EP1569297B1 - Ultra-wideband V-UHF antenna - Google Patents

Ultra-wideband V-UHF antenna Download PDF

Info

Publication number
EP1569297B1
EP1569297B1 EP05101169.0A EP05101169A EP1569297B1 EP 1569297 B1 EP1569297 B1 EP 1569297B1 EP 05101169 A EP05101169 A EP 05101169A EP 1569297 B1 EP1569297 B1 EP 1569297B1
Authority
EP
European Patent Office
Prior art keywords
frequency
band
radiating
elements
radiating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05101169.0A
Other languages
German (de)
French (fr)
Other versions
EP1569297A1 (en
Inventor
Frédéric THALES Intellectual Prop. Ngo Bui Hung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to PL05101169T priority Critical patent/PL1569297T3/en
Publication of EP1569297A1 publication Critical patent/EP1569297A1/en
Application granted granted Critical
Publication of EP1569297B1 publication Critical patent/EP1569297B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • H01Q9/22Rigid rod or equivalent tubular element or elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • H01Q21/10Collinear arrangements of substantially straight elongated conductive units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • the invention relates to an antennal system with a very wide band operating in transmission as in reception without adaptation. It is intended for example for the frequency band varying from 30 to 512 MHz, VHF very high frequencies (in English Very High Frequencies) to UHF ultra high frequencies (Ultra High Frequencies).
  • This band encompasses in particular conventional bands: the usual VHF-FM band, or VHF frequency modulation of 30 to 88 MHz (or VHF-Frequency Modulation), the VHF-AM or VHF band amplitude modulation of 100 to 160 MHz (in English VHF - Amplitude Modulation) and the UHF-AM band of 225 to 400 MHz (UHF - Amplitude Modulation).
  • Modern transceiver (E / R) stations are likely to operate in all frequency bands from 30 to 512 MHz.
  • the existing antenna systems associated with them in particular those intended to be installed on mobile phones, ensure optimal operation only by sub-frequency bands, for example, the VHF-FM band (30-88 MHz). or the VHF-AM band (100-160 MHz) or the UHF-AM band (225-400 MHz). Therefore, the operation of these transceivers requires the implementation of several antennas and a switching device to select the most suitable antenna.
  • Wide-band antennas for seamless coverage of the entire 30 to 512 MHz band already exist for other radio-frequency systems, such as antennas for aircraft radiocommunication, antennal systems for listening and jamming in electronic warfare, etc.
  • these antennas have drawbacks that make them unsuitable for use on a land mobile. Indeed, they have either an efficiency too low for the requested radio range for the ground-ground links, case antennas embedded on aircraft, or a footprint incompatible with the dimensions of the vehicle.
  • Licences DE 3 826 777 or FR 2 758 012 propose so-called multi-band structures, which cover several frequency bands and which do not have the defects previously stated. However, the frequency bands covered by these types of antennas must be disjoined.
  • the patent US 6,177,911 discloses an antenna for use in a base station used for the mobile radio.
  • the antenna consists of several elements operating in the same frequency ranges.
  • the idea of the present invention is to propose a single antenna capable of operating without discontinuity at least in the entire frequency band of 30 to 512 MHz, ie in more than a decade, and having dimensions such that it can be installed in place of a conventional VHF-FM radiocommunication antenna, that is to say in the form of a whip while having a sufficient performance to ensure radio ranges at least equivalent to those of existing equipment.
  • a representation of such an antenna is schematized on the figure 1 .
  • the whip has a height for example of the order of 3 meters.
  • the invention relates to a broadband antenna system capable of radiating or receiving radio frequency signals in a given frequency band, comprising at least two substantially collinear radiating elements. It is characterized in that each of the two elements radiates in a frequency band, a first radiating element operating in the frequency band [Fhinf, Fhsup], a second radiating element operating in the band [Fminf, Fmsup], and in that that the first radiating element and the second radiating element are adapted so that, at the hinge frequencies, these two elements involved in the radiation, the system comprises a third radiating element operating in the frequency band [Fbinf, Fbsup], the frequency Fbsup is for example greater than or equal to the frequency Fminf, and the frequency Fmsup is for example greater than or equal to the frequency Fhinf, the radiating elements are connected to a power supply network comprising an input and three outputs respectively connected to the first, second and third elements by three transmission lines, the supply network comprises at least one band-pass filter, a duplexer whose du
  • the figure 1 represents an example of antenna A installed on a vehicle V.
  • This antenna consists for example of a radiating element 1 which is in the form of a whip, a base 2 which allows to fix the antenna on the carrier vehicle and which usually comprises a power supply network allowing maximum transfer of power from the transceiver to the radiator assembly 1.
  • a flexible element 3 is interposed at its base. This flexible element known to those skilled in the art will not be detailed for reasons of simplification.
  • the first dipole 11 placed at the top of the radiating assembly 1 is designed to operate in the upper part [Fhinf at Fhsup] of the useful band, for this example of 200 to 512 MHz.
  • the matching circuit and bandwidth widening devices known to those skilled in the art to grant this dipole in the band 200 to 512 MHz are not detailed.
  • the second dipole 12 placed below the first dipole covers the adjacent band [Fminf to Fmsup] from 100 to 200 MHz. For the same reason, its adaptation circuit is not described.
  • the monopole 13 located in the lower part of the antenna ensures operation in the low band [Fbinf Fbsup] from 30 to 100 MHz.
  • the choice of a monopole type structure can be replaced by a dipolar structure. Monopoly makes it possible to obtain a more limited antenna size.
  • This arrangement thus allows the radiating assembly 1 to operate from the lowest frequency Fbinf (in the example given at 30 MHz) to the highest frequency Fhsup (in this example 512 MHz) without hinge frequencies (Fhinf, Fmsup) and (Fminf, Fbsup) the radiation is disturbed thus prohibiting the use of these frequencies as in antennas known from the prior art.
  • the figure 3a represents an embodiment of an antenna according to the invention and the figure 3b a corresponding sectional view.
  • openings are arranged expressly to the figure 3a in certain elements composing the antenna.
  • the dipoles are skirt dipoles, the references 11, 12, 13 of the figure 2 having been kept for reasons of simplification.
  • the antenna comprises a first skirt 11 dipole located in its upper part, a second skirt 12 dipole collinear or substantially colinear to the first and a monopole 13 placed at the bottom of the antenna.
  • the skirted dipole 11 consists of a first radiating element 11a, which can be produced from a tubular section and a second radiating element 11b which is made from a hollow tubular element of length substantially identical to the length of the element 11a and wherein is fed the power cable 21 of the antenna.
  • These two radiating elements are fed at point 11c by connecting the upper end of the core 21a ( Fig.3b ) of the coaxial supply cable 21 at the base of the element 11a and by connecting the shield 21b ( Fig.3b ) of this cable 21 at the periphery of the upper end 11bs of the element 11b to form what is usually referred to as a skirt.
  • an impedance matching quadrupole may be interposed at the point 11c.
  • the theoretical length of the quarter-wave in meters is given by the known relation 300 / 4F (Mhz) is 0.375 meters in this example, where F is the frequency expressed in MHz .
  • the colinear skirt dipole 12 is for example composed of a skirt or inverted skirt 12a and a skirt 12b, which together constitute the two radiating elements of the dipole.
  • a skirt 12d having the role of an insulation device usually designated by the word "stub" is interposed between these two elements.
  • the periphery of the upper end 12ds of the skirt 12d is connected to the shield 21b, while its other end 12di is connected to the lower part of the skirt 12a.
  • the supply of this dipole is carried out at level 12c in connecting the upper end of the core 22a of the coaxial supply cable 22 to the lower edge of the isolation device 12d at point 12e and connecting the shield 22b of this cable 22 and the shield 21b of the cable 21 around the upper end 12bs of the skirt 12b.
  • an impedance matching quadrupole it is possible to use an impedance matching quadrupole.
  • this monopole 13 of the ground plane M above which the antenna is installed the cables 21 and 22 are wound around a core of known magnetic material 24, such as ferrite, powder iron, etc.
  • a core of known magnetic material 24 such as ferrite, powder iron, etc.
  • the supply of this monopole is performed by connecting the upper end of the core 23a of the cable 23 to one of the turns of the winding 25 at the point 26 determined to obtain the best impedance matching in the frequency band [Fbinf at Fbsup ].
  • insulation devices acting as a shock-inductor such as devices based on ferrite beads, toroids or tubes of ferrite are interposed between these elements.
  • the shields 21b, 22b, 23b and the ground of the supply network 14, are connected thereto by the connection assembly 30.
  • the lower ends of the cores of the coaxial cables 21, 22 and 23 are respectively connected to the outputs 16, 17 and 18 of the supply network 14, an exemplary embodiment of which is detailed in FIG. figure 4 .
  • the radio frequency signal from the input 15 is divided in two by a hybrid 27 to the two channels 27a and 27b.
  • the first channel 27a is filtered by a bandpass filter [Fminf - Fmsup] 28, for the exemplary embodiment [100MHz - 200MHz] and constitutes after filtering the output 17.
  • the other channel 27b is separated by a duplexer 29 into two sub-bands, one low [Fbinf - Fbsup] or [30MHz - 100MHz] for the exemplary embodiment and the other high [Fhinf - Fhsup], ie [200MHz - 512MHz].
  • the low sub-band is connected to the output 18 and the high sub-band is connected to the output 16.
  • FIG. 1 to 4 also applies to a broadband antenna capable of radiating or receiving radio frequency signals in a frequency band [Fminf, Fhsup], comprising two substantially collinear radiating elements (11, 12).
  • the radiating element (11) operates in the frequency band [Fhinf, Fhsup]
  • the radiating element (12) operates in the band [Fminf, Fmsup], and at the hinge frequencies between these two elements they both participate in the radiation.
  • the frequency Fmsup is greater than or equal to the frequency Fhinf.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

