EP1572335B1 - Static lamination micro mixer - Google Patents
Static lamination micro mixer Download PDFInfo
- Publication number
- EP1572335B1 EP1572335B1 EP03780105.7A EP03780105A EP1572335B1 EP 1572335 B1 EP1572335 B1 EP 1572335B1 EP 03780105 A EP03780105 A EP 03780105A EP 1572335 B1 EP1572335 B1 EP 1572335B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- micro
- aperture
- plate
- slot
- mixer according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003068 static effect Effects 0.000 title claims description 25
- 238000003475 lamination Methods 0.000 title claims description 21
- 239000012530 fluid Substances 0.000 claims description 52
- 238000002156 mixing Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 4
- 230000001804 emulsifying effect Effects 0.000 claims description 3
- 238000007864 suspending Methods 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 2
- 238000003698 laser cutting Methods 0.000 claims 2
- 238000003466 welding Methods 0.000 claims 2
- 238000004026 adhesive bonding Methods 0.000 claims 1
- 239000000919 ceramic Substances 0.000 claims 1
- 238000009826 distribution Methods 0.000 claims 1
- 238000004049 embossing Methods 0.000 claims 1
- 230000003628 erosive effect Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 238000000608 laser ablation Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 238000003801 milling Methods 0.000 claims 1
- 230000000737 periodic effect Effects 0.000 claims 1
- 238000001020 plasma etching Methods 0.000 claims 1
- 239000004033 plastic Substances 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000004080 punching Methods 0.000 claims 1
- 238000005476 soldering Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 description 5
- FIKFLLIUPUVONI-UHFFFAOYSA-N 8-(2-phenylethyl)-1-oxa-3,8-diazaspiro[4.5]decan-2-one;hydrochloride Chemical compound Cl.O1C(=O)NCC11CCN(CCC=2C=CC=CC=2)CC1 FIKFLLIUPUVONI-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/421—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
- B01F25/422—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path between stacked plates, e.g. grooved or perforated plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/301—Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
- B01F33/3012—Interdigital streams, e.g. lamellae
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/301—Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
- B01F33/3012—Interdigital streams, e.g. lamellae
- B01F33/30121—Interdigital streams, e.g. lamellae the interdigital streams being concentric lamellae
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S366/00—Agitating
- Y10S366/03—Micromixers: variable geometry from the pathway influences mixing/agitation of non-laminar fluid flow
Definitions
- the invention relates to a micromixer for mixing, dispersing, emulsifying or suspending at least two fluid phases, which must contain at least one slot plate with slot openings and an aperture plate arranged above it with blind slots.
- the slot openings in the slot plate (s) and diaphragm plate (s) are designed as through holes.
- Static micromixers are key elements of microreaction technology.
- Statistical micromixers exploit the principle of multilamination to achieve rapid mixing of fluid phases by diffusion. By a geometrical configuration of alternately arranged lamellae, it is possible to ensure a good mixing in the microscopic range.
- Multilamination mixers of structured and periodically stacked thin plates have already been extensively described in the literature; Examples of this can be found in the German patents DE 44 16 343 . DE 195 40 292 . DE 199 17 156 A1 and the German patent application DE 199 28 123 , The German patent application DE 199 27 554 also describes a micromixer for mixing two or more educts, in contrast to the multilamination mixers consisting of structured and periodically stacked thin plates, the micromixer having mixing cells.
- Each of these mixing cells has a feed chamber to which at least two groups of channel fingers adjoin, which engage in a comb-like manner between the channel fingers to form mixing areas.
- Above the mixing area are outlet slots that extend perpendicular to the channel fingers and through which the product exits. Due to the parallel connection in two spatial directions, a significantly higher throughput is possible.
- the advantages achieved by the invention are that the static lamination micro mixing can be manufactured inexpensively, is easy to clean and the fluids to be mixed are mixed together quickly and effectively.
- the pressure loss is so low that it can also be used for large throughputs.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
Die Erfindung betrifft einen Mikrovermischer zum Vermischen, Dispergieren, Emulgieren oder Suspendieren von mindestens zwei fluiden Phasen, wobei dieser mindestens eine Schlitzplatte mit Schlitzöffnungen und eine darüber angeordnete Blendplatte mit Blendschlitzen enthalten muss. Die Schlitzöffnungen in der/den Schlitzplatte(n) und Blendplatte(n) sind als durchgehende Öffnungen ausgeführt.The invention relates to a micromixer for mixing, dispersing, emulsifying or suspending at least two fluid phases, which must contain at least one slot plate with slot openings and an aperture plate arranged above it with blind slots. The slot openings in the slot plate (s) and diaphragm plate (s) are designed as through holes.
Bei statischen Mikrovermischem handelt es sich um Schlüsselelemente der Mikroreaktionstechnik. Statistische Mikrovermischer nutzen das Prinzip der Multilamination aus, um so ein schnelles Vermischen von fluiden Phasen durch Diffusion zu erreichen. Durch eine geometrische Ausgestaltung von abwechselnd angeordneten Lamellen ist es möglich, ein gutes Vermischen im mikroskopischen Bereich zu gewährleisten. Multilaminationsmischer aus strukturierten und periodisch gestapelten dünnen Platten sind bereits in der Literatur ausführlich beschrieben; Beispiele hierfür finden sich in den deutschen Patenten
Gegenstand der vorliegenden Erfindung ist der im Patenanspruch 1 beschriebene statische Laminationsmikrovermischer.The subject matter of the present invention is the static laminating micro-mixer described in patent claim 1.
Die mit der Erfindung erzielten Vorteile bestehen darin, dass der statische Laminationsmikrovermischer kostengünstig gefertigt werden kann, leicht zu reinigen ist und die zu mischenden Fluide schnell und effektiv miteinander vermischt werden. Zudem ist der Druckverlust so gering, dass er auch für große Durchsätze Anwendung finden kann.The advantages achieved by the invention are that the static lamination micro mixing can be manufactured inexpensively, is easy to clean and the fluids to be mixed are mixed together quickly and effectively. In addition, the pressure loss is so low that it can also be used for large throughputs.
Ausführungsbeispiele der Erfindungen sind in den Zeichnungen dargestellt und werden im nachfolgenden näher beschrieben.Embodiments of the invention are illustrated in the drawings and will be described in more detail below.
