EP1584751B1 - Procédé de traitement de sol avec utilisation d'au moins un système d'électrodes monopolaires coaxiales et dispositif de mise en oeuvre - Google Patents

Procédé de traitement de sol avec utilisation d'au moins un système d'électrodes monopolaires coaxiales et dispositif de mise en oeuvre Download PDF

Info

Publication number
EP1584751B1
EP1584751B1 EP20050290570 EP05290570A EP1584751B1 EP 1584751 B1 EP1584751 B1 EP 1584751B1 EP 20050290570 EP20050290570 EP 20050290570 EP 05290570 A EP05290570 A EP 05290570A EP 1584751 B1 EP1584751 B1 EP 1584751B1
Authority
EP
European Patent Office
Prior art keywords
polarity
zone
soil
electrode system
partially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20050290570
Other languages
German (de)
English (en)
Other versions
EP1584751A1 (fr
Inventor
Pascal Baticle
Thierry Sallandier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Electricite de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA filed Critical Electricite de France SA
Publication of EP1584751A1 publication Critical patent/EP1584751A1/fr
Application granted granted Critical
Publication of EP1584751B1 publication Critical patent/EP1584751B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means

Definitions

  • the invention relates to a soil treatment method comprising the use of at least one system of coaxial monopolar electrodes driven at least partly into the ground.
  • the invention also relates to a device intended more particularly for the implementation of such a method.
  • the invention finally relates to the use of such a method or device for the dehydration and / or decontamination of quarry sludge and / or mining products and / or extraction by-products. mining.
  • Lagooning quarry sludge is a common practice. This practice can also be found in the mining sector, whether for coal mining residues or for mining sludges of various metals. In fact, sands, gravel, minerals or other matter extracted from the soil must generally be washed with water during or after extraction. So we end up with the presence of lagoons. These lagoons are spaces comprising a liquid-solid mixture that is to say mud, with usually a majority proportion of liquid which is most often at least partly supernatant. These lagoons pose problems in terms of environment and safety (ground more or less moving). The natural consolidation of these lagoons is all the longer as the regional climate is humid. For example, in Normandy, in France, it takes more than ten years for earthmovers to maneuver on the surface of quarry lagoons.
  • WO-A-0102626 there is furthermore known a soil treatment method comprising the deposition into the soil of coaxial monopolar electrodes, comprising a rod of first polarity and a hollow tube coaxial with the rod and of second polarity.
  • the method and the device according to the invention make it possible to solve the problems of the prior art, in that they make it possible, by using at least one system of coaxial monopolar electrodes, preferably a plurality of coaxial monopolar electrode systems, treating, mainly dehydrating and / or depolluting, the interior of a soil (for example a quarry lagoon) by the use of said electrode system or systems planted vertically in said soil , usually from the surface.
  • the depollution according to the invention comprises the possible treatment of pollutants, mainly of ionic and / or ionizable, organic and / or mineral species.
  • Dehydration according to the invention is generally associated with a pumping system generally at the surface of the quarry, which makes it possible to extract the water therefrom.
  • step a) is generally such that the placement of said second polarity zone is such that said second polarity zone also at least partially discovers an insulating zone, generally located at least partly between said first polarity zone and said first polarity zone. second polarity zone.
  • said rod comprises alternating zones of first polarity and insulating zones.
  • an alternation of zones of first polarity and insulating zones means at least two successions of a zone of first polarity and of an insulating zone, a succession consisting of a zone of first polarity followed by an insulating zone, the zones of first polarity generally adjoining each one or two insulating zones, the insulating zones generally adjoining each one or two zones of first polarity.
  • said electrode system once sunk into the ground preferably has an upper end off the ground, i.e. above the ground surface as will be explained by the following, at least one zone of second polarity in the ground, and a lower end having at least one zone of first polarity in the ground.
  • the current flows and there is a potential difference between the first polarity zone discovered by the second polarity zone and said second polarity zone, generally separated from the second polarity zone at least partially. by at least one insulating zone.
  • soil is meant according to the invention any surface on which one could walk, essentially comprising a more or less hydrated material whose constituents are essentially of geological and / or pedological origin, that they are in place naturally and / or or as a result of at least one human intervention. Sludge mainly of mineral origin, including quarry sludge, is included in this definition, even if it can not be walked without danger (more or less moving soil).
  • sludge is meant according to the invention a solid-liquid mixture, with generally more liquid than solid.
  • the liquid is water and the solid is a clay or other finely divided material.
  • a sludge contains an amount of solid of at least 50 g / l in the liquid.
  • a quarry slurry may comprise about 800g / l of clay in water, or 50 to 60% by weight of dry matter, for a density of about 1.8.
  • the term "system of coaxial monopolar electrodes” means an electrode system, comprising at least one zone of first polarity, for example anodic, and at least one zone of second polarity, which is opposite, for example cathodic, that is to say generally comprising at least one anode and at least one cathode.
  • this system comprises within it the two polarities, and not a single polarity.
  • This electrode system is biased under the action of an electric field, for example by closing a circuit comprising at least one generator at the terminals of zones of opposite polarity. It therefore works most often at constant tension.
  • electrode is meant according to the invention cathode or anode.
  • a zone of first polarity is generally either cathodic or anodic
  • a zone of second polarity, of opposite polarity to that of the zone of first polarity is either anodic or cathodic.
  • Activation step b) allows the treatment, mainly by electro-osmosis and / or electromigration, of the water and ionized species present in the soil in the vicinity of said electrode system, that is to say in an area of influence around the system. Consequently, according to the invention, by the judicious and adapted choice of the zones of opposite polarity, the water and the ionized species (that is to say coming from ionic and / or ionizable species) are able to migrate towards the zone of second polarity.
  • Such a zone of influence is necessarily limited in size, and depends on many parameters such as the soil type, water content and / or pollution, geometry, nature and number of electrode systems etc.
  • Such a zone of influence is easily known to the person skilled in the art in each of the particular cases that he approaches, at least after a few tests on the soil undergoing the treatment according to the invention. It is not possible to define it precisely in advance, even if the person skilled in the art practicing such treatment can know its order of magnitude.
  • the coaxial shape of the electrode systems allows any cracks, which may be generated during the treatment process according to the invention, to appear radially so as not to hinder the passage of the electric field.
  • step d) is such that the partial rise of the second polarity zone makes it possible to at least partially discover a new zone of first polarity and at least partially a new insulating zone, that is to say a succession of zone of first polarity and insulating zone.
  • the new zone insulation is generally located at least partly between said new first polarity zone and said second polarity zone.
  • said method comprises dismantling any superfluous second polarity zone.
  • it has brought to the surface an area of second polarity that has no more use, and is therefore superfluous. It is possible to provide that this zone of second polarity can be dismantled in whole or in part.
  • the method according to the invention may comprise the dismantling of said zone of superfluous second polarity.
  • the method according to the invention comprises at least partially, preferably almost completely, a liquid pumping, generally comprising water, on the surface of the soil.
  • the hollow tube constituting at least partially the second polarity zone generally comprises at least one inner insulating zone, generally over substantially its entire length.
  • the method according to the invention makes it possible to dehydrate or even consolidate soils, especially quarry sludge lagoons.
  • the consolidation of these soils is advantageously from the bottom of the humidified or even drowned space, that is to say from the bottom of the lagoon to the surface.
  • such consolidation is possible under water, that is to say if the surface is embedded under a certain thickness of water, for example at least 1.5 meters (inclusive).
  • Off the ground therefore means according to the invention generally in atmospheric air and / or in water.
  • the invention thus advantageously makes it possible, with respect to the state of the art, thanks to the clever and combined use of at least one electrode system with a particular geometry and an implementation of a zone movement of second polarity towards the surface, discovering at least one zone of first polarity, a progressive dehydration from the bottom of the lagoon even a consolidation, even under water.
  • Another advantage of the method according to the invention is a low energy consumption, because the space between the first polarity zone and the second polarity zone is generally minimum, ie relatively low.
  • Such a space is generally dimensioned according to various parameters such as for example the number of electrode systems; the geometry of each electrode system; the quantity a priori of water to be eliminated; the ionic or ionizable species pollution that can be treated according to the method of the invention.
  • Another advantage of the method according to the invention is the relative ease of implantation of the electrode system or systems.
  • the electrode system consisting mainly of assemblable parts called sections
  • the depression of the electrode system in the soil is carried out by a progressive process of driving and assembly successive steps of the sections to each other, said process comprising at least one step of at least partial depression of at least one section, creating a set of at least partially depressed sections, followed by at least one assembly step at at least part of at least one other section to the assembly of at least partially embedded section (s) already constituted.
  • Such an embodiment advantageously facilitates the insertion of the electrode system into the ground.
  • such an assembly comprises at least one screwing.
  • such a particular embodiment allows the relatively simple implementation of the method according to the invention, since it involves pressing vertically short sections of electrode system, to screw one or more new short sections on these, to sink again and start again until reaching the bottom of the "basin” (space where is most of the soil moistened or drowned).
  • the electrode systems used are or are not two by two similar, in terms of dimensions, geometry and / or polarity.
  • the method according to the invention is such that a plurality of electrode systems are used, said electrode systems preferably being all, preferably all, of identical polarities. (That is, areas of the same polarity have the same sign), and the various steps, preferably substantially simultaneously, are performed for each of said electrode systems.
  • a soil for example a lagoon of several hectares is simply by implanting as many electrode systems as necessary.
  • the number of electrode systems varies according to different parameters such as the surface of the soil to be treated.
  • the geometry of the electrode systems determines at least in part the area of influence of said electrode systems.
  • all the electrode systems are of substantially identical geometry but it is also possible according to the invention that they are at least partially of substantially different geometry, ie at least two, or more two of them are of substantially different geometry.
  • the dewatered or consolidated lagoons thus obtained are the first to be obtained efficiently and for a reasonable duration by a method of using coaxial monopolar electrode systems, which presents a considerable progress of the invention compared to the state of the art.
  • activation of the electrode system is meant an electromagnetic field. Such placing in an electric field allows the treatment of water or even ionic and ionizable species in the soil, as has been explained previously.
  • the imposed voltage is generally substantially constant, and the intensity varies according to the parameters such as the nature of the ground ...
  • the invention also relates to a soil dehydration and / or soil depollution process comprising at least one soil treatment method, in particular a quarry, according to the invention.
  • the invention also relates to a soil treatment device comprising at least one system of substantially straight coaxial monopolar electrodes, said electrode system comprising at least one rod comprising at least one zone of first polarity and at least one insulating zone, and at least one hollow tube at least partially surrounding said rod and at least partially constituting a zone of second polarity capable of sliding at least partially around said rod, said electrode system being able to be placed in an electric field.
  • the electrode system is generally and preferably adapted to be depressed at least partially into the ground, most often so, once pushed into the ground, to have an upper end out of the ground and a lower end having a first polarity in the ground.
  • a way of driving into the ground is for example a sharp form and beveled of the lower end to be driven into the ground.
  • Said rod preferably comprises alternating zones of first polarity and insulating zones.
  • said zone of second polarity is furthermore capable of being raised at least partially upwards so as to be able to discover at least one new zone of first polarity, preferably a new alternation.
  • first polarity zone and insulating zone and this if possible as often as necessary.
  • the zone of second polarity is able to be disassembled at least partially, preferably almost completely.
  • the device comprises at least one activation means of the electrode system, that is to say at least one means for placing the electrode system in an electric field.
  • the electrode system consists mainly of assemblable parts called sections, and even more preferably such an assembly comprises at least one screwing.
  • the region of first polarity or second polarity when cathodic, generally comprises, preferably consists mainly of (el) stainless steel (or stainless steel) or non-stainless steel, preferably el) 'stainless steel. In the case where it mainly comprises non-stainless steel, it is a consumable electrode.
  • the zone of second polarity or first polarity when it is anodic, generally comprises Preferably, predominantly titanium, preferably all titanium, is coated with at least one metal compound, precious or not, said metal compound, valuable or not, being preferably selected from the group. formed by ruthenium, iridium, tantalum, tin, and antimony, in at least partially oxidized forms or not, and mixtures thereof.
  • the insulating zone of said rod mainly comprises plastic such as at least one polymeric compound selected from the group consisting of polyvinyl chloride, polyethylenes (all densities), polypropylenes (all densities), and mixtures thereof.
  • plastic such as at least one polymeric compound selected from the group consisting of polyvinyl chloride, polyethylenes (all densities), polypropylenes (all densities), and mixtures thereof.
