EP1576847B1 - Systeme de restitution audio et procede de restitution d'un signal audio - Google Patents

Systeme de restitution audio et procede de restitution d'un signal audio Download PDF

Info

Publication number
EP1576847B1
EP1576847B1 EP03782222A EP03782222A EP1576847B1 EP 1576847 B1 EP1576847 B1 EP 1576847B1 EP 03782222 A EP03782222 A EP 03782222A EP 03782222 A EP03782222 A EP 03782222A EP 1576847 B1 EP1576847 B1 EP 1576847B1
Authority
EP
European Patent Office
Prior art keywords
audio
loudspeaker
reproduction
module
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03782222A
Other languages
German (de)
English (en)
Other versions
EP1576847A1 (fr
Inventor
Frank Melchior
Thomas Röder
Michael Beckinger
Sandra Brix
Thomas Sporer
Haymo Kutschbach
Berthold Schlenker
Carsten Land
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1576847A1 publication Critical patent/EP1576847A1/fr
Application granted granted Critical
Publication of EP1576847B1 publication Critical patent/EP1576847B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/13Application of wave-field synthesis in stereophonic audio systems

Definitions

  • the present invention relates to audio playback systems and, more particularly, to audio-reproduction systems suitable for practical use for variable size rendering rooms, such as cinemas, the audio display systems being based on wave-field synthesis.
  • Wave Field Synthesis (WFS)
  • WFS Wave Field Synthesis
  • Every point that is detected by a wave is the starting point of an elementary wave that propagates in a spherical or circular manner.
  • Applied to the acoustics can be simulated by a large number of speakers, which are arranged side by side (a so-called speaker array), any shape of an incoming wavefront.
  • a so-called speaker array any shape of an incoming wavefront.
  • the audio signals of each loudspeaker must be fed with a time delay and amplitude scaling so that the radiated sound fields of the individual loudspeakers are correctly superimposed.
  • Speaker calculated separately and the resulting signals added. If the sources to be reproduced are in a room with reflective walls, reflections must also be reproduced as additional sources via the loudspeaker array. The cost of the calculation therefore depends heavily on the number of sound sources, the reflection characteristics of the recording room and the number of speakers.
  • the advantage of this technique is in particular that a natural spatial sound impression over a large area of the playback room is possible.
  • the direction and distance of sound sources are reproduced very accurately.
  • virtual sound sources can even be positioned between the real speaker array and the listener.
  • wavefield synthesis works well for environments whose characteristics are known, irregularities occur when the texture changes, or when wave field synthesis is performed based on environmental conditions that do not match the actual nature of the environment.
  • An environmental condition can be described by the impulse response of the environment.
  • the space compensation using wavefield synthesis would be to first determine the reflection of that wall to determine when a sound signal reflected from the wall will return to the loudspeaker and what amplitude this reflected sound signal will be Has. If the reflection from this wall is undesirable, then exists with the Wave Field Synthesis the ability to eliminate the reflection from this wall by the speaker is injected to the reflection signal in phase with the corresponding amplitude in addition to the original audio signal so that the outgoing compensation wave extinguishes the reflection wave, such that the reflection from this wall in the Environment that is considered eliminated. This can be done by first computing the impulse response of the environment and determining the nature and position of the wall based on the impulse response of that environment, the wall being interpreted as a mirror source, that is, a sound source reflecting incident sound.
  • the impulse response of this environment is measured and then the compensation signal is calculated, which must be impressed on the audio signal superimposed on the speaker, there will be a cancellation of the reflection of this wall, such that a listener in this environment has the sound that this impression Wall does not exist at all.
  • Wavefield synthesis (WFS or sound field synthesis), as developed at the TU Delft in the late 1980s, represents a holographic approach to sound reproduction. The basis for this is the Kirchhoff-Helmholtz integral. This states that any sound fields can be generated within a closed volume by means of a distribution of monopole and dipole sound sources (loudspeaker arrays) on the surface of this volume. Details can be found in MM Boone, ENG Verheijen, PF v.
  • an audio signal that emits a virtual source at a virtual position is used to compute a synthesis signal for each loudspeaker of the loudspeaker array, the synthesis signals being shaped in amplitude and phase such that a wave resulting from the superposition of the individual ones the sound wave present in the loudspeaker array will correspond to the wave that would result from the virtual source at the virtual position if that virtual source at the virtual position were a real source with a real position.
  • multiple virtual sources exist at different virtual locations.
  • the computation of the synthesis signals is performed for each virtual source at each virtual location, typically resulting in one virtual source in multiple speaker synthesis signals. Seen from a loudspeaker, this loudspeaker thus receives several synthesis signals, which go back to different virtual sources. A superimposition of these sources, which is possible due to the linear superposition principle, yields then the playback signal actually sent from the speaker.
  • the final rendered and analog-to-digital converted reproduction signals for the individual loudspeakers could be provided, for example, via two-wire lines from the wave field synthesis central processing unit be transferred to the individual speakers.
  • the wave field synthesis central unit could always be made only for a special reproduction room or for a reproduction with a fixed number of loudspeakers.
  • a maximum equipped wave field synthesis central unit could be constructed, which is controllable with regard to the connectable speakers, so in terms of the number of analog signal outputs, but internally comprises arithmetic processors, which is designed for the maximum number of analog outputs, so connectable speakers.
  • Such a system would also mean that smaller-room audio playback systems would cost almost the same price as very large-format audio playback systems, which would be unacceptable to the small-playback room operators.
  • the medium to small playback rooms are interesting for providers of audio playback systems, at which point the "smallest" playback rooms should be mentioned, the z. B. domestic living room or smaller restaurants.
  • the object of the present invention is to provide an audio reproduction concept that has higher market acceptance.
  • the present invention is based on the recognition that audio playback systems that are to achieve market acceptance must be scalable.
  • the scalability must not only take place in terms of the computing power provided, but must also be reflected in the price of the audio playback system impact.
  • this means that an audio reproduction system for a large reproduction room may cost more than an audio reproduction system for a small reproduction room.
