EP1565905B1 - Method and device for cooling ultrasonic transducers - Google Patents

Method and device for cooling ultrasonic transducers Download PDF

Info

Publication number
EP1565905B1
EP1565905B1 EP03767582A EP03767582A EP1565905B1 EP 1565905 B1 EP1565905 B1 EP 1565905B1 EP 03767582 A EP03767582 A EP 03767582A EP 03767582 A EP03767582 A EP 03767582A EP 1565905 B1 EP1565905 B1 EP 1565905B1
Authority
EP
European Patent Office
Prior art keywords
flow
cooling fluid
transducer
cooling
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03767582A
Other languages
German (de)
French (fr)
Other versions
EP1565905A2 (en
Inventor
Harald Hielscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Hielscher GmbH
Original Assignee
Dr Hielscher GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Hielscher GmbH filed Critical Dr Hielscher GmbH
Publication of EP1565905A2 publication Critical patent/EP1565905A2/en
Application granted granted Critical
Publication of EP1565905B1 publication Critical patent/EP1565905B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile

Definitions

  • the invention relates to a method and a device for cooling of ultrasonic transducers with the features mentioned in the preambles of claims 1 and 6.
  • a cooling system for a high-frequency ultrasound transducer is known, which is based on the principle of heat conduction.
  • a heat sink in the form of a heat sink.
  • the heat sink is in turn connected by means of a thermally conductive resin to a housing. The heat is first transferred from the converter into the heat sink and from there via the resin into the surrounding housing, where the heat is ultimately dissipated to the surrounding air.
  • This type of cooling is insufficient for high performance and not applicable for high amplitudes of several micrometers, because it is a high energy input into the resin.
  • WO 0008630 A1 an arrangement for heat dissipation, in particular for ultrasonic transducer high power known.
  • the heat dissipation is based on the combination of heat conduction and convection.
  • the surface of the transducer body is provided with a vibration-absorbing layer, which reduces the mechanical friction losses during heat transfer.
  • a layer of thermally conductive material Above it is a layer of thermally conductive material.
  • a cooling body is arranged, from which the heat can be dissipated by means of a coolant by convection.
  • the disadvantage of this arrangement is that the temperature gradients created by the layer transitions cause a reduction in the efficiency of heat dissipation.
  • the maximum possible common contact surface between the transducer and cooling device is limited to the transducer surface, whereby the continuous operation of high-power ultrasound transducers can be ensured only by supplying large amounts of coolant, resulting in a low cost of the process results.
  • this object is achieved by a method having the features mentioned in claim 1 and a device having the features mentioned in claim 6.
  • the inventive method for cooling of ultrasonic transducers is characterized in that the body of the ultrasonic transducer flows through a introduced under pressure cooling fluid and / or flows around. In this way, it is advantageously achieved that the heat generated in the transducers is dissipated directly by convection. No heat transfer via cooling elements is required. By flowing through the transducer body, a large common contact surface between transducers and coolant is realized. The achieved heat dissipation is much more effective than in the known methods, so that can be ensured with the inventive compositions of the continuous operation of ultrasonic transducers high performance.
  • the flow through the body of the ultrasonic transducer from the inside to the outside, wherein the liquid pressure is built up in the interior and the cooling liquid flows through the housing, or from the outside to the inside, wherein the pressure is built up in the outdoor area and the cooling liquid flows over the inner area, is realized.
  • the flow takes place in such a way that pressure is built up to prevent cavitation both in the interior and in the exterior, wherein a pressure gradient between the interior and exterior is required for the flow of the cooling liquid.
  • the body of the ultrasonic transducer is flowed around in the interior and / or in the outer area, since in this way heat is removed from the converter surface by convection.
  • the interior is in this case in particular the cavity between the tension rod and transducer body, the outside area, in particular the space between the transducer body and housing.
  • the cooling liquid is an electrically non-conductive liquid, as this electrical short circuits are avoided.
  • the pressure of the cooling liquid is dimensioned such that the cavitation is reducible or avoidable.
  • the pressure is preferably set in a range from 200 to 2000 kPa (2 to 20 bar). Particularly preferred 500 kPa (5 bar) are provided. This will be advantageous achieved that the risk of damage to the device is significantly reduced by cavitation and that an additional power input by cavitation generation is reduced or avoided.
  • At least one flow channel is slit-shaped, as a result, a large common contact surface between the converter body and the cooling liquid can be realized. This leads to a higher efficiency in heat dissipation.
  • the device comprises a arranged in a cavity of the at least two transducer body tension rod having at least two openings and at least one guide channel through which the introduced under pressure cooling liquid can be flowed.
  • the cooling liquid can be supplied via the at least one guide channel and can be discharged via the at least one throughflow channel. It is furthermore preferably provided that the cooling fluid can be supplied via the at least one flow channel and can be discharged via the at least one guide channel in the tension rod. In this way, a particularly easy-to-handle and realizable possibility of the flow through the transducer body from the inside to the outside or from the outside to the inside is given.
  • the device comprises a liquid-tight housing.
  • the housing serves on the one hand to protect the active elements of the transducer and also offers a particularly favorable possibility of receiving and guiding the coolant.
  • the device comprises a flange which is connected to the housing and / or a horn and / or an end mass. Through the flange a particularly easy to be realized mounting option of the housing is achieved. Furthermore, a particularly favorable possibility of connection with a sonotrode is given by the horn.
  • the device has at least one connection device for a coolant line, through which the cooling fluid can be discharged into the cavity of the transducer body and / or can be discharged from the cavity.
  • the device has at least one connection device for a coolant line, through which the cooling liquid in the at least one guide channel is flowable and / or discharged from the at least one guide channel.
  • the device has at least one connection device for a coolant line through which the coolant can flow into the housing and / or can be discharged from the housing.
  • At least one of the at least two transducer body is at least partially flowed around on the inner surface and / or at least partially on the outer surface of the cooling liquid.
  • the transducer bodies have no through-flow channels.
  • the converter bodies are merely flowed around, with the interior space being connected to the outside space by a connecting channel.
  • FIG. 1 is shown schematically the longitudinal section of an ultrasonic transducer with an embodiment of the device according to the invention for cooling the ultrasonic transducer.
  • the ultrasonic transducer is composed of cylindrical transducer bodies 5, 6, each having piezoelectric packages 4 arranged on the front side between two transducer bodies 5, 6, some of the transducer bodies 5, 6 being designed as common transducer bodies 6, on the front sides of which in each case a piezoelectric package 4 is arranged.
  • a piezo package 4 forms with one of the transducer body 5 and half of the common transducer body 6 or with each half of two common transducer body 6 a ⁇ / 2 oscillator.
  • the transducer bodies 5, 6 have flow-through channels 7 in the radial direction.
  • Transducer body 5, 6 and 4 piezo packages are alternately lined up on a tension rod 3 with end threads.
  • the tension rod 3 has a guide channel 13 for cooling liquid, wherein at one end of a connecting device for a coolant line 1 is attached, which forms the inlet 1 for the cooling liquid.
  • the tension rod has an outlet opening for the coolant flowing out of the guide channel into the cavity 11 of the transducer body.
  • the opposite end mass 10 is connected to a horn 8, which is the connection option with a sonotrode and serves to transmit the mechanical vibrations generated by the transducer.
  • the device is provided with a liquid-tight housing 12 for receiving the cooling liquid, which is connected to a flange 9, which offers a possibility for mounting in an external plant.
  • the flange 9 is connected to the horn 8.
  • the flange 9 has a connection device for a coolant line 2, which forms the outlet 2 for the cooling liquid from the housing 12.
  • the coolant line for the inlet 1 is guided through the housing 12.
  • the cooling liquid is introduced via the inlet 1 under pressure into the guide channel 13 of the tension rod 3. Via the guide channel 13, the cooling liquid is supplied to the cavity 11 of the transducer body, where the transducer body are flowed through by the cooling liquid to ultimately flow through the flow channels 7 of the transducer body 5, 6.
  • the heat generated by the transducers is transferred in this way directly by convection to the cooling liquid.
  • the exiting from the flow channels 7 cooling liquid is collected in the housing 12 and discharged via the outlet 2 from the device. In this way, a more effective cooling of the ultrasonic transducer is achieved than in the known methods. With the aid of the means according to the invention, the continuous operation of high-power ultrasonic transducers is also ensured.
  • circular holes can be attached to the ends of the flow channels.
  • the diameter of the bores is expediently greater than the width of the slots.
  • FIG. 2 shows schematically the longitudinal section of the structure of an ultrasonic transducer with a further embodiment of the device according to the invention for cooling the ultrasonic transducer, which substantially the in FIG. 1 shown corresponds.
  • two inlets 1 for the cooling liquid present which are each arranged radially and are guided from the outside through the housing 12 and the end masses 10 into the cavity 11 between the tension rod 3 and transducer body 5, 6.
  • the connection means 1 for the connection of the cooling liquid lines to the cavity 11 are thus arranged at the opposite ends of the transducer. In this way, the cooling liquid is introduced from the opposite ends under pressure into the cavity 11 and discharged through the flow channels 7. This results in a more uniform heat dissipation over the entire length of the device as in FIG. 1 , It is thus an even more effective cooling of the ultrasonic transducer as with in FIG. 1 achieved embodiment shown.
  • FIG. 3 shows a further embodiment of the invention, in which the transducer body 5, 6 have no flow channels 7.
  • the inner space 11 is connected to the outer space 14 via a connecting channel 15.
  • the cooling liquid is supplied via the inlet 1, passes through the guide channel 13 into the interior 11, flows around and cools the transducer body 5, 6, leaves the interior 11 via the connection channel 15 and is discharged via the exterior space 14 and the outlet 2 dissipated.
  • the inside of the transducer body 5, 6 is cooled.
  • it is possible in a second variant only to cool the outside of the transducer body 5, 6, 17 is supplied via the housing inlet 1a and a ring line 17 cooling liquid.
  • the over the housing inlet 1a supplied coolant is uniformly supplied and distributed through the ring line 17 and now flows around the outside of the converter 5, 6 or at least here forms a coolant film and is discharged via the outlet 2.
  • a gas pressure is generated in the present embodiment via the gas pressure port 6 in the housing 12, which is 6 bar in this embodiment.