L'invention concerne un système antennaire à très large bande fonctionnant en émission comme en réception sans reprise d'adaptation. Elle est destinée par exemple à la bande de fréquences variant de 30 à 512 MHz, de la VHF très hautes fréquences (en anglo-saxon Very High Frequencies) jusqu'à l'UHF ultra hautes fréquences (Ultra High Frequencies).The invention relates to an antennal system with a very wide band operating in transmission as in reception without adaptation. It is intended for example for the frequency band varying from 30 to 512 MHz, VHF very high frequencies (in English Very High Frequencies) to UHF ultra high frequencies (Ultra High Frequencies).

Cette bande englobe en particulier les bandes classiques : la bande VHF-FM usuelle, ou VHF modulation de fréquence de 30 à 88 MHz (ou en anglo-saxon VHF - Frequency Modulation), la bande VHF-AM ou VHF modulation d'amplitude de 100 à 160 MHz (en anglo-saxon VHF - Amplitude Modulation) et la bande UHF-AM de 225 à 400 MHz (UHF - Amplitude Modulation).This band encompasses in particular conventional bands: the usual VHF-FM band, or VHF frequency modulation of 30 to 88 MHz (or VHF-Frequency Modulation), the VHF-AM or VHF band amplitude modulation of 100 to 160 MHz (in English VHF - Amplitude Modulation) and the UHF-AM band of 225 to 400 MHz (UHF - Amplitude Modulation).

Les postes Emetteur-Récepteur (E/R) modernes sont susceptibles de fonctionner dans toutes les bandes de fréquences variant de 30 à 512 MHz. Par contre, les systèmes antennaires existants qui leur sont associés, en particulier ceux destinés à être installés sur des mobiles, n'assurent un fonctionnement optimal que par sous bandes de fréquence, par exemple, la bande VHF-FM (30-88 MHz) ou la bande VHF-AM (100-160 MHz) ou encore la bande UHF-AM (225-400 MHz). De ce fait, l'exploitation de ces émetteurs/récepteurs nécessite la mise en oeuvre de plusieurs antennes et un dispositif de commutation pour sélectionner l'antenne la mieux adaptée.Modern transceiver (E / R) stations are likely to operate in all frequency bands from 30 to 512 MHz. On the other hand, the existing antenna systems associated with them, in particular those intended to be installed on mobile phones, ensure optimal operation only by sub-frequency bands, for example, the VHF-FM band (30-88 MHz). or the VHF-AM band (100-160 MHz) or the UHF-AM band (225-400 MHz). Therefore, the operation of these transceivers requires the implementation of several antennas and a switching device to select the most suitable antenna.