  • an audio reproduction system for a small reproduction room must cost considerably less than an audio reproduction system for a large reproduction room.
  • the audio reproduction system is divided into a central wave field synthesis module and many individual speaker modules connected to the central wave field synthesis module in a decentralized manner.
  • the central wave-field synthesis module receives an audio signal having a plurality of audio tracks and calculates, on the one hand, the synthesis signals and, on the other hand, the channel information for the channels from the virtual positions to the real speaker positions.
  • the central wave-field synthesis module is further configured to supply to each loudspeaker one or more synthesis signals to be reproduced by the affected loudspeaker and channel information for the audio channels from the virtual positions of the virtual sources from which the one or more synthesis signals originate to the affected one To deliver speakers.
  • a considerable data rate transmission restriction can already be achieved, since experience shows that the case occurs very seldom that each loudspeaker receives synthesis signals whose Energy content is greater than a certain threshold.
  • the central wavefield synthesis module according to the invention thus already has the option of supplying only a decentralized loudspeaker module with the synthesis signals and furthermore only the channel information for the synthesis signals, which are significant for the individual loudspeaker.
  • the loudspeaker modules according to the invention are designed to be decentralized and directly coupled to the loudspeaker or preferably arranged in spatial proximity to the loudspeaker.
  • Each speaker module includes a receiver for receiving the one or more synthesis signals for the affected speaker and the channel information associated with the synthesis signals. Further, each speaker module includes a rendering device for calculating a reproduction signal for the speaker using the synthesis signals and the channel information for the supplied synthesis signals.
  • each loudspeaker module also comprises a signal processing device possibly having a digital amplifier, a further digital signal processing device and finally a digital-to-analogue converter for generating an analogue loudspeaker signal to be supplied to the relevant loudspeaker on the basis of the playback signal.
  • a plurality of transmission links are provided, wherein a transmission path extends from the central wave field synthesis module to the individual loudspeaker.
  • rendering which adds significantly to the cost of the required circuit hardware such as DSP or hardwired circuitry, especially when considering the multiplier provided for each individual loudspeaker.
  • the rendering device uses channel impulse responses as channel information and thus performs computationally intensive convolution that is either directly executable in the time domain, or performed in the frequency domain, requiring frequency domain transforms and frequency domain transformations together with the actual multiplication operation in the frequency domain lead to a considerable effort.
  • a rendering unit must render not only a single synthesis signal, but always a large number of synthesis signals that normally correspond to the number of virtual sources.
  • the concept according to the invention results in decentralized operations being shifted out of the central wave-field synthesis module into the decentralized loudspeaker modules in such a way that in the best case only the operations in the central wavefronts synthesis module are carried out, which are equally important for all loudspeakers, during all operations which only cover one loudspeaker, or several loudspeakers connected to a loudspeaker module, can also be executed decentrally in the loudspeaker module.
  • the cost of the central wave synthesis module can be significantly reduced, but at the expense of the speaker modules, whose price is now no longer negligible, due to the operation of the audio rendering, which is mainly carried out in the loudspeaker modules.
  • the audio playback system according to the invention is now scalable in terms of both performance and price. It offers the possibility of offering a central wave field synthesis module for a large number of reproduction rooms at a reduced price, such that the cost of the overall system, which results from the cost of the central unit and the distributed loudspeaker modules, now strongly correlates with the number of loudspeakers established and thus the size of the playback room.
  • an operator of a large rendering room will still have to pay a certain price for a rendering system for his large rendering room.
  • an operator of a smaller playback room will be able to purchase an audio playback system at a significantly lower price because the number of speakers, and thus the number of expensive and expensive speaker modules, is significantly reduced compared to the large display room.
  • the audio playback system according to the invention thus makes it possible to offer audio reproduction systems for smaller reproduction rooms at considerably reduced prices compared to large reproduction rooms, so that due to the reduced price in the highly competitive market of audio / video components market acceptance is hoped for.
  • the central wave field synthesis unit is designed to be able to process cinematographic films recorded in the conventional audio format for motion picture films, conventional recording formats being, for example, the 5.1 surround format or 7.1.format or 10.2 format.
  • conventional recording formats being, for example, the 5.1 surround format or 7.1.format or 10.2 format.
  • Such a movie includes the example of the 5.1 format six audio tracks, ie audio tracks for the channel "left behind”, “right back”, “front left”, “front right” and “front center”, and the bass channel (subwoofer channel ).
  • a reproduction of such a conventional audio film in the audio playback system according to the invention can be achieved by the Audio tracks are placed as virtual sources at virtual positions, which can be selected as desired by the Tonmeister or the operator of the playback room.
  • the ability of compatible playback for a scalable-price audio playback system therefore provides a contribution that audio playback systems based on wave-field synthesis are already propagating at a time when there are still few cinema / video films with fully wave-field synthesis-ready audio tracks along with the appropriate ones Meta information about the recording setting available.
  • the audio playback system according to the invention is divided, as shown in Fig. 1, basically in two parts.
  • One part is the central wave field synthesis module 10.
  • the other part is composed of individual speaker modules 12a, 12b, 12c, 12d, 12e which are connected to actual physical speakers 14a, 14b, 14c, 14d, 14e as shown in FIG. 1 is shown.
  • the number of speakers 14a-14e in typical applications is in the range above 50 and typically even well above 100. If each loudspeaker is assigned its own loudspeaker module, the corresponding number of loudspeaker modules is also required. Depending on the application, however, it is preferred to address a small group of adjacent loudspeakers from a loudspeaker module.
  • a loudspeaker module connected to four loudspeakers feeds the four loudspeakers with the same playback signal, or whether corresponding different synthesis signals are calculated for the four loudspeakers, so that such a loudspeaker module is actually off consists of several individual speaker modules, but which are physically combined in one unit.