Abstract

The cooling device has a cooling fluid which is under pressure passed through at least one flow channel (7) in each ultrasonic transducer block (6) obtained by combining at least 2 transducer bodies (5), the pressure of the cooling fluid selected for reducing or preventing cavitation.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Kühlung von Ultraschallwandlern mit den in den Oberbegriffen der Ansprüche 1 und 6 genannten Merkmalen.The invention relates to a method and a device for cooling of ultrasonic transducers with the features mentioned in the preambles of claims 1 and 6.

Bei dem Betrieb von Ultraschallwandlern treten Verlustleistungen in Form von Wärme auf. Die Ursache hierfür sind einerseits elektrische Verluste und darüber hinaus innere Reibungsverluste in den Piezoelementen, welche bei der Umwandlung der elektrischen Energie in mechanische Energie entstehen. Die Ableitung der dabei entstehenden Wärmemengen unter der Anwendung verschiedenartiger Wirkprinzipien ist allgemein bekannt. Die Funktionsweise der bekannten Kühlsysteme beruht auf den Prinzipien der Wärmeübertragung durch Wärmeleitung oder durch Konvektion. Meist wird eine Kombination beider Wirkprinzipien angewandt.In the operation of ultrasonic transducers, power losses occur in the form of heat. The cause for this are, on the one hand, electrical losses and, moreover, internal friction losses in the piezoelectric elements, which arise in the conversion of the electrical energy into mechanical energy. The derivation of the resulting amounts of heat under the application of different active principles is well known. The operation of the known cooling systems is based on the principles of heat transfer by conduction or by convection. Mostly a combination of both principles of action is used.