Es zeigen:
- Fig. 1
- schematische Darstellung des statischen Mikrovermischers bestehend aus einer Schlitz- und einer Blendplatte;
- Fig. 2a
- Expolsionsdarstellung eines statischen Laminationsmikrovermisches bestehend aus Gehäuseunterteil (10), Zuführkanälen (11), Schlitzplatte (20) und Blendplatte (30);
- Fig. 2b
- Darstellung eines statischen Laminationsmikrovermischers bestehend aus Gehäuseunterteil (10), Zuführkanälen (11), Schlitzplatte (20) und Blendplatte (30);
- Fig. 3a
- Draufsicht auf die Zuführkanälen (11), Schlitzöffnungen (22a, 22b) und Blendschlitzen (31) eines statischen Laminationsmikrovermischers;
- Fig. 3b
- Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20) eines statischen Laminationsmikrovermischers;
- Fig. 3c
- Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20) eines statischen Laminationsmikrovermischers;
- Fig. 3e:
- Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20), wobei die Schlitzöffnungen unterschiedliche Breiten und Formen haben;
- Fig. 3f:
- Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20), wobei die Schlitzöffnungen, die Blendschlitze (31) und/oder die Zuführkanäle (11) unterschiedliche und variable Breiten und Formen haben;
- Fig. 4a
- Draufsicht auf einen statischen Laminationsmikrovermischer bestehend aus Gehäuseunterteil (10), Schlitzplatte (20) und Blendplatte (30);
- Fig. 4b
- Draufsicht auf einen statischen Laminationsmikrovermischer;
- Fig. 5
- Explosionsdarstellung eines statischen Mikrovermischers;
- Fig. 6
- Explosionsdarstellung eines statischen Mikrovermischers mit Betrachtungswinkel von unten;
- Fig. 7a
- schematische Darstellung des Gehäuseunterteils (10);
- Fig. 7b
- Querschnitt durch Gehäuseunterteil (10) entlang der Ebene B-B;
- Fig. 7c
- Querschnitt durch Gehäuseunterteil (10) entlang der Ebene C-C;
- Fig. 8a
- schematische Darstellung eines statischen Mikrovermischers mit zwei unterschiedlichen Schlitzplatten und versetzt zueinander angeordneten Schlitzöffnungen (22, 23);
- Fig. 8b
- schematische Darstellung eines zusammengesetzten statischen Laminationsmikrovermischers mit zwei unterschiedlichen Schlitzplatten;
- Fig. 9a
- Explosionsdarstellungen von Laminationsmikrovermischern mit parallel versetzter Anordnung der Kanäle zur Auftrennung der Fluide im Gehäuse;
- Fig. 9b
- Explosionsdarstellungen von Laminationsmikrovermischern mit radial konzentrischer Anordnung der Kanäle zur Auftrennung der Fluide im Gehäuse;
- Fig. 10
- Laminationsmikrovermischer (60) (vgl.
Fig. 9a ) als Bestandteil einer integrierten Prozessanordnung zusammen mit einer Wärmetauscheinheit (70).
-
Fig. 1 zeigt die schematische Darstellung eines statischen Laminationsmikrovermischers bestehend aus Unterteil 10,einer Schlitzplatte 20 und einerBlendplatte 30.Das Unterteil 10 enthält für das FluidA den Zuführkanal 11a und für das FluidB den Zuführkanal 11b.Die Schlitzplatte 20 weist für die Fluide Aund B Schlitzöffnungen 22a und 22b auf, dieaus dem Zuführkanal 11a und 11 b gespeist werden.Oberhalb der Schlitzplatte 20 befindet sich dieBlendplatte 30mit einem Blendschlitz 31.Die Blendplatte 30 deckt hierbei den äußeren Bereich der Schlitzöffnungen 22a und 22b ab, während der mittlere Bereich der Schlitzöffnungen 22a und 22bmit dem Blendschlitz 31 überlappt und dadurch frei bleibt. -
Fig. 2a zeigt die Explosionsdarstellung eines statischen Mikrovermischers bestehend aus Unterteil 10,Zuführkanälen 11a und 11 b,Schlitzplatte 20 undBlendplatte 30.Die Zuführkanäle 11a und 11b enthalten jeweils die Fluide A und B; über diesen Zuführkanälen befindet sich dieSchlitzplatte 20mit den Schlitzöffnungen 22 a und 22b. Oberhalb dieser befindet sich dieBlendplatte 30, deren Blendschlitze in einem Winkel von 90° zuden Schlitzöffnungen 22a und 22b angeordnet sind. -
Fig. 2b zeigt eine schematische Darstellung eines statischen Mikrovermischer, wie inFig. 2a dargestellt, bestehend aus Unterteil 10,Schlitzplatte 20 undBlendplatte 30. -
Fig. 3a zeigt alsDoppelreihen angeordnete Schlitzöffnungen 22a und 22b inForm von Schlitzbereichen 21. DieseSchlitzbereiche 21 werden durch dieZuführkanäle 11a und 11 b mit Fluiden gespeist. Die eine Hälfte der Schlitzöffnungen 22a überlapptmit den Zuführkanälen 11a, die anderemit den Zuführkanälen 11b. In mittleren Bereich der Doppelreihen überlappen dieSchlitzöffnungen 22 mit dem darüber angebrachten Blendschlitz 31.Die Schlitzöffnungen 22 können, wie hier dargestellt, auch schräg angeordnet sein. -
Fig. 3b, Fig. 3c, Fig. 3e und Fig. 3f zeigen Schlitzöffnungen 22 mit unterschiedlicher geometrischer Ausgestaltung und Orientierung. Unterhalb der Schlitzöffnungen befinden sich die Zuführkanäle 11. Oberhalb der Schlitzöffnungen befinden sich dieBlendschlitze 31. Die Querschnitte der Zuführkanäle 11 und der Blendschlitze 31 können entlang ihres Verlaufs variieren (Fig. 3f ).Die Schlitzöffnungen 22 können trichterförmig in erweitert sein. Die Breite und Form der Schlitzöffnungen 22 kann zwischen den Fluiden (Fig. 3e ) und innerhalb der Fluide (Fig. 3f ) variieren. -
Fig. 4a zeigt die Draufsichtauf ein Gehäuseunterteil 10.Das Gehäuseunterteil 10 ist mit zahlreichen schlitzförmigen Zuführkanälen 11 a und 11 b versehen, die abwechselnd rechts oder links verlagert dargestellt sind. In der darüber angeordneten Schlitzplatte 20 befinden sich der als schwarzeBalken dargestellte Schlitzbereich 21;der Schlitzbereich 21 ist hierbei jeweils zwischen zwei Zuführkanälen 11a und 11 b positioniert, sodass dieser von zwei Zuführkanälen überlappt wird.Die Blendschlitze 31 der darüber liegenden Blendplatte 30 befinden sich mittig überden Schlitzbereichen 21der Schlitzplatte 20. -
Fig. 4b zeigt eine schematische Anordnung aus Zuführkanälen 11a und 11 b,Schlitzbereichen 21 undBlendschlitzen 31. -