Les systèmes antennaires à très large bande permettant de couvrir sans discontinuité toute la bande de 30 à 512 MHz existent déjà pour d'autres systèmes exploitant les radio-fréquences, par exemple les systèmes antennaires de radiocommunication embarqués sur les aéronefs, les systèmes antennaires d'écoute et de brouillage en guerre électronique, etc.. Cependant ces antennes présentent des inconvénients qui les rendent inadaptées pour une utilisation sur un mobile terrestre. En effet, elles présentent soit une efficacité trop faible pour la portée radio demandée pour les liaisons sol-sol, cas des antennes embarquées sur des aéronefs, soit un encombrement incompatible avec les dimensions du véhicule.Wide-band antennas for seamless coverage of the entire 30 to 512 MHz band already exist for other radio-frequency systems, such as antennas for aircraft radiocommunication, antennal systems for listening and jamming in electronic warfare, etc. However, these antennas have drawbacks that make them unsuitable for use on a land mobile. Indeed, they have either an efficiency too low for the requested radio range for the ground-ground links, case antennas embedded on aircraft, or a footprint incompatible with the dimensions of the vehicle.

Les réalisations d'antenne couvrant une bande de fréquences atteignant la décade et ayant un faible encombrement sont nombreuses. Par exemple, les brevets US 4 443 803 , US 4 466 003 ou US 4 958 164 décrivent de telles structures. Cependant, ces structures se basent toutes sur la contribution d'éléments résistifs pour élargir artificiellement la bande passante de l'antenne. De ce fait, une grande partie de l'énergie radio-fréquence RF n'est pas rayonnée par l'antenne, mais est transformée en chaleur à l'intérieur de celle-ci. Le rendement de ces types d'antenne s'avère donc très faible. Un autre défaut des structures rayonnantes décrites dans les brevets mentionnés ci-dessus est leur mauvais diagramme de rayonnement dans les fréquences hautes.The antenna implementations covering a frequency band reaching the decade and having a small footprint are numerous. For example, patents US 4,443,803 , US 4 466 003 or US 4,958,164 describe such structures. However, these structures are all based on the contribution of resistive elements to artificially widen the bandwidth of the antenna. As a result, much of the RF radio frequency energy is not radiated by the antenna, but is transformed into heat inside the antenna. The output of these types of antenna is therefore very low. Another defect of the radiating structures described in the patents mentioned above is their poor radiation pattern in high frequencies.

Les brevets DE 3 826 777 ou FR 2 758 012 proposent des structures dites multi-bande, qui couvrent plusieurs bandes de fréquences et qui ne présentent pas les défauts précédemment énoncés. Cependant, les bandes de fréquence couvertes par ces types d'antennes doivent impérativement être disjointes.Licences DE 3 826 777 or FR 2 758 012 propose so-called multi-band structures, which cover several frequency bands and which do not have the defects previously stated. However, the frequency bands covered by these types of antennas must be disjoined.

Le brevet US 6 177 911 divulgue une antenne destinée à être utilisée dans une station de base utilisée pour la radio mobile. L'antenne est constituée de plusieurs éléments fonctionnant dans les mêmes gammes de fréquence. L'idée de la présente invention est de proposer une antenne unique susceptible de fonctionner sans discontinuité au moins dans toute la bande de fréquences de 30 à 512 MHz, soit dans plus d'une décade, et ayant des dimensions telles qu'elle puisse être installée en lieu et place d'une antenne de radiocommunication VHF-FM classique, c'est-à-dire ayant la forme d'un fouet tout en présentant un rendement suffisant pour garantir des portées radioélectriques au moins équivalentes à celles des équipements existants. Une représentation d'une telle antenne est schématisée sur la figure 1. Le fouet a une hauteur par exemple de l'ordre de 3 mètres.The patent US 6,177,911 discloses an antenna for use in a base station used for the mobile radio. The antenna consists of several elements operating in the same frequency ranges. The idea of the present invention is to propose a single antenna capable of operating without discontinuity at least in the entire frequency band of 30 to 512 MHz, ie in more than a decade, and having dimensions such that it can be installed in place of a conventional VHF-FM radiocommunication antenna, that is to say in the form of a whip while having a sufficient performance to ensure radio ranges at least equivalent to those of existing equipment. A representation of such an antenna is schematized on the figure 1 . The whip has a height for example of the order of 3 meters.

L'invention concerne un système antennaire large bande pouvant rayonner ou recevoir des signaux radio-fréquence dans une bande de fréquences donnée, comprenant au moins deux éléments rayonnants sensiblement colinéaires. Il est caractérisé en ce que chacun des deux éléments rayonne dans une bande de fréquences, un premier élément rayonnant fonctionnant dans la bande de fréquences [Fhinf, Fhsup], un deuxième élément rayonnant fonctionnant dans la bande [Fminf, Fmsup], et en ce que le premier élément rayonnant et le deuxième élément rayonnant sont adaptés pour que, aux fréquences charnières, ces deux éléments participent au rayonnement, le système comporte un troisième élément rayonnant fonctionnant dans la bande de fréquence [Fbinf, Fbsup], la fréquence Fbsup est par exemple supérieure ou égale à la fréquence Fminf, et la fréquence Fmsup est par exemple supérieure ou égale à la fréquence Fhinf, les éléments rayonnants sont connectés à un réseau d'alimentation comprenant une entrée et trois sorties connectées respectivement aux premier, deuxième et troisième éléments par trois lignes de transmission, le réseau d'alimentation comporte au moins un filtre passe-bande, un duplexeur dont l'écart duplex correspondant à la bande du filtre et un hybride 3dB diviseur de puissance.The invention relates to a broadband antenna system capable of radiating or receiving radio frequency signals in a given frequency band, comprising at least two substantially collinear radiating elements. It is characterized in that each of the two elements radiates in a frequency band, a first radiating element operating in the frequency band [Fhinf, Fhsup], a second radiating element operating in the band [Fminf, Fmsup], and in that that the first radiating element and the second radiating element are adapted so that, at the hinge frequencies, these two elements involved in the radiation, the system comprises a third radiating element operating in the frequency band [Fbinf, Fbsup], the frequency Fbsup is for example greater than or equal to the frequency Fminf, and the frequency Fmsup is for example greater than or equal to the frequency Fhinf, the radiating elements are connected to a power supply network comprising an input and three outputs respectively connected to the first, second and third elements by three transmission lines, the supply network comprises at least one band-pass filter, a duplexer whose duplex gap corresponds to the filter band and a hybrid 3dB power divider.

L'antenne selon l'invention présente notamment les avantages suivants :

  • ○ Elle présente un gain supérieur aux systèmes antennaires connus, de même encombrement et couvrant la même bande de fréquences.
  • ○ Elle permet de disposer d'une antenne unique, à très large bande, couvrant sans discontinuité plus d'une décade, en particulier de 30 à 512 MHz, et ceci avec un rendement et un gain supérieur aux antennes connues ayant la même bande de fréquences de fonctionnement.
The antenna according to the invention has the following advantages:
  • ○ It has a higher gain than the known antenna systems, with the same size and covering the same frequency band.
  • ○ It allows to have a single antenna, very broad band, covering without discontinuity more than a decade, in particular from 30 to 512 MHz, and this with a yield and a gain higher than the known antennas having the same band of operating frequencies.