  • each transmission link 16a-16e being coupled to the central wave field synthesis module and to a separate loudspeaker module.
  • a serial transmission format that provides a high data rate, such as a so-called Firewire transmission format or a USB data format. Data transfer rates in excess of 100 megabits per second are advantageous.
  • the data stream which is transmitted from the wave field synthesis module 10 to a loudspeaker module is thus correspondingly formatted according to the selected data format in the wave field synthesis module and provided with synchronization information which is provided in conventional serial data formats.
  • This synchronization information is extracted from the data stream by the individual loudspeaker modules and used to resample the individual loudspeaker modules with respect to their reproduction, ie ultimately to the digital-to-analogue conversion for obtaining the analogue loudspeaker signal and the sampling provided for this purpose. to synchronize.
  • the central wave-field synthesis module operate as a master, and that all loudspeaker modules operate as clients, with the individual data streams over the various links 16a-16e all receiving the same synchronization information from the central module 10.
  • This ensures that all the loudspeaker modules operate synchronously, synchronized by the master 10, which is important to the present audio playback system so as not to suffer any loss of audio quality, so that the synthesized signals computed by the wavefronts synthesis module are not delayed in time from the individual loudspeakers corresponding audio rendering are emitted.
  • An advantage of this concept is that the individual speaker modules do not have to be synchronized with each other. They are automatically synchronized with each other as they all run in sync with the master.
  • a connection of the individual loudspeaker modules with each other will be unfavorable for the present invention, since the modular concept of scalability with the speaker modules in terms of the playback room size requires a simple addition of modules, without corresponding wiring must be achieved under the modules.
  • the central wave-field synthesis module first comprises an input device 20, which is basically designed to receive an audio signal at an input, the audio signal having a plurality of audio tracks, each audio track being assigned an audio source position.
  • the audio source position is an indication of the position of a loudspeaker with respect to a listener in the playback room according to a standardized audio format, such. B. 5.1 to achieve a compatible playback.
  • the audio signal may have a larger number of audio tracks already present as wave-field synthesis-capable signals and representing audio sources in a real recording position which are mapped to the audio signal reproduction as virtual sources in the playback room using wave-field synthesis.
  • the input device 20 is further used in a preferred embodiment of the present invention as a main control unit, which advantageously has further functionalities. In particular, it has the functionality of a decoding module, as is commonly used in cinemas. Alternatively or additionally, the input device 20 is also designed as a DVD decoder, which supplies the separate audio channels or audio tracks.
  • the display device 20 is also embodied as an MPEG-4 decoding module which already supplies audio tracks 21 intended for wave field synthesis and corresponding audio source information 22.
  • the audio tracks 21 respectively relate to audio signals of audio objects in a recording setting, to the position of the audio objects in the recording setting, to properties of audio objects, in particular with respect to the size of the audio object or the density with respect to the acoustic properties of the audio object ,
  • the information about the recording room or the recording environment should serve to give the listener not only a visual but also an audio joser impression of the recording situation. So the visitor should also remember the reproduced sound, whether a recording scene of a movie in the open air, for example, plays or z.
  • a small room such as a submarine.
  • an outdoor recording scenario provides relatively "dry" audio as the recording environment shows little or no reflection, this situation in a submarine, for example, will be completely different.
  • the recording setting is represented by a very reflective room or a very reflective audio environment.
  • the audio tracks it is preferred to record the audio tracks as dry as possible, ie without the room acoustics in the recording room and to describe the room acoustics with regard to their properties by additional meta information, as they can be transmitted in the standardized data stream according to the MPEG 4 standard.
  • the central wave field synthesis module further comprises means 24 for determining channel information, on the one hand, and wave field synthesis signals, on the other hand, for the individual loudspeakers.
  • a device 25 is also provided for converting the audio source positions 22 into virtual positions for the wave field synthesis.
  • the means 24 is arranged to determine audio channel information for each audio channel from a virtual position to a speaker position, the virtual position depending on the audio source position associated with the audio track (means 25), so that for each channel of each virtual channel to each speaker, audio channel information is present. Further, the device 24 is configured to compute synthesis signals from the virtual locations for the speakers using the principles of wave field synthesis as illustrated and known above.
  • the central wave-field synthesis module in Fig. 2 further comprises means 26 for providing synthesis signals to one or more speakers.
  • the device 26 is further configured to transmit channel information for the transmitted synthesis information from the central wave-field synthesis module via the corresponding transmission links to the individual loudspeaker modules, so that an audio rendering can take place there.
  • the means 26 is arranged to filter out non-significant synthesis signals and thus to transmit neither the non-significant synthesis signals nor the associated channel information in order to save data transmission capacities.
  • a virtual source leads to significant synthesis signals only for some speakers, while for all other speakers in the speaker array, although synthesis signals can be calculated due to the theory of wave field synthesis, but z. B. in terms of their performance in a given period of time are relatively small and can therefore be neglected in view of a reduced amount of data transmission.
  • the device 24 includes functionality to be used to pre-process the audio signals.
  • the device 24 controls the individual loudspeaker modules in particular to the effect that it brings synchronization information either directly or in connection with the device 26 in the data streams transmitted to the individual loudspeaker modules and thus achieves a central synchronization of all loudspeaker modules to the central wave field synthesis module.
  • the central wave-field synthesis module is designed to perform all processing operations that are the same for all reproduction channels, while according to the inventive concept the processing operations are performed decentralized, which are different for the individual loudspeakers or the individual reproduction channels.