Fig. 5 zeigt die Explosionsansicht eines statischen Laminationsmikrovermischers; der Mikrovermischer besteht aus Gehäuseunterteil 10 und Gehäuseoberteil 40.Zwischen dem Gehäuseunterteil 10 und Gehäuseoberteil 40 befinden sich dieSchlitzplatten 20 und dieBlendplatten 30. Indem Gehäuseunterteil 10 befindet sicheine Nut 13, indie ein Dichtungsring 50 eingelegt werden kann, um so den Mikrovermischer gegen die Umgebung abzudichten.Das Gehäuseunterteil 10und das Gehäuseoberteil 40 sind jeweils mitÖffnungen für Befestigungselemente 44 versehen, durch die beide gegeneinander fixiert werden können.Das Gehäuseunterteil 10 enthält an der Außenfläche zwei Fluideinlasskanäle 12a und 12b für die zu mischenden Fluide A und B. Auf der Oberseite des Gehäuseunterteils 10 sind zahlreiche schlitzförmige Zuführkanäle 11a und 11 b eingearbeitet, die abwechselnd zu der einen oder der anderen Seite verlängert ausgestaltet sind und so vom Fluid A oder vom Fluid B gespeist werden können.Die Schlitzplatte 20 enthält zahlreiche Schlitzbereiche 21; oberhalb der Schlitzplatte 20 ist dieBlendplatte 30 angebracht, die eineVielzahl von Blendschlitzen 31 aufweist.Das Gehäuseoberteil 40 enthält einen Fluidauslass 42 zur Ableitung des gewonnenen Gemisches. -
Fig. 6 zeigt in Analogie zuFig. 5 eine Explosionsdarstellung eines statischen Laminationsmikrovermischers mit Betrachtungswinkel von der Unterseite.Das Gehäuseoberteil 40 enthält eine große Mischkammer 45, indie alle Blendschlitze 31der Blendplatte 30 münden. ZurAbstützung der Blendplatte 30 sind mehrere Stützstrukturen 41im Gehäuseoberteil 40 angebracht. -
Fig. 7a zeigt die schematische Darstellung desGehäuseunterteils 10.Das Gehäuseunterteil 10ist mit Zuführkanälen 11a und 11b für die zu mischenden Fluide A und B versehen. An den Außenseiten des Gehäuseunterteils sind Fluideinlässe 12a und 12b vorhanden.Die Aussparungen 44 an den vier Ecken des Gehäuseunterteils 10 gestatten dessen Fixierung. -
Fig. 7b zeigt den Querschnittdurch das Gehäuseunterteil 10 entlang der Linie B-B inFig. 7a .Der Fluideinlass 12a setzt sich indem Fluideinlasskanal 14 für das Fluid A fort. Auf der Oberseite des Fluideinlasskanals 14 befinden sich die Zufuhrkanäle 11 a für das Fluid. Auf der Oberseite des Gehäuseunterteils 10 befindet sicheine Nut 13 für das Einlegen eines Dichtungsrings. -
Fig. 7c zeigt den Querschnittdurch das Gehäuseunterteil 10 entlang der Linie C-C inFig. 7a .Die Zuführkanäle 11a für das Fluid A und 11 b für das Fluid B verlaufen abwechselnd parallel, ohne dass es eine Querverbindung zwischen diesen beiden Zuführkanälen gibt. Auf der Oberseite des Gehäuseunterteils 10 befindet sich wieder eineNut 13 für das Einlegen eines Dichtungsrings. -
Fig. 8a zeigt die schematische Darstellung eines statischen Laminationsmikrovermischers mit den zwei unterschiedlichen Schlitzöffnungen 22a/22b und 23a/23b.Die 22b der ersten Schlitzplatte bilden die Zuführkanäle für die zweite Schlitzplatte mit kleinenSchlitzöffnungen 22a undSchlitzöffnungen 23a und 23b.Die Schlitzöffnungen 22a/22b und 23a/23b sind jeweils um 90° zueinander verdreht angeordnet. -
Fig. 8b zeigt die Draufsicht eines solchen statischen Mikrovermischers nachFig. 8a bestehend aus zwei unterschiedlichen Schlitzplatten, deren Schlitzöffnungen zueinander um 90° gedreht sind. -
Fig. 9a undFig. 9b zeigen zwei Ausführungsbeispiele für Laminationsmikrovermischer in der Explosionsdarstellung. Danach können die Schlitzöffnungen in der Schlitzplatte, die Schlitzöffnungen in der Blendplatte sowie die Kanäle zur Verteilung der Fluide kreisförmig oder parallel versetzt angeordnet sein. -
Fig. 10 zeigt ein Ausführungsbeispiel zum Einsatz eines Laminationsmikrovermischers als Bestandteil einer integrierten Anordnung zur Durchführung physikalisch-chemischer Umwandlungen. Im aufgeführten Fall wurden Laminationsmikrovermischer (60) und Rohrbündelwärmeübertrager (70) in ein Bauteil integriert.
- Fig. 1
- schematic representation of the static micromixer consisting of a slot and a diaphragm plate;
- Fig. 2a
- Expolsion representation of a static Lamination Micro mixing consisting of the lower housing part (10), feed channels (11), slotted plate (20) and diaphragm plate (30);
- Fig. 2b
- Representation of a static Lamination Micro Mixer consisting of lower housing part (10), feed channels (11), slot plate (20) and diaphragm plate (30);
- Fig. 3a
- Top view of the feed channels (11), slot openings (22a, 22b) and blind slots (31) of a static lamination micro-mixer;
- Fig. 3b
- Top view of the slot openings of different geometry and orientation (22) in a slot plate (20) of a static lamination micro-mixer;
- Fig. 3c
- Top view of the slot openings of different geometry and orientation (22) in a slot plate (20) of a static lamination micro-mixer;
- 3e:
- Top view of the slot openings of different geometry and orientation (22) in a slot plate (20), wherein the slot openings have different widths and shapes;
- Fig. 3f:
- Top view of the slot openings of different geometry and orientation (22) in a slot plate (20), wherein the slot openings, the aperture slots (31) and / or the feed channels (11) have different and variable widths and shapes;
- Fig. 4a
- Top view of a static lamination micro mixing consisting of housing lower part (10), slot plate (20) and diaphragm plate (30);
- Fig. 4b
- Top view of a static lamination micro-mixer;
- Fig. 5
- Exploded view of a static micromixer;
- Fig. 6
- Exploded view of a static micromixer with viewing angle from below;
- Fig. 7a
- schematic representation of the housing lower part (10);
- Fig. 7b
- Cross section through the lower housing part (10) along the plane BB;
- Fig. 7c
- Cross section through the lower housing part (10) along the plane CC;
- Fig. 8a
- schematic representation of a static micromixer with two different slotted plates and mutually offset slot openings (22, 23);
- Fig. 8b
- schematic representation of a composite static laminating micro-mixer with two different slotted plates;
- Fig. 9a
- Exploded views of lamination micromixers with parallel offset arrangement of the channels for separating the fluids in the housing;
- Fig. 9b
- Exploded views of lamination micromixers with radially concentric arrangement of the channels for separating the fluids in the housing;
- Fig. 10
- Lamination Micro Mixer (60) (cf.