D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit d'un exemple de réalisation annexé des figures qui représentent :

  • ○ La figure 1 le schéma d'une antenne selon l'invention,
  • ○ La figure 2 le schéma synoptique et le principe de fonctionnement d'une telle antenne,
  • ○ Les figures 3a et 3b un exemple détaillé de réalisation d'antenne,
  • ○ La figure 4 un détail de réalisation du dispositif d'alimentation et de sa liaison avec l'antenne.
Other features and advantages of the present invention will appear better on reading the following description of an annexed embodiment of the figures which represent:
  • ○ The figure 1 the diagram of an antenna according to the invention,
  • ○ The figure 2 the synoptic diagram and the principle of operation of such an antenna,
  • ○ The Figures 3a and 3b a detailed example of antenna realization,
  • ○ The figure 4 a detail of embodiment of the supply device and its connection with the antenna.

La figure 1 représente un exemple d'antenne A installée sur un véhicule V. Cette antenne est constituée par exemple d'un élément rayonnant 1 qui se présente sous la forme d'un fouet, d'une embase 2 qui permet de fixer l'antenne sur le véhicule porteur et qui comporte usuellement un réseau d'alimentation permettant le transfert maximal de puissance de l'émetteur/récepteur vers l'ensemble rayonnant 1. Afin de protéger l'antenne des impacts accidentels contre des obstacles, un élément flexible 3 est intercalé à sa base. Cet élément flexible connu de l'Homme du métier ne sera pas détaillé pour des raisons de simplification.The figure 1 represents an example of antenna A installed on a vehicle V. This antenna consists for example of a radiating element 1 which is in the form of a whip, a base 2 which allows to fix the antenna on the carrier vehicle and which usually comprises a power supply network allowing maximum transfer of power from the transceiver to the radiator assembly 1. In order to protect the antenna accidental impacts against obstacles, a flexible element 3 is interposed at its base. This flexible element known to those skilled in the art will not be detailed for reasons of simplification.

La figure 2 présente le schéma synoptique et le principe de fonctionnement d'une antenne selon l'invention, fonctionnant dans la bande de 30 à 512 MHz. Les valeurs de cette bande sont données à titre illustratif et nullement limitatifs. L'antenne A comporte par exemple :

  • ○ Un ensemble rayonnant 1 constitué de deux dipôles colinéaires 11 et 12 et d'un monopôle 13,
  • ○ Un réseau d'alimentation 14 ayant une entrée 15 et trois sorties 16, 17, 18 qui sont connectées respectivement aux dipôles 11, 12 et au monopôle 13 par trois lignes de transmission respectivement 21, 22, 23.
The figure 2 presents the synoptic diagram and the operating principle of an antenna according to the invention, operating in the band of 30 to 512 MHz. The values of this band are given for illustrative purposes and in no way limitative. The antenna A comprises for example:
  • ○ A radiating assembly 1 consisting of two collinear dipoles 11 and 12 and a monopole 13,
  • A power supply network 14 having an input 15 and three outputs 16, 17, 18 which are respectively connected to the dipoles 11, 12 and the monopole 13 by three transmission lines respectively 21, 22, 23.

Le premier dipôle 11 placé au sommet de l'ensemble rayonnant 1 est conçu pour fonctionner dans la partie haute [Fhinf à Fhsup] de la bande utile, pour cet exemple de 200 à 512 MHz. Pour faciliter la compréhension de l'invention, le circuit d'adaptation et les artifices d'élargissement de bande passante connus de l'Homme du métier pour accorder ce dipôle dans la bande 200 à 512 MHz ne sont pas détaillés.The first dipole 11 placed at the top of the radiating assembly 1 is designed to operate in the upper part [Fhinf at Fhsup] of the useful band, for this example of 200 to 512 MHz. To facilitate understanding of the invention, the matching circuit and bandwidth widening devices known to those skilled in the art to grant this dipole in the band 200 to 512 MHz are not detailed.

Le deuxième dipôle 12 placé en dessous du premier dipôle 11, couvre la bande adjacente [Fminf à Fmsup] de 100 à 200 MHz. Pour la même raison, son circuit d'adaptation n'est pas décrit.The second dipole 12 placed below the first dipole 11, covers the adjacent band [Fminf to Fmsup] from 100 to 200 MHz. For the same reason, its adaptation circuit is not described.

Le monopole 13 situé dans la partie basse de l'antenne (en dessous des deux autres) assure le fonctionnement dans la bande basse [Fbinf à Fbsup] de 30 à 100 MHz. Le choix d'une structure de type monopôle peut être remplacé par une structure dipolaire. Le monopole permet notamment d'obtenir une taille d'antenne plus limitée.The monopole 13 located in the lower part of the antenna (below the other two) ensures operation in the low band [Fbinf Fbsup] from 30 to 100 MHz. The choice of a monopole type structure can be replaced by a dipolar structure. Monopoly makes it possible to obtain a more limited antenna size.

Le réseau d'alimentation 14 a notamment pour fonction de diriger :

  • ○ les signaux Sbh de la bande haute [Fhinf à Fhsup] provenant de l'entrée 15 vers la sortie 16 qui alimente l'élément rayonnant 11,
  • ○ les signaux Sbm de la bande moyenne [Fminf à Fmsup] provenant de l'entrée 15 vers la sortie 17 qui alimente l'élément rayonnant 12,
  • ○ les signaux Sbb de la bande basse [Fbinf à Fbsup] provenant de l'entrée 15 vers la sortie 18 qui alimente l'élément rayonnant 13.
The power network 14 has the particular function of directing:
  • ○ the signals Sbh of the high band [Fhinf to Fhsup] coming from the input 15 to the output 16 which supplies the radiating element 11,
  • ○ the signals Sbm of the average band [Fminf to Fmsup] coming from the input 15 to the output 17 which supplies the radiating element 12,
  • ○ the signals Sbb of the low band [Fbinf to Fbsup] coming from the input 15 to the output 18 which supplies the radiating element 13.