  • the rod may for example in a first version be entirely a bar made of titanium coated with precious metal and having at regular intervals, over said titanium, a sheath by example heat shrinkable typically HDPE (Poly Ethylene High Density) forming insulating areas.
  • a second, less expensive, version of this example is a rod consisting of alternating parts, one of the parts comprising titanium uncoated with precious metal and covered with such a sheath HDPE, and the other parts being made of titanium covered with precious metal.
  • the hollow tube constituting at least partially the second polarity zone comprises at least one inner insulating zone generally over substantially its entire length.
  • that internal insulation zone generally comprises plastic such as at least one polymeric compound selected from the group consisting of polyvinyl chloride, polyethylenes (all densities), polypropylenes (all densities), and mixtures thereof.
  • the device according to the invention further comprises at least one placing means (that is to say placing it by at least partial depression in the ground), mechanical or manual, of at least one control system. electrodes.
  • placing means that is to say placing it by at least partial depression in the ground
  • mechanical or manual of at least one control system. electrodes.
  • Such placement means is generally manual for low thicknesses and low soil resistance, for example at least one hammer or hammer. Otherwise, such a means is mechanical; it includes for example at least one drill.
  • the electrode systems used are or are not two by two similar, in terms of dimensions, geometry and / or polarity.
  • the device of the invention comprises a plurality of electrode systems, said electrode systems preferably being all, preferably all, of identical polarities, that is to say that the areas of first polarity are of the same polarity and the zones of second polarity are of the same polarity.
  • the number of electrode systems varies according to different parameters such as the lagoon surface to be treated as explained above.
  • the device according to the invention is particularly suitable for implementing the method according to the invention as described above.
  • the invention relates to the use of a device as described above, for the dehydration of soil and / or soil remediation, in particular quarry sludge (quarry lagoon) and / or products of mining and / or mining by-products.
  • quarry sludge quadrry lagoon
  • products of mining and / or mining by-products in particular quarry sludge (quarry lagoon) and / or products of mining and / or mining by-products.
  • a zone of second polarity is cathodic and zones of first polarity are anodic.
  • the phenomenon of electro-osmosis gradually leads at least partially, preferably almost completely, water to the cathode zone.
  • the second polarity zone is slid upwards along the insulating and first polarity zones which are kept fixed.
  • the water is forced back up the electrode system towards the cathode and thus progressively towards the surface.
  • the water thus gradually returned to the surface is particularly easy to pump, and possibly to recycle.
  • This treatment is accompanied by a depollution when there is in the soil cations for example metals. These cations go back to the surface with the water in which they are dissolved. This is particularly effective in the case of recent pollution, that is typically a few months.
  • the invention also allows an inorganic depollution, mainly in the case where a zone of second polarity is anodic and zones of first polarity are cathodic.
  • the second polarity zone is slid upwards along the insulating and first polarity zones which are kept fixed.
  • the phenomenon of electromigration gradually leads at least partially, preferably almost completely, polluting anions that are for example nitrate ions NO 3 - and / or cyanide CN - , to the anode and therefore to the surface.
  • the water and the cations possibly present in the water, such as calcium Ca 2+ are driven by electro-osmosis and gravity phenomenon towards the cathodic zone, and thus toward the bottom; it is therefore generally necessary to provide at least one water supply system to the electrode system from the inside and / or the outside of the tube, to avoid excessive dehydration that would significantly disturb the phenomenon of electromigration.
  • Such use is very significant in the case of accidental pollution, for example nitrates from a soil above a water table. It makes it possible to sustainably protect said layer of pollution by treating said soil.
  • the invention also allows an injection of water to the bottom of a soil such as a sump.
  • the treatment according to the invention makes it possible to circulate the water towards the bottom of the soil, without the risk of abrupt rise of the water table and without the need to manufacture a well.
  • a zone of second polarity is anodic and a zone of first polarity is cathodic, and located at the end of the rod which otherwise consists of an insulating zone.
  • the electrode system thus formed can advantageously pass through more or less impermeable clay layers without altering their impermeability. important way.
  • the cathode is located below said layers in a permeable zone.
  • the clay also makes it possible to filter the water passing through it.
  • the water (and the cations possibly present in the water, such as calcium Ca 2+ ), is gradually driven at least partially, preferably almost completely, towards the cathode zone, and thus towards the bottom.
  • the water can thus pass through said clay layer.
  • FIG. 1 schematically represents a system 12 of coaxial monopolar electrodes with mobile sliding cathode 1 according to the invention.
  • FIGS. 3 and 4 show a partial rise of the cathodes (a mobile cathode per electrode)
  • FIG. 5 represents a disassembly of superfluous cathodic parts
  • FIG. 6 represents a reset under electric field
  • Figure 8 shows a disassembly of superfluous cathodic parts
  • Figure 9 shows an electric field of the end of the treatment.
  • Figure 10 shows, schematically, another system 13 of concentric monopolar electrodes with mobile sliding anode 9 according to the invention.
  • FIG. 1 schematically represents a system 12 of coaxial monopolar electrodes with mobile sliding cathode 1 according to the invention. It comprises a sliding mobile cathode 1 having an inner insulation (not shown), a set 2 of insulating zones fixed on a set 3 of fixed anode zones.
  • the cathode 1 may consist of parts 1a, 1b, 1c, 1d, 1e, 1f, 1g and 1h (not shown in Figure 1).
  • the set 2 of insulating zones consists of the parts 2a, 2b, 2c and 2d
  • the set 3 of anode zones consists of the anode zones 3a, 3b, 3c, 3d and 3e. Only the insulating zones 2a and anode 3a are exposed by the cathode 1.
  • FIGS 2 to 9 show, schematically, a three-phase treatment for dewatering a lagoon 14 quarry mud according to the invention. They correspond, as will be explained below, to a first system 12 of electrodes according to the invention, as shown for example in Figure 1. This treatment will serve us, after detailed description of Figures 2 to 9, to illustrate the advantages of the invention.
  • FIG. 2 represents the beginning of the treatment of lagoon 14, bottom 15 and surface 16 of quarry sludge, in which at least eleven electrode systems 12 have been put in place as shown in FIG. Figure 1.
  • Water 4 rises above the surface 16, a portion 14a already dried out of the lagoon 14 is located above the bottom 15 thereof, and a portion 14b not yet dried or wet (or even flooded) of the lagoon 14 is located above said portion 14a.
  • zones 8 of initial dewatering are formed, which join through intermediate zones 7 which are also progressively dried.
  • the set of zones 8 and zones 7 corresponds to the dried part 14a.
  • the arrows 6 illustrate the upward movement of the water towards the cathode 1, which causes a capillary rise towards the surface 16.
  • the water 4 which has appeared above the surface 16 of the lagoon 14 is pumped by least one line 5, the pumping being symbolically represented by an arrow.
  • the pumping being symbolically represented by an arrow.
  • FIG. 3 symbolizes the beginning of the rise of the cathodes 1. It can be seen that, in addition to the anode zone 3a and the insulating zone 2a, a new anode zone 3b has been discovered on each system 12a. electrodes.
  • FIG. 4 shows the end of the rise of the cathodes 1.
  • a new insulating zone 2b appears.
  • the anode areas 3a and insulating areas 2a are now discovered.
  • FIG. 5 shows the disassembly of the superfluous cathode parts 1a, and possibly 1b, 1c, 1d and 1e of the cathodes 1, according to the length of each system 12 of starting electrodes and therefore of each cathode 1.
  • FIG. 6 shows the return of the lagoon 14 to the electric field.
  • New arrows 6a for rising water towards the surface 16 appear, new zones 8a for dewatering around the electrode systems 12, and new zones. 7a intermediate between the zones 8a.
  • this second phase there is a wet portion 14c of the lagoon 14, which is smaller than the wet portion 14b of the first phase, and a dried portion 14d, which corresponds to all the zones 8a and 7a , and which is larger than the dried zone 14a of the first phase.
  • the pumping is still illustrated by the pumping line.
  • FIG. 8 shows the dismantling of the superfluous parts 1f, and possibly 1g and 1h of the cathodes 1.
  • FIG. 9 shows a third phase of dewatering by electric field delivery, again including dewatering zones 8b near the electrode systems 12, the upwelling 4 towards the surface 16 being indicated by the arrows 6b, and intermediate zones 7b of junction between the dewatering zones 8b.
  • this second phase there is a wet portion 14e of the lagoon 14, which is smaller than the wet portion 14c of the second phase, and a dry portion 14f, which corresponds to the set of zones 8b and 7b zones, and which is larger than the 14d dry zone of the second phase.
  • the pumping is still illustrated by the pumping line.
  • the electrode systems 12 are extracted from the lagoon 14 to be possibly reconditioned for reuse on another site or on the same lagoon 14 when it will be full again.
  • Such reconditioning generally comprises at least one cleaning and / or at least one repositioning deposit on at least one electrode.
  • FIG. 10 schematically represents another coaxial monopolar electrodes system 13 with moving sliding anode 9 according to the invention.
  • the electrode system 13 comprises a sliding anode 9 insulated therein (insulation not shown) and lubricated externally, for example with water or bentonite, and an assembly 10 of isolated insulating zones fixed on a set 11 fixed cathode zones.
  • the anode 9 may consist of parts 9a, 9b, etc. (not shown) It can be seen that the set of insulating zones 10 consists of the insulating zones 10a, 10b, 10c and 10d, and that the set 11 of cathode zones consists of the zones 11a, 11b, 11c, 11d and 11e. Only the insulating zone 10a and cathode zone 11a are discovered by the anode 9.
  • FIG. 10 shows an electrode system 13 for the progressive destruction of organic pollutants and / or for raising anionic pollutants (such as nitrates and / or cyanides) to the surface of a soil.
  • the electrode system 13 of FIG. 10 thus allows the depollution of a soil 14 and / or a water table polluted by at least one anionic species, for example chosen from the group formed by nitrates and cyanides.
  • Said anionic species can be raised to the surface 16 to facilitate its treatment which can be biological and / electrochemical in the case of cyanide, and / or physicochemical and / or phytoremediation type (or treatment with at least one plant).
  • the device comprising this system 13 of electrodes can prevent contamination of a water table that is not yet affected by the pollution of said anionic species.
  • the rise of pollutants by means of a device comprising the electrode system 13 of FIG. 10 is exactly in the same operating mode as that of the electrode system 12 described in FIGS. 2 to 9.
  • the invention it is possible to have additional means for modifying the influence of the electrode systems. For example it is possible to extend the (the) zone (s) insulating (s) to expand the areas of influence of the electric field and thus reduce the number of electrode systems necessary to cover an area of several hectares.
  • an electrode system for example and preferably by increasing the number of sections which is preferably constituted by the system. of electrodes, to go deeper into the lagoon.
  • the system can work under water, that is, it can "pack" sedimentary sludge under the surface of a water reservoir and thus allow at least to space out the usual cleaning operations.
  • the zones of first polarity here anodic zones
  • the mechanical forces are thus advantageously limited.
  • the zone around the first zone of first polarity becomes too strong, the second polarity zone is the cathode, the distance between the cathode and the nearest anode being always the same, with a content of water always favorable to the passage of the current.
  • the phenomena of electro-osmosis relate at least in part to sludge lagoon dewatering applications or settlement of sediments in a water reservoir.
  • the phenomenon of electromigration which generally makes it possible to trace back at least partly to the surface of mineral pollution and / or which favors the in-situ destruction of organic pollution, mainly concerns depollution applications.
  • all the electrokinetic phenomena taking place at almost the same time, in some cases the electro-osmosis will help to depollute at least in part whereas the electromigration will not dehydrate. In this case, it is arranged to prevent drying of the anode or even lubricate the outside of the sliding anode with, for example, bentonite sludge conventionally used during drilling.
  • the electrode materials in particular deposits on one or other of the electrodes, on the connection of the electrodes, that is to say to choose a device with sliding anode or sliding cathode, on the adaptation of the draining material possibly present on the cathode and on the injection of water, of products dissolved or suspensions, at different levels of each electrode system.
  • the injection of suspensions at different levels of the electrode system can be used to lubricate a sliding anode.
  • the invention has been successfully tested on the dewatering of quarry lagoons and unpolluted dredging sludges.
  • the maximum working depth for the tip of the anode was consistently 2 meters deep.
  • the activated part of the anode was 30 cm long and 20 mm in diameter with a tip forming an angle of 15 ° to the axis of the anode. Sections of about 50 cm were assembled by screwing.
  • the material of the anode was titanium covered with metal oxides, mainly iridium (DSA type).
  • the insulation length was 97 cm, made of High Density Polyethylene (HDPE) material in the form of heat-shrinkable material placed directly on the anode.
  • HDPE High Density Polyethylene
  • the cathode length was about 150 cm for an outer diameter of 48.5 mm, an internal diameter of 27 mm (insulation included), and outer material stainless food and PVC inner material (Poly Vinyl Chloride).
  • the length of each cathode section was about 560 mm. This particular piece was embellished with additional parts allowing the internal sealing of the cathode and the subjection of the cathode to the anode.
  • the sealed junction between the cathode sections was provided by a flat nitrile rubber gasket.
  • the total length of the electrode system was about 350 cm.
  • the system was set up by hand and supported by a support that distributed its weight (about 15 kg) over 1 m 2 .
  • the initial concentration of the sludge is of the order of 40% after 6 years without the addition of granular washing water in it. No rise in water is observed after several hours in an identical hole without electrode system.
  • the volume of water raised is about 500 ml in two hours.
  • the amount of water recovered in two hours is characteristic of the zone of influence of the electrode system for a given configuration. On the other hand, it is not representative of the amount of water that would have risen over a longer period, per unit of time. In the space of two hours, the process has just enough time to initiate the rise of the water (which comes from about two meters deep), the nominal flow not yet reached. It would probably take several days for it to be reached.
  • the dimensions of the prototype will be about the same as the industrial version of the electrode system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Sludge (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Description

