EP1570215B1 - Verdampfungsprozesssteuerung in der kältetechnik - Google Patents

Verdampfungsprozesssteuerung in der kältetechnik Download PDF

Info

Publication number
EP1570215B1
EP1570215B1 EP02782599A EP02782599A EP1570215B1 EP 1570215 B1 EP1570215 B1 EP 1570215B1 EP 02782599 A EP02782599 A EP 02782599A EP 02782599 A EP02782599 A EP 02782599A EP 1570215 B1 EP1570215 B1 EP 1570215B1
Authority
EP
European Patent Office
Prior art keywords
condenser
evaporator
temperature
refrigerant
iwt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02782599A
Other languages
English (en)
French (fr)
Other versions
EP1570215A1 (de
Inventor
Remo Meister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMS Energietechnik AG
Original Assignee
BMS Energietechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMS Energietechnik AG filed Critical BMS Energietechnik AG
Publication of EP1570215A1 publication Critical patent/EP1570215A1/de
Application granted granted Critical
Publication of EP1570215B1 publication Critical patent/EP1570215B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21155Temperatures of a compressor or the drive means therefor of the oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the evaporator In order to optimally operate an evaporator in refrigeration, the evaporator is so far supplied with wet steam that a control valve (expansion valve) (3) to a minimum stable signal, usually after the evaporator outlet pressure (12) and the associated evaporator outlet temperature (13) of the refrigerant regulated is (drawing Fig. 1, 2 and 3).
  • the difference of the evaporator pressure, converted into the associated evaporation temperature and the evaporation temperature actually measured as the temperature, serves as a measured variable for the control valve.
  • Stable control behavior with the smallest possible temperature difference, is sought. The smallest possible temperature difference results in a higher evaporator output. If the difference is too small or the signal is unstable, there will be liquid hammer or power reduction on the compressor (1). If the difference is too large, the evaporator performance is reduced (4).
  • IWT internal heat exchangers
  • FIGS. 4, 5, 6 Some of the evaporators are already equipped with internal heat exchangers (IWT) (5) (FIGS. 4, 5, 6). However, these are designed as "thermally short" apparatus and not involved in the evaporator control by inlet steam content. The refrigerant liquid is not cooled down much and the suction vapors are not overheated. Overheating of the suction steam is limited to approx. 5-10K. Today's conventional injectors are not designed for maximum overheating, and the adjustable superheat is a maximum of about 20-25K.
  • the aim of the invention is to achieve the following in refrigerating / freezing plants, refrigerating machines for cooling and heating operation, refrigeration systems, refrigeration sets, heat pumps, air conditioning systems and all other systems with the use of refrigerant for evaporation:
  • the refrigeration system consisting essentially of compressor (1), condenser (2), injection valve (3) and evaporator (4) with an additional internal heat exchanger (5) hereinafter referred to as IWT provided (Fig. 7, 8 , 9, 10, 11).
  • This IWT (5) is installed between evaporator (4) and compressor (1) on the one hand and between condenser (2) and injection valve (3) on the other hand (drawing Fig. 8, 9, 10).
  • the actual evaporation (first stage) (4) takes place partially or completely in the evaporator (4).
  • liquid refrigerant is admitted at the evaporator outlet.
  • the regulation registered here for the first time assumes for the first time the measured variables of the liquid temperature of the refrigerant before the injection valve (3) and the evaporator pressure (FIGS. 7, 8, 9, 10, 11, points 9, 10, 11, 12).
  • the evaporator pressure is removed at the inlet of the evaporator (12) (beginning of evaporation) ( Figures 7, 8, 9, 10, 11, point 12).
  • the outlet pressure or any value derived from both pressure readings can also be used as the measured value (FIGS. 7, 23).
  • the evaporation process is started as close as possible to the left limit curve of the 1g p, h diagram.
  • the beginning of the evaporation process is defined by the liquid temperature before the injection valve (11, 9) and the evaporation pressure (12, 10) (FIGS. 7, 8, 9, 10, 11, points 11, 12, 9, 10).
  • the definition of the controlled variable can be made from the evaporation pressure and a fixed (temperature) difference (adjustable) or from a stored curve calculation per refrigerant.
  • the injection valve (3) lowers the temperature of the refrigerant liquid (11) before the injection valve (3) by opening the valve (3) and increases the refrigerant liquid temperature by closing the valve (3), thus trying the desired setpoint at a corresponding evaporation pressure ( 12).
  • the degree of flooding or overheating (19, 13) of the evaporator or evaporators (4) thus determines the subcooling temperature of the liquid refrigerant (11) at a corresponding evaporation pressure (12) and the suction steam temperature (13) at the compressor inlet (14).
  • the measured value for this safety and optimization function is the suction steam temperature at the outlet IWT (5) (13), the suction steam temperature at the inlet compressor (1) (14), the hot gas temperature (outlet compressor) (15), Oil temperature of the compressor (1) (16) or another corresponding temperature is used (Fig. 8, 9, 10, 11 points 13, 14, 15, 16).
  • optimally maximum subcooling (11) of the refrigerant liquid and optimally maximum suction steam superheating (14), depending on the corresponding compressor, are sought (FIGS. 7, 9, 10, 11, points 11, 14).
  • the refrigeration system consists of one or more evaporators (4), one or more IWTs (5), one or more compressors (1) or one or more injection valves (3), and whether these are grouped together or not. It also does not matter whether or not one or more evaporators (4) are grouped together with only one or more IWTs (5) (FIGS. 10-18, points 9, 10, 13, 14, 15, 16). , Any combination between injectors (3), evaporators (4), IWT's (5) and compressors (1) is therefore possible.
  • the injectors (3) are mechanical, thermal, electronic or otherwise, and whether they are timed, continuous or otherwise. Relevant is the process and control loop with the listed dependencies between evaporation start 11, 12), evaporation end (13, 19) depending on the refrigerant liquid inlet temperature (21) in the IWT (5), the Saugdampfaustrittstemperatur (13) from the IWT (5) Condition of the refrigerant (wet steam (19) or superheated suction steam (13)) when leaving the evaporator (19) resp.
  • the advantage of this evaporator control consists of the fact that the evaporator (4) is optimally flooded and utilized (drawing FIGS. 7, 9, 10, 11 points 17, 19) that the pressure drop on the refrigerant side via the evaporator (4) is smaller in that thereby the evaporation temperature (23) is increased, thereby smaller evaporators (4) can be used, thereby reducing the refrigerant mass flow for a required cooling capacity, thereby causing the compressors (1) to become smaller (cooling), thereby resulting in less energy for cooling is required that thereby the degrees of delivery and lubrication and thus the life of the compressor (1) is increased.
  • the control is set so that the maximum power always comes to the evaporator (4) ( Figure 7, 8, 9 points 17) and not to the IWT (5) (18) (largest possible enthalpy distance at point 17).
  • New to our invention is that the refrigerant enters as a liquid / gas mixture with a high gas content in a second evaporation stage (5, 18, 20) (dry evaporator), in which a residual evaporation followed by high superheating of the refrigerant (13) and a simultaneous Supercooling of the liquid refrigerant takes place on the second side of the IWT (5) (11).
  • a second evaporation stage (5, 18, 20) (dry evaporator)
  • a residual evaporation followed by high superheating of the refrigerant (13) and a simultaneous Supercooling of the liquid refrigerant takes place on the second side of the IWT (5) (11).
  • New to our invention is that the suction steam superheating (13) is chosen as large as possible.
  • a refrigeration system consisting essentially of one or more:
  • a refrigeration system additionally comprises one or more of the aforementioned components and additionally desupers (24), one or more waste heat utilization exchangers, further subcoolers (25), sight glasses (7), dryers (6), filters, valves (8), safety apparatuses , Absperrapparaturen, collectors, oil pumps, distribution systems, electrical and control parts, refrigeration aids, etc. on.
  • the measured value for Saugdampfbegrenzung on the suction line to the refrigerant compressor (1) is removed.
  • the measured values of the refrigerant liquid temperature (11) and the evaporator inlet pressure (12) are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