La taille de chaque élément rayonnant 11, 12 et 13 est par exemple dimensionnée de façon telle que :

  • ○ A la fréquence de recouvrement Fhinf, choisie égale ou sensiblement égale à Fmsup (pour l'exemple, fréquence de 200 MHz) entre la bande haute et la bande moyenne, le dipôle 11 présente un rayonnement de type demi onde alors que le dipôle 12 présente un rayonnement de type onde entière et en phase avec celui du dipôle 11. Cette mise en phase est obtenue par exemple dans l'exemple donné, en appariant radioélectriquement les longueurs des lignes de transmissions 21 et 22. La répartition de courant sur ces éléments rayonnants est représentée au schéma de la figure 2a.
  • ○ A la fréquence de recouvrement Fminf choisie égale ou sensiblement égale à Fbsup (pour l'exemple, fréquence de 100 MHz) entre la bande moyenne et la bande basse, le dipôle 12 présente un rayonnement de type demi-onde alors que le monopôle 13 présente un rayonnement de type onde entière et en phase avec celui du dipôle 12. Cette mise en phase est obtenue dans l'exemple donné en appairant radioélectriquement les longueurs des lignes de transmission 22 et 23. La répartition de courant sur ces éléments rayonnants est représentée au schéma de la figure 2b.
The size of each radiating element 11, 12 and 13 is for example dimensioned so that:
  • At the recovery frequency Fhinf, chosen equal to or substantially equal to Fmsup (for the example, frequency of 200 MHz) between the high band and the average band, the dipole 11 has a half-wave type of radiation while the dipole 12 has a radiation of the entire wave type and in phase with that of the dipole 11. This phasing is obtained for example in the example given, by radio-matching the lengths of the transmission lines 21 and 22. The current distribution on these elements radiating is represented in the diagram of the Figure 2a.
  • ○ At the recovery frequency Fminf chosen equal to or substantially equal to Fbsup (for the example, frequency of 100 MHz) between the medium band and the low band, the dipole 12 has a half-wave type of radiation while the monopole 13 has a radiation of the entire wave type and in phase with that of the dipole 12. This phasing is obtained in the example given by radioelectrically matching the lengths of the transmission lines 22 and 23. The current distribution on these radiating elements is represented to the scheme of the figure 2b .

Cette disposition permet ainsi à l'ensemble rayonnant 1 de fonctionner de la fréquence la plus basse Fbinf (dans l'exemple donné 30 MHz) jusqu'à la fréquence la plus haute Fhsup (dans cet exemple 512 MHz) sans qu'aux alentours des fréquences charnières (Fhinf, Fmsup) et (Fminf, Fbsup) le rayonnement soit perturbé interdisant ainsi l'utilisation de ces fréquences comme dans les antennes connues de l'art antérieur.This arrangement thus allows the radiating assembly 1 to operate from the lowest frequency Fbinf (in the example given at 30 MHz) to the highest frequency Fhsup (in this example 512 MHz) without hinge frequencies (Fhinf, Fmsup) and (Fminf, Fbsup) the radiation is disturbed thus prohibiting the use of these frequencies as in antennas known from the prior art.

La figure 3a représente un exemple de réalisation d'une antenne selon l'invention et la figure 3b une vue en coupe correspondante. Afin de mieux visualiser la constitution de l'antenne, des ouvertures sont aménagées expressément à la figure 3a dans certains éléments composant l'antenne. Dans cet exemple, les dipôles sont des dipôles à jupe, les références 11, 12, 13 de la figure 2 ayant été conservées pour des raisons de simplification.The figure 3a represents an embodiment of an antenna according to the invention and the figure 3b a corresponding sectional view. In order to better visualize the constitution of the antenna, openings are arranged expressly to the figure 3a in certain elements composing the antenna. In this example, the dipoles are skirt dipoles, the references 11, 12, 13 of the figure 2 having been kept for reasons of simplification.

L'antenne comporte un premier dipôle à jupe 11 situé dans sa partie supérieure, un deuxième dipôle à jupe 12 colinéaire ou sensiblement colinéaire au premier et un monopôle 13 placé à la partie inférieure de l'antenne.The antenna comprises a first skirt 11 dipole located in its upper part, a second skirt 12 dipole collinear or substantially colinear to the first and a monopole 13 placed at the bottom of the antenna.

Le dipôle à jupe 11 est constitué d'un premier élément rayonnant 11a, pouvant être réalisé à partir d'un tronçon tubulaire et d'un deuxième élément rayonnant 11b qui est réalisé à partir d'un élément tubulaire creux de longueur sensiblement identique à la longueur de l'élément 11a et dans lequel est enfilé le câble d'alimentation 21 de l'antenne. Ces deux éléments rayonnants sont alimentés au point 11c en connectant l'extrémité supérieure de l'âme 21a (Fig.3b) du câble coaxial d'alimentation 21 à la base de l'élément 11a et en raccordant le blindage 21b (Fig.3b) de ce câble 21 au pourtour de l'extrémité supérieure 11bs de l'élément 11b pour former ce qui est habituellement désigné une jupe. Afin d'optimiser le fonctionnement de l'antenne, un quadripôle d'adaptation d'impédance, non représenté pour des raisons de clarté de figure, peut être intercalé au niveau du point 11c.The skirted dipole 11 consists of a first radiating element 11a, which can be produced from a tubular section and a second radiating element 11b which is made from a hollow tubular element of length substantially identical to the length of the element 11a and wherein is fed the power cable 21 of the antenna. These two radiating elements are fed at point 11c by connecting the upper end of the core 21a ( Fig.3b ) of the coaxial supply cable 21 at the base of the element 11a and by connecting the shield 21b ( Fig.3b ) of this cable 21 at the periphery of the upper end 11bs of the element 11b to form what is usually referred to as a skirt. In order to optimize the operation of the antenna, an impedance matching quadrupole, not shown for the sake of clarity of figure, may be interposed at the point 11c.

La longueur des éléments rayonnants 11a et 11b est par exemple de l'ordre du quart de la longueur d'onde de la fréquence charnière Fhinf=Fmsup afin que le dipôle puisse rayonner en demi-onde à cette fréquence. Pour l'exemple donné, Fhinf=Fmsup = 200 MHz et la longueur théorique du quart d'onde en mètre est donnée par la relation connue 300/4F (Mhz) soit 0.375 mètre dans cet exemple, où F est le fréquence exprimée en MHz. Afin de tenir compte de l'effet de bord connu de l'Homme du métier, un facteur de raccourcissement de 0.8 est pris ici et la longueur effective des éléments 11a et 11b est de 0.375*0.8 = 0.3 mètre.The length of the radiating elements 11a and 11b is for example of the order of a quarter of the wavelength of the hinge frequency Fhinf = Fmsup so that the dipole can radiate half-wave at this frequency. For the given example, Fhinf = Fmsup = 200 MHz and the theoretical length of the quarter-wave in meters is given by the known relation 300 / 4F (Mhz) is 0.375 meters in this example, where F is the frequency expressed in MHz . In order to take into account the edge effect known to those skilled in the art, a shortening factor of 0.8 is taken here and the effective length of the elements 11a and 11b is 0.375 * 0.8 = 0.3 meter.