  • L'invention concerne un procédé de traitement de sol comprenant l'utilisation d'au moins un système d'électrodes monopolaires coaxiales enfoncé au moins en partie dans le sol. L'invention concerne aussi un dispositif destiné plus particulièrement à la mise en oeuvre d'un tel procédé. L'invention concerne enfin l'utilisation d'un tel procédé ou d'un tel dispositif pour la déshydratation et/ou la dépollution de boues de carrière et/ou de produits d'extraction minière et/ou de sous-produits d'extraction minière.
  • Le lagunage de boues de carrière est une pratique courante. On retrouve aussi cette pratique dans le secteur minier, que ce soit pour les résidus d'exploitation du charbon ou pour les boues minières de divers métaux. En effet les sables, graviers, minéraux ou autres matières, extraits du sol, doivent généralement être lavés à grande eau lors de ou après leur extraction. On se retrouve donc à terme avec la présence de lagunes. Ces lagunes sont des espaces comportant un mélange liquide-solide c'est-à-dire de la boue, avec généralement une proportion majoritaire de liquide qui est le plus souvent au moins en partie surnageant. Ces lagunes posent des problèmes en terme d'environnement et de sécurité (sol plus ou moins mouvant). La consolidation naturelle de ces lagunes est d'autant plus longue que le climat régional est humide. Par exemple, en Normandie, en France, il faut plus de dix ans pour que les engins de terrassement puissent manoeuvrer à la surface de lagunes de carrière.
  • Le principe de la déshydratation de telles lagunes par électro-osmose est connu. Ainsi, dans la publication « Stabilization Consolidation Treatments for Soft Clayey soil», Fernando Veniale, Bul. Stiint. al Institutelui de Constructii Bucurestii, T.30, Nr.1, 1984, p.59-67, il est décrit l'application de l'électro-osmose au traitement de consolidation d'argile de carrières à l'aide d'électrodes à base d'aluminium. Des électrodes monopolaires sont ainsi alternées et enfoncées régulièrement dans le terrain traité de façon à déshydrater la carrière. Chaque électrode est d'une seule polarité. Les deux polarités sont représentées et alternées au sein du système ainsi constitué.
  • Du document WO-A-0102626 est par ailleurs connu un procédé de traitement de sol comprenant l'enfoncement dans le sol d'électrodes monopolaires coaxiales, comprenant une tige de première polarité et un tube creux coaxial à la tige et de seconde polarité.
  • De tels procédés décrits dans l'art antérieur posent beaucoup de problèmes techniques tels que la perte de contact entre les électrodes disposées en surface et la boue au cours du traitement, ce qui entraîne des consommations énergétiques trop importantes, ou bien la fissuration de la boue avant qu'elle ne soit suffisamment déshydratée. En particulier, les fissures ainsi créées posent des problèmes de parties d'eau qui redescendent dans le sol alors qu'elles ont pourtant été plus ou moins remontées par le traitement, ainsi que des problèmes d'isolation (le champ électrique ne fonctionnant plus) parce que ces fissures s'étendent parallèlement aux rangées d'électrodes et s'intercalent entre les rangées d'électrodes de signe ou de polarité opposé(e) ou contraire.
  • Un autre problème qui se rencontre est le croûtage sur les lagunes (i.e. déshydratation voire dessèchement de la surface alors que le fond n'est que peu touché par le traitement).
  • Le procédé et le dispositif selon l'invention permettent de résoudre les problèmes de l'art antérieur, en ce qu'ils permettent, par l'utilisation d'au moins un système d'électrodes monopolaires coaxiales, de préférence d'une pluralité de systèmes d'électrodes monopolaires coaxiales, de traiter, principalement de déshydrater et/ou de dépolluer, l'intérieur d'un sol (par exemple une lagune de carrière) par l'utilisation dudit ou desdits systèmes d'électrodes plantés verticalement dans ledit sol, généralement à partir de la surface. La dépollution selon l'invention comprend le traitement éventuel de polluants, principalement d'espèces ioniques et/ou ionisables, organiques et/ou minérales. La déshydratation selon l'invention est généralement associée à un système de pompage généralement en surface de la carrière, ce qui permet d'en extraire l'eau.
  • Ainsi, le procédé selon l'invention est un procédé de traitement de sol comprenant les étapes successives suivantes:
    1. a) Au moins un enfoncement sensiblement vertical au moins partiel dans le sol d'au moins un système d'électrodes monopolaires coaxiales sensiblement rectiligne, ledit système d'électrodes comprenant au moins une tige comportant au moins une zone de première polarité et au moins une zone isolante, et au moins un tube creux entourant au moins partiellement ladite tige et constituant au moins partiellement une zone de seconde polarité apte à coulisser au moins partiellement autour de ladite tige, ladite zone de seconde polarité étant placée de façon à découvrir au moins une zone de première polarité dudit système d'électrodes, de préférence la zone de première polarité située le plus près de l'extrémité inférieure de ladite tige,
    2. b) Une mise sous champ électrique du système d'électrodes.
  • Typiquement, l'étape a) est généralement telle que le placement de ladite zone de seconde polarité est tel que ladite zone de seconde polarité découvre aussi au moins partiellement une zone isolante, située généralement au moins en partie entre ladite zone de première polarité et ladite zone de seconde polarité.
  • De préférence, ladite tige comprend une alternance de zones de première polarité et de zones isolantes. Selon l'invention, « une alternance de zones de première polarité et de zones isolantes » signifie au moins deux successions d'une zone de première polarité et d'une zone isolante, une succession étant constituée d'une zone de première polarité suivie d'une zone isolante, les zones de première polarité jouxtant généralement chacune une ou deux zones isolantes, les zones isolantes jouxtant généralement chacune une ou deux zones de première polarité.
  • Dans l'étape a), ledit système d'électrodes une fois enfoncé dans le sol présente de préférence une extrémité supérieure hors du sol, c'est-à-dire au-dessus de la surface du sol ainsi qu'il sera explicité par la suite, au moins une zone de seconde polarité dans le sol, et une extrémité inférieure comportant au moins une zone de première polarité dans le sol. Ainsi, dans l'étape b), le courant circule et il existe une différence de potentiel entre la zone de première polarité découverte par la zone de seconde polarité et ladite zone de seconde polarité, généralement séparée de la zone de seconde polarité au moins partiellement par au moins une zone isolante.
  • Par « sol », on entend selon l'invention toute surface sur laquelle on pourrait marcher, comprenant essentiellement un matériau plus ou moins hydraté dont les constituants sont essentiellement d'origine géologique et/ou pédologique, qu'ils soient en place naturellement et/ou à la suite d'au moins une intervention humaine. Les boues essentiellement d'origine minérale, dont les boues de carrière, sont comprises dans cette définition, même si on ne peut y marcher sans danger (sol plus ou moins mouvant).
  • Par « boue », on entend selon l'invention un mélange solide-liquide, avec généralement plus de liquide que de solide. Typiquement, dans le cas de boues de carrière, le liquide est de l'eau et le solide est une argile ou tout autre matériau finement divisé. En ordre de grandeur, on peut indiquer qu'une boue contient une quantité de solide d'au moins 50 g/l dans le liquide. A titre d'exemple, une boue de carrière peut comprendre environ 800g/l d'argile dans de l'eau, soit de 50 à 60% en poids de matière sèche, pour une densité d'environ 1,8.
  • Par « système d'électrodes monopolaires coaxiales », on entend selon l'invention un système d'électrodes, comprenant au moins une zone de première polarité, par exemple anodique, et au moins une zone de seconde polarité, contraire, par exemple cathodique, c'est-à-dire comprenant généralement au moins une anode et au moins une cathode. A la différence de l'art antérieur, ce système comprend en son sein les deux polarités, et non pas une seule polarité. Ce système d'électrodes est polarisé sous l'action d'un champ électrique, par exemple par la fermeture d'un circuit comprenant au moins un générateur aux bornes de zones de polarité contraire. Il fonctionne donc le plus souvent à tension constante. Par « électrode » on entend selon l'invention cathode ou anode. Selon l'invention, une zone de première polarité est généralement soit cathodique, soit anodique, et une zone de deuxième polarité, de polarité contraire à celle de la zone de première polarité, est soit anodique, soit cathodique.
  • L'étape b) d'activation permet le traitement, principalement par électro-osmose et/ou électromigration, de l'eau et des espèces ionisées présentes dans le sol à proximité dudit système d'électrodes, c'est-à-dire dans une zone d'influence autour du système. Par suite, selon l'invention, grâce au choix judicieux et adapté des zones de polarité contraire, l'eau et les espèces ionisées (c'est-à-dire provenant d'espèces ioniques et/ou ionisables) sont aptes à migrer vers la zone de seconde polarité.
  • Une telle zone d'influence est forcément limitée en taille, et dépend de nombreux paramètres tels que la nature du sol, sa teneur en eau et/ou sa pollution, la géométrie, la nature et le nombre de systèmes d'électrodes etc. Une telle zone d'influence est aisément connue de l'homme du métier dans chacun des cas particuliers qu'il aborde, au moins après quelques tests sur le sol subissant le traitement selon l'invention. Il n'est pas possible de la définir précisément à l'avance, même si l'homme du métier pratiquant usuellement un tel traitement peut connaître son ordre de grandeur.
  • Avantageusement, la forme coaxiale des systèmes d'électrodes permet que les éventuelles fissures, qui peuvent être générées lors du procédé de traitement selon l'invention, apparaissent radialement de façon à ne pas gêner le passage du champ électrique.
  • Dans un mode de réalisation préféré, le procédé selon l'invention comprend de plus au moins une succession des étapes successives suivantes :
    1. c) Une désactivation du système d'électrodes par arrêt au moins partiel du champ électrique,
    2. d) Une remontée partielle de la zone de seconde polarité permettant de découvrir au moins une nouvelle zone de première polarité et/ou au moins une zone isolante, et
    3. e) Eventuellement une remise sous champ électrique du système d'électrodes.
  • Typiquement, l'étape d) est telle que la remontée partielle de la zone de seconde polarité permet de découvrir au moins partiellement une nouvelle zone de première polarité et au moins partiellement une nouvelle zone isolante, c'est-à-dire une succession de zone de première polarité et de zone isolante. La nouvelle zone isolante est située généralement au moins en partie entre ladite nouvelle zone de première polarité et ladite zone de seconde polarité.