  • Verdampfen von Kältemittel in Kühl- und Tiefkühlanlagen, Kältetechnik, Kältemaschine für Kühl- und Heizbetrieb, Kälteanlagen, Kältesätze, Wärmepumpen, Klimaanlagen und weitere.
  • Stand der Technik:
  • Verdampferregelung mit Trockenexpansion nach dem minimalsten stabilen Signal (MMS) (Fig. 1, 2 und 3).
  • Um einen Verdampfer in der Kältetechnik optimal zu betreiben, wird der Verdampfer soweit mit Nassdampf beaufschlagt, dass ein Regelventil (Expansionsventil) (3) auf ein minimalstes stabiles Signal, normalerweise nach dem Verdampferaustrittsdruck (12) und der dazugehörenden Verdampferaustrittstemperatur (13) des Kältemittels geregelt wird (Zeichnung Fig. 1, 2 und 3). Die Differenz des Verdampferdrucks, umgerechnet in die dazugehörende Verdampfungstemperatur und der tatsächlich als Temperatur gemessenen Verdampfungstemperatur dient dem Regelventil als Messgrösse. Dabei werden stabile Regelverhalten, bei einer möglichst kleinen Temperaturdifferenz, gesucht. Eine möglichst kleine Temperaturdifferenz hat eine höhere Verdampferleistung zur Folge. Ist die Differenz zu klein oder das Signal nicht stabil, kommt es zu Flüssigkeitsschlägen oder Leistungsverminderung am Verdichter (1). Ist die Differenz zu gross, kommt es zu einer Verminderung der Verdampferleistung (4).
  • Nach dem selben Prinzip (überhitzter Kältemitteldampf am Ende des Verdampfungsprozesses) werden auch automatische Ventile, Kapillarrohre oder andere Apparaturen bemessen und eingesetzt.
  • Dem Verdampfer werden zum Teil heute schon interne Wärmeaustauscher (IWT) (5) (Fig 4, 5, 6) nachgeschaltet. Allerdings werden diese als "thermisch kurze" Apparate ausgelegt und nicht in die Verdampferregelung nach Eintrittsdampfgehalt eingebunden. Die Kältemittelflüssigkeit wird nicht stark herunter gekühlt und die Saugdämpfe werden nicht stark überhitzt. Die Überhitzung des Saugdampfes ist auf ca. 5-10K begrenzt. Heute übliche Einspritzventile sind auch nicht auf maximale Überhitzungen konzipiert, und die einstellbare Überhitzung liegt bei maximal ca. 20-25K.
  • Aus der Druckschrift EP-A1-1 014 013 ist ein mit CO2 arbeitender Kälteerzeugungs-Kreisprozess vom Dampf-Verdichtungs-Typ bekannt, der mit einem Verdampfer und einem internen Wärmetauscher arbeitet. Zwischen dem Verdampfer und dem internen Wärmetauscher ist ein Überhitzungs-Regelventil angeordnet, welches den Massenstrom des Anteils der flüssigen Phase in Abhängigkeit von einem Steuersignal steuert, um einen Grad der Überhitzung des Gasphasenanteils zu halten. Als Steuersignale werden insbesondere Temperatursignale verwendet, die von Temperatursensoren an den Ausgängen des Verdampfers und des internen Wärmetauschers aufgenommen werden.
  • Detaillierte Darstellung der Erfindung:
  • Ziel der Erfindung ist es, bei Kühl-/Tiefkühlanlagen, Kältemaschinen für Kühl- und Heizbetrieb, Kälteanlagen, Kältesätzen, Wärmepumpen, Klimaanlagen und allen anderen Anlagen mit Einsatz von Kältemittel zur Verdampfung Folgendes zu erreichen:
  • Die Saugdampfüberhitzung im Verdampfer (4) klein zu halten oder den Verdampfer (4) mit Nassdampf zu verlassen und dabei die Saugdampfüberhitzung vor dem Verdichter (1) möglichst hoch zu halten (soweit die Einsatzgrenzen des Verdichters, des Öls oder des Kältemittels und / oder die verschiedenen Temperaturverhältnisse dies zulassen).
  • Zu diesem Zweck wird die Kälteanlage bestehend zur Hauptsache aus Verdichter (1), Kondensator (2), Einspritzventil (3) und Verdampfer (4) mit einem zusätzlichen internen Wärmeaustauscher (5) im Folgenden mit IWT bezeichnet, versehen (Fig. 7, 8, 9, 10, 11).
  • Dieser IWT (5) wird zwischen Verdampfer (4) und Verdichter (1) einerseits und zwischen Kondensator (2) und Einspritzventil (3) andererseits eingebaut (Zeichnung Fig. 8, 9, 10).
  • Auf der einen Seite wird der IWT (5) mit flüssigem Kältemittel (Flüssigkeitsseite) und auf der anderen Seite mit überhitztem dampfförmigen Kältemittel oder mit Nassdampf durchströmt.
  • Wird der IWT mit reinen Medien (flüssiges Kältemittel und überhitzem Saugdampf) durchströmt, sprechen wir von einem Wärmeaustausch (Fig. 4, 5, 6). Wird der IWT mit einem flüssigen Kältemittel und Nassdampf mit anschliessender Saugdampfüberhitzung betrieben, sprechen wir von einer zweiten Verdampfungsstufe mit integrierter Flüssigkeitsunterkühlung und Saugdampfüberhitzung (Fig. 7, 8, 9, 10). Im Folgenden sind immer beide Möglichkeiten gemeint.
  • Die eigentliche Verdampfung (erste Stufe) (4) findet teilweise oder ganz im Verdampfer (4) statt. Um diesen Verdampfer (4) optimal betreiben zu können, wird am Verdampferaustritt flüssiges Kältemittel zugelassen.
  • Da am Verdampferaustritt flüssiges Kältemittel zugelassen wird, fehlt zur Regelung des Verdampfers (4) eine Messgrösse zur Bestimmung der Überhitzung, und das Expansionsventil (3) kann die Kältemittelbefüllung des Verdampfers (4) nicht mehr regeln.
  • Die hier zum Patent angemeldete Regelung übernimmt als Neuheit erstmals die Messgrössen der Flüssigkeitstemperatur des Kältemittels vor dem Einspritzventil (3) und den Verdampferdruck (Fig. 7, 8, 9, 10, 11, Punkte 9, 10, 11, 12).
  • Es ist dabei egal, um was für Verdampfertypen oder Verdampferbauarten und um was für Kältemittel und Einsatzgebiete es sich dabei handelt.
  • Der Verdampferdruck wird am Eintritt des Verdampfers (12) (Beginn der Verdampfung) abgenommen (Fig. 7, 8, 9, 10, 11, Punkt 12). In speziellen Fällen kann auch der Ausrittsdruck oder ein beliebiger Wert, hergeleitet aus beiden Druckmesswerten (Kältemittelglide), als Messwert verwendet werden (Fig. 7, 23).
  • Mit dieser Regelung wird der Beginn des Verdampfungsprozesses geregelt (Fig. 7, Punkte 11, 12) und nicht wie bisher das Ende der Verdampfung (Fig. 3, Punkte 12 und 13).
  • Es ist dabei egal, ob genau nach der linken Grenzkurve zwischen Kältemittelflüssig- zu Kältemittelnassdampf im lg p, h-Diagramm des Kältemittels oder nach einem Wert (links) oder rechts dieser Grenzkurve geregelt wird.
  • Bei "optimierten" Verdampferbauarten wird möglichst nahe der linken Grenzkurve des 1g p, h-Diagramms der Verdampfungsprozess gestartet. Bei nichtoptimierten Verdampfern kann es von Vorteil sein, einen bestimmten Gasanteil zu Beginn des Verdampfungsprozesses zuzulassen. Dabei wird nach dem Optimum für den jeweiligen Verdampfer rechts dieser Grenzkurve der Verdampfungsprozess gestartet.
  • Der Beginn des Verdampfungsprozesses definiert sich aus der Flüssigkeitstemperatur vor dem Einspritzventil (11, 9) und dem Verdampfungsdruck (12, 10) (Fig. 7, 8, 9, 10, 11, Punkte 11, 12, 9, 10).
  • Die Definition der Regelgrösse kann, wie die Überhitzungsregelung, aus dem Verdampfungsdruck und einer festen (Temperatur-) Differenz (einstellbar) oder aus einer hinterlegten Kurvenberechnung je Kältemittel erfolgen.
    Das Einspritzventil (3) senkt dabei die Temperatur der Kältemittelflüssigkeit (11) vor dem Einspritzventil (3) durch Öffnen des Ventils (3) und erhöht die Kältemittelflüssigkeitstemperatur durch Schliessen des Ventils (3) und versucht so, den gewünschten Sollwert bei einem entsprechenden Verdampfungsdruck (12) zu erhalten.
  • Der Überflutungs- oder Überhitzungsgrad (19, 13) des oder der Verdampfer (4) bestimmen somit die Unterkühlungstemperatur des flüssigen Kältemittels (11) bei entsprechendem Verdampfungsdruck (12) und die Saugdampftemperatur (13) am Verdichtereintritt (14).
  • Beim Erreichen von Grenzwerten, wie zum Beispiel der höchsten maximal zulässige Temperatur für den Verdichter (13, 14, 15, 16), übernimmt ein weiterer Temperaturmessfühler (optional) und übersteuert die Regelung der Kältemittelflüssigkeitseintrittstemperatur ins Einspritzventil (11) nach Verdampferdruck (12) (Fig. 7, 9, 11 Punkte 11, 12 und 13 (14, 15, 16)).
  • Es spielt dabei keine Rolle, ob als Messgrösse für diese Sicherheits- und Optimierungsfunktion die Saugdampftemperatur am Austritt IWT (5) (13), die Saugdampftemperatur am Eintritt Verdichter (1) (14), die Heissgastemperatur (Austritt Verdichter) (15), die Öltemperatur des Verdichters (1) (16) oder eine andere entsprechende Temperatur verwendet wird (Fig. 8, 9, 10, 11 Punkte 13, 14, 15, 16).
  • In jedem Fall wird entsprechend des Verdampfertyps immer eine optimal-maximale Unterkühlung (11) der Kältemittelflüssigkeit und eine je nach dem entsprechenden Verdichter optimal-maximale Saugdampfüberhitzung (14) angestrebt (Fig. 7, 9, 10, 11 Punkte 11, 14).
  • Es spielt dabei keine Rolle, ob das Kältesystem aus einem oder mehreren Verdampfern (4), einem oder mehreren IWT's (5), einem oder mehreren Verdichtern (1) oder einem oder mehreren Einspritzventilen (3) besteht, und ob diese zu Gruppen zusammengefasst sind oder nicht. Es spielt dabei auch keine Rolle, ob ein oder mehrere Verdampfer (4) mit nur einem oder mehreren IWT's (5) zu Gruppen zusammengefasst sind oder nicht (Fig. 10-18, Punkte 9, 10, 13, 14, 15, 16). Jegliche Kombinationen zwischen Einspritzventilen (3), Verdampfern (4), IWT's (5) und Verdichtern (1) ist also möglich.
  • Es spielt keine Rolle, ob die Einspritzventile (3) mechanischer, thermischer, elektronischer oder anderer Bauart sind, und ob diese getaktet, stetig oder anders regeln. Massgeblich ist der Prozess und Regelkreis mit den aufgeführten Abhängigkeiten zwischen Verdampfungsbeginn 11, 12), Verdampfungsende (13, 19) in Abhängigkeit der Kältemittelflüssigkeitseintrittstemperatur (21) in den IWT (5), der Saugdampfaustrittstemperatur (13) aus dem IWT (5), dem Zustand des Kältemittels (Nassdampf (19) oder überhitzter Saugdampf (13)) beim Verlassen des Verdampfers (19) resp. dem Eintreten (20) in den IWT (5), welcher einmal als zweite Verdampferstufe mit anschliessender hoher Saugdampfüberhitzung (13) und ein anderes Mal bei der gleichen Anlage als reiner Wärmetauscher zum Überhitzen des Saugdampfes (13) betrieben wird. Es spielt dabei auch keine Rolle, ob eine dem IWT (5) vorgeschaltete externe Unterkühlerstufe (25) dem Prozess einmal zu- und einmal weggeschaltet wird.
  • Der Vorteil dieser Verdampferregelung besteht aus der Tatsache, dass so der Verdampfer (4) optimal überflutet und ausgenutzt wird (Zeichnung Fig. 7, 9, 10, 11 Punkte 17, 19), dass der Druckabfall kältemittelseitig über den Verdampfer (4) kleiner wird, dass dadurch die Verdampfungstemperatur (23) erhöht wird, dass dadurch kleinere Verdampfer (4) eingesetzt werden können, dass dadurch der Kältemittelmassenstrom für eine geforderte Kälteleistung kleiner wird, dass dadurch die Verdichter (1) kleiner werden (Kälteerzeugung), dass dadurch weniger Energie zur Kälteerzeugung benötigt wird, dass dadurch die Liefergrade und die Schmierung und somit die Lebensdauer der Verdichter (1) erhöht wird.
  • Die Regelung wird so eingestellt, dass das Leistungsmaximum immer dem Verdampfer (4) (Fig. 7, 8, 9 Punkte 17) und nicht dem IWT (5) (18) zukommt (grösste mögliche Enthalpiestrecke bei Punkt 17).
  • Neu:
  • Neu an unserer Erfindung ist, dass ein Verdampfungssystem mit Trockenexpansion als überfluteter Verdampfer (4) eingesetzt wird, bei dem das Kältemittel den Verdampfer (4) in der ersten Stufe mit Flüssigkeitsanteilen verlässt (17, 19).
  • Neu an unserer Erfindung ist, dass das Kältemittel als Flüssigkeits-/Gasgemisch mit hohem Gasanteil in eine zweite Verdampfungsstufe (5, 18, 20) eintritt (trockener Verdampfer), bei der eine Restverdampfung mit anschliessend hoher Überhitzung des Kältemittels (13) und einer gleichzeitigen Unterkühlung des flüssigen Kältemittels auf der zweiten Seite des IWT's (5) stattfindet (11).
  • Neu an unserer Erfindung ist, dass nach dem Verdampfungsbeginn (12) des Verdampfungsprozesses und nicht nach dem Verdampfungsende (13) geregelt wird.
  • Neu an unserer Erfindung ist, dass durch diese Regelung mit unterschiedlichen Saugdampfüberhitzungen (13), je nach Flüssigkeitseintrittstemperatur (21) in den IWT (5), auf den Verdichter (1) gefahren wird.
  • Neu an unserer Erfindung ist, dass die Saugdampfüberhitzung (13) möglichst gross gewählt wird.
  • Neu an unserer Erfindung ist, dass das verwendete, ausserhalb oder innerhalb des Verdampfers eingebaute Expansionsventil (3) die Kältemittelflüssigkeitstemperatur (11) vor dem Eintritt in das Einspritzventil (3) regelt.
  • Neu an unserer Erfindung ist, dass das verwendete, ausserhalb oder innerhalb des Verdampfers (4) eingebaute Expansionsventil (3) die Saugdampftemperatur am Eintritt des Kältemittelverdichters (14) beschränkt und zugleich die Leistung der internen Unterkühlung (18) in Abhängigkeit der zur Verfügung stehenden Verdampferleistung (17) der ersten Stufe (4) regelt.
  • Aufzählung der Zeichnungen:
    • Fig. 1: Kältemittelkreislauf im lg p, h-Diagramm "Stand der Technik"
    • Fig. 2: Kältemittelkreislauf "Stand der Technik"
    • Fig. 3: Kältemittelkreislauf im lg p, h-Diagramm mit integrierten Apparaten
    • Fig. 4: Kältemittelkreislauf im 1g p, h-Diagramm mit IWT "Stand der Technik"
    • Fig. 5: Kältemittelkreislauf mit IWT "Stand der Technik"
    • Fig. 6: Kältemittelkreislauf mit IWT "Stand der Technik" im 1g p, h-Diagramm mit integrierten Apparaten
    • Fig. 7: Kältemittelkreislauf im 1g p, h-Diagramm mit Zweistufenverdampfer "Patent"
    • Fig. 8: Kältemittelkreislauf mit Zweistufenverdampfer "Patent"
    • Fig. 9: Kältemittelkreislauf im 1g p, h-Diagramm mit Zweistufenverdampfer "Patent" mit integrierten Apparaten
    • Fig. 10:Kältemittelkreislauf im 1g p, h-Diagramm mit Zweistufenverdampfer "Patent" mit integrierten Apparaten und Zweistufenunterkühlung (und Enthitzer)
    • Fig. 11:Kältemittelkreislauf mit Verdampfer- und Messwertkombinationen (Beispiel)
    • Fig. 12:Legende der Punkte aus den Zeichnungen
    Ausführung der Erfindung:
  • Ein Kältesystem bestehend im Wesentlichen aus einem oder mehreren:
  • Verflüssigern (2), Verdampfern (4), IWT' (5), Kältemittelverdichtern (1), Einspritzventilen (3), Kältemittel, kältetechnischen Hilfsstoffen und Öl.
  • Optional weist ein Kältesystem je nach Anwendung zusätzlich einen oder mehrere der vorgenannten Komponenten und zusätzlich Enthitzer (24), einen oder mehrere Abwärmenutzungstauscher, weitere Unterkühler (25), Schaugläser (7), Trockner (6), Filter, Ventile (8), Sicherheitsapparaturen, Absperrapparaturen, Sammler, Ölpumpen, Verteilsysteme, Elektro-, Steuer- und Regelteile, kältetechnische Hilfsstoffe, etc. auf.
  • Bei der Montage des Einspritzventils (3) vor dem Verdampfer (4) wird der Messwert zur Saugdampfbegrenzung an der Saugleitung zum Kältemittelverdichter (1) abgenommen. Zur Regelung der Verdampfung (17, 19) werden die Messwerte der Kältemittelflüssigkeitstemperatur (11) und des Verdampfereintrittsdrucks (12) verwendet.

Claims (9)

  1. Verfahren zur Regelung von Verdampfern (4, 12) in Kälteanlagen, bei dem das Kältemittel in einem Kondensator (2, 25) unterkühlt wird und bei dem ein interner Wärmetauscher (IWT) zwischen dem Verdampfer (4) und einem Verdichter (16) einerseits und zwischen einem Kondensator (2, 25) und einem Einspritzventil (3) andererseits verwendet wird, dadurch gekennzeichnet, dass als erste Regelgrösse der Verdampfungsdruck (12) am Eintritt des Verdampfers (4, 12) und als zweite Regelgrösse die Kältemittelunterkühlungstemperatur (11) vor dem Einspritzventil (3) verwendet werden und dadurch der Beginn der Verdampfung (12) festgelegt und geregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als weiterer Messwert die Saugdampftemperatur (13/14) am Eintritt in den Verdichter (1) diese Regelung optimiert und den Schutz des Verdichters (1) garantiert.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass weitere Messwerte wie die Heissgastemperatur (15) am Austritt des Verdichters (1), die Verdichteröltemperatur (16), der Saugdruck am Verdichter (23) und/oder der Hochdruck (22) vor dem Einspritzventil (3) oder nach dem Verdichter (1) zur Optimierung der Regelung oder zum Schutz des Verdichters (1) verwendet werden
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass nahe der linken Grenzkurve des Ig (p.h)-Diagramms für das Kältemittel geregelt wird (12).
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass durch diese Art der Regelung der Verdampfer (4) überflutet und der Überflutungsgrad bestimmt und zugleich die Kältemittelsaugdampf- und Kältemittelflüssigkeitstemperatur (13/11) kontrolliert und geregelt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Messwert der Saugdampftemperatur (13/14) vor dem Verdichter (1) oder die Heissgastemperatur (15) am Austritt des Verdichters (1) oder die Verdichteröltemperatur (16) die Verdampfungssteuerung (11,12) übersteuert und die Saugdampftemperatur (14) verdichterabhängig auf einem Optimal- und/oder Maximalwert konstant hält.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Optimum des Prozesses durch maximale Ausnutzung der Enthalpie im Verdampfer (4) zwischen linker und rechter Grenzkurve des Ig (p,h)-Diagramms für das Kältemittel und je nach Temperaturniveau des IWTs (5, 21) mit Überhitzungsanteil im Verdampfer (4), immer dem Verdampfer (4) und nicht dem IWT (5) zugute kommt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Verdampfer (4) mit einem IWT (5) oder mehrere Verdampfer (4) mit einem IWT (5) oder mehrere Verdampfer (4) mit mehreren IWTs (5) zu einem Kältesystem verbunden werden.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass je nach Kombination von Verdampfern (4), IWTs (5), Einspritzventilen (3) und Verdichtern (1) die Einspritzventile (3) und das System mit einer reduzierten Anzahl von Messwerten (9, 10, 11, 12, 13, 14, 15, 16, 22, 23) geregelt werden.
EP02782599A 2002-12-11 2002-12-11 Verdampfungsprozesssteuerung in der kältetechnik Expired - Lifetime EP1570215B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2002/000685 WO2004053406A1 (de) 2002-12-11 2002-12-11 Verdampfungsprozesssteuerung in der kältetechnik

Publications (2)

Publication Number Publication Date
EP1570215A1 EP1570215A1 (de) 2005-09-07
EP1570215B1 true EP1570215B1 (de) 2007-12-05

Family

ID=32477088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02782599A Expired - Lifetime EP1570215B1 (de) 2002-12-11 2002-12-11 Verdampfungsprozesssteuerung in der kältetechnik

Country Status (7)

Country Link
US (1) US7665321B2 (de)
EP (1) EP1570215B1 (de)
AT (1) ATE380321T1 (de)
AU (1) AU2002347179A1 (de)
DE (1) DE50211329D1 (de)
ES (1) ES2298405T3 (de)
WO (1) WO2004053406A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505475B1 (en) 1999-08-20 2003-01-14 Hudson Technologies Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
ATE426785T1 (de) * 2004-01-28 2009-04-15 Bms Energietechnik Ag Hocheffiziente verdampfung bei kalteanlagen mit dem dazu nítigen verfahren zum erreichen stabilster verhaltnisse bei kleinsten und/oder gewunschten temperaturdifferenzen der zu kuhlenden medien zur verdampfungstemperatur
US7494536B2 (en) * 2005-01-04 2009-02-24 Carrier Corporation Method for detecting a fault in an HVAC system
DK1856458T3 (da) 2005-02-18 2011-10-03 Carrier Corp Styring af et kølekredsløb med en intern varmeveksler
DE202006000385U1 (de) * 2006-01-11 2006-03-02 Hans Güntner GmbH Kälteanlage
US9383127B2 (en) * 2010-10-22 2016-07-05 Tai-Her Yang Temperature regulation system with active jetting type refrigerant supply and regulation
DE102020115265A1 (de) 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Betrieb einer Kompressionskälteanlage und Kompressionskälteanlage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163739A (ja) * 1986-12-26 1988-07-07 株式会社不二工機製作所 冷凍システムの制御方法
US4878355A (en) * 1989-02-27 1989-11-07 Honeywell Inc. Method and apparatus for improving cooling of a compressor element in an air conditioning system
DE4430468C2 (de) * 1994-08-27 1998-05-28 Danfoss As Regeleinrichtung einer Kühlvorrichtung
DE19506143C2 (de) * 1995-02-22 1998-01-15 Danfoss As Verfahren zur Regelung der Überhitzungstemperatur des Kältemittels in einer Verdampfereinrichtung einer Kälte- oder Wärmepumpanlage und Vorrichtung zur Durchführung des Verfahrens
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
DE19832480A1 (de) * 1998-07-20 2000-01-27 Behr Gmbh & Co Mit CO¶2¶ betreibbare Klimaanlage für ein Fahrzeug
JP2000179960A (ja) 1998-12-18 2000-06-30 Sanden Corp 蒸気圧縮式冷凍サイクル
US6505476B1 (en) 1999-10-28 2003-01-14 Denso Corporation Refrigerant cycle system with super-critical refrigerant pressure
JP4517529B2 (ja) * 2000-07-21 2010-08-04 株式会社日本自動車部品総合研究所 ヒートポンプサイクル、加熱装置、車両用暖房装置、暖房装置および蒸気圧縮式冷凍サイクル
FR2815397B1 (fr) * 2000-10-12 2004-06-25 Valeo Climatisation Dispositif de climatisation de vehicule utilisant un cycle supercritique
JP2002130849A (ja) * 2000-10-30 2002-05-09 Calsonic Kansei Corp 冷房サイクルおよびその制御方法
JP2002267279A (ja) * 2001-03-06 2002-09-18 Zexel Valeo Climate Control Corp 冷凍サイクル制御装置
US6530236B2 (en) * 2001-04-20 2003-03-11 York International Corporation Method and apparatus for controlling the removal of heat from the condenser in a refrigeration system
US7076964B2 (en) * 2001-10-03 2006-07-18 Denso Corporation Super-critical refrigerant cycle system and water heater using the same
US6817193B2 (en) * 2001-11-23 2004-11-16 Daimlerchrysler Ag Method for operating a refrigerant circuit, method for operating a motor vehicle driving engine, and refrigerant circuit

Also Published As

Publication number Publication date
US7665321B2 (en) 2010-02-23
ATE380321T1 (de) 2007-12-15
ES2298405T3 (es) 2008-05-16
DE50211329D1 (de) 2008-01-17
AU2002347179A1 (en) 2004-06-30
EP1570215A1 (de) 2005-09-07
WO2004053406A1 (de) 2004-06-24
US20060242974A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
DE60314559T2 (de) Verfahren zum Erhöhen der Leistungsfähigkeit einer Dampfverdichtungsanordnung mittels Verdampferheizung
DE10138255B4 (de) Anordnung für Kaskadenkälteanlage
DE69003067T2 (de) Kälteanlage.
DE60132287T2 (de) Hochdruckregelung in einem transkritischen Dampfkompressionskreislauf
DE602004011870T2 (de) Vorrichtung und Verfahren zur Steuerung des Überhitzungsgrades in einer Wärmepumpenanlage
DE3716393A1 (de) Kaelteanlage
DE102006029973A1 (de) Ejektorkreislaufsystem
DE102015112439A1 (de) Kälteanlage
DE60022251T2 (de) Kälteanlage mit einem einen optimierten Verbrauch bietenden Kältekreislauf
EP1570215B1 (de) Verdampfungsprozesssteuerung in der kältetechnik
EP3099985B1 (de) Kälteanlage
DE102010003915B4 (de) Kälteanlage mit Wärmerückgewinnung und Verfahren zum Betreiben der Kälteanlage
DE202005013499U1 (de) Kältemittelkreislauf für eine Wärmepumpe
DE102019001638A1 (de) Verfahren zum Betreiben einer Wärmepumpe mit einem Dampfkompressionssystem
DE202007017723U1 (de) Anlage für die Kälte-, Heiz- oder Klimatechnik, insbesondere Kälteanlage
DE102011012644A1 (de) Kälteanlage
DE102008043823B4 (de) Wärmepumpenanlage
EP2063201B1 (de) Verfahren zum Betreiben einer Kälteanlage
EP3922925A1 (de) Verfahren zum betrieb einer kompressionskälteanlage und kompressionskälteanlage
DE102014007853B3 (de) Verfahren und Vorrichtung zum Temperieren eines Wärmeaustauschers
DE2438418A1 (de) Gaskompressor der verdraengerbauart, insbesondere fuer kaeltemaschinen
EP3922930B1 (de) Verfahren zum betrieb einer kompressionskälteanlage und zugehörige kompressionskälteanlage
DE102005040456A1 (de) Kältemittelkreislauf für eine Wärmepumpe
DE102006026354B4 (de) Kälteanlage mit innerem Wärmeübertrager und geregeltem Expansionsventil
EP3922924B1 (de) Verfahren zum betrieb einer kompressionskälteanlage und kompressionskälteanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20070305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

REF Corresponds to:

Ref document number: 50211329

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080113

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2298405

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: BMS-ENERGIETECHNIK A.G.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080505

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

26N No opposition filed

Effective date: 20080908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BMS-ENERGIETECHNIK AG

Free format text: BMS-ENERGIETECHNIK AG#BOENIGSTRASSE 11A#3812 WILDERSWIL (CH) -TRANSFER TO- BMS-ENERGIETECHNIK AG#BOENIGSTRASSE 11A#3812 WILDERSWIL (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20131230

Year of fee payment: 12

Ref country code: GB

Payment date: 20131219

Year of fee payment: 12

Ref country code: SE

Payment date: 20131219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131220

Year of fee payment: 12

Ref country code: TR

Payment date: 20131125

Year of fee payment: 12

Ref country code: ES

Payment date: 20131226

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141212

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141211

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20181220

Year of fee payment: 17

Ref country code: DE

Payment date: 20181210

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181218

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50211329

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 380321

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211