Die Schwierigkeit bei der Kühlung von Hochleistungsultraschallwandlern, welche naturgemäß große Schwingungsamplituden aufweisen, besteht darin, die entstehenden großen Wärmemengen ohne zusätzliche Belastung in Form von Reibung oder zusätzlicher Wärmeerzeugung abzuführen. Unter Anwendung der effektiveren Wärmeabführung durch Konvention ist dies bisher nur mit gasförmigen Medien möglich, da durch den Einsatz von Kühlflüssigkeiten ein hoher zusätzlicher Leistungseintrag durch Kavitation erfolgt, welcher zu Beschädigungen des Wandlers führen kann. Bei der Verwendung gasförmiger Kühlmittel sind große Gasmengen mit hohem Druck zur Kühlung erforderlich, wodurch dieses Kühlverfahren sehr unwirtschaftlich ist. Weiterhin muß das Kühlgas frei von festen oder flüssigen Verunreinigungen sein, damit insbesondere aufgrund der bei Hochleistungsultraschallwandlern auftretenden hohen Spannungen keine Kurzschlüsse durch Brückenbildungen entstehen.The difficulty in the cooling of high-power ultrasound transducers, which naturally have large vibration amplitudes, is to dissipate the resulting large amounts of heat without additional burden in the form of friction or additional heat generation. By applying the effective heat dissipation by convention, this is so far only possible with gaseous media, since the use of cooling liquids, a high additional power input by cavitation, which can lead to damage to the transducer. When using gaseous coolant large amounts of gas at high pressure for cooling are required, making this cooling process is very uneconomical. Furthermore, the cooling gas must be free of solid or liquid contaminants, so in particular Due to the high voltages occurring in high power ultrasound transducers, no short circuits due to bridge formation occur.

Aus EP 0553804 A2 ist ein Kühlsystem für einen Hochfrequenzultraschallwandler bekannt, welches auf dem Prinzip der Wärmeleitung beruht. Hinter dem Ultraschallwandler angeordnet befindet sich eine Wärmesenke in Form eines Kühlkörpers. Der Kühlkörper ist seinerseits mittels eines wärmeleitfähigen Harzes mit einem Gehäuse verbunden. Die Wärme wird zunächst vom Wandler in den Kühlkörper übertragen und von dort über das Harz in das umgebende Gehäuse, wo die Wärme letztlich an die umgebende Luft abgegeben wird. Diese Art der Kühlung ist für hohe Leistungen unzureichend und für hohe Amplituden von mehreren Mikrometern nicht anwendbar, weil dabei ein hoher Energieeintrag in das Harz erfolgt.Out EP 0553804 A2 For example, a cooling system for a high-frequency ultrasound transducer is known, which is based on the principle of heat conduction. Located behind the ultrasonic transducer is a heat sink in the form of a heat sink. The heat sink is in turn connected by means of a thermally conductive resin to a housing. The heat is first transferred from the converter into the heat sink and from there via the resin into the surrounding housing, where the heat is ultimately dissipated to the surrounding air. This type of cooling is insufficient for high performance and not applicable for high amplitudes of several micrometers, because it is a high energy input into the resin.

In vielen Fällen basiert die Funktionsweise von Kühlsystemen für Ultraschallwandler lediglich auf der Wärmeabfuhr durch die Öffnungen eines den Wandler umgebenden Gehäuses mittels Konvektion (z.B. SONOPULS HD 60, BANDELIN electronic GmbH & Co. KG). Auch diese Art der Kühlung ist für hohe Leistungen nicht ausreichend.In many cases, the operation of ultrasonic transducer cooling systems is based solely on heat removal through the openings of a housing surrounding the transducer by convection (e.g., SONOPULS HD 60, BANDELIN electronic GmbH & Co. KG). This type of cooling is not sufficient for high performance.

Weiterhin sind zahlreiche Varianten dieser Kühlungssysteme bekannt, bei welchen eine zusätzliche Kühlung durch Lüfter oder durch Pressluft erreicht wird z.B. WO 9959378 . Nachteilig bei dieser Art der Kühlung ist, dass Staub oder Feuchtigkeit verstärkt in das Gehäuse transportiert werden können, worin sich die Gefahr eines elektrischen Kurzschlusses durch Brückenbildung mittels elektrisch leitfähiger Verunreinigungen erhöht. Auch geschlossene Systeme mit Lüfter und Wärmeaustausch von innen nach außen sind bekannt, die jedoch gerätetechnisch aufwendig sind und ebenfalls nur eine begrenzte Wärmeabfuhr erlauben.Furthermore, numerous variants of these cooling systems are known in which additional cooling is achieved by fans or by compressed air, for example WO 9959378 , A disadvantage of this type of cooling is that dust or moisture can be increasingly transported into the housing, wherein the risk of electrical short circuit increases by bridge formation by means of electrically conductive impurities. Even closed systems with fans and heat exchange from the inside to the outside are known, but they are technically complicated and also allow only a limited heat dissipation.

Aus EP 0782125 A2 ist ferner eine Anordnung zur Kühlung eines hochfrequenten Ultraschallwandlers bekannt, bei welchem eine flüssigkeitsführende Wärmeleitröhre mit einem hinter dem Wandler angeordneten Kühlkörper verbunden ist. Die Kühlflüssigkeit wird über Zuleitungen zu- und abgeführt. Die Wärmeabfuhr von dem Kühlkörper erfolgt somit durch Konvektion. In einer speziellen Ausgestaltung dieses Kühlsystems ist die Wärmeleitröhre als Kanal ganz oder teilweise in das den Wandler umgebende Material eingeformt, um eine möglichst große Kontaktoberfläche zu realisieren. Die Kühlflüssigkeit durchströmt nicht den Schallwandler, sondern ein mit dem Schallwandler in Berührung befindliches Kühlsystem. Auch hier ist die Wärmeableitung für hohe Leistung unzureichend.Out EP 0782125 A2 Furthermore, an arrangement for cooling a high-frequency ultrasonic transducer is known in which a liquid-conducting heat pipe is connected to a heat sink arranged behind the converter. The cooling liquid is supplied and removed via supply lines. The heat dissipation from the heat sink is thus by convection. In a special embodiment of this cooling system, the heat conduction tube is formed as a channel completely or partially in the material surrounding the transducer in order to realize the largest possible contact surface. The cooling liquid does not flow through the sound transducer but rather through a cooling system in contact with the sound transducer. Again, the heat dissipation for high performance is insufficient.