Fig. 9a ) as part of an integrated process assembly together with a heat exchange unit (70).
-
Fig. 1 shows the schematic representation of a static lamination micromixer consisting of thelower part 10, aslit plate 20 and adiaphragm plate 30. Thelower part 10 contains for the fluid A thesupply channel 11a and for the fluid B, thesupply channel 11b. Theslit plate 20 has 22a and 22b for the fluids A and B, which are fed from theslits 11a and 11b. Above the slottedsupply channels plate 20 is thediaphragm plate 30 with ablind slit 31. Thediaphragm plate 30 covers the outer region of the 22a and 22b, while the central region of theslit openings 22a and 22b overlaps with the diaphragm slit 31 and thus remains free.slit openings -
Fig. 2a shows the exploded view of a static micromixer consisting of thelower part 10, 11a and 11b, slitfeed channels plate 20 anddiaphragm plate 30. The 11a and 11b contain the fluids A and B, respectively; The slottedfeed channels plate 20 with the 22 a and 22 b is located above these feed channels. Above this is theslot openings diaphragm plate 30, whose diaphragm slots are arranged at an angle of 90 ° to the 22a and 22b.slot openings -
Fig. 2b shows a schematic representation of a static micromixer, as inFig. 2a represented, consisting oflower part 10, slitplate 20 and diaphragm plate 30th -
Fig. 3a shows slit 22a and 22b arranged as double rows in the form ofopenings slit regions 21. Theseslit regions 21 are fed by the 11a and 11b with fluids. One half of thesupply channels slit openings 22a overlap with thesupply channels 11a, the other with thesupply channels 11b. In the middle region of the double rows, theslot openings 22 overlap with theoverlay slot 31 mounted above. Theslot openings 22 can, as shown here, also be arranged obliquely. -
Fig. 3b, Fig. 3c, Fig. 3e and Fig. 3f showslot openings 22 with different geometric configuration and orientation. Below the slot openings are the feed channels 11. Above the slot openings are theblind slots 31. The cross sections of the feed channels 11 and theblind slots 31 can vary along their course (Fig. 3f ). Theslot openings 22 may be funnel-shaped in expanded. The width and shape of theslot openings 22 may be between the fluids (Fig. 3e ) and within the fluids (Fig. 3f ) vary. -
Fig. 4a shows the top view of alower housing part 10. Thelower housing part 10 is provided with numerous slot-shaped 11 a and 11 b, which are shown alternately shifted right or left. In thefeed channels slot plate 20 disposed above there are theslot area 21 shown as a black bar; theslot area 21 is in each case positioned between two 11a and 11b, so that it is overlapped by two feed channels. Thefeed channels blind slots 31 of the overlyingdiaphragm plate 30 are located centrally above theslot areas 21 of theslot plate 20. -
Fig. 4b shows a schematic arrangement of 11a and 11b,feed channels slot portions 21 and blind slots 31st -
Fig. 5 shows the exploded view of a static lamination micro-mixer; the micromixer consists oflower housing part 10 andupper housing part 40. Between thelower housing part 10 and theupper housing part 40 are theslit plates 20 and thediaphragm plates 30. In thelower housing part 10 is agroove 13 into which asealing ring 50 can be inserted, so as to the micromixer seal against the environment. Thelower housing part 10 and theupper housing part 40 are each provided with openings forfastening elements 44, by which both can be fixed against each other. Thelower housing part 10 contains on the outer surface two 12a and 12b for the fluids A and B to be mixed. On the upper side of the housingfluid inlet channels lower part 10 numerous slot-shaped 11a and 11b are incorporated, which are alternately designed extended to one side or the other and can be fed from the fluid A or the fluid B. Thesupply channels slit plate 20 includes a plurality ofslit portions 21; above the slottedplate 20, thediaphragm plate 30 is mounted, which has a plurality ofblind slots 31. Theupper housing part 40 includes afluid outlet 42 for discharging the recovered mixture. -
Fig. 6 shows in analogy toFig. 5 an exploded view of a static lamination Mischmischers with viewing angle from the bottom. Theupper housing part 40 includes alarge mixing chamber 45 into which all theblind slots 31 of thediaphragm plate 30 open. To support the diaphragm plate 30 a plurality ofsupport structures 41 are mounted in the housingupper part 40. -
Fig. 7a shows the schematic representation of thelower housing part 10. Thelower housing part 10 is provided with 11a and 11b for the fluids A and B to be mixed. On the outer sides of the housing lowersupply channels 12a and 12b are present. Thepart fluid inlets recesses 44 at the four corners of thehousing base 10 allow its fixation. -
Fig. 7b shows the cross section through thelower housing part 10 along the line BB inFig. 7a , Thefluid inlet 12a continues in thefluid inlet channel 14 for the fluid A. On the top of thefluid inlet channel 14 are theFeed channels 11 a for the fluid. On the upper side of the housinglower part 10 there is agroove 13 for inserting a sealing ring. -
Fig. 7c shows the cross section through the housinglower part 10 along the line CC inFig. 7a , Thesupply channels 11a for the fluid A and 11b for the fluid B run alternately parallel, without there being a cross-connection between these two supply channels. On the top of thelower housing part 10 is again agroove 13 for the insertion of a sealing ring. -
Fig. 8a shows the schematic representation of a static lamination micro-mixer with the twodifferent slot openings 22a / 22b and 23a / 23b. The 22a and 22b of the first slot plate form the feed slots for the second slot plate withslot openings 23a and 23b. Thesmall slot openings slot openings 22a / 22b and 23a / 23b are each rotated by 90 ° to each other. -
Fig. 8b shows the top view of such a static micromixer afterFig. 8a consisting of two different slotted plates whose slot openings are rotated by 90 ° to each other. -
Fig. 9a andFig. 9b show two embodiments of Lamination Micro Mixer in the exploded view. Thereafter, the slot openings in the slot plate, the slot openings in the diaphragm plate and the channels for distributing the fluids can be arranged offset in a circle or in parallel. -
Fig. 10 shows an embodiment of the use of a lamination Mikromischers as part of an integrated arrangement for performing physico-chemical transformations. In this case, lamination micro mixers (60) and tube bundle heat exchangers (70) were integrated into one component.
Claims (13)
- Static lamination micro-mixer for mixing, dispersing, emulsifying or suspending at least two fluid phases, comprising a lower housing part (10) with separate feed channels (11a/b), which are open towards the upper side of the lower housing part, for at least two fluids,
a slotted plate (20) which rests on the housing lower part and which has arranged therein in paired fashion slot openings (22a/b) which are formed as continuous openings with a closed edge and with a width of less than 500 micrometers,
an aperture plate (30) which rests on the slotted plate and which has at least one slot-shaped aperture opening (31) which is formed as a continuous opening with a closed edge and with a width of less than 500 micrometers, and
a mixing chamber (45) situated above the aperture plate,
wherein, within a pair of slot openings in the slotted plate (20), in each case one slot opening of the pair overlaps, with one end thereof, one of the feed channels (11) in the lower housing part (10), whereas the other slot opening of the pair overlaps, with one end thereof, another feed channel (11) in the lower housing part (10), and both slot openings of the pair form in each case exactly one area of overlap with the same aperture opening (31) in the aperture plate. - Micro-mixer according to Claim 1, characterized in that the cross section of the slot openings in the plate is configured in the shape of a funnel or lobe.
- Micro-mixer according to either of Claims 1 and 2, characterized in that the aperture slots in the aperture plate are offset parallel to one another and/or are arranged in a periodic pattern in relation to one another.
- Micro-mixer according to Claims 1 to 3, characterized in that the slot openings in the slotted plate and the aperture slots in the aperture plate are arranged at an angle of 90° to one another.
- Micro-mixer according to Claims 1 to 4, characterized in that the slot openings in the slotted plate and the aperture slots in the aperture plate have a width of less than 100 µm.
- Micro-mixer according to Claims 1 to 5, characterized in that the slotted and aperture plates consist, partly or completely, of metal, glass, ceramic and plastic or of a combination of these materials.
- Micro-mixer according to Claims 1 to 6, characterized in that the slotted and aperture plates have been produced by punching, embossing, milling, erosion, etching, plasma etching, laser cutting, laser ablation or by the LIGA technique but preferably by laser cutting or the LIGA technique.
- Micro-mixer according to Claims 1 to 7, characterized in that the slotted and aperture plates comprise a stack of micro-structured thin plates.
- Micro-mixer according to Claim 8, characterized in that the thin micro-structured plates are connected materially by means of soldering, welding, diffusion welding or adhesive bonding or with a force fit by means of screwing, pressing or riveting.
- Micro-mixer according to Claims 1 to 9, characterized in that the micro-mixer is accommodated in a housing provided for the purpose.
- Micro-mixer according to Claims 1 to 10, characterized in that the housing contains channels which permit spatial distribution of the fluid phases.
- Micro-mixer according to Claims 1 to 11, characterized in that the channels are arranged offset parallel from one another, radially, concentrically or behind one another in order to distribute the fluids in the housing.
- Method for mixing, dispersing, emulsifying or suspending at least two fluid phases, characterized in that at least one static lamination micro-mixer is used according to one of Claims 1 to 12.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20218972U | 2002-12-07 | ||
DE20218972U DE20218972U1 (en) | 2002-12-07 | 2002-12-07 | Static lamination micro mixer |
PCT/EP2003/013603 WO2004052518A2 (en) | 2002-12-07 | 2003-12-03 | Static lamination micro mixer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1572335A2 EP1572335A2 (en) | 2005-09-14 |
EP1572335B1 true EP1572335B1 (en) | 2013-05-29 |
Family
ID=7977747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03780105.7A Expired - Lifetime EP1572335B1 (en) | 2002-12-07 | 2003-12-03 | Static lamination micro mixer |
Country Status (8)
Country | Link |
---|---|
US (1) | US7909502B2 (en) |
EP (1) | EP1572335B1 (en) |
JP (2) | JP4847700B2 (en) |
KR (1) | KR100806401B1 (en) |
CN (1) | CN100360218C (en) |
AU (1) | AU2003288216A1 (en) |
DE (1) | DE20218972U1 (en) |
WO (1) | WO2004052518A2 (en) |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7014835B2 (en) | 2002-08-15 | 2006-03-21 | Velocys, Inc. | Multi-stream microchannel device |
DE20218972U1 (en) | 2002-12-07 | 2003-02-13 | Ehrfeld Mikrotechnik AG, 55234 Wendelsheim | Static lamination micro mixer |
US7294734B2 (en) | 2003-05-02 | 2007-11-13 | Velocys, Inc. | Process for converting a hydrocarbon to an oxygenate or a nitrile |
US8580211B2 (en) | 2003-05-16 | 2013-11-12 | Velocys, Inc. | Microchannel with internal fin support for catalyst or sorption medium |
US7220390B2 (en) | 2003-05-16 | 2007-05-22 | Velocys, Inc. | Microchannel with internal fin support for catalyst or sorption medium |
US7485671B2 (en) | 2003-05-16 | 2009-02-03 | Velocys, Inc. | Process for forming an emulsion using microchannel process technology |
DE10333922B4 (en) * | 2003-07-25 | 2005-11-17 | Wella Ag | Components for static micromixers, micromixers constructed therefrom and their use for mixing, dispersing or for carrying out chemical reactions |
WO2005032693A2 (en) | 2003-08-29 | 2005-04-14 | Velocys Inc. | Process for separating nitrogen from methane using microchannel process technology |
US7029647B2 (en) | 2004-01-27 | 2006-04-18 | Velocys, Inc. | Process for producing hydrogen peroxide using microchannel technology |
US7084180B2 (en) | 2004-01-28 | 2006-08-01 | Velocys, Inc. | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
US9023900B2 (en) | 2004-01-28 | 2015-05-05 | Velocys, Inc. | Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
US8747805B2 (en) | 2004-02-11 | 2014-06-10 | Velocys, Inc. | Process for conducting an equilibrium limited chemical reaction using microchannel technology |
DE102005003965A1 (en) * | 2005-01-27 | 2006-08-10 | Ehrfeld Mikrotechnik Gmbh | Micro-mixer for precipitation and/or crystallization reactions comprises reverse flow prevention unit placed between mixing and reaction zone and at least one channel for introducing partial stream |
KR101186708B1 (en) | 2004-02-17 | 2012-09-27 | 에어펠트 미크로테크니크 베테에스 게엠베하 | Micromixer |
CN102274711A (en) | 2004-03-02 | 2011-12-14 | 维洛塞斯公司 | Microchannel polymerization reactor |
US20070140042A1 (en) * | 2004-06-04 | 2007-06-21 | Gerhard Schanz | Multicomponent packaging with static micromixer |
DE102004035462A1 (en) * | 2004-07-22 | 2006-03-16 | Ehrfeld Mikrotechnik Bts Gmbh | Apparatus and method for the continuous performance of chemical processes |
US7610775B2 (en) | 2004-07-23 | 2009-11-03 | Velocys, Inc. | Distillation process using microchannel technology |
US7305850B2 (en) | 2004-07-23 | 2007-12-11 | Velocys, Inc. | Distillation process using microchannel technology |
CA2575165C (en) | 2004-08-12 | 2014-03-18 | Velocys Inc. | Process for converting ethylene to ethylene oxide using microchannel process technology |
JP5643474B2 (en) | 2004-10-01 | 2014-12-17 | ヴェロシス,インク. | Multiphase mixing process using microchannel process technology |
CN101128257B (en) | 2004-11-12 | 2010-10-27 | 万罗赛斯公司 | Process using microchannel technology for conducting alkylation or acylation reaction |
WO2006055609A1 (en) | 2004-11-16 | 2006-05-26 | Velocys Inc. | Multiphase reaction process using microchannel technology |
EP1904221A2 (en) * | 2005-04-06 | 2008-04-02 | Stichting voor de Technische Wetenschappen | Inlet section for micro-reactor |
KR100695151B1 (en) | 2005-05-18 | 2007-03-14 | 삼성전자주식회사 | Fluid mixing device using cross channels |
CA2608400C (en) | 2005-05-25 | 2014-08-19 | Velocys Inc. | Support for use in microchannel processing |
WO2007008495A2 (en) | 2005-07-08 | 2007-01-18 | Velocys Inc. | Catalytic reaction process using microchannel technology |
CN100345617C (en) * | 2005-09-22 | 2007-10-31 | 上海交通大学 | Magneto-electric circulation blender |
JP4855471B2 (en) * | 2005-09-26 | 2012-01-18 | エルジー・ケム・リミテッド | Laminated reactor |
DE102005049294C5 (en) | 2005-10-14 | 2012-05-03 | Ehrfeld Mikrotechnik Bts Gmbh | Process for the preparation of organic peroxides by microreaction technology |
DE102005060280B4 (en) * | 2005-12-16 | 2018-12-27 | Ehrfeld Mikrotechnik Bts Gmbh | Integrated micromixer and its use |
CN1800161B (en) * | 2006-01-16 | 2010-11-10 | 华东理工大学 | Method and microreaction device for continuous producing garox mek |
KR20090014296A (en) * | 2006-05-23 | 2009-02-09 | 바스프 에스이 | Method for producing polyether polyols |
US20110150703A1 (en) * | 2008-07-18 | 2011-06-23 | Castro Gustavo H | Tortuous path static mixers and fluid systems including the same |
US8764279B2 (en) * | 2008-07-18 | 2014-07-01 | 3M Innovation Properties Company | Y-cross mixers and fluid systems including the same |
US20110158852A1 (en) * | 2008-07-18 | 2011-06-30 | Castro Gustavo H | Offset path mixers and fluid systems includng the same |
JP2012519577A (en) | 2009-03-06 | 2012-08-30 | エールフエルト・ミクロテヒニク・ベー・テー・エス・ゲー・エム・ベー・ハー | Coaxial small static mixer and its use |
DE102009038019B4 (en) * | 2009-08-12 | 2011-11-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | 3D micro-structuring for the production of mixing and channel structures in multilayer technology for use in or for the construction of reactors |
JP5212313B2 (en) * | 2009-08-24 | 2013-06-19 | 株式会社日立プラントテクノロジー | Emulsifying device |
CN101716473B (en) * | 2009-11-04 | 2011-11-30 | 中国科学院长春光学精密机械与物理研究所 | Chip-in micro-mixer and preparation method thereof |
US9138696B2 (en) | 2009-11-30 | 2015-09-22 | Corning Incorporated | Honeycomb body u-bend mixers |
EP2383245A3 (en) | 2010-04-20 | 2012-02-22 | Bayer Technology Services GmbH | Method for continuous oxidation of thioethers |
JP5062383B2 (en) * | 2010-06-28 | 2012-10-31 | Dic株式会社 | Micro mixer |
WO2012025548A1 (en) | 2010-08-27 | 2012-03-01 | Solvay Sa | Process for the preparation of alkenones |
JP5642488B2 (en) * | 2010-10-04 | 2014-12-17 | 株式会社神戸製鋼所 | Channel structure |
JP2012120962A (en) * | 2010-12-07 | 2012-06-28 | Kobe Steel Ltd | Flow channel structure |
ES2645960T3 (en) | 2011-12-21 | 2017-12-11 | Bellerophon Bcm Llc | Procedure for manufacturing a partially crosslinked alginate solution |
JP5832282B2 (en) * | 2011-12-28 | 2015-12-16 | 株式会社フジクラ | Micro mixer |
EP2664607A1 (en) | 2012-05-16 | 2013-11-20 | Solvay Sa | Fluorination process |
GB201214122D0 (en) | 2012-08-07 | 2012-09-19 | Oxford Catalysts Ltd | Treating of catalyst support |
CN103977720B (en) * | 2013-09-10 | 2016-01-13 | 中国中化股份有限公司 | A kind of combined type stratiform fluid distribution mixing arrangement and application thereof |
US10088459B2 (en) * | 2014-01-09 | 2018-10-02 | Hitachi High-Technologies Corporation | Liquid mixing device, and liquid chromatography apparatus |
US10161690B2 (en) * | 2014-09-22 | 2018-12-25 | Hamilton Sundstrand Space Systems International, Inc. | Multi-layer heat exchanger and method of distributing flow within a fluid layer of a multi-layer heat exchanger |
US9937472B2 (en) | 2015-05-07 | 2018-04-10 | Techmetals, Inc. | Assembly operable to mix or sparge a liquid |
WO2016201218A2 (en) | 2015-06-12 | 2016-12-15 | Velocys, Inc. | Synthesis gas conversion process |
KR101688419B1 (en) * | 2016-08-11 | 2016-12-21 | (주)케이클라우드 | Method and system for confidentially issuing and managing delivery waybill by using virtual personal information |
CN106423006A (en) * | 2016-10-31 | 2017-02-22 | 山东豪迈化工技术有限公司 | Hedging micro reaction unit and micro reactor |
CN106823946B (en) * | 2017-01-19 | 2022-08-16 | 南京理工大学 | Oscillatory flow micro mixer |
EP3651887A4 (en) | 2017-07-14 | 2021-04-14 | 3M Innovative Properties Company | Adapter for conveying plural liquid streams |
US11202997B2 (en) * | 2017-07-20 | 2021-12-21 | Sonny's Hfi Holdings, Llc | Dilution device for dispensing fluid |
US20210001340A1 (en) * | 2018-02-28 | 2021-01-07 | Tokyo Institute Of Technology | Microdroplet/bubble-producing device |