  • Dans un mode de réalisation du procédé selon l'invention, ledit procédé comprend le démontage de toute zone de seconde polarité superflue. Par exemple, lors de la réalisation de l'étape d), il est remonté à la surface une zone de seconde polarité qui n'a plus d'utilité, et qui est donc superflue. Il est possible de prévoir que cette zone de seconde polarité est démontable entièrement ou en partie. Ainsi le procédé selon invention peut comprendre le démontage de ladite zone de seconde polarité superflue.
  • Avantageusement, lors d'une utilisation en déshydratation, le procédé selon l'invention comprend au moins partiellement, de préférence pratiquement totalement, un pompage de liquide, en général comprenant de l'eau, en surface du sol.
  • Le tube creux constituant au moins partiellement la zone de seconde polarité comprend généralement au moins une zone isolante intérieure, généralement sur pratiquement toute sa longueur.
  • Ainsi, par un procédé mettant en oeuvre l'utilisation de système(s) d'électrodes coaxiales et des phénomènes physiques d'électro-osmose, c'est-à-dire de mise en mouvement des molécules d'eau contenues dans une matrice plus ou moins solide par l'action d'un champ électrique continu, et/ou d'électromigration, c'est-à-dire de mise en mouvement d'espèces ionisées (c'est-à-dire ioniques et/ou ionisables qui se sont ionisées) par ce même champ électrique, le procédé selon l'invention permet de déshydrater voire de consolider des sols, en particulier des lagunes de boues de carrière. Ainsi qu'il sera explicité ci-après, la consolidation de ces sols se fait avantageusement depuis le fond de l'espace humidifié voire noyé, c'est-à-dire du fond de la lagune vers la surface. De façon particulièrement avantageuse, une telle consolidation est possible sous eau, c'est-à-dire si la surface est noyée sous une certaine épaisseur d'eau, par exemple au moins 1,5 mètre (inclus).
  • « Hors du sol » signifie donc selon l'invention généralement dans l'air atmosphérique et/ou dans l'eau.
  • L'invention permet donc avantageusement par rapport à l'état de la technique, grâce à l'utilisation astucieuse et combinée d'au moins un système d'électrodes à géométrie particulière et d'une mise en oeuvre d'un mouvement de zone de seconde polarité vers la surface, découvrant au moins une zone de première polarité, une déshydratation progressive à partir du fond de la lagune voire une consolidation, même sous eau.
  • Un autre avantage du procédé selon l'invention est une consommation énergétique faible, parce que l'espace entre la zone de première polarité et la zone de seconde polarité est généralement minimum, i.e. relativement faible. Un tel espace est généralement dimensionné en fonction de divers paramètres tels que par exemple le nombre de systèmes d'électrodes ; la géométrie de chaque système d'électrodes ; la quantité a priori d'eau à éliminer; la pollution en espèces ioniques ou ionisables susceptibles d'être traitées selon le procédé de l'invention.
  • Un autre avantage du procédé selon l'invention est la relative facilité d'implantation du ou des systèmes d'électrodes.
  • Dans un mode particulier de réalisation selon l'invention, le système d'électrodes étant principalement constitué de parties assemblables appelées tronçons, l'enfoncement du système d'électrodes dans le sol s'effectue par un processus progressif d'enfoncement et d'assemblage successifs des tronçons les uns aux autres, ledit processus comprenant au moins une étape d'enfoncement au moins partiel d'au moins un tronçon, créant un ensemble de tronçons au moins en partie enfoncé, suivie d'au moins une étape d'assemblage au moins partiel d'au moins un autre tronçon à l'ensemble de tronçon(s) au moins en partie enfoncé déjà constitué. Un tel mode de réalisation permet avantageusement de faciliter l'enfoncement du système d'électrodes dans le sol. De préférence, un tel assemblage comprend au moins un vissage.
  • Avantageusement, un tel mode particulier de réalisation permet la mise en oeuvre relativement simple du procédé selon l'invention, puisqu'il s'agit d'enfoncer verticalement des tronçons courts de système d'électrodes, de visser un ou plusieurs nouveaux tronçons courts sur ceux-ci, d'enfoncer à nouveau et de recommencer jusqu'à atteindre le fond du « bassin » (espace où est la majeure partie du sol humidifié voire noyé).
  • Les systèmes d'électrodes utilisés sont ou non deux à deux semblables, tant en dimensions qu'en géométrie et/ou en polarité.
  • Dans un mode avantageux de réalisation de l'invention, le procédé selon l'invention est tel que l'on utilise une pluralité de systèmes d'électrodes, lesdits systèmes d'électrodes étant de préférence pratiquement tous, de préférence tous, de polarités identiques (c'est-à-dire que les zones de même polarité ont le même signe), et on procède aux différentes étapes, de préférence de façon pratiquement simultanée, pour chacun desdits systèmes d'électrodes. Ainsi le traitement d'un sol, par exemple d'une lagune de plusieurs hectares se fait simplement en implantant autant de systèmes d'électrodes que nécessaire. Le nombre des systèmes d'électrodes varie suivant différents paramètres tel que la surface du sol à traiter. Comme expliqué précédemment, la géométrie des systèmes d'électrodes détermine au moins en partie la zone d'influence desdits systèmes d'électrodes. De préférence tous les systèmes d'électrodes sont de géométrie pratiquement identique mais il est aussi possible selon l'invention qu'ils soient au moins partiellement de géométrie sensiblement différente, c'est-à-dire qu'au moins deux, ou bien plus de deux, d'entre elles soient de géométrie sensiblement différente.
  • Dans le cas de l'utilisation pour la déshydratation de carrières, les lagunes déshydratées voire consolidées ainsi obtenues sont les premières à être obtenues efficacement et pendant une durée raisonnable par un procédé d'utilisation de systèmes d'électrodes monopolaires coaxiales, ce qui présente un progrès considérable de l'invention par rapport à l'état de la technique.
  • Par « activation » du système d'électrodes selon l'invention, on entend une mise sous champ électrique. Une telle mise sous champ électrique permet le traitement de l'eau voire des espèces ioniques et ionisables dans le sol, ainsi qu'il a été explicité précédemment. La tension imposée est généralement sensiblement constante, et l'intensité varie selon les paramètres tels que la nature du sol...
  • L'invention concerne aussi un procédé de déshydratation de sol et/ou de dépollution de sol comprenant au moins un procédé de traitement de sol, en particulier de carrière, selon l'invention.
  • L'invention concerne aussi un dispositif de traitement de sol comprenant au moins un système d'électrodes monopolaires coaxiales sensiblement rectiligne, ledit système d'électrodes comprenant au moins une tige comprenant au moins une zone de première polarité et au moins une zone isolante, et au moins un tube creux entourant au moins partiellement ladite tige et constituant au moins partiellement une zone de seconde polarité apte à coulisser au moins partiellement autour de ladite tige, ledit système d'électrodes étant apte à être mis sous champ électrique.
  • Le système d'électrodes est généralement et de préférence apte à être enfoncé au moins partiellement dans le sol, le plus souvent de façon, une fois enfoncé dans le sol, à présenter une extrémité supérieure hors du sol et une extrémité inférieure comportant une zone de première polarité dans le sol. Un moyen d'enfoncement dans le sol est par exemple une forme aiguisée et bisautée de l'extrémité inférieure devant être enfoncée dans le sol.
  • Ladite tige comprend de préférence une alternance de zones de première polarité et de zones isolantes.
  • Dans un mode de réalisation préféré du dispositif selon l'invention, ladite zone de seconde polarité est en outre apte à être remontée au moins partiellement vers le haut de façon à pouvoir découvrir au moins une nouvelle zone de première polarité, de préférence une nouvelle alternance de zone de première polarité et de zone isolante, et ce si possible aussi souvent que nécessaire.
  • De préférence, la zone de seconde polarité est apte à être démontée au moins partiellement, de préférence pratiquement totalement.
  • Selon l'invention, le dispositif comprend au moins un moyen d'activation du système d'électrodes, c'est-à-dire au moins un moyen de mise sous champ électrique du système d'électrodes.
  • De façon préférée, le système d'électrodes est principalement constitué de parties assemblables appelées tronçons, et de façon encore plus préférée un tel assemblage comprend au moins un vissage.
  • La zone de première polarité ou de seconde polarité, lorsqu'elle est cathodique, comprend généralement, de préférence est constituée principalement, d(e l)'acier inoxydable (ou inox) ou d(e l)'acier non inoxydable, de préférence d(e l)'acier inoxydable. Dans le cas où elle comprend principalement de l'acier non inoxydable, c'est une électrode consommable.
  • La zone de seconde polarité ou de première polarité, lorsqu'elle est anodique, comprend généralement, de préférence est constituée principalement, du (de) titane, de préférence entièrement du (de) titane, recouvert d'au moins un composé de métal, précieux ou non, ledit composé de métal, précieux ou non, étant choisi de préférence dans le groupe formé par le ruthénium, l'iridium, le tantale, l'étain, et l'antimoine, sous des formes au moins partiellement oxydées ou non, et leurs mélanges.
  • De préférence, la zone isolante de ladite tige comprend principalement du plastique tel que au moins un composé polymérique choisi dans le groupe formé par le polychlorure de vinyle, les polyéthylènes (toutes densités), les polypropylènes (toutes densités), et leurs mélanges.
  • Dans le cas où la tige comporte des zones anodiques et des zones isolantes, la tige peut par exemple dans une première version être entièrement un barreau constitué de titane recouvert de métal précieux et comportant à intervalles réguliers, par-dessus ledit titane, une gaine par exemple thermo rétractable typiquement en PEHD (Poly Ethylène Haute Densité) formant zones isolantes. Une seconde version, moins onéreuse, de cet exemple est une tige constituée de parties alternées, une des parties comportant du titane non revêtu de métal précieux et recouvert d'une telle gaine en PEHD, et les autres des parties étant constituées de titane recouvert de métal précieux.
  • Dans un mode de réalisation préféré du dispositif selon l'invention, le tube creux constituant au moins partiellement la zone de seconde polarité comprend au moins une zone isolante intérieure généralement sur pratiquement toute sa longueur. Dans un tel cas, ladite zone d'isolation interne comprend généralement du plastique tel que au moins un composé polymérique choisi dans le groupe formé par le polychlorure de vinyle, les polyéthylènes (toutes densités), les polypropylènes (toutes densités), et leurs mélanges.
  • De préférence le dispositif selon l'invention comprend en outre au moins un moyen de placement (c'est-à-dire de mise en place par enfoncement au moins partiel dans le sol), mécanique ou manuel, d'au moins un système d'électrodes. Un tel moyen de placement est généralement manuel pour les faibles épaisseurs et les faibles résistances de sol, par exemple au moins une massette ou un marteau. Sinon, un tel moyen est mécanique ; il comprend par exemple au moins une foreuse.
  • Les systèmes d'électrodes utilisés sont ou non deux à deux semblables, tant en dimensions qu'en géométrie et/ou en polarité.
  • Selon un mode de réalisation préférée, le dispositif de l'invention comprend une pluralité de systèmes d'électrodes, lesdits systèmes d'électrodes étant de préférence pratiquement tous, de préférence tous, de polarités identiques, c'est-à-dire que les zones de première polarité sont de même polarité et que les zones de seconde polarité sont de même polarité. Le nombre des systèmes d'électrodes varie suivant différents paramètres tel que la surface de lagune à traiter comme explicité précédemment.
  • Le dispositif selon l'invention est particulièrement adapté pour la mise en oeuvre du procédé selon l'invention tel que décrit précédemment.
  • De même l'invention concerne l'utilisation d'un dispositif tel que décrit précédemment, pour la déshydratation de sol et/ou pour la dépollution de sol, en particulier de boues de carrière (lagune de carrière) et/ou de produits d'extraction minière et/ou de sous-produits d'extraction minière.
  • Dans le cas d'une utilisation de déshydratation voire de consolidation de lagunes de boues de carrière, une zone de seconde polarité est cathodique et des zones de première polarité sont anodiques. Le phénomène d'électro-osmose entraîne progressivement au moins partiellement, de préférence de façon pratiquement totale, l'eau vers la zone cathodique. Ainsi, au fur et à mesure du traitement de la lagune, on fait coulisser la zone de seconde polarité vers le haut le long des zones isolantes et de première polarité qui sont gardées fixes. Ainsi on force l'eau à remonter le long du système d'électrodes vers la cathode et donc progressivement vers la surface. L'eau revenue ainsi progressivement à la surface est particulièrement facile à pomper, et éventuellement à recycler. Ce traitement s'accompagne d'une dépollution lorsqu'il y a présence dans le sol de cations par exemple de métaux. Lesdits cations remontent vers la surface avec l'eau dans laquelle ils sont dissous. Ceci est particulièrement efficace dans le cas d'une pollution récente, c'est-à-dire typiquement de quelques mois.
  • L'invention permet aussi une dépollution inorganique, principalement dans le cas où une zone de seconde polarité est anodique et des zones de première polarité sont cathodiques. Au fur et à mesure du traitement, on fait coulisser la zone de seconde polarité vers le haut le long des zones isolantes et de première polarité qui sont gardées fixes. Le phénomène d'électromigration entraîne progressivement au moins partiellement, de préférence de façon pratiquement totale, les anions polluants que sont par exemple les ions nitrates NO3 - et /ou cyanures CN-, vers l'anode et donc vers la surface. D'autre part, l'eau et les cations éventuellement présents dans l'eau, tels que du calcium Ca2+, sont entraînés par phénomène d'électro-osmose et de gravité vers la zone cathodique, et donc vers le fond ; il faut donc prévoir généralement au moins un système d'apport d'eau au système d'électrodes par l'intérieur et/ou l'extérieur du tube, pour éviter une déshydratation trop forte qui perturberait notablement le phénomène d'électromigration. Une telle utilisation est très appréciable dans le cas d'une pollution accidentelle par exemple aux nitrates d'un sol situé au-dessus d'une nappe phréatique. Elle permet de protéger durablement ladite nappe de la pollution, par traitement dudit sol.
  • L'invention permet aussi une injection d'eau vers le fond d'un sol tel un puisard. Dans ce cas, le traitement selon l'invention permet de faire circuler l'eau vers le fond du sol, sans risque de remontée brutale de nappe et sans nécessité de fabriquer un puits. Dans ce cas, une zone de seconde polarité est anodique et une zone de première polarité est cathodique, et située à l'extrémité de la tige qui autrement est constituée d'une zone isolante. Le système d'électrodes ainsi formé peut avantageusement traverser des couches d'argile plus ou moins imperméables sans altérer leur imperméabilité de façon importante. La cathode est située au-dessous desdites couches dans une zone perméable. De façon avantageuse, l'argile permet en outre de filtrer l'eau qui la traverse. Hors du sol, ledit système émerge dans l'eau que l'on veut transférer en profondeur. L'eau (et les cations éventuellement présents dans l'eau, tels que du calcium Ca2+), est entraînée progressivement au moins partiellement, de préférence de façon pratiquement totale, vers la zone cathodique, et donc vers le fond. L'eau peut ainsi traverser ladite couche d'argile.
  • L'invention sera mieux décrite et d'autres caractéristiques et avantages apparaîtront à la lecture de la description qui va suivre, donnée à titre non limitatif, par référence aux figures 1 à 10.
  • La figure 1 représente, de façon schématique, un système 12 d'électrodes monopolaires coaxiales avec cathode 1 coulissante mobile selon l'invention.
  • Les figures 2 à 9 représentent, de façon schématique, un traitement en trois phases pour déshydrater une lagune 14 de boues de carrière selon l'invention, par un dispositif comprenant le système 12 d'électrodes de la figure 1. Ainsi la figure 2 représente un début de traitement, les figures 3 et 4 représentent une remontée partielle des cathodes (une cathode mobile par électrode), la figure 5 représente un démontage de parties cathodiques superflues, la figure 6 représente une remise sous champ électrique, la figure 7 représente une remontée partielle des cathodes, la figure 8 représente un démontage de parties cathodiques superflues, et la figure 9 représente une mise sous champ électrique de la fin du traitement.
  • La figure 10 représente, de façon schématique, un autre système 13 d'électrodes monopolaires concentriques avec anode 9 coulissante mobile selon l'invention.
  • La figure 1 représente, de façon schématique, un système 12 d'électrodes monopolaires coaxiales avec cathode 1 coulissante mobile selon l'invention. Elle comprend une cathode 1 mobile coulissante comportant une isolation intérieure (non représentée), un ensemble 2 de zones isolantes fixé sur un ensemble 3 de zones anodiques fixe. La cathode 1 peut être constituée de parties 1a, 1b, 1c, 1d, 1e, 1f, 1g et 1h (non représentées sur la figure 1). On voit que l'ensemble 2 de zones isolantes est constitué des parties 2a, 2b, 2c et 2d, et que l'ensemble 3 de zones anodiques est constitué des zones anodiques 3a, 3b, 3c, 3d et 3e. Seules les zones isolante 2a et anodique 3a sont découvertes par la cathode 1.
  • Les figures 2 à 9 représentent, de façon schématique, un traitement en trois phases pour déshydrater une lagune 14 de boue de carrière selon l'invention. Elles correspondent, ainsi qu'il sera explicité ci-après, à un premier système 12 d'électrodes selon l'invention, tel que représenté par exemple sur la figure 1. Ce traitement nous servira, après description détaillée des figures 2 à 9, à illustrer les avantages de l'invention.
  • La figure 2 selon l'invention représente le début du traitement de la lagune 14, de fond 15 et de surface 16, de boues de carrière, dans laquelle ont été mis en place au moins onze systèmes 12 d'électrodes tels que représentés à la figure 1. De l'eau 4 remonte au-dessus de la surface 16, une partie 14a déjà asséchée de la lagune 14 est située au-dessus du fond 15 de celle-ci, et une partie 14b non encore asséchée ou humide (voire noyée) de la lagune 14 est située au-dessus de ladite partie 14a. On voit que, pour cette première phase de traitement, des zones 8 d'assèchement initial se forment, qui se rejoignent par l'intermédiaire de zones 7 intermédiaires qui sont aussi progressivement asséchées. L'ensemble des zones 8 et des zones 7 correspond à la partie 14a asséchée. Les flèches 6 illustrent le mouvement de remontée de l'eau vers la cathode 1, ce qui provoque une remontée capillaire vers la surface 16. L'eau 4 qui est apparue au-dessus de la surface 16 de la lagune 14 est pompée par au moins une conduite 5, le pompage étant symboliquement représenté par une flèche. Dans le cas où de l'eau 4 était présente au-dessus de la surface 16 avant le début du traitement, il est possible mais non obligatoire selon l'invention de procéder à un pompage avant le début dudit traitement.
  • La figure 3 symbolise le début de la remontée des cathodes 1. On y voit que, en plus de la zone anodique 3a de départ et de la zone isolante 2a de départ, il a été découvert une nouvelle zone anodique 3b sur chaque système 12 d'électrodes.
  • La figure 4 montre la fin de la remontée des cathodes 1. En plus de la zone anodique 3b découverte précédemment (voir figure 3), il apparaît une nouvelle zone isolante 2b. Pour les systèmes 12 d'électrodes de périphérie de lagune 14 qui étaient enfoncées moins profondément à cause de la moindre profondeur de la lagune 14 en cet endroit, ce sont les zones anodique 3a et isolante 2a qui sont à présent découvertes.
  • La figure 5 fait apparaître le démontage des parties cathodiques superflues 1a, et éventuellement 1b, 1c, 1d et 1e des cathodes 1, selon la longueur de chaque système 12 d'électrodes de départ et donc de chaque cathode 1.
  • La figure 6 montre la remise sous champ électrique de la lagune 14. On voit apparaître de nouvelles flèches 6a de remontée d'eau vers la surface 16, de nouvelles zones 8a d'assèchement autour des systèmes 12 d'électrodes, et de nouvelles zones 7a intermédiaires entre les zones 8a. Ainsi dans cette deuxième phase, on distingue une partie humide 14c de la lagune 14, qui est plus réduite que la partie humide 14b de la première phase, et une partie 14d asséchée, qui correspond à l'ensemble des zones 8a et des zones 7a, et qui est plus importante que la zone 14a asséchée de la première phase. Le pompage est toujours illustré par la conduite 5 de pompage.
  • Dans la figure 7, on voit la remontée des cathodes 1 suite à la deuxième phase de traitement, découvrant des zones anodiques 3c et des zones isolantes 2c.
  • La figure 8 montre le démontage des parties superflues 1f, et éventuellement 1g et 1h des cathodes 1.
  • La figure 9 montre une troisième phase d'assèchement par remise sous champ électrique comprenant de nouveau des zones d'assèchement 8b auprès des systèmes 12 d'électrodes, la remontée d'eau 4 vers la surface 16 étant indiquée par les flèches 6b, et des zones intermédiaires 7b de jonction entre les zones d'assèchement 8b. Ainsi dans cette deuxième phase, on distingue une partie humide 14e de la lagune 14, qui est plus réduite que la partie humide 14c de la deuxième phase, et une partie 14f asséchée, qui correspond à l'ensemble des zones 8b et des zones 7b, et qui est plus importante que la zone 14d asséchée de la deuxième phase. Le pompage est toujours illustré par la conduite 5 de pompage.
  • Pour la fin du traitement il ne reste en surface 16 de lagune 14 qu'une fine couche 14e de boue relativement molle. Celle-ci, n'étant plus alimentée (par remontée capillaire) par l'importante masse d'eau qu'il y avait au départ entre le fond 15 et la surface 16 de la lagune 14, se dessèche naturellement avec le vent et le soleil en très peu de temps. Eventuellement une série de mesure au pénétromètre léger de type PANDA® permet de déterminer la résistance mécanique des matériaux déshydratés, et donc la fin du chantier. A la fin, les systèmes 12 d'électrodes sont extraits de la lagune 14 pour être éventuellement reconditionnés pour une réutilisation sur un autre chantier ou sur cette même lagune 14 quand elle sera de nouveau pleine. Un tel reconditionnement comprend généralement au moins un nettoyage et/ou au moins une remise en état de dépôt sur au moins une électrode. Il n'y a alors plus qu'à vider la lagune 14 au tracto-pelle si besoin est, la lagune 14 déshydratée et consolidée étant à présent accessible aux engins de chantiers.
  • La figure 10 représente, de façon schématique, un autre système 13 d'électrodes monopolaires coaxiales avec anode 9 coulissante mobile selon l'invention. Le système 13 d'électrodes comprend une anode 9 coulissante isolée à l'intérieur (isolation non représentée) et lubrifiée à l'extérieur par exemple à l'eau ou à la bentonite, et un ensemble 10 de zones isolantes isolé fixé sur un ensemble 11 de zones cathodiques fixe. L'anode 9 peut être constituée de parties 9a, 9b, etc. (non représentées). On voit que l'ensemble 10 de zones isolantes est constitué des zones isolantes 10a, 10b, 10c et 10d, et que l'ensemble 11 de zones cathodiques est constitué des zones 11a, 11b, 11c, 11d et 11e. Seules les zone isolante 10a et zone cathodique 11a sont découvertes par l'anode 9.
  • Ainsi, la figure 10 représente un système 13 d'électrode pour destruction progressive de polluants organiques et/ou pour remonter à la surface d'un sol des polluants anioniques (tels que nitrates et/ou cyanures). Le système 13 d'électrodes de la figure 10 permet donc la dépollution d'un sol 14 et/ou d'une nappe phréatique pollués par au moins une espèce anionique par exemple choisie dans le groupe formé par les nitrates et les cyanures. Ladite espèce anionique peut être remontée à la surface 16 pour faciliter son traitement qui peut être biologique et/ électrochimique dans le cas des cyanures, et/ou physico-chimique et/ou de type phytoremédiation (ou traitement par au moins une plante). Dans le cas du traitement d'un sol, le dispositif comportant ce système 13 d'électrodes peut permettre d'éviter la contamination d'une nappe phréatique qui n'est pas encore touchée par la pollution desdites espèces anioniques.
  • La remontée des polluants grâce à un dispositif comportant le système 13 d'électrodes de la figure 10 se fait exactement selon le même mode de fonctionnement que celui du système 12 d'électrodes décrit dans les figures 2 à 9.
  • Selon l'invention, il est possible de disposer de moyens supplémentaires pour modifier l'influence des systèmes d'électrodes. Par exemple il est possible d'allonger la (les) zone(s) isolante(s) pour élargir les zones d'influences du champ électrique et ainsi diminuer le nombre de systèmes d'électrodes nécessaire pour couvrir une surface de plusieurs hectares.
  • Selon un autre mode de réalisation, indépendant ou non du mode de réalisation précédent, il est possible d'augmenter la longueur d'un système d'électrodes, par exemple et de préférence en augmentant le nombre de tronçons dont est de préférence constitué le système d'électrodes, pour aller plus profond au sein de la lagune.
  • Selon un troisième mode de réalisation, indépendant ou non de chacun des deux modes de réalisation précédents, il est possible d'augmenter le nombre de systèmes d'électrodes pour accélérer le travail.
  • Il est intéressant de noter que, selon le procédé de l'invention, il est très avantageux de déshydrater la lagune en commençant par le fond. D'une part, les fissures qui apparaissent éventuellement en cours de traitement sont radiales et ne gênent pas le procédé de déshydratation. D'autre part, il est important de noter que le système peut fonctionner sous eau, c'est-à-dire qu'il peut « tasser » des boues sédimentaires sous la surface d'une retenue d'eau et ainsi permettre au moins d'espacer les opérations usuelles de curage.
  • Selon l'invention, dans le cas du système 12 d'électrodes décrit dans les figures 1 à 9, les zones de première polarité, ici zones anodiques, sont activées en les découvrant. L'eau autour de la cathode servant de lubrifiant, les efforts mécaniques sont ainsi avantageusement limités. Quand la zone autour de la première zone de première polarité découverte devient trop résistante, on remonte la zone de seconde polarité qu'est la cathode, la distance entre la cathode et l'anode la plus proche étant toujours la même, avec une teneur en eau toujours favorable au passage du courant.
  • En fonction de l'application visée, l'un ou l'autre des phénomènes physiques possibles sera favorisé. Sans vouloir être lié par une explication donnée, on peut tenter de donner l'explication suivante. En particulier les phénomènes d'électro-osmose concernent au moins en partie les applications de déshydratation de lagune de boues ou de tassement de sédiments dans une retenue d'eau. Le phénomène d'électromigration, qui permet généralement de faire remonter au moins en partie à la surface des pollutions minérales et/ou qui favorise la destruction in-situ de pollutions organiques, concerne principalement les applications de dépollution. Par contre, tous les phénomènes électrocinétiques ayant lieu pratiquement en même temps, dans certains cas l'électro-osmose aidera à dépolluer au moins en partie alors que l'électromigration ne déshydratera pas. Dans ce cas on s'arrange pour éviter l'assèchement de l'anode ou même on lubrifie l'extérieur de l'anode coulissante avec par exemple de la boue bentonitique utilisée classiquement lors des forages.
  • Pour favoriser l'un ou l'autre des phénomènes, il est possible d'agir sur les matériaux d'électrodes en particulier des dépôts sur l'une ou l'autre des électrodes, sur le branchement des électrodes, c'est-à-dire de choisir un dispositif à anode coulissante ou à cathode coulissante, sur l'adaptation du matériau drainant éventuellement présent sur la cathode et sur l'injection d'eau, de produits dissous ou de suspensions, à différents niveaux de chaque système d'électrodes. Par exemple, l'injection de suspensions, à différents niveaux du système d'électrodes, peut servir à lubrifier une anode coulissante.
  • L'invention a été testée avec succès sur la déshydratation de lagunes de carrière et de boues de dragage non polluées.
  • Il est aussi possible d'utiliser l'invention pour la déshydratation de schlamm de phosphate, de schlamm de charbon, de boues minières, et/ou de boues de forages usées.
  • Il est encore aussi possible d'utiliser l'invention pour la dépollution par dégradation in-situ de polluants organiques, pour la dépollution de nappes phréatiques (nitrates, cyanures, métaux, arsenic... etc.) par remontée des polluants en surface de sol pour élimination ultérieure, pour la dépollution de sols même argileux par remontée des polluants en surface pour élimination, ou bien pour le pompage d'eau profonde dans les zones arides.
  • Exemple
  • L'exemple suivant sert à illustrer l'invention sans pour autant en limiter la portée.
  • Un essai a été réalisé sur site, avec un système d'électrodes donné décrit ci-après.
  • Il s'agit d'un des essais d'une campagne de dix jours qui a eu lieu en juillet 2003 sur un site, lagune à base de boue argileuse contenant une majorité de smectite. Le but était simplement de montrer la faisabilité de l'invention. Les essais étaient relativement courts (2 heures). Il s'agissait de comparer les effets de trois facteurs : la tension, la longueur de l'anode et la longueur de la zone isolée. L'efficacité a été évaluée par mesure de la quantité d'eau qui a été remontée en surface pendant les deux heures avec un seul système d'électrode en fonction.
  • La profondeur de travail maximale pour la pointe de l'anode était systématiquement à 2 mètres de profondeur.
  • La partie activée de l'anode était de longueur 30 cm et de diamètre 20 mm avec une pointe formant un angle de 15° par rapport à l'axe de l'anode. Des tronçons de 50 cm environ étaient assemblés par vissage. Le matériau de l'anode était du titane recouvert d'oxydes de métaux dont majoritairement de l'iridium (type DSA).
  • La longueur d'isolant était de 97 cm, en matériau Poly Ethylène Haute Densité (PEHD) sous forme de matériau thermo rétractable posé directement sur l'anode.
  • La cathode était de longueur environ 150 cm pour un diamètre extérieur de 48,5 mm, un diamètre intérieur de 27 mm (isolant compris), et en matériau extérieur inox alimentaire et matériau intérieur PVC (Poly Chlorure de Vinyle). La longueur de chaque tronçon de cathode était d'environ 560 mm. Cette pièce particulière était agrémentée de pièces complémentaires permettant l'étanchéité interne de la cathode et l'assujettissement de la cathode à l'anode. La jonction étanche entre les tronçons de cathode était assurée par un joint plat en caoutchouc nitrile.
  • La longueur totale du système d'électrodes était d'environ 350 cm.
  • Le système a été mis en place à la main et soutenu par un support qui répartissait son poids (15 kg environ) sur 1 m2.
  • La couche supérieure de lagune (20 cm de hauteur) étant relativement solide (suite à plusieurs mois de sécheresse), des planches larges posées à sa surface ont suffi pour soutenir efficacement les opérateurs. Pour ne pas avoir d'interaction avec la couche sèche de la lagune un trou de 30 cm a été fait et tubé pour recueillir l'eau que le système d'électrodes remontait.
  • La concentration initiale de la boue est de l'ordre de 40% après 6 ans sans ajout d'eau de lavage de granulats dans celle-ci. Aucune remontée d'eau n'est observée après plusieurs heures dans un trou identique sans système d'électrodes.
  • Le volume d'eau remontée est de 500 ml environ en deux heures.
  • La quantité d'eau remontée en deux heures est caractéristique de la zone d'influence du système d'électrodes pour une configuration donnée. Par contre elle n'est pas représentative de la quantité d'eau qui serait remontée sur une durée plus longue, par unité de temps. En l'espace de deux heures, le procédé a tout juste le temps d'initier la remontée de l'eau (qui vient de deux mètres de profondeur environ), le débit nominal n'étant pas encore atteint. Il faudrait probablement plusieurs jours pour que celui-ci soit atteint.
  • Les dimensions du prototype seront à peu de chose près celles de la version industrielle du système d'électrodes.

Claims (24)

  1. Procédé de traitement de sol comprenant les étapes successives suivantes:
    a) Au moins un enfoncement sensiblement vertical au moins partiel dans le sol (14) d'au moins un système (12;13) d'électrodes monopolaires coaxiales sensiblement rectiligne, ledit système (12;13) d'électrodes comprenant au moins une tige (2,3;10,11) comportant au moins une zone de première polarité (3a,3b,3c,3d,3e; 11a, 11b, 11c, 11d, 11e) et au moins une zone isolante (2a,2b,2c,2d;10a,10b,10c,10d), et au moins un tube creux (1,9) coaxial à ladite tige (2,3;10,11), entourant au moins partiellement ladite tige (2,3;10,11) et constituant au moins partiellement une zone de seconde polarité (1;9) apte à coulisser au moins partiellement autour de ladite tige (2,3;10,11), ladite zone de seconde polarité (1;9) étant placée de façon à découvrir au moins une zone de première polarité (3;11) dudit système (12;13) d'électrodes,
    b) Une mise sous champ électrique du système (12;13) d'électrodes.
  2. Procédé selon la revendication 1 comprenant de plus au moins une succession des étapes successives suivantes :
    c) Une désactivation du système (12;13) d'électrodes par arrêt au moins partiel du champ électrique,
    d) Une remontée partielle de la zone de seconde polarité (1;9) permettant de découvrir au moins une nouvelle zone de première polarité (3a,3b,3c,3d,3e) et/ou au moins une zone isolante (2a,2b,2c,2d)
    e) Une remise sous champ électrique du système (12;13) d'électrodes.
  3. Procédé selon l'une des revendications précédentes tel que ladite tige (2,3;10,11) comprend une alternance de zones de première polarité (3a,3b,3c,3d,3e ; 11a, 11b, 11c, 11d, 11e) et de zones isolantes (2a,2b,2c,2d ;10a,10b,10c,10d),
  4. Procédé selon l'une des revendications précédentes tel que ledit système (12;13) d'électrodes une fois enfoncé dans le sol (14) présente une extrémité supérieure au-dessus de la surface (16) du sol (14), au moins une zone de seconde polarité (1;9) dans le sol (14), et une extrémité inférieure comportant au moins une zone de première polarité (3;11) dans le sol (14).
  5. Procédé selon l'une des revendications précédentes tel que ladite zone de seconde polarité (1;9) est placée de façon à découvrir la zone de première polarité (3a;11a) située le plus près de l'extrémité inférieure de ladite tige (2,3;10,11).
  6. Procédé selon l'une des revendications précédentes comprenant le démontage de toute zone ou partie de zone de seconde polarité (1a,1b,1c,1d,1e,1f,1g,1h) superflue.
  7. Procédé selon l'une des revendications précédentes comprenant au moins partiellement un pompage (5) de liquide en surface (16) du sol (14).
  8. Procédé selon l'une des revendications précédentes dans lequel, le système (12;13) d'électrodes étant principalement constitué de parties assemblables appelées tronçons, l'enfoncement du système (12;13) d'électrodes dans le sol (14) s'effectue par un processus progressif d'enfoncement et d'assemblage successifs des tronçons les uns aux autres, ledit processus comprenant au moins une étape d'enfoncement au moins partiel d'au moins un tronçon, créant un ensemble de tronçon(s) au moins en partie enfoncé, suivie d'au moins une étape d'assemblage au moins partiel d'au moins un autre tronçon à l'ensemble de tronçon(s) au moins en partie enfoncé déjà constitué.
  9. Procédé selon la revendication précédente dans lequel l'assemblage comprend au moins un vissage.
  10. Procédé selon l'une des revendications précédentes dans lequel on utilise une pluralité de systèmes (12;13) d'électrodes, lesdits systèmes (12;13) d'électrodes étant pratiquement tous de polarités identiques, et on procède aux différentes étapes pour chacun desdits systèmes (12;13) d'électrodes.
  11. Procédé de déshydratation de sol et/ou de dépollution de sol comprenant au moins un procédé de traitement de sol selon l'une des revendications précédentes.
  12. Dispositif de traitement de sol comprenant au moins un système (12;13) d'électrodes monopolaires coaxiales sensiblement rectiligne, ledit système (12;13) d'électrodes comprenant au moins une tige (2,3;10,11) comprenant au moins une zone de première polarité (3a,3b,3c,3d,3e;11a,11b,11c,11d,11e) et au moins une zone isolante (2a,2b,2c,2d;10a,10b,10c,10d), et au moins un tube creux (1;9) coaxial à ladite tige (2,3;10,11), entourant au moins partiellement ladite tige (2,3;10,11) et constituant au moins partiellement une zone de seconde polarité (1;9) apte à coulisser au moins partiellement autour de ladite tige (2,3;10,11), ledit système (12;13) d'électrodes étant de plus apte à être activée.
  13. Dispositif selon la revendication précédente dans lequel ledit système (12) d'électrode est en outre apte à être enfoncée au moins partiellement dans le sol (14).
  14. Dispositif selon l'une des revendications 12 ou 13 dans lequel la zone de seconde polarité (1) est apte à être démontée (1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h) au moins partiellement.
  15. Dispositif selon l'une des revendications 12 à 14 comprenant au moins un moyen d'activation du système (12;13) d'électrodes.
  16. Dispositif selon l'une des revendications 12 à 15 dans lequel le système (12;13) d'électrodes est principalement constitué de parties assemblables.
  17. Dispositif selon l'une des revendications 12 à 16 dans lequel, lorsqu'elle est cathodique, la zone de première polarité (3a, 3b, 3c, 3d, 3e; 11a, 11b, 11c, 11d, 11e) ou de seconde polarité (1;9) comprend de l'acier inoxydable ou de l'acier non inoxydable.
  18. Dispositif selon l'une des revendications 12 à 17 dans lequel, lorsqu'elle est anodique, la zone de seconde polarité (1;9) ou de première polarité (3a,3b,3c,3d,3e;11a,11b,11c,11d,11e) comprend du titane recouvert d'au moins un composé de métal, précieux ou non.
  19. Dispositif selon la revendication précédente dans lequel ledit composé de métal, précieux ou non, est choisi dans le groupe formé par le ruthénium, l'iridium, le tantale, l'étain, et l'antimoine, sous des formes au moins partiellement oxydées ou non, et leurs mélanges.
  20. Dispositif selon l'une des revendications 12 à 19 dans lequel le tube creux (1;9) constituant au moins partiellement la zone de seconde polarité (1;9) comprend au moins une zone isolante intérieure sur pratiquement toute sa longueur.
  21. Dispositif selon l'une des revendications 12 à 20 comprenant en outre au moins un moyen de placement, mécanique ou manuel, d'au moins un système (12;13) d'électrodes.
  22. Dispositif selon l'une des revendications 12 à 19 comprenant une pluralité de systèmes (12;13) d'électrodes, lesdits systèmes (12;13) d'électrodes étant pratiquement tous de polarités identiques.
  23. Dispositif selon l'une des revendications 12 à 22 destiné à la mise en oeuvre d'un procédé selon l'une des revendications 1 à 9.
  24. Utilisation d'un dispositif selon l'une des revendications 12 à 21 pour la déshydratation de sol et/ou pour la dépollution de sol.
EP20050290570 2004-04-09 2005-03-15 Procédé de traitement de sol avec utilisation d'au moins un système d'électrodes monopolaires coaxiales et dispositif de mise en oeuvre Expired - Fee Related EP1584751B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403793 2004-04-09
FR0403793A FR2868793B1 (fr) 2004-04-09 2004-04-09 Procede de traitement de sol avec utilisation d'au moins un systeme d'electrodes monopolaires coaxiales et dispositif de mise en oeuvre