Darüber hinaus ist aus WO 0008630 A1 eine Anordnung zur Wärmeableitung, insbesondere für Ultraschallwandler hoher Leistung bekannt. Die Wärmeabführung beruht auf der Kombination von Wärmeleitung und Konvektion. Hierbei ist die Oberfläche des Wandlerkörpers mit einer schwingungsabsorbierenden Schicht versehen, welche die mechanischen Reibungsverluste bei der Wärmeübertragung reduziert. Darüber befindet sich eine Schicht wärmeleitfähigen Materials. Auf dieser Schicht ist ein Kühlkörper angeordnet, von welchem die Wärme mittels eines Kühlmittels durch Konvektion abführbar ist. Der Nachteil dieser Anordnung besteht darin, dass die durch die Schichtübergänge entstehenden Temperaturgradienten eine Reduzierung des Wirkungsgrades bei der Wärmeabführung bewirken. Weiterhin ist die maximal mögliche gemeinsame Kontaktoberfläche zwischen Wandler und Kühleinrichtung auf die Wandleroberfläche beschränkt, wodurch der Dauerbetrieb von Ultraschallwandlern hoher Leistung nur unter Zufuhr großer Mengen an Kühlmittel gewährleistet werden kann, woraus eine geringe Wirtschaftlichkeit des Verfahrens resultiert.In addition, is off WO 0008630 A1 an arrangement for heat dissipation, in particular for ultrasonic transducer high power known. The heat dissipation is based on the combination of heat conduction and convection. Here, the surface of the transducer body is provided with a vibration-absorbing layer, which reduces the mechanical friction losses during heat transfer. Above it is a layer of thermally conductive material. On this layer, a cooling body is arranged, from which the heat can be dissipated by means of a coolant by convection. The disadvantage of this arrangement is that the temperature gradients created by the layer transitions cause a reduction in the efficiency of heat dissipation. Furthermore, the maximum possible common contact surface between the transducer and cooling device is limited to the transducer surface, whereby the continuous operation of high-power ultrasound transducers can be ensured only by supplying large amounts of coolant, resulting in a low cost of the process results.

Mit der US 5,936,163 schließlich wird ein Ultraschallwandler beschrieben, welcher in Hochtemperaturumgebung wie Reaktoren und Dampfleitungen zum Einsatz gelangt. Zur Abführung der aus der Umgebung in den Wandler eingetragenen Wärme wird der Körper des Ultraschallwandlers mittels eines zirkulierenden Kühlmediums gekühlt.With the US 5,936,163 Finally, an ultrasonic transducer is described, which is used in high-temperature environment such as reactors and steam lines used. For discharging the heat introduced from the environment into the transducer, the body of the ultrasonic transducer is cooled by means of a circulating cooling medium.

Der Nachteil aller bekannten Lösungen besteht darin, dass der Dauerbetrieb von Ultraschallwandlern bei hoher Leistung nicht oder nicht ohne großen Aufwand und/oder ohne eine Verschlechterung des Wirkungsgrades gewährleistet werden kann.The disadvantage of all known solutions is that the continuous operation of ultrasonic transducers at high power can not be guaranteed or not without great effort and / or without a deterioration of the efficiency.

Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Kühlung von Ultraschallwandlern zu schaffen, welche sich durch eine effektivere Wärmeabführung der durch Verlustleistungen entstandenen Wärme als bisher bekannt auszeichnen und somit auch den Dauerbetrieb von Ultraschallwandlern bei hoher Leistung zuverlässig und wirtschaftlich gewährleisten.The invention is based on the object to provide a method and a device for cooling of ultrasonic transducers, which are characterized by a more effective heat dissipation of heat generated by power losses than previously known and thus reliably and economically ensure the continuous operation of ultrasonic transducers at high power.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den in Anspruch 1 genannten Merkmalen und eine Vorrichtung mit den in Anspruch 6 genannten Merkmalen gelöst. Das erfindungsgemäße Verfahren zur Kühlung von Ultraschallwandlern zeichnet sich dadurch aus, dass der Körper des Ultraschallwandlers von einer unter Druck eingebrachten Kühlflüssigkeit durchströmt und/oder umströmt wird. Auf diese Weise wird vorteilhaft erreicht, dass die in den Wandlern erzeugte Wärme direkt durch Konvektion abgeführt wird. Es ist keine Wärmeleitung über Kühlelemente erforderlich. Durch das Durchströmen des Wandlerkörpers wird eine große gemeinsame Kontaktoberfläche zwischen Wandlern und Kühlflüssigkeit realisiert. Die erzielte Wärmeabführung ist wesentlich effektiver als bei den bekannten Verfahren, so dass mit den erfindungsgemäßen Mitteln der Dauerbetrieb von Ultraschallwandlern hoher Leistung gewährleistet werden kann.According to the invention this object is achieved by a method having the features mentioned in claim 1 and a device having the features mentioned in claim 6. The inventive method for cooling of ultrasonic transducers is characterized in that the body of the ultrasonic transducer flows through a introduced under pressure cooling fluid and / or flows around. In this way, it is advantageously achieved that the heat generated in the transducers is dissipated directly by convection. No heat transfer via cooling elements is required. By flowing through the transducer body, a large common contact surface between transducers and coolant is realized. The achieved heat dissipation is much more effective than in the known methods, so that can be ensured with the inventive compositions of the continuous operation of ultrasonic transducers high performance.

