.P.A. Câble optique pour réseaux terrestres
US9482839B2 (en) 2013-08-09 2016-11-01 Corning Cable Systems Llc Optical fiber cable with anti-split feature
US9075212B2 (en) 2013-09-24 2015-07-07 Corning Optical Communications LLC Stretchable fiber optic cable
US8805144B1 (en) 2013-09-24 2014-08-12 Corning Optical Communications LLC Stretchable fiber optic cable
US8913862B1 (en) * 2013-09-27 2014-12-16 Corning Optical Communications LLC Optical communication cable
US9594226B2 (en) 2013-10-18 2017-03-14 Corning Optical Communications LLC Optical fiber cable with reinforcement
CN103713368B (zh) * 2013-12-13 2016-08-31 中国电子科技集团公司第二十三研究所 一种新型的耐折的轻型应急光缆及其实现方法
US9547147B2 (en) 2013-12-20 2017-01-17 Corning Optical Communications LLC Fiber optic cable with extruded tape
RU173956U1 (ru) * 2013-12-30 2017-09-21 КОРНИНГ ОПТИКАЛ КОММЬЮНИКЕЙШНЗ ЭлЭлСи Композитная пленка для волоконно-оптического кабеля
BR212016015387U2 (pt) * 2013-12-30 2016-09-27 Corning Optical Comm Llc película para um cabo de fibra óptica retardante de chama
RU173143U1 (ru) * 2013-12-30 2017-08-14 КОРНИНГ ОПТИКАЛ КОММЬЮНИКЕЙШНЗ ЭлЭлСи Волоконно-оптический кабель с трубчатой изоляцией
CN104155732A (zh) * 2014-07-29 2014-11-19 中国电子科技集团公司第二十三研究所 一种耐弯曲的轻型野外光缆及其实现方法
CN104950409A (zh) * 2015-06-23 2015-09-30 中国电子科技集团公司第二十三研究所 一种耐弯曲的深海微光缆及其制作方法
CN105487186B (zh) * 2016-01-20 2019-04-16 烽火通信科技股份有限公司 一种适宜气送及穿管布线的低摩擦微型光缆
GB2555499A (en) * 2016-10-26 2018-05-02 Sterlite Tech Ltd Air blown optical fiber cable
CN106383391B (zh) * 2016-11-16 2018-09-25 江苏亨通光电股份有限公司 低摩擦光纤光缆及其制造方法
CA3116843A1 (fr) * 2018-10-16 2020-04-23 Corning Research & Development Corporation Cable de descente a faible attenuation multicouche
US11215777B2 (en) 2019-07-31 2022-01-04 Corning Research & Development Corporation Cable skin layer with access sections integrated into a cable jacket
CN111596427A (zh) * 2020-05-29 2020-08-28 江苏中天科技股份有限公司 气吹微缆及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065324B (en) * 1979-12-05 1983-10-19 Ass Elect Ind Optical fibres
US4740053A (en) * 1984-03-29 1988-04-26 British Telecommunications Plc Sheathed optical fiber cable
DE3624514A1 (de) * 1986-07-19 1988-01-28 Rose Walter Gmbh & Co Kg Vorrichtung zur zugfesten verkappung von kabeln
GB8714640D0 (en) * 1987-06-23 1987-07-29 Bicc Plc Optical fibre cables
FR2665266B1 (fr) * 1990-07-27 1993-07-30 Silec Liaisons Elec Cable de telecommunication a fibres optiques.
JPH07270653A (ja) * 1994-03-28 1995-10-20 Fujikura Ltd 光ファイバケーブル
FR2755769B1 (fr) 1996-11-08 1998-12-31 Telecommunications Sa Cable de telecommunication a fibres optiques
DE19738439A1 (de) * 1997-09-03 1999-03-04 Alsthom Cge Alcatel Optisches Kabel und optisches Kabelsystem sowie Verfahren zur Herstellung eines optischen Kabelsystems
WO1999013368A1 (fr) * 1997-09-05 1999-03-18 Acome Societe Cooperative De Travailleurs Cable a fibres optiques de structure composite compacte
JPH11311727A (ja) * 1998-04-28 1999-11-09 Fujikura Ltd 光ファイバユニットおよび光ファイバケーブル
FR2785994B1 (fr) * 1998-11-18 2001-03-16 Sagem Cable a fibres optiques maintenues dans une gaine
JP2000329982A (ja) * 1999-05-25 2000-11-30 Mitsubishi Cable Ind Ltd 気送布設用光ファイバケーブル及び気送布設用管
FR2815141B1 (fr) 2000-10-09 2003-01-10 Sagem Cable de telecommunication a modules de fibres optiques
US6398190B1 (en) * 2000-10-30 2002-06-04 Milliken & Company Cable assembly and method
GB0121458D0 (en) * 2001-09-05 2001-10-24 Emtelle Uk Ltd Tube assembly for installation into a duct

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2004070446A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600801B1 (fr) 2002-08-10 2016-04-13 Emtelle UK Limited Ensemble de câbles à fibres optiques pour installation de soufflage

Also Published As

Publication number Publication date
FR2849929A1 (fr) 2004-07-16
US20050238300A1 (en) 2005-10-27
WO2004070446A1 (fr) 2004-08-19
AU2003303881A1 (en) 2004-08-30
US7082241B2 (en) 2006-07-25
FR2849929B1 (fr) 2005-04-15

Similar Documents

Publication Publication Date Title
EP1588201A1 (fr) Cable a fibres optiques avec gaine de maintien
CA2047842C (fr) Cable de telecommunication
EP3073305B1 (fr) Ensemble câble de transmission de signaux optiques
EP0864896B1 (fr) Unité optique pour câble à fibres optiques
FR2939911A1 (fr) Fibre optique gainee, cable de telecommunication comportant plusieurs fibres optiques et procede de fabrication d&#39;une telle fibre
FR2503385A1 (fr) Procede de fabrication de cable de fibres optiques et cable ainsi obtenu
FR2549970A1 (fr) Cable a fibres optiques
CN1708710A (zh) 具有优先撕裂部分的可剥离缓冲层及其制造方法
EP0696750B1 (fr) Procédé de fabrication d&#39;un câble à fibres optiques renforcé; dispositif pour la mise en oeuvre de ce procédé et câble obtenu par ce procédé
EP1131661A1 (fr) Cable a fibres optiques maintenues dans une gaine
FR2926640A1 (fr) Fibre optique gainee et cable de telecommunication
AU2013406410B2 (en) High installation performance blown optical fibre unit, manufacturing method and apparatus
US9557510B2 (en) Rugged micromodule cable
FR2728694A1 (fr) Module pour cables a fibres optiques, procede de fabrication et installation a cet effet
EP0637768B1 (fr) Fibre optique,câble à fibres optiques et procédé de réalisation associé
EP1296170A2 (fr) Câble à forte densité de fibres optiques
FR2509872A1 (fr) Cable de communication optique presentant un guide d&#39;onde lumineuse et un recouvrement secondaire resistant a la traction
FR2854250A1 (fr) Cable a fibres optiques avec element central de renforcement directement couple mecaniquement aux fibres optiques
FR2914752A1 (fr) Cable de telecommunication a fibres optiques
FR2858067A1 (fr) Structure de micro-cable a fibres optiques adapte a une technique de pose par poussage-tirage dans un micro-conduite
EP2049931B1 (fr) Élément de cable optique auto renforcé et son procédé de fabrication
FR2684192A1 (fr) Cable optique multi-fibres, et son procede de fabrication.
AU2007209831A1 (en) Signal Transmitting Cable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAGEM COMMUNICATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SILEC CABLE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20061228