Publications (2)

Publication Number Publication Date
EP1584751A1 EP1584751A1 (fr) 2005-10-12
EP1584751B1 true EP1584751B1 (fr) 2007-04-04

Family

ID=34896739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050290570 Expired - Fee Related EP1584751B1 (fr) 2004-04-09 2005-03-15 Procédé de traitement de sol avec utilisation d'au moins un système d'électrodes monopolaires coaxiales et dispositif de mise en oeuvre

Country Status (4)

Country Link
EP (1) EP1584751B1 (fr)
DE (1) DE602005000788T2 (fr)
ES (1) ES2286769T3 (fr)
FR (1) FR2868793B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104452737B (zh) * 2014-11-26 2016-06-15 禹顺生态建设有限公司 一种堤防软基快速处理施工方法
CN105970913B (zh) * 2016-05-06 2018-01-30 扬州大学 电渗微生物灌浆改性砂土和粉土的方法
CN108655166A (zh) * 2018-03-16 2018-10-16 谢宁汉 一种修复土壤污染的方法
EP3976886B1 (fr) 2019-05-31 2023-06-21 Ecole Polytechnique Federale De Lausanne (Epfl) Système et procédé de consolidation de sol
CN114749474B (zh) * 2022-04-27 2023-04-11 广东工业大学 有机污染土壤的修复装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255551B1 (en) * 1999-06-04 2001-07-03 General Electric Company Method and system for treating contaminated media
US6998031B1 (en) * 1999-07-01 2006-02-14 Atraverda Limited Electrode
US6565724B2 (en) * 2001-03-08 2003-05-20 Alexander Itsekson System and method for electrochemical stabilization of soil and the strengthened soil structure resulting from the above method

Also Published As

Publication number Publication date
DE602005000788D1 (de) 2007-05-16
DE602005000788T2 (de) 2008-01-10
FR2868793A1 (fr) 2005-10-14
EP1584751A1 (fr) 2005-10-12
ES2286769T3 (es) 2007-12-01
FR2868793B1 (fr) 2006-07-07

Similar Documents

Publication Publication Date Title
EP1584751B1 (fr) Procédé de traitement de sol avec utilisation d'au moins un système d'électrodes monopolaires coaxiales et dispositif de mise en oeuvre
EP0067781B1 (fr) Procédé et dispositif électrique de récupération assistée de pétrole
EP0345131B1 (fr) Procédé d'abandon rapide de grandes cavités lessivées en sel gemme
FR2550182A1 (fr) Procede de denitrification des eaux souterraines en vue de leur potabilisation
FR2793279A1 (fr) Procede et dispositif pour traiter les perforations d'un puits
FR2524351A1 (fr) Procede et installation pour le captage des gaz et eaux percolees dans les decharges compactees de residus urbains ou autres
EP0608238B1 (fr) Systeme de decontamination utilisant l'electricite et l'extraction par le vide
CA2969366A1 (fr) Amelioration en matiere de et concernant le traitement de matrices et/ou les contenus de matrices
FR3063292A1 (fr) Suspension polyphasique de polymere et son utilisation
EP0574584A1 (fr) Procede d'alimentation en gaz d'un utilisateur
CA2087225C (fr) Procede et installation pour le stockage de dechets solidifies
EP1584381A1 (fr) Procédé de traitement de sol avec utilisation d'électrodes bipolaires et dispositif de mise en oeuvre
CA2474727C (fr) Procede de traitement des boues par action combinee de la pression et de l'electro-osmose
FR2878260A1 (fr) Ensemble a electrode bipolaire, dispositif le comprenant et procede de depollution et/ou neutralisation de sol utilisant ledit dispositif.
EP0043332B1 (fr) Procédé pour substituer un coulis de ciment, un mortier ou un béton à de la boue de bentonite contenue dans une cavité
EP3623065A1 (fr) Procede d'injection d'un produit depolluant dans le sol sous forme de bande helicoidale
FR2882279A1 (fr) Dispositif de traitement de sol subaquatique
FR2689040A1 (fr) Procédé pour dépolluer un stock de déchets, qui comporte des substances nocives nécessitant d'être éliminées.
JP2002001299A (ja) 汚染土壌の浄化方法
FR2459067A1 (fr) Installation compacte d'electro-epuration des eaux
RU2018141632A (ru) Способ водопонижения нефтезагрязненных грунтов
RU11551U1 (ru) Противофильтрационный экран хранилищ
FR2694314A1 (fr) Procédé de traitement des sols pollués et dispositif pour sa mise en Óoeuvre.
EP0019676A1 (fr) Procédé et dispositif pour la consolidation accélérée des sols fins par chargement d'une membrane
FR2888134A1 (fr) Dispositif de traitement de sol et procede de mise en oeuvre en dessalage et/ou depollution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BATICLE, PASCAL

Inventor name: SALLANDIER, THIERRY

17P Request for examination filed

Effective date: 20060322

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005000788

Country of ref document: DE

Date of ref document: 20070516

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070704

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2286769

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120315

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120327

Year of fee payment: 8

Ref country code: GB

Payment date: 20120320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120413

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120323

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130315

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005000788

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130316