Im Rahmen des erfindungsgemäßen Verfahrens ist bevorzugt vorgesehen, dass der Druck der Kühlflüssigkeit derart dimensioniert ist, dass die Kavitation reduziert oder vermieden wird. Bevorzugt wird der Druck hierbei in einem Bereich von 200 bis 2000 kPa (2 bis 20 bar) eingestellt. Insbesondere bevorzugt sind 500 kPa (5 bar) vorgesehen. Hierdurch wird vorteilhaft erreicht, dass die Gefahr einer Beschädigung der Vorrichtung durch Kavitation signifikant reduziert wird und dass ein zusätzlicher Leistungseintrag durch Kavitationserzeugung vermindert oder vermieden wird.In the context of the method according to the invention, it is preferably provided that the pressure of the cooling liquid is dimensioned such that the cavitation is reduced or avoided. In this case, the pressure is preferably set in a range from 200 to 2000 kPa (2 to 20 bar). Particularly preferred 500 kPa (5 bar) are provided. This advantageously ensures that the risk of damage to the device is significantly reduced by cavitation and that an additional power input is reduced or avoided by cavitation.

Der Druck der Kühlflüssigkeit kann durch die Dimensionierung von Durchströmkanälen und/oder durch Gasdruck erzeugt werden.The pressure of the cooling liquid can be generated by the dimensioning of flow channels and / or by gas pressure.

Ferner ist im Rahmen des erfindungsgemäßen Verfahrens bevorzugt vorgesehen, dass die Durchströmung des Körpers des Ultraschallwandlers vom Innenbereich zum Außenbereich, wobei der Flüssigkeitsdruck im Innenbereich aufgebaut wird und die Kühlflüssigkeit über das Gehäuse abfließt, oder vom Außenbereich zum Innenbereich, wobei der Druck im Außenbereich aufgebaut wird und die Kühlflüssigkeit über den Innenbereich abfließt, realisiert wird. Auf diese Weise wird eine besonders effektive Abführung der Wärme von den Wandlern erzielt. Darüber hinaus ist insbesondere bevorzugt vorgesehen, dass die Durchströmung derart erfolgt, dass zur Kavitationsvermeidung sowohl im Innen- als auch im Außenbereich Druck aufgebaut wird, wobei ein Druckgradient zwischen Innen- und Außenbereich zum Strömen der Kühlflüssigkeit erforderlich ist.
Bevorzugt vorgesehen ist weiterhin, dass der Körper des Ultraschallwandlers im Innenbereich und/oder im Außenbereich umströmt wird, da hierdurch Wärme von der Wandleroberfläche durch Konvektion abgeführt wird.
Furthermore, it is preferably provided in the context of the method according to the invention that the flow through the body of the ultrasonic transducer from the inside to the outside, wherein the liquid pressure is built up in the interior and the cooling liquid flows through the housing, or from the outside to the inside, wherein the pressure is built up in the outdoor area and the cooling liquid flows over the inner area, is realized. In this way, a particularly effective dissipation of heat from the transducers is achieved. In addition, it is particularly preferably provided that the flow takes place in such a way that pressure is built up to prevent cavitation both in the interior and in the exterior, wherein a pressure gradient between the interior and exterior is required for the flow of the cooling liquid.
It is furthermore preferably provided that the body of the ultrasonic transducer is flowed around in the interior and / or in the outer area, since in this way heat is removed from the converter surface by convection.

Der Innenbereich ist hierbei insbesondere der Hohlraum zwischen Spannstab und Wandlerkörper, der Außenbereich, insbesondere der Raum zwischen Wandlerkörper und Gehäuse.The interior is in this case in particular the cavity between the tension rod and transducer body, the outside area, in particular the space between the transducer body and housing.

Weiterhin ist im Rahmen des erfindungsgemäßen Verfahrens bevorzugt vorgesehen, dass die Kühlflüssigkeit eine elektrisch nichtleitende Flüssigkeit ist, da hierdurch elektrische Kurzschlüsse vermieden werden.Furthermore, it is preferably provided in the context of the method according to the invention that the cooling liquid is an electrically non-conductive liquid, as this electrical short circuits are avoided.

Die erfindungsgemäße Vorrichtung zur Kühlung von Ultraschallwandlern zeichnet sich dadurch aus, dass die Vorrichtung aus mindestens einem Piezopaket und mindestens zwei zylindrischen Wandlerkörpern, die gemeinsam mit dem Piezopaket einen λ/2-Schwinger bilden, besteht, wobei bei Mehrfachanordnungen von Wandlern jeweils zwei Wandlerkörper zu einem gemeinsamen Wandlerkörper kombinierbar sind und wobei mindestens einer der mindestens zwei Wandlerkörper mindestens einen Durchströmkanal aufweist, durch welchen unter Druck eingebrachte Kühlflüssigkeit strömbar ist. Auf diese Weise wird vorteilhaft erreicht, dass die in den Wandlern erzeugte Wärme direkt durch Konvektion abführbar ist. Es ist keine Wärmeleitung über Kühlelemente erforderlich. Weiterhin lässt sich mit den erfindungsgemäßen Mitteln eine große gemeinsame Kontaktoberfläche zwischen Wandlern und Kühlflüssigkeit realisieren. Die erzielte Wärmeabführung ist wesentlich effektiver als bei den bekannten Verfahren, so dass mit den erfindungsgemäßen Mitteln der Dauerbetrieb von Ultraschallwandlern hoher Leistung gewährleistet werden kann.The inventive device for cooling ultrasonic transducers is characterized in that the device consists of at least one piezo package and at least two cylindrical transducer bodies, which together with the piezo packet form a λ / 2 oscillator, wherein in multiple arrangements of transducers each two transducer body to a common transducer body can be combined and wherein at least one of the at least two transducer body has at least one flow passage through which introduced under pressure cooling liquid can be flowed. In this way, it is advantageously achieved that the heat generated in the transducers can be dissipated directly by convection. No heat transfer via cooling elements is required. Furthermore, a large common contact surface between transducers and cooling liquid can be realized with the agents according to the invention. The achieved heat dissipation is much more effective than in the known methods, so that can be ensured with the inventive compositions of the continuous operation of ultrasonic transducers high performance.