Le dipôle à jupe colinéaire 12 est par exemple composé d'une contre jupe ou jupe retournée 12a et d'une jupe 12b, qui constituent à eux deux, les deux éléments rayonnants du dipôle. Selon l'invention, la longueur de ces jupes est approximativement le double de celui du dipôle 11, soit dans cet exemple environ 0.6 mètre afin que ce dipôle rayonne en onde entière à la fréquence charnière Fhinf=Fmsup. Pour isoler radio-électriquement la contre jupe 12a du câble coaxial 21 qui la traverse, une jupe 12d ayant le rôle d'un dispositif d'isolation habituellement désigné par le mot « stub » est intercalée entre ces deux éléments. Le pourtour de l'extrémité supérieure 12ds de la jupe 12d est raccordé au blindage 21b, alors que son autre extrémité 12di est raccordée à la partie inférieure de la contre jupe 12a. L'alimentation de ce dipôle est réalisée au niveau 12c en connectant l'extrémité supérieure de l'âme 22a du câble coaxial d'alimentation 22 au bord inférieur du dispositif d'isolation ou « stub » 12d au point 12e et en raccordant le blindage 22b de ce câble 22 et le blindage 21b du câble 21 au pourtour de l'extrémité supérieure 12bs de la jupe 12b. Comme évoqué précédemment, il est possible d'utiliser un quadripôle d'adaptation d'impédance.The colinear skirt dipole 12 is for example composed of a skirt or inverted skirt 12a and a skirt 12b, which together constitute the two radiating elements of the dipole. According to the invention, the length of these skirts is approximately double that of the dipole 11, in this example about 0.6 meters so that this dipole radiates in full wave at the hinge frequency Fhinf = Fmsup. To electrically isolate the skirt 12a of the coaxial cable 21 which passes therethrough, a skirt 12d having the role of an insulation device usually designated by the word "stub" is interposed between these two elements. The periphery of the upper end 12ds of the skirt 12d is connected to the shield 21b, while its other end 12di is connected to the lower part of the skirt 12a. The supply of this dipole is carried out at level 12c in connecting the upper end of the core 22a of the coaxial supply cable 22 to the lower edge of the isolation device 12d at point 12e and connecting the shield 22b of this cable 22 and the shield 21b of the cable 21 around the upper end 12bs of the skirt 12b. As mentioned above, it is possible to use an impedance matching quadrupole.

Le monopôle 13 se présente par exemple sous la forme d'une contre jupe. Son extrémité inférieure 13i est raccordée sur son pourtour aux blindages 21b et 22b des câbles coaxiaux 21 et 22. Selon l'invention, la longueur de cette contre jupe est approximativement le double de celle des jupes du dipôle 12, soit environ 1.2 mètres dans cet exemple, afin que ce monopôle rayonne en onde entière à la fréquence charnière Fminf= Fbsup=100 MHz.The monopole 13 is for example in the form of a counter skirt. Its lower end 13i is connected on its periphery to the shields 21b and 22b of the coaxial cables 21 and 22. According to the invention, the length of this counter skirt is approximately twice that of the skirts of the dipole 12, ie about 1.2 meters in this case. example, so that this monopole radiates in full wave at the hinge frequency Fminf = Fbsup = 100 MHz.

Pour isoler radio-électriquement ce monopôle 13 du plan de masse M au-dessus duquel l'antenne est installée, les câbles 21 et 22 sont bobinés autour d'un noyau en matériau magnétique 24 connu, tel que de la ferrite, de la poudre de fer, etc. Ceci permet de constituer une self 25 dont l'impédance présentée dans la bande de fréquences [Fbinf à Fbsup], soit une impédance nettement supérieure à l'impédance propre du monopôle 13 dans la même bande de fréquences. L'alimentation de ce monopôle est réalisée en connectant l'extrémité supérieure de l'âme 23a du câble 23 à une des spires du bobinage 25 au point 26 déterminé pour obtenir la meilleure adaptation d'impédance dans la bande de fréquences [Fbinf à Fbsup].To radio-electrically isolate this monopole 13 of the ground plane M above which the antenna is installed, the cables 21 and 22 are wound around a core of known magnetic material 24, such as ferrite, powder iron, etc. This makes it possible to constitute a coil 25 whose impedance presented in the frequency band [Fbinf at Fbsup], is an impedance clearly greater than the own impedance of the monopole 13 in the same frequency band. The supply of this monopole is performed by connecting the upper end of the core 23a of the cable 23 to one of the turns of the winding 25 at the point 26 determined to obtain the best impedance matching in the frequency band [Fbinf at Fbsup ].

De manière usuelle, afin d'améliorer le découplage entre les éléments rayonnants 11, 12, 13, des dispositifs d'isolation jouant le rôle de self de choc, tel que des dispositifs à base de perles de ferrites, de tores ou de tubes de ferrite sont intercalés entre ces éléments.In the usual manner, in order to improve the decoupling between the radiating elements 11, 12, 13, insulation devices acting as a shock-inductor, such as devices based on ferrite beads, toroids or tubes of ferrite are interposed between these elements.

Au niveau du plan de masse M, les blindages 21b, 22b, 23b et la masse du réseau d'alimentation 14, sont raccordés à celui-ci par l'ensemble de connexion 30. Les extrémités inférieures des âmes des câbles coaxiaux 21, 22 et 23 sont connectées respectivement aux sorties 16, 17 et 18 du réseau d'alimentation 14 dont un exemple de réalisation est détaillé à la figure 4. Suivant cette figure, le signal radio-fréquence provenant de l'entrée 15 est divisé en deux par un hybride 27 vers les deux voies 27a et 27b. La première voie 27a est filtrée par un filtre passe-bande [Fminf - Fmsup] 28, pour l'exemple de réalisation [100MHz - 200MHz] et constitue après le filtrage la sortie 17. L'autre voie 27b est séparée par un duplexeur 29 en deux sous-bandes, l'une basse [Fbinf - Fbsup], soit [30MHz - 100MHz] pour l'exemple de réalisation et l'autre haute [Fhinf - Fhsup], soit [200MHz - 512MHz]. La sous-bande basse est reliée à la sortie 18 et la sous-bande haute est reliée à la sortie 16.At the ground plane M, the shields 21b, 22b, 23b and the ground of the supply network 14, are connected thereto by the connection assembly 30. The lower ends of the cores of the coaxial cables 21, 22 and 23 are respectively connected to the outputs 16, 17 and 18 of the supply network 14, an exemplary embodiment of which is detailed in FIG. figure 4 . According to this figure, the radio frequency signal from the input 15 is divided in two by a hybrid 27 to the two channels 27a and 27b. The first channel 27a is filtered by a bandpass filter [Fminf - Fmsup] 28, for the exemplary embodiment [100MHz - 200MHz] and constitutes after filtering the output 17. The other channel 27b is separated by a duplexer 29 into two sub-bands, one low [Fbinf - Fbsup] or [30MHz - 100MHz] for the exemplary embodiment and the other high [Fhinf - Fhsup], ie [200MHz - 512MHz]. The low sub-band is connected to the output 18 and the high sub-band is connected to the output 16.

L'exemple donné aux figures 1 à 4 s'applique aussi à une antenne large bande pouvant rayonner ou recevoir des signaux radio-fréquence dans une bande de fréquences [Fminf, Fhsup], comprenant deux éléments rayonnants sensiblement colinéaires (11, 12). L'élément rayonnant (11) fonctionne dans la bande de fréquences [Fhinf, Fhsup], l'élément rayonnant (12) fonctionne dans la bande [Fminf, Fmsup], et aux fréquences charnières entre ces deux éléments ils participent tous les deux au rayonnement.The example given to Figures 1 to 4 also applies to a broadband antenna capable of radiating or receiving radio frequency signals in a frequency band [Fminf, Fhsup], comprising two substantially collinear radiating elements (11, 12). The radiating element (11) operates in the frequency band [Fhinf, Fhsup], the radiating element (12) operates in the band [Fminf, Fmsup], and at the hinge frequencies between these two elements they both participate in the radiation.

La fréquence Fmsup est supérieure ou égale à la fréquence Fhinf.The frequency Fmsup is greater than or equal to the frequency Fhinf.

Claims (6)

  1. A wideband antenna system capable of radiating or receiving radio-frequency signals in a given frequency band, comprising at least two substantially collinear radiating elements (11, 12), characterised in that each of said two elements (11, 12) radiates in a frequency band, with said first radiating element (11) operating in the Fhinf to Fhsup frequency band, said second radiating element (12) operating in the Fminf to Fmsup band, and in that said first radiating element (11) and said second radiating element (12) are adapted so that at the hinge frequencies between two adjacent elements these two elements participate in the radiation, with said system comprising a third radiating element (13) operating in the Fbinf to Fbsup frequency band, with the frequency Fbsup being greater than or equal to the frequency Fminf, and the frequency Fmsup being greater than or equal to the frequency Fhinf, said radiating elements (11, 12, 13) being connected to a power supply network (14) comprising one input (15) and three outputs (16, 17, 18) respectively connected to said elements (11, 12, 13) by three transmission lines (21, 22, 23), said power supply network (14) comprising at least one band-pass filter (28), one duplexer (29), the duplex gap of which corresponds to the band of said filter (28), and a hybrid 3dB power splitter (27).
  2. The antenna system according to claim 1, characterised in that the lengths of said transmission lines (21, 22, 23) are selected so that the RF signals at the Fhinf to Fmsup frequencies feed said first and second radiating elements (11, 12) in phase, and in that the RF signals at the Fminf to Fbsup frequencies feed said second and said third radiating elements (12, 13) in phase.
  3. The antenna system according to claim 2, characterised in that at the Fhinf to Fmsup frequencies, said first radiating element (11) radiates in half waves.
  4. The antenna system according to claim 2, characterised in that at the Fminf to Fbsup frequencies, said second radiating element (12) radiates in half waves.
  5. The system according to claim 2, characterised in that said second element (12) radiates in full waves for Fhinf to Fmsup and said third element (13) radiates in full waves for Fminf to Fbsup.
  6. The system according to claim 1, characterised in that said first and second radiating elements (11, 12) are dipoles and said third radiating element (13) is a monopole.
EP05101169.0A 2004-02-27 2005-02-16 Ultra-wideband V-UHF antenna Active EP1569297B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05101169T PL1569297T3 (en) 2004-02-27 2005-02-16 Ultra-wideband V-UHF antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0402039A FR2866988B1 (en) 2004-02-27 2004-02-27 ANTENNA WITH VERY WIDE BAND V-UHF
FR0402039 2004-02-27

Publications (2)

Publication Number Publication Date
EP1569297A1 EP1569297A1 (en) 2005-08-31
EP1569297B1 true EP1569297B1 (en) 2013-12-25

Family

ID=34746463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05101169.0A Active EP1569297B1 (en) 2004-02-27 2005-02-16 Ultra-wideband V-UHF antenna

Country Status (5)