  • the device 24 is further configured to simulate wave field synthesis information for stereo signals, 5.1 signals, 7.2 signals, 10.2 signals, etc. with a view to a compatible reproduction.
  • the standard positions of loudspeakers with respect to a reproduction space for the standardized audio format are used as audio source positions.
  • FIG. 5 shows a playback room 50, a speaker array 52 extending around the playback room, and a plurality of virtual sources 53a-53e positioned at virtual positions, as seen in FIG Playroom 50 are located.
  • the device 24 is designed in conjunction with the device 25 of FIG. 1 in order to calculate virtual positions from the audio source information, ie the standard position information for such a 5.1 signal, for example, which are manually controllable.
  • the virtual positions z. B. to infinity, so that the speaker array 52 sonicates the playback room 50 with even waves.
  • the so-called sweet spot that is, the area in a reproduction room in which an optimal sound impression is obtained, is considerably increased as compared with a conventional situation where real 5.7 speakers are placed in the reproduction room.
  • the virtual sources may also be placed at finite virtual positions and modeled as point sources, this option having the advantage that the sound impression is more pleasing to the cinema viewer / listener.
  • Level waves have the property that the listener has the impression that he sits in a very large room, which in particular leads to an unpleasant sensory perception when, for example, a submarine scene is taking place on the screen.
  • usual movies with example 5.1 audio tracks no information about acoustic Include recording settings. Therefore, in such a case, it is preferable to find a compromise between the plane waves, that is, the infinite position virtual sources or the virtual sources at a finite position.
  • the audio playback system also provides the possibility of varying the virtual positions of the virtual loudspeakers 53a-53e depending on the scene of the movie. If, for example, an outdoor scene takes place, the speakers can be positioned at infinity. Conversely, if a scene takes place in a small room, the speakers can be positioned closer to the playback room 50.
  • the input device 20 is configured to sample the audio tracks associated with the video signal to sample a certain time "delay" from the video signals, such that after processing in the wave field synthesis module in the individual loudspeaker modules, the sound belonging at a time is sampled simultaneously with the video signal belonging at a time.
  • the negative "delay" must at least be such that in the audio playback system according to the invention sound and image are radiated to each other. If the negative delay is dimensioned somewhat larger, the signals can already be completely calculated and output from the loudspeaker modules to the loudspeakers, for example, by means of a corresponding synchronization signal which ensures synchronicity of image and sound.
  • Information about the playback room can either be determined on the basis of the geometric nature of the playback room, or measured in the playback room using the speakers and special microphone arrays, wherein an activation and evaluation thereof can take place via an adaptation module 28 for the playback room.
  • the acoustic properties of the playback room significantly different from those when there are no people in the playback room.
  • the reproduction room adaptation module 28 further comprises a microphone array which can be used to measure the characteristics of the reproduction. Further, the playback room adaptation module 28 includes algorithms for finding the location of speaker arrays in the reproduction room. Furthermore, a preprocessing of measurement results is carried out here in order to carry out an optimal inversion of the room and loudspeaker characteristics, wherein the adaptation module 28 is preferably controlled by the device 24 for this purpose.
  • the adaptation module 28 for the reproduction room is needed only for system construction. However, if a continuous adaptation to a changed situation in the reproduction room is desired, the adaptation module 28 can also be used continuously during operation.
  • the additional WFS information that is, the characteristics of, for example, the audio objects and the characteristics of the recording space are extracted from the input audio signal and via a WFS information line 29 of the device 24, so that this information can be taken into account in the channel information calculation.
  • the central WFS module is further configured to perform pre-processing of the WFS-processed audio signals.
  • the device 24 and / or the device 26 is intended to achieve the synchronization between image and sound, for which purpose, as has been explained, time codes are introduced in the preferably serial data streams to the individual loudspeaker modules.
  • the channel information calculator 24 is also responsible for driving the adaptation module 28 to control the measurement of the acoustic characteristics of the reproduction space, if desired, either before playback or during playback.
  • the multiplexer / transmitter stage 26 is designed to insert synchronization information generated either by the device 24, by the control device 20 or in the device 26 itself into the data streams to the loudspeaker modules, which are further provided for the individual speakers required synthesis signals and necessary channel information to be supplied.
  • channel information computation means 24 and the synthesis signal computation means 24 must further be provided with the speaker locations in the special playback room to compute the individual synthesis signals and the individual channel information for the individual speakers. This is shown symbolically in FIG. 2 by a line 30.
  • the speaker module first includes a receiver / decoder block 31 for receiving the data stream from the selection device and for extracting from the same synthesis signal 31a, associated channel information 31b and synchronization information 31c.
  • the loudspeaker module shown in Fig. 3 further comprises as a central unit an audio rendering device 32 for calculating a reproduction signal for the loudspeaker using the one or more synthesis signals and using the channel information associated with the synthesis signals.
  • a loudspeaker module comprises a signal processing device 33 with a digital / analogue converter for generating an analogue loudspeaker signal, which is supplied to the relevant loudspeaker LSi 34 in order to generate a sound signal.
  • the signal processing device 33 and in particular the resampler, which cooperates with the digital / analog converter, is supplied via the synchronization information (31c) extracted from the data stream by the receiver 31 in order synchronously with the central wave field synthesis module and thus synchronously with all other loudspeaker modules that of the device 24 of Fig. 1 calculated on the Superimposed loudspeakers superimposed and acted upon with channel information synthesis signals.
  • the loudspeaker module shown in FIG. 3 is thus characterized by the combination of a digital receiver, a further signal processing device and a digital-analog converter, wherein in the signal processing device 33 in particular a digital amplifier can also be provided.
  • the signal may be amplified even after the digital-to-analog conversion, although the digital gain is preferred because of the more accurate possibility of synchronization.