In bevorzugter Ausgestaltung der Erfindung ist bevorzugt vorgesehen, dass der Druck der Kühlflüssigkeit derart dimensioniert ist, dass die Kavitation reduzierbar oder vermeidbar ist. Bevorzugt ist der Druck hierbei in einem Bereich von 200 bis 2000 kPa (2 bis 20 bar) eingestellt. Insbesondere bevorzugt sind 500 kPa (5 bar) vorgesehen. Hierdurch wird vorteilhaft erreicht, dass die Gefahr einer Beschädigung der Vorrichtung durch Kavitation signifikant reduziert wird und dass ein zusätzlicher Leistungseintrag durch Kavitationserzeugung vermindert oder vermieden wird.In a preferred embodiment of the invention it is preferably provided that the pressure of the cooling liquid is dimensioned such that the cavitation is reducible or avoidable. In this case, the pressure is preferably set in a range from 200 to 2000 kPa (2 to 20 bar). Particularly preferred 500 kPa (5 bar) are provided. This will be advantageous achieved that the risk of damage to the device is significantly reduced by cavitation and that an additional power input by cavitation generation is reduced or avoided.

Weiterhin ist in bevorzugter Ausgestaltung der Erfindung vorgesehen, dass mindestens ein Durchströmkanal schlitzförmig ausgebildet ist, da hierdurch eine große gemeinsame Kontaktoberfläche zwischen Wandlerkörper und Kühlflüssigkeit realisierbar ist. Dies führt zu einem höheren Wirkungsgrad bei der Wärmeabführung.Furthermore, it is provided in a preferred embodiment of the invention that at least one flow channel is slit-shaped, as a result, a large common contact surface between the converter body and the cooling liquid can be realized. This leads to a higher efficiency in heat dissipation.

In bevorzugter Ausgestaltung der Erfindung ist weiterhin vorgesehen, dass die Vorrichtung einen in einem Hohlraum der mindestens zwei Wandlerkörper angeordneten Spannstab mit mindestens zwei Öffnungen und mindestens einem Führungskanal umfasst, durch welchen die unter Druck eingebrachte Kühlflüssigkeit strömbar ist. Hierdurch wird eine besonders einfach zu realisierende und gleichmäßige Zuführungsmöglichkeit der Kühlflüssigkeit in den Hohlraum erzielt.In a preferred embodiment of the invention it is further provided that the device comprises a arranged in a cavity of the at least two transducer body tension rod having at least two openings and at least one guide channel through which the introduced under pressure cooling liquid can be flowed. As a result, a particularly easy to implement and uniform feeding possibility of the cooling liquid is achieved in the cavity.

Darüber hinaus ist in bevorzugter Ausgestaltung der Erfindung vorgesehen, dass die Kühlflüssigkeit über den mindestens einen Führungskanal zuführbar und über den mindestens einen Durchströmkanal abführbar ist. Bevorzugt vorgesehen ist weiterhin, dass die Kühlflüssigkeit über den mindestens einen Durchströmkanal zuführbar und über den mindestens einen Führungskanal im Spannstab abführbar ist. Auf diese Weise ist eine besonders einfach handhabbare und realisierbare Möglichkeit der Durchströmung der Wandlerkörper vom Innen- zum Außenbereich bzw. vom Außen- zum Innenbereich gegeben.In addition, in a preferred embodiment of the invention, it is provided that the cooling liquid can be supplied via the at least one guide channel and can be discharged via the at least one throughflow channel. It is furthermore preferably provided that the cooling fluid can be supplied via the at least one flow channel and can be discharged via the at least one guide channel in the tension rod. In this way, a particularly easy-to-handle and realizable possibility of the flow through the transducer body from the inside to the outside or from the outside to the inside is given.

Darüber hinaus ist in einer Ausgestaltung der Erfindung bevorzugt vorgesehen, dass die Vorrichtung ein flüssigkeitsdichtes Gehäuse umfasst. Das Gehäuse dient einerseits zum Schutz der aktiven Elemente des Wandlers und bietet weiterhin eine besonders günstige Möglichkeit der Aufnahme und Führung der Kühlflüssigkeit.In addition, it is preferably provided in one embodiment of the invention that the device comprises a liquid-tight housing. The housing serves on the one hand to protect the active elements of the transducer and also offers a particularly favorable possibility of receiving and guiding the coolant.

Darüber hinaus ist in bevorzugter Ausgestaltung der Erfindung vorgesehen, dass die Vorrichtung einen Flansch umfasst, welcher mit dem Gehäuse und/oder einen Horn und/oder einer Endmasse verbunden ist. Durch den Flansch wird eine besonders einfach zu realisierende Befestigungsmöglichkeit des Gehäuses erzielt. Weiterhin ist durch das Horn eine besonders günstige Verbindungsmöglichkeit mit einer Sonotrode gegeben.
In bevorzugter Ausgestaltung der Erfindung ist weiterhin vorgesehen, dass die Vorrichtung mindestens eine Anschlusseinrichtung für eine Kühlflüssigkeitsleitung aufweist, durch welche die Kühlflüssigkeit in den Hohlraum der Wandlerkörper strömbar und/oder aus dem Hohlraum abführbar ist. Durch diese Mittel wird eine besonders einfach handhabbare Anschlussmöglichkeit des Hohlraumes an eine Kühlflüssigkeitsversorgungseinrichtung und eine Versorgungsmöglichkeit des Hohlraums mit Kühlflüssigkeit realisiert.
Moreover, it is provided in a preferred embodiment of the invention that the device comprises a flange which is connected to the housing and / or a horn and / or an end mass. Through the flange a particularly easy to be realized mounting option of the housing is achieved. Furthermore, a particularly favorable possibility of connection with a sonotrode is given by the horn.
In a preferred embodiment of the invention, it is further provided that the device has at least one connection device for a coolant line, through which the cooling fluid can be discharged into the cavity of the transducer body and / or can be discharged from the cavity. By this means, a particularly easy to handle connection possibility of the cavity to a cooling liquid supply device and a supply possibility of the cavity with cooling liquid is realized.