CN108273456B (en) * | 2018-03-29 | 2023-07-04 | 睦化(上海)流体工程有限公司 | Microporous vortex plate type mixing reactor and application thereof |
CN110433876B (en) * | 2018-05-03 | 2022-05-17 | 香港科技大学 | Microfluidic device, manufacturing method thereof, mask and method for filtering suspended particles |
GB201817692D0 (en) * | 2018-10-30 | 2018-12-19 | Ge Healthcare | Mixing device |
US11633703B2 (en) | 2020-04-10 | 2023-04-25 | Sonny's Hfi Holdings, Llc | Insert assembly for foaming device |
US11938480B2 (en) * | 2020-05-14 | 2024-03-26 | The Board Of Trustees Of The University Of Illinois Urbana, Illinois | Microfluidic diagnostic device with a three-dimensional (3D) flow architecture |
WO2022107898A1 (en) * | 2020-11-20 | 2022-05-27 | 国立大学法人東京工業大学 | Micro two-phase liquid droplet generation device |
US11925953B2 (en) | 2021-03-15 | 2024-03-12 | Sonny's Hfi Holdings, Llc | Foam generating device |
CN114797613B (en) * | 2021-11-08 | 2024-08-02 | 上海立得催化剂有限公司 | Magnesium chloride spherical dispersion system and method |
CN114534652B (en) * | 2022-02-08 | 2024-07-19 | 上海天泽云泰生物医药有限公司 | Waveform microstructure mixing unit and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US422671A (en) * | 1890-03-04 | willis | ||
US3881701A (en) * | 1973-09-17 | 1975-05-06 | Aerojet General Co | Fluid mixer reactor |
US5534328A (en) * | 1993-12-02 | 1996-07-09 | E. I. Du Pont De Nemours And Company | Integrated chemical processing apparatus and processes for the preparation thereof |
US5887977A (en) * | 1997-09-30 | 1999-03-30 | Uniflows Co., Ltd. | Stationary in-line mixer |
DE10041823A1 (en) * | 2000-08-25 | 2002-03-14 | Inst Mikrotechnik Mainz Gmbh | Method and static micromixer for mixing at least two fluids |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL6710428A (en) * | 1967-07-27 | 1969-01-29 | ||
US4222671A (en) * | 1978-09-05 | 1980-09-16 | Gilmore Oscar Patrick | Static mixer |
JPS55147729A (en) | 1979-05-08 | 1980-11-17 | Sharp Corp | Data inpt unit |
JPS5662120A (en) * | 1979-10-25 | 1981-05-27 | Hitachi Chem Co Ltd | Production of unsaturated polyester molded object having high surface hardness |
JPS5710752Y2 (en) * | 1980-10-16 | 1982-03-02 | ||
EP0285725B1 (en) * | 1987-04-10 | 1992-09-30 | Chugoku Kayaku Kabushiki Kaisha | Mixing apparatus |
DE3926466C2 (en) | 1989-08-10 | 1996-12-19 | Christoph Dipl Ing Caesar | Microreactor for carrying out chemical reactions of two chemical substances with strong heat |
US5016707A (en) * | 1989-12-28 | 1991-05-21 | Sundstrand Corporation | Multi-pass crossflow jet impingement heat exchanger |
DE4416343C2 (en) | 1994-05-09 | 1996-10-17 | Karlsruhe Forschzent | Static micro mixer |
US5595712A (en) * | 1994-07-25 | 1997-01-21 | E. I. Du Pont De Nemours And Company | Chemical mixing and reaction apparatus |
JP2587390B2 (en) * | 1994-10-03 | 1997-03-05 | 特殊機化工業株式会社 | Ultra-fine atomizing and mixing equipment for liquids |
DE19511603A1 (en) | 1995-03-30 | 1996-10-02 | Norbert Dr Ing Schwesinger | Device for mixing small amounts of liquid |
CA2222126A1 (en) * | 1995-06-16 | 1997-01-03 | Fred K. Forster | Microfabricated differential extraction device and method |
DE19540292C1 (en) | 1995-10-28 | 1997-01-30 | Karlsruhe Forschzent | Static micromixer |
DE19541266A1 (en) | 1995-11-06 | 1997-05-07 | Bayer Ag | Method and device for carrying out chemical reactions using a microstructure lamella mixer |
JPH10314566A (en) * | 1997-05-19 | 1998-12-02 | Sumitomo Heavy Ind Ltd | Microstatic mixer |
DE19917156B4 (en) | 1999-04-16 | 2006-01-19 | INSTITUT FüR MIKROTECHNIK MAINZ GMBH | Process for the preparation of a water-in-diesel oil emulsion as fuel and its uses |
CN2376326Y (en) * | 1999-05-24 | 2000-05-03 | 倪新宇 | Porous ripple static mixer |
US6485690B1 (en) * | 1999-05-27 | 2002-11-26 | Orchid Biosciences, Inc. | Multiple fluid sample processor and system |
DE19927554C2 (en) * | 1999-06-16 | 2002-12-19 | Inst Mikrotechnik Mainz Gmbh | micromixer |
DE19928123A1 (en) | 1999-06-19 | 2000-12-28 | Karlsruhe Forschzent | Static micromixer has a mixing chamber and a guiding component for guiding fluids to be mixed or dispersed with slit-like channels that widen in the direction of the inlet side |
US7223364B1 (en) * | 1999-07-07 | 2007-05-29 | 3M Innovative Properties Company | Detection article having fluid control film |
JP4284841B2 (en) | 2000-08-07 | 2009-06-24 | 株式会社島津製作所 | Liquid mixer |
DE10055856C2 (en) | 2000-11-10 | 2003-04-10 | Kundo Systemtechnik Gmbh | Device for producing carbonated water |
DE10055858A1 (en) | 2000-11-10 | 2002-05-29 | Kundo Systemtechnik Gmbh | A method for producing carbonated mineral water has a block comprising thermoelectric cooling elements and a carbon dioxide mixing chamber delivering to a tap |
JP3694877B2 (en) | 2001-05-28 | 2005-09-14 | 株式会社山武 | Micro mixer |
JP3694876B2 (en) | 2001-05-28 | 2005-09-14 | 株式会社山武 | Micro emulsifier |
JP3727594B2 (en) * | 2002-01-18 | 2005-12-14 | 富士写真フイルム株式会社 | Micro mixer |
DE20209009U1 (en) | 2002-06-11 | 2002-08-29 | Ehrfeld Mikrotechnik AG, 55234 Wendelsheim | Comb-shaped micromixer |
DE20218972U1 (en) | 2002-12-07 | 2003-02-13 | Ehrfeld Mikrotechnik AG, 55234 Wendelsheim | Static lamination micro mixer |
-
2002
- 2002-12-07 DE DE20218972U patent/DE20218972U1/en not_active Expired - Lifetime
-
2003
- 2003-12-03 WO PCT/EP2003/013603 patent/WO2004052518A2/en active Application Filing
- 2003-12-03 US US10/535,262 patent/US7909502B2/en active Active
- 2003-12-03 EP EP03780105.7A patent/EP1572335B1/en not_active Expired - Lifetime
- 2003-12-03 JP JP2004557974A patent/JP4847700B2/en not_active Expired - Lifetime
- 2003-12-03 AU AU2003288216A patent/AU2003288216A1/en not_active Abandoned
- 2003-12-03 KR KR1020057010057A patent/KR100806401B1/en active IP Right Grant
- 2003-12-03 CN CNB2003801053256A patent/CN100360218C/en not_active Expired - Lifetime
-
2011
- 2011-04-28 JP JP2011101777A patent/JP2011183386A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US422671A (en) * | 1890-03-04 | willis | ||
US3881701A (en) * | 1973-09-17 | 1975-05-06 | Aerojet General Co | Fluid mixer reactor |
US5534328A (en) * | 1993-12-02 | 1996-07-09 | E. I. Du Pont De Nemours And Company | Integrated chemical processing apparatus and processes for the preparation thereof |
US5887977A (en) * | 1997-09-30 | 1999-03-30 | Uniflows Co., Ltd. | Stationary in-line mixer |
DE10041823A1 (en) * | 2000-08-25 | 2002-03-14 | Inst Mikrotechnik Mainz Gmbh | Method and static micromixer for mixing at least two fluids |
Non-Patent Citations (3)
Title |
---|
DE BELLEFON C ET AL: "Microreactors for dynamic high throughput screening of fluid-liquid molecular catalysis", ANGEWANDTE CHEMIE, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 19, 1 January 2000 (2000-01-01), pages 3584 - 3587, XP003022882, ISSN: 0044-8249 * |
EHRFELD W ET AL: "CHARACTERIZATION OF MIXING IN MICROMIXERS BY A TEST REACTION: SINGLE MIXING UNITS AND MIXER ARRAYS", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, US, vol. 38, no. 3, 1 January 1999 (1999-01-01), pages 1075 - 1082, XP000940846, ISSN: 0888-5885, DOI: 10.1021/IE980128D * |
HAVERKAMP V ET AL: "The potential of micromixers for contacting of disperse liquid phases", FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, SPRINGER, BERLIN, DE, vol. 364, 1 January 1999 (1999-01-01), pages 617 - 624, XP002260622, ISSN: 0937-0633, DOI: 10.1007/S002160051397 * |
Also Published As
Publication number | Publication date |
---|---|
DE20218972U1 (en) | 2003-02-13 |
KR20050085326A (en) | 2005-08-29 |
AU2003288216A8 (en) | 2004-06-30 |
WO2004052518A3 (en) | 2005-06-09 |
EP1572335A2 (en) | 2005-09-14 |
KR100806401B1 (en) | 2008-02-21 |
US20060087917A1 (en) | 2006-04-27 |
JP2006508795A (en) | 2006-03-16 |
US7909502B2 (en) | 2011-03-22 |
JP2011183386A (en) | 2011-09-22 |
AU2003288216A1 (en) | 2004-06-30 |
CN1780681A (en) | 2006-05-31 |
WO2004052518A2 (en) | 2004-06-24 |
JP4847700B2 (en) | 2011-12-28 |
CN100360218C (en) | 2008-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1572335B1 (en) | Static lamination micro mixer | |
DE3783880T2 (en) | STRUCTURED COLUMN PACK. | |
DE69829697T2 (en) | Heat exchanger and / or apparatus for mixing fluids | |
DE69400127T2 (en) | Heat exchangers for electronic components and electrical apparatus | |
DE60010227T2 (en) | HOUSING-FREE HEAT EXCHANGER | |
EP1866066B1 (en) | Mixer system, reactor and reactor system | |
EP2167270B1 (en) | Gas distributor comprising a plurality of diffusion-welded panes and a method for the production of such a gas distributor | |
EP1506054B1 (en) | Micro-reactor and micro-channel heat exchanger | |
DE112018004787T5 (en) | MULTI-FLUID HEAT EXCHANGER | |
EP0879083A1 (en) | Device for mixing small quantities of liquids | |
EP1185359B1 (en) | Micromixer | |
DE102010030781A1 (en) | Heat exchanger plate, thus provided plate heat exchanger and method for producing a plate heat exchanger | |
EP1856734A1 (en) | Micro-heat exchanger | |
DE10123092A1 (en) | Method and static mixer for mixing at least two fluids | |
DE2803810A1 (en) | FLOW CHANNEL FOR DISTRIBUTION OF A REACTION AGENT IN A REACTION VESSEL | |
EP1475596B1 (en) | Plate heat exchanger with single and dopple wall plates | |
DE102005010341A1 (en) | Plate type heat exchanger has short ridges and grooves to ensure non impeded flow without fluid trapped in pockets | |
EP1477761B1 (en) | Plate heat exchanger | |
DE10034343C2 (en) | Plate heat exchanger | |
EP1689013B1 (en) | Fuel cell | |
DE69625531T2 (en) | Plates - fabric and heat exchangers | |
DE2753189A1 (en) | Plate type heat exchanger with flat channels - has turbulence generating woven wire sheets in flat channels | |
WO2006034666A1 (en) | Microchannel recuperator produced from stacked films | |
DE20219871U1 (en) | Static micro-mixer has housing around stack of diagonally slotted plates | |
EP1788339B1 (en) | Plate heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20051209 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MERKEL, TILL Inventor name: EHRFELD, WOLFGANG Inventor name: KROSCHEL, MATTHIAS Inventor name: HERBSTRITT, FRANK |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
17Q | First examination report despatched |
Effective date: 20090817 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HERBSTRITT, FRANK Inventor name: KROSCHEL, MATTHIAS Inventor name: EHRFELD, WOLFGANG Inventor name: MERKEL, TILL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 614005 Country of ref document: AT Kind code of ref document: T Effective date: 20130615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50314806 Country of ref document: DE Effective date: 20130725 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130930 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130830 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130909 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140303 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50314806 Country of ref document: DE Effective date: 20140303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131203 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20031203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 50314806 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B01F0013000000 Ipc: B01F0033000000 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20221221 Year of fee payment: 20 Ref country code: GB Payment date: 20221219 Year of fee payment: 20 Ref country code: FR Payment date: 20221216 Year of fee payment: 20 Ref country code: DE Payment date: 20221216 Year of fee payment: 20 Ref country code: AT Payment date: 20221219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20221219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20221220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221220 Year of fee payment: 20 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50314806 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20231202 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20231202 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MK Effective date: 20231203 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 614005 Country of ref document: AT Kind code of ref document: T Effective date: 20231203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20231202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20231202 |