Country Link
US (1) US7183992B2 (en)
EP (1) EP1569297B1 (en)
ES (1) ES2446989T3 (en)
FR (1) FR2866988B1 (en)
PL (1) PL1569297T3 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878147B2 (en) * 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US7586453B2 (en) * 2006-12-19 2009-09-08 Bae Systems Information And Electronic Systems Integration Inc. Vehicular multiband antenna
US7969378B2 (en) * 2007-08-31 2011-06-28 Allen-Vanguard Technologies Inc. Radio antenna assembly
DE102009015699A1 (en) * 2008-10-30 2010-05-06 Rohde & Schwarz Gmbh & Co. Kg Broadband antenna
FR2944650B1 (en) * 2009-04-15 2012-10-05 Imra Europ Sas MULTI-SERVICE ANTENNA WITH ULTRA-WIDE BAND.
FR2944917B1 (en) * 2009-04-24 2012-07-13 Thales Sa LOW-PROFILE BROADBAND MULTIPLANE ANTENNA
CA2666896A1 (en) * 2009-05-27 2010-11-27 Valcom Manufacturing Group Inc. Multiple-band collinear dipole antenna
WO2012150924A1 (en) * 2011-05-02 2012-11-08 R.A. Miller Industries, Inc. Strengthening means for a dipole whip antenna
KR101309467B1 (en) * 2011-09-29 2013-09-23 삼성전기주식회사 Dipole antenna
EP2883278B1 (en) * 2012-08-07 2017-11-15 Comrod As Three band whip antenna
US9608336B1 (en) * 2015-08-25 2017-03-28 Edison Fong Radial-free collinear omni-directional triband half wavelength antenna with virtual ground, single coaxial cable feedpoint, and with minimal interaction of adjustment between bands
US10497240B2 (en) * 2017-05-23 2019-12-03 Sensormatic Electronics, LLC Systems and methods for providing a pedestal with collision damage protection
US10776595B2 (en) 2017-09-29 2020-09-15 Sensormatic Electronics, LLC Anti-theft pedestal suspension system
CN110429940B (en) * 2019-07-29 2024-07-09 中国电子科技集团公司第七研究所 Full-band electromagnetic spectrum monitoring system based on ultra-wideband antenna
US20230036345A1 (en) * 2021-07-30 2023-02-02 Src, Inc. Folded monopole antenna for use within an array
CN114284704A (en) * 2021-12-30 2022-04-05 上海鸿晔电子科技股份有限公司 Ultra-wideband antenna and communication system
CN115832707A (en) * 2022-12-16 2023-03-21 上海海积信息科技股份有限公司 Multi-frequency band antenna
CN117691351B (en) * 2024-02-01 2024-05-14 西南科技大学 Broadband filtering circularly polarized antenna loaded with serial configuration filtering strips

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2300429A1 (en) * 1975-02-07 1976-09-03 Thomson Csf GROUP
US4443803A (en) 1980-04-23 1984-04-17 The United States Of America As Represented By The Secretary Of The Army Lossy matching for broad bonding low profile small antennas
US4466003A (en) 1982-02-09 1984-08-14 The United States Of America As Represented By The Secretary Of The Navy Compact wideband multiple conductor monopole antenna
JPS61227405A (en) * 1985-04-01 1986-10-09 Harada Kogyo Kk On-vehicle three-wave shared antenna
US4958164A (en) 1986-04-09 1990-09-18 Shakespeare Company Low profile, broad band monopole antenna
DE3826777A1 (en) 1988-08-06 1990-02-08 Kathrein Werke Kg Axial two-band antenna
US6177911B1 (en) * 1996-02-20 2001-01-23 Matsushita Electric Industrial Co., Ltd. Mobile radio antenna
FR2758012B1 (en) 1996-12-27 1999-05-28 Thomson Csf DOUBLE ANTENNA, PARTICULARLY FOR VEHICLE
AU2001296876A1 (en) * 2000-09-15 2002-03-26 Raytheon Company Microelectromechanical phased array antenna
JP2002151949A (en) * 2000-11-13 2002-05-24 Samsung Yokohama Research Institute Co Ltd Mobile terminal
ITRE20010081A1 (en) * 2001-07-30 2003-01-30 Zendar Spa MULTI-FUNCTION ANTENNA FOR PAVILION, FOR VEHICLES
FR2837988B1 (en) * 2002-03-26 2008-06-20 Thales Sa VHF-UHF BI-BAND ANTENNA SYSTEM
US6963313B2 (en) * 2003-12-17 2005-11-08 Pctel Antenna Products Group, Inc. Dual band sleeve antenna
US7304613B2 (en) * 2004-06-21 2007-12-04 Motorola, Inc. Bowtie monopole antenna and communication device using same

Also Published As

Publication number Publication date
EP1569297A1 (en) 2005-08-31
ES2446989T3 (en) 2014-03-11
US20050253768A1 (en) 2005-11-17
FR2866988B1 (en) 2006-06-02
PL1569297T3 (en) 2014-05-30
US7183992B2 (en) 2007-02-27
FR2866988A1 (en) 2005-09-02

Similar Documents

Publication Publication Date Title
EP1569297B1 (en) Ultra-wideband V-UHF antenna
US6597316B2 (en) Spatial null steering microstrip antenna array
EP0520851B1 (en) Antenna combination for reception of signals from satellites and groundstations, particularly for the reception of digital audio broadcasting signals
US11355857B2 (en) Directable antenna system and method for improved communications quality
EP1349235B1 (en) VHF-UHF dual band antenna system
EP2422403B1 (en) Multiple wide band antenna with low profile
US7589684B2 (en) Vehicular multiband antenna
CN106876983A (en) Wireless Telecom Equipment and its dual-band antenna
EP1699108B1 (en) Antenna with switchable radiating planes and terminal comprising the same
CA2608787C (en) Wideband multifunction antenna operating in the hf range, particularly for naval installations
US11095043B2 (en) Electronically-controlled polarization of antenna arrays
EP2406854A1 (en) Vhf/uhf broadband dual channel antenna
EP3163677A1 (en) Umbilical antenna structure
CN115347372A (en) Dual-frequency circularly polarized common-aperture antenna with low-profile wide-beam characteristic
WO2009077529A2 (en) Very wide band active antenna for passive radar
EP2449629B1 (en) Omnidirectional, broadband compact antenna system comprising two highly decoupled separate transmission and reception access lines
McMichael et al. Horizon nulling helix antennas for GPS timing
EP1240683B1 (en) Method for decoupling antennae within a system of co-localized antennae, and corresponding sensor and application
EP2449623B1 (en) Modular band extension device for a very-wide-band omnidirectional antenna
WO2023031543A1 (en) Multiband antenna
Mayhew-Ridgers et al. Reducing cellular interference in the Karoo radio-astronomy reserve
WO2010070019A1 (en) Very wideband multidirectional antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060111

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005042230

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0005010000

Ipc: H01Q0005000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/10 20060101ALI20130802BHEP

Ipc: H01Q 5/00 20060101AFI20130802BHEP

Ipc: H01Q 9/22 20060101ALI20130802BHEP

Ipc: H01Q 21/30 20060101ALI20130802BHEP

INTG Intention to grant announced

Effective date: 20130911

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 647029

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005042230

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2446989

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140311

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 647029

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

BERE Be: lapsed

Owner name: THALES

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005042230

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005042230

Country of ref document: DE

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20180209

Year of fee payment: 14

Ref country code: GB

Payment date: 20180206

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180208

Year of fee payment: 14

Ref country code: PL

Payment date: 20180201

Year of fee payment: 14

Ref country code: IT

Payment date: 20180221

Year of fee payment: 14

Ref country code: SE

Payment date: 20180213

Year of fee payment: 14

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190217

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200204

Year of fee payment: 16

Ref country code: ES

Payment date: 20200302

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005042230

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 20