  • the respective lines of all the loudspeakers have the same length or have differences in length which are within a predetermined tolerance because the synchronization is preferably on digital side is performed so that at very different line lengths between the speaker modules and the speaker desynchronization could occur, the already audible artifacts or a loss of sound impression, which should be created by the wave field synthesis, could result.
  • channel impulse responses in the time domain or in the frequency domain are transmitted as channel information.
  • the audio rendering device 32 is designed to perform a convolution of the individual synthesis signals with the channel information associated with the synthesis signals. This convolution can actually be implemented in the time domain as convolution, or can be implemented as needed in the time domain Frequency domain by multiplying the analysis signal in the frequency domain with the channel transfer function are performed.
  • An optimized with regard to the processing effort embodiment is shown in Fig. 4.
  • FIG. 4 shows a preferred embodiment of the audio rendering device 32 and comprises for each synthesis signal s ji (t) a time-frequency conversion block 34a, 34b, 34c, and for each branch a multiplier 35a, 35b, 35c for multiplying the transform of one Synthesis signal with the transform of a channel impulse response H ji (f), a summer 36 and a final frequency-time conversion means 37, which are connected in such a way as shown in Fig. 4.
  • the time-frequency transformation of the synthesis signals S ji can be carried out completely in parallel, or, if sufficient time is available, also serial / parallel or completely serial.
  • the preferred audio rendering device 32 shown in Figure 4 is characterized by having only a single frequency-to-time translator 37, regardless of the number of synthesis signals applied to a loudspeaker module.
  • which is preferably implemented as inverse FFT, in which case the devices 34a, 34b, 34c are implemented as FFT (fast Fourier transform).
  • the audio rendering device 32 shown in FIG. 3 is further configured to receive special program information from the central wave field synthesis module shown in FIG. 2.
  • the multiplexer / transmitter stage 26 includes a dedicated output to provide the program information to the speaker modules.
  • the program information can also be multiplexed into the data stream with synthesis signals and channel information, although this is not absolutely necessary.
  • the following is an example of transmitting program information to a speaker module. If the channel information is described as channel impulse responses and transmitted to the individual loudspeaker modules, it is preferred not to transmit the entire impulse response in terms of data rate saving, but only impulse response samples located in a forward portion of the impulse response whose envelope is still an amount above a threshold. At this point it should be noted that impulse responses typically have large values at small times and gradually take on smaller values and finally have a so-called "reverberation tail", which is important for the sound impression but whose samples are no longer particularly large, and whose special phase relationships are no longer strongly perceived by the ear.
  • Reverberation tail samples needed by the audio rendering device 32 are then generated according to the invention by the audio rendering device generating a random sequence of zeros and ones whose amplitude is weighted with the transmitted envelope values for the envelope , For further data reduction, it is preferred to transmit only a few support values and to interpolate between the support values, and then use the interpolated envelope to weight the random 0/1 sequence.
  • the random 0/1 sequence is preferably realized by positive voltage values for a "1" and negative voltage values for a "0".
  • the information that the audio rendering device receives channel information that is up to a certain value actual samples and then only support values for the envelope is transmitted via the program information input shown in Fig. 3, or is fixed agreed.
  • the wave-field synthesis module of the present invention further includes a WFS mixing console, not shown in FIG. 2, which includes an authoring system to generate WFS sound descriptions.
  • synthesis signals s 2i, s 2i and s 3i are the signals which the loudspeaker 63 must emit and which go back to the respective virtual positions 60, 61, 62. It will thus be seen that, as has been stated, each speaker will emit the superposition of multiple synthesis signals.
  • a channel j i may be described by an impulse response, a transfer function, or any other channel information, as illustrated with reference to FIG.
  • all the desired properties can be packaged in order then to apply the channel information for the corresponding channel assigned to a synthesis signal to the synthesis signals, which are calculated by the wave field synthesis module.
  • the channel information is in the form of an impulse response describing the channel, then the imposition is a convolution. If the signals are present in the frequency domain, the application is multiplied.
  • Alternative channel information may also be used depending on the embodiment.
  • a channel 70 from a virtual source 71 to a real loudspeaker 72 can be influenced.
  • the virtual position of the virtual source 71 enters into the channel information, that is to say, for example, the channel impulse response.
  • properties of the virtual source are included, such as: B. size, density, etc. So z.
  • a small triangle must be described and modeled differently than a large timpani.
  • the characteristics of the accommodating space enter into the channel transfer function.
  • Further influencing components are a system distortion of the entire audio reproduction system in which, for example, loudspeaker distortions or non-idealities of the loudspeakers are contained.
  • Information about the reproduction space is also input to the channel information in order to achieve a compensation of the acoustic properties of the reproduction space. For example, if it is known from the playback room that it has a wall facing the front of a loudspeaker, which reflects, but whose reflection is to be suppressed, then the corresponding loudspeaker becomes submerged Considering this information is controlled so that it contains a signal which is 180 degrees out of phase with the reflected signal and has a corresponding amplitude, so that an extinguishing reflection occurs and the wall is acoustically transparent, ie no longer for a listener due to the reflections is identifiable.
  • the channel information may also be used to set a particular target playback acoustics.
  • the inventive method for reproducing an audio signal can be implemented in hardware or in software.
  • the implementation may be on a digital storage medium, in particular a floppy disk or CD with electronically readable control signals, which may interact with a programmable computer system such that the method is executed.
  • the invention thus also consists in a computer program product with program code stored on a machine-readable carrier for carrying out the method according to the invention, when the computer program product runs on a computer.
  • the invention can thus be realized as a computer program with a program code for carrying out the method when the computer program runs on a computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Signal Processing Not Specific To The Method Of Recording And Reproducing (AREA)
  • Stereophonic Arrangements (AREA)

Claims (20)

  1. Système de reproduction audio pour un espace de reproduction dans lequel une pluralité de haut-parleurs (14a à 14e) sont disposés à des emplacements de haut-parleur définis, à l'aide d'un signal audio avec une pluralité de pistes audio, à chaque piste audio étant associée une position de source audio, aux caractéristiques suivantes :
    un module de synthèse de champ d'ondes centrale (10) qui est réalisé de manière
    à déterminer des informations de canal audio pour chaque canal audio d'une position virtuelle vers une position de haut-parleur, la position virtuelle étant fonction de la position de source audio qui est associée à la piste audio, de sorte que des informations de canal audio soient présentes pour chaque canal de chaque position virtuelle vers chaque position de haut-parleur,
    à calculer des signaux de synthèse des positions virtuelles pour les haut-parleurs (24), et
    à alimenter (26) vers chaque haut-parleur un ou plusieurs signaux de synthèse devant être reproduits par le haut-parleur concerné, ainsi que des informations de canal pour l'un ou les plusieurs signaux de synthèse ;
    une pluralité de modules de haut-parleur (12a à 12e), un module de haut-parleur étant associé à un haut-parleur, et chaque module de haut-parleur présentant les caractéristiques suivantes :
    un récepteur (31) destiné à recevoir l'un ou les plusieurs signaux de synthèse pour le haut-parleur concerné ainsi que les informations de canal ;
    un dispositif de rendu (32) destiné à calculer un signal de reproduction pour le haut-parleur à l'aide de l'un ou des plusieurs signaux de synthèse et des informations de canal pour le haut-parleur concerné ; et
    un dispositif de traitement de signal (33) destiné à générer un signal de haut-parleur analogique pouvant être alimenté vers le haut-parleur concerné, sur base du signal de reproduction ; et
    une pluralité de lignes de transmission (16a à 16e) du module de synthèse de champ d'ondes central vers chaque haut-parleur, chaque trajet de transmission étant couplé au module de synthèse de champ d'ondes central, d'une part, et à un module de haut-parleur propre, d'autre part.
  2. système de reproduction audio selon la revendication 1, dans lequel chaque module de haut-parleur est réalisé en un assemblage avec le haut-parleur auquel il est associé, de sorte qu'une distance spatiale entre le haut-parleur et le module de haut-parleur soit plus petite qu'une distance spatiale entre le module de haut-parleur et le module de synthèse de champ d'ondes central.
  3. Système de reproduction audio selon la revendication 1 ou 2, dans lequel les informations de canal audio sont des réponses impulsionnelles pour les canaux audio.
  4. Système de reproduction audio selon la revendication 3, dans lequel le dispositif de rendu destiné à calculer un signal de reproduction présente un dispositif de convolution, pour réaliser une ou plusieurs informations de convolution à l'aide de l'un ou des plusieurs signaux de synthèse avec les réponses impulsionnelles correspondantes.
  5. Système de reproduction audio selon la revendication 4, dans lequel le dispositif de rendu (32) présente les caractéristiques suivantes:
    un dispositif de conversion de domaine de temps en domaine de la fréquence (34a, 34b, 34c) pour chaque signal de synthèse ;
    un dispositif multiplicateur (35a, 35b, 35c) pour chaque signal de synthèse ;
    un dispositif de sommation (26) destiné à additionner les signaux de synthèse soumis à des réponses impulsionnelles de canal correspondantes présentes dans le domaine de la fréquence; et
    un seul dispositif de conversion de domaine de la fréquence en domaine de temps (37) destiné à convertir le signal de somme au domaine de temps, pour obtenir le signal de reproduction.
  6. Système de reproduction audio selon la revendication 1, dans lequel le dispositif de traitement de signal (33) dans le module de haut-parleur présente un amplificateur numérique.
  7. Système de reproduction audio selon la revendication 4, dans lequel le module de synthèse de champ d'ondes central est réalisé de manière à transmettre par valeur de balayage une première partie de la réponse impulsionnelle de canal et à ne transmettre une deuxième partie qu'à l'aide de valeurs d'appui de courbe d'enveloppe, et
    dans lequel le dispositif de rendu (32) est réalisé de manière à reconstruire la deuxième partie de la réponse impulsionnelle de canal à l'aide des valeurs d'appui.
  8. Système de reproduction audio selon la revendication 7, dans lequel le dispositif de rendu (32) est réalisé de manière à générer la deuxième partie de la réponse impulsionnelle de canal par un générateur de bruit ou un générateur de pseudo-bruit, les valeurs de bruit ou les valeurs de pseudo-bruit étant pondérés en amplitude avec les valeurs d'appui et/ou des valeurs auxiliaires interpolées à partir des valeurs d'appui.
  9. Système de reproduction audio selon l'une des revendications précédentes, dans lequel les pistes audio sont des pistes à canaux multiples normalisées et les positions de source audio sont des positions normalisées se rapportant à un positionnement de haut-parleurs de reproduction dans un espace de reproduction, le nombre de positions normalisées étant égal au nombre de pistes à canaux multiples normalisées.
  10. Système de reproduction audio selon la revendication 9, dans lequel le module de synthèse de champ d'ondes est réalisé de manière à calculer (25) les positions virtuelles pour le calcul des informations de canal audio à partir des positions normalisées (22).