In bevorzugter Ausgestaltung der Erfindung ist ferner vorgesehen, dass die Vorrichtung mindestens eine Anschlusseinrichtung für eine Kühlflüssigkeitsleitung aufweist, durch welche die Kühlflüssigkeit in den mindestens einen Führungskanal strömbar und/oder aus dem mindestens einen Führungskanal abführbar ist. Durch diese Mittel wird eine besonders einfach handhabbare Anschlussmöglichkeit des mindestens einen Führungskanals an eine Kühlflüssigkeitsversorgungseinrichtung und eine Versorgungsmöglichkeit des mindestens einen Führungskanals mit Kühlflüssigkeit realisiert.In a preferred embodiment of the invention it is further provided that the device has at least one connection device for a coolant line, through which the cooling liquid in the at least one guide channel is flowable and / or discharged from the at least one guide channel. By this means, a particularly easy to handle connection possibility of the at least one guide channel to a cooling liquid supply device and a supply possibility of the at least one guide channel with cooling liquid is realized.

Ferner ist in besonders bevorzugter Ausgestaltung der Erfindung vorgesehen, dass die Vorrichtung mindestens eine Anschlusseinrichtung für eine Kühlflüssigkeitsleitung aufweist, durch welche die Kühlflüssigkeit in das Gehäuse strömbar und/oder aus dem Gehäuse abführbar ist. Durch diese Mittel wird eine besonders einfach handhabbare Anschlussmöglichkeit des Gehäuses an eine Kühlflüssigkeitsversorgungseinrichtung und eine Versorgungsmöglichkeit des mindestens einen Führungskanals mit Kühlflüssigkeit realisiert.Furthermore, in a particularly preferred embodiment of the invention, it is provided that the device has at least one connection device for a coolant line through which the coolant can flow into the housing and / or can be discharged from the housing. By this means, a particularly easy to handle connection possibility of the housing to a cooling liquid supply device and a supply possibility of the at least one guide channel with cooling liquid is realized.

Schließlich ist in bevorzugter Ausgestaltung der Erfindung vorgesehen, dass mindestens einer der mindestens zwei Wandlerkörper zumindest teilweise an der Innenfläche und/oder zumindest teilweise an der Außenfläche von der Kühlflüssigkeit umströmbar ist. Hierdurch wird eine effektive Abführung der Wärme von den Wandlerkörpern durch Konvektion erzielt.Finally, it is provided in a preferred embodiment of the invention that at least one of the at least two transducer body is at least partially flowed around on the inner surface and / or at least partially on the outer surface of the cooling liquid. As a result, an effective dissipation of heat from the transducer bodies is achieved by convection.

In einer weiteren Ausführungsvariante der Erfindung weisen die Wandlerkörper keine Durchströmkanäle auf. Bei dieser Ausführungsvariante werden die Wandlerkörper lediglich umströmt, wobei der Innenraum mit dem Außenraum durch einen Verbindungskanal verbunden ist.In a further embodiment variant of the invention, the transducer bodies have no through-flow channels. In this embodiment variant, the converter bodies are merely flowed around, with the interior space being connected to the outside space by a connecting channel.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention will become apparent from the remaining, mentioned in the dependent claims characteristics.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Schnittdarstellung eines Ultraschallwandlers mit einer Vorrichtung zur Kühlung mit einem axial angeordneten Zulauf für Kühlflüssigkeit
Figur 2
eine schematische Schnittdarstellung eines Ultraschallwandlers mit einer Vorrichtung zur Kühlung mit zwei radial angeordneten Zuläufen für Kühlflüssigkeit
Figur 3
eine schematische Schnittdarstellung eines Ultraschallwandlers mit einer Vorrichtung zur Kühlung ohne Durchströmkanäle und mit Verbindungskanal.
The invention will be explained in more detail in embodiments with reference to the accompanying drawings. Show it:
FIG. 1
a schematic sectional view of an ultrasonic transducer with a device for cooling with an axially arranged inlet for cooling fluid
FIG. 2
a schematic sectional view of an ultrasonic transducer with a device for cooling with two radially arranged inlets for cooling fluid
FIG. 3
a schematic sectional view of an ultrasonic transducer with a device for cooling without flow channels and with connecting channel.