  11. Système de reproduction audio selon la revendication 10, dans lequel le module de synthèse de champ d'ondes est réalisé de manière à placer (25) les positions virtuelles à l'infini, de sorte que la pluralité de haut-parleurs rayonnent ensemble des ondes sonores planes.
  12. Système de reproduction audio selon la revendication 10, dans lequel le module de synthèse de champ d'ondes est réalisé de manière à simuler des haut-parleurs de reproduction virtuels à des positions virtuelles définies comme sources sonores en forme de point qui sont éloignées de la pluralité de haut-parleurs d'une distance telle qu'une zone de reproduction optimale comprenne substantiellement l'ensemble de l'espace de reproduction.
  13. Système de reproduction audio selon l'une des revendications 9 à 12, dans lequel les pistes audio sont une partie d'un film vidéo ou d'un film de cinéma, le module de synthèse de champ d'ondes étant réalisé de manière à balayer un laps de temps décalé avant une reproduction vidéo, le laps de temps étant choisi de manière à obtenir, compte tenu d'un temps de traitement dans le module de synthèse de champ d'ondes et dans le module de haut-parleur, une reproduction simultanée de l'image et du son.
  14. Système de reproduction audio selon l'une des revendications 1 à 13, dans lequel le signal audio pour des objets audio dans un environnement d'enregistrement comprend chaque fois comme piste audio un signal audio de l'objet ainsi qu'une position de l'objet audio dans l'environnement d'enregistrement, une ou plusieurs propriétés de l'objet audio telles que grandeur ou densité et/ou des informations sur les propriétés acoustiques d'un environnement d'enregistrement.
  15. Système de reproduction audio selon la revendication 14, dans lequel le module de synthèse de champ d'ondes est réalisé de manière à déterminer les positions virtuelles à partir des objets audio dans l'environnement d'enregistrement.
  16. Système de reproduction audio selon l'une des revendications précédentes, dans lequel le module de synthèse de champ d'ondes est réalisé de manière à obtenir des informations sur les propriétés acoustiques de l'espace de reproduction et à en tenir compte lors de la détermination des informations de canal, de sorte que les ondes acoustiques reproduites par la pluralité de haut-parleurs soient réalisées de sorte que les influences acoustiques de l'espace de reproduction soient réduites.
  17. Système de reproduction audio selon l'une des revendications précédentes, dans lequel le module de synthèse de champ d'ondes est réalisé de manière à effectuer une adaptation à une acoustique de l'espace de reproduction avant ou pendant une reproduction du signal audio
    en calculant une pluralité de réponses impulsionnelles d'espace entre les haut-parleurs et des microphones positionnés dans l'espace de reproduction,
    en interpolant une réponse impulsionnelle totale de l'espace de reproduction à partir de la pluralité de réponses impulsionnelles d'espace, et
    en tenant compte de la réponse impulsionnelle totale lors du calcul des informations de canal, pour réduire les propriétés acoustiques de l'espace de reproduction.
  18. Système de reproduction audio selon l'une des revendications précédentes, dans lequel le module de synthèse de champ d'ondes central est réalisé de manière à générer des informations de synchronisation et les incorporer dans des flux de données vers les modules de haut-parleur, et dans lequel la pluralité de modules de haut-parleur sont réalisés de manière à recevoir les informations de synchronisation du module de synthèse de champ d'ondes central et à les utiliser pour la synchronisation, de sorte que les modules de haut-parleur soient synchronisés avec le module de synthèse de champ d'ondes central.
  19. Procédé de reproduction d'un signal audio dans un espace de reproduction, dans lequel une pluralité de haut-parleurs sont disposés à des emplacements de haut-parleur définis, le signal audio présentant une pluralité de pistes audio, à chaque piste audio étant associée une position de source audio, aux étapes suivantes consistant à :
    déterminer centralement des informations de canal audio pour chaque canal audio d'une position virtuelle vers une position de haut-parleur, la position virtuelle étant fonction de la position de source audio associée à la piste audio, de sorte que soient présentes des informations de canal audio pour chaque canal de chaque position virtuelle vers chaque haut-parleur ;
    déterminer centralement des signaux de synthèse des positions virtuelles pour les haut-parleurs ;
    transmettre un ou plusieurs signaux de synthèse ainsi que les informations de canal associées à une pluralité de modules de haut-parleur ;
    calculer de manière décentralisée un signal de reproduction pour le haut-parleur à l'aide de l'un ou des plusieurs signaux de synthèse et des informations de canal associées pour un haut-parleur concerné ;
    effectuer un traitement de signal à l'aide d'une conversion numérique/analogique, pour générer un signal de haut-parleur analogique ; et
    récupérer en commun les signaux de haut-parleur analogiques par la pluralité de haut-parleurs.
  20. Programme d'ordinateur avec un code de programme pour réaliser le procédé selon la revendication 19 lorsque le programme se déroule sur un ordinateur.
EP03782222A 2002-11-21 2003-11-21 Systeme de restitution audio et procede de restitution d'un signal audio Expired - Lifetime EP1576847B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10254404 2002-11-21
DE10254404A DE10254404B4 (de) 2002-11-21 2002-11-21 Audiowiedergabesystem und Verfahren zum Wiedergeben eines Audiosignals
PCT/EP2003/013110 WO2004047485A1 (fr) 2002-11-21 2003-11-21 Systeme de restitution audio et procede de restitution d'un signal audio

Publications (2)

Publication Number Publication Date
EP1576847A1 EP1576847A1 (fr) 2005-09-21
EP1576847B1 true EP1576847B1 (fr) 2006-04-19

Family

ID=32318606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03782222A Expired - Lifetime EP1576847B1 (fr) 2002-11-21 2003-11-21 Systeme de restitution audio et procede de restitution d'un signal audio

Country Status (5)

Country Link
EP (1) EP1576847B1 (fr)
JP (1) JP4620468B2 (fr)
AT (1) ATE324021T1 (fr)
DE (2) DE10254404B4 (fr)
WO (1) WO2004047485A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321986B4 (de) * 2003-05-15 2005-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Pegel-Korrigieren in einem Wellenfeldsynthesesystem
JP2006086921A (ja) 2004-09-17 2006-03-30 Sony Corp オーディオ信号の再生方法およびその再生装置
JP4625671B2 (ja) * 2004-10-12 2011-02-02 ソニー株式会社 オーディオ信号の再生方法およびその再生装置
JP2006115396A (ja) * 2004-10-18 2006-04-27 Sony Corp オーディオ信号の再生方法およびその再生装置
DE102004057500B3 (de) 2004-11-29 2006-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Ansteuerung einer Beschallungsanlage und Beschallungsanlage
DE102005008369A1 (de) 2005-02-23 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Simulieren eines Wellenfeldsynthese-Systems
DE102005008343A1 (de) * 2005-02-23 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Liefern von Daten in einem Multi-Renderer-System
DE102005008333A1 (de) * 2005-02-23 2006-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Steuern einer Wellenfeldsynthese-Rendering-Einrichtung
DE102005008342A1 (de) * 2005-02-23 2006-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Speichern von Audiodateien
DE102005008366A1 (de) * 2005-02-23 2006-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Ansteuern einer Wellenfeldsynthese-Renderer-Einrichtung mit Audioobjekten
JP2006304165A (ja) * 2005-04-25 2006-11-02 Yamaha Corp スピーカアレイシステム
DE102005043641A1 (de) * 2005-05-04 2006-11-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Generierung und Bearbeitung von Toneffekten in räumlichen Tonwiedergabesystemen mittels einer graphischen Benutzerschnittstelle
DE102006053919A1 (de) 2006-10-11 2008-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Erzeugen einer Anzahl von Lautsprechersignalen für ein Lautsprecher-Array, das einen Wiedergaberaum definiert
JP5338053B2 (ja) * 2007-09-11 2013-11-13 ソニー株式会社 波面合成信号変換装置および波面合成信号変換方法
KR100943215B1 (ko) 2007-11-27 2010-02-18 한국전자통신연구원 음장 합성을 이용한 입체 음장 재생 장치 및 그 방법
US9648437B2 (en) 2009-08-03 2017-05-09 Imax Corporation Systems and methods for monitoring cinema loudspeakers and compensating for quality problems
KR102033071B1 (ko) * 2010-08-17 2019-10-16 한국전자통신연구원 멀티 채널 오디오 호환 시스템 및 방법
EP2451196A1 (fr) 2010-11-05 2012-05-09 Thomson Licensing Procédé et appareil pour générer et décoder des données de champ sonore incluant des données de champ sonore d'ambiophonie d'un ordre supérieur à trois
SG10201604679UA (en) * 2011-07-01 2016-07-28 Dolby Lab Licensing Corp System and method for adaptive audio signal generation, coding and rendering
DE102011082310A1 (de) 2011-09-07 2013-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und elektroakustisches System zur Nachhallzeitverlängerung
US9661436B2 (en) 2012-08-29 2017-05-23 Sharp Kabushiki Kaisha Audio signal playback device, method, and recording medium
JP5590169B2 (ja) * 2013-02-18 2014-09-17 ソニー株式会社 波面合成信号変換装置および波面合成信号変換方法
JP5743003B2 (ja) * 2014-05-09 2015-07-01 ソニー株式会社 波面合成信号変換装置および波面合成信号変換方法
US9924291B2 (en) * 2016-02-16 2018-03-20 Sony Corporation Distributed wireless speaker system
JP6670259B2 (ja) * 2017-01-26 2020-03-18 日本電信電話株式会社 音響再生装置
CN109068261A (zh) * 2018-07-17 2018-12-21 费迪曼逊多媒体科技(上海)有限公司 一种采用wfs方法进行非实时渲染处理的回放还原方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638960B1 (ko) * 1999-09-29 2006-10-25 1...리미티드 음향 지향 방법 및 장치

Also Published As

Publication number Publication date
WO2004047485A1 (fr) 2004-06-03
DE50303069D1 (de) 2006-05-24
DE10254404B4 (de) 2004-11-18
ATE324021T1 (de) 2006-05-15
EP1576847A1 (fr) 2005-09-21
JP2006507727A (ja) 2006-03-02
JP4620468B2 (ja) 2011-01-26
DE10254404A1 (de) 2004-06-17

Similar Documents

Publication Publication Date Title
EP1576847B1 (fr) Systeme de restitution audio et procede de restitution d'un signal audio
EP1671516B1 (fr) Procede et dispositif de production d'un canal a frequences basses
EP1800517B1 (fr) Dispositif et procede de commande d'une installation de sonorisation et installation de sonorisation correspondante
DE10328335B4 (de) Wellenfeldsyntesevorrichtung und Verfahren zum Treiben eines Arrays von Lautsprechern
US7706544B2 (en) Audio reproduction system and method for reproducing an audio signal
JP5439602B2 (ja) 仮想音源に関連するオーディオ信号についてスピーカ設備のスピーカの駆動係数を計算する装置および方法
EP2080411B1 (fr) Dispositif et procédé pour produire un certain nombre de signaux de haut-parleur pour un réseau de haut-parleurs définissant un espace de restitution
EP1782658B1 (fr) Dispositif et procede de commande d'une pluralite de haut-parleurs a l'aide d'un dsp
US7734362B2 (en) Calculating a doppler compensation value for a loudspeaker signal in a wavefield synthesis system
EP1525776B1 (fr) Dispositif de correction de niveau dans un systeme de synthese de champ d'ondes
CN101406075B (zh) 用于波场合成系统中混叠校正的设备和方法
DE10254470A1 (de) Vorrichtung und Verfahren zum Bestimmen einer Impulsantwort und Vorrichtung und Verfahren zum Vorführen eines Audiostücks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB LI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50303069

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060605

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221123

Year of fee payment: 20

Ref country code: FR

Payment date: 20221118

Year of fee payment: 20

Ref country code: DE

Payment date: 20221121

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50303069

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231120