In Figur 1 ist schematisch der Längsschnitt eines Ultraschallwandlers mit einer Ausführung der erfindungsgemäßen Vorrichtung zur Kühlung des Ultraschallwandlers dargestellt. Der Ultraschallwandler ist aus zylindrischen Wandlerkörpern 5, 6 mit jeweils stirnseitig zwischen zwei Wandlerkörpern 5, 6 angeordneten Piezopaketen 4 aufgebaut, wobei einige der Wandlerkörper 5, 6 als gemeinsame Wandlerkörper 6 ausgeführt sind, an deren Stirnseiten jeweils ein Piezopaket 4 angeordnet ist. Jeweils ein Piezopaket 4 bildet mit einem der Wandlerkörper 5 und der Hälfte eines der gemeinsamen Wandlerkörper 6 oder mit jeweils der Hälfte zweier gemeinsamer Wandlerkörper 6 einen λ/2-Schwinger. Die Wandlerkörper 5, 6 weisen in radialer Richtung Durchströmkanäle 7 auf. Wandlerkörper 5, 6 und Piezopakete 4 sind wechselweise auf einen Spannstab 3 mit Endgewinden aufgereiht. Mit Hilfe zweier an gegenüberliegenden Enden des Spannstabes 3 angeordneter Endmassen 10 mit Gewinde, welche jeweils auf ein Endgewinde des Spannstabes 3 aufgeschraubt sind, wird die Anordnung fixiert und gespannt. Der Spannstab 3 weist einen Führungskanal 13 für Kühlflüssigkeit auf, wobei an dessen einem Ende eine Anschlussvorrichtung für eine Kühlflüssigkeitsleitung 1 angebracht ist, welche den Zulauf 1 für die Kühlflüssigkeit bildet. Der Spannstab weist Austrittsöffnung für die aus dem Führungskanal strömende Kühlflüssigkeit in den Hohlraum 11 der Wandlerkörper auf. Die gegenüberliegende Endmasse 10 ist mit einem Horn 8 verbunden, welches die Verbindungsmöglichkeit mit einer Sonotrode bietet und zur Übertragung der vom Wandler erzeugten mechanischen Schwingungen dient. Die Vorrichtung ist mit einem flüssigkeitsdichten Gehäuse 12 zur Aufnahme der Kühlflüssigkeit versehen, welches mit einem Flansch 9 verbunden ist, der eine Möglichkeit zur Montage in einer äußeren Anlage bietet. Der Flansch 9 ist mit dem Horn 8 verbunden. Der Flansch 9 weist eine Anschlusseinrichtung für eine Kühlflüssigkeitsleitung 2 auf, welche den Ablauf 2 für die Kühlflüssigkeit aus dem Gehäuse 12 bildet. Die Kühlflüssigkeitsleitung für den Zulauf 1 ist durch das Gehäuse 12 hindurch geführt. Die Kühlflüssigkeit wird über den Zulauf 1 unter Druck in den Führungskanal 13 des Spannstabes 3 eingebracht. Über den Führungskanal 13 wird die Kühlflüssigkeit dem Hohlraum 11 der Wandlerkörper zugeführt, wo die Wandlerkörper von der Kühlflüssigkeit durchströmt werden, um letztlich durch die Durchströmkanäle 7 der Wandlerkörper 5, 6 zu strömen. Die von den Wandlern erzeugte Wärme wird auf diese Weise direkt durch Konvektion auf die Kühlflüssigkeit übertragen. Die aus den Durchströmkanälen 7 austretende Kühlflüssigkeit wird in dem Gehäuse 12 aufgefangen und über den Ablauf 2 aus der Vorrichtung abgeführt. Auf diese Weise wird eine effektivere Kühlung des Ultraschallwandlers als bei den bekannten Verfahren erzielt. Mit Hilfe der erfindungsgemäßen Mittel wird auch der Dauerbetrieb von Ultraschallwandlern hoher Leistung gewährleistet.In FIG. 1 is shown schematically the longitudinal section of an ultrasonic transducer with an embodiment of the device according to the invention for cooling the ultrasonic transducer. The ultrasonic transducer is composed of cylindrical transducer bodies 5, 6, each having piezoelectric packages 4 arranged on the front side between two transducer bodies 5, 6, some of the transducer bodies 5, 6 being designed as common transducer bodies 6, on the front sides of which in each case a piezoelectric package 4 is arranged. In each case a piezo package 4 forms with one of the transducer body 5 and half of the common transducer body 6 or with each half of two common transducer body 6 a λ / 2 oscillator. The transducer bodies 5, 6 have flow-through channels 7 in the radial direction. Transducer body 5, 6 and 4 piezo packages are alternately lined up on a tension rod 3 with end threads. With the help of two arranged at opposite ends of the tension rod 3 end masses 10 with thread, which are each screwed onto a threaded end of the tension rod 3, the arrangement is fixed and tensioned. The tension rod 3 has a guide channel 13 for cooling liquid, wherein at one end of a connecting device for a coolant line 1 is attached, which forms the inlet 1 for the cooling liquid. The tension rod has an outlet opening for the coolant flowing out of the guide channel into the cavity 11 of the transducer body. The opposite end mass 10 is connected to a horn 8, which is the connection option with a sonotrode and serves to transmit the mechanical vibrations generated by the transducer. The device is provided with a liquid-tight housing 12 for receiving the cooling liquid, which is connected to a flange 9, which offers a possibility for mounting in an external plant. The flange 9 is connected to the horn 8. The flange 9 has a connection device for a coolant line 2, which forms the outlet 2 for the cooling liquid from the housing 12. The coolant line for the inlet 1 is guided through the housing 12. The cooling liquid is introduced via the inlet 1 under pressure into the guide channel 13 of the tension rod 3. Via the guide channel 13, the cooling liquid is supplied to the cavity 11 of the transducer body, where the transducer body are flowed through by the cooling liquid to ultimately flow through the flow channels 7 of the transducer body 5, 6. The heat generated by the transducers is transferred in this way directly by convection to the cooling liquid. The exiting from the flow channels 7 cooling liquid is collected in the housing 12 and discharged via the outlet 2 from the device. In this way, a more effective cooling of the ultrasonic transducer is achieved than in the known methods. With the aid of the means according to the invention, the continuous operation of high-power ultrasonic transducers is also ensured.

Zur Erhöhung der Lebensdauer der Wandlerkörper und/oder zur Realisierung einer effektiven Durchströmung der als Schlitze ausgebildeten Durchströmkanäle 7 können an den Enden der Durchströmkanäle 7 Öffnungen, zum Beispiel kreisförmige Bohrungen, angebracht werden. Der Durchmesser der Bohrungen ist zweckmäßigerweise größer als die Breite der Schlitze.To increase the service life of the transducer body and / or to realize an effective flow through the passage formed as slots 7 7 openings, for example, circular holes can be attached to the ends of the flow channels. The diameter of the bores is expediently greater than the width of the slots.

Figur 2 zeigt schematisch den Längsschnitt des Aufbaus eines Ultraschallwandlers mit einer weiteren Ausführung der erfindungsgemäßen Vorrichtung zur Kühlung des Ultraschallwandlers, welcher im wesentlichen dem in Figur 1 gezeigten entspricht. Im Unterschied zu dem Aufbau in Figur 1 sind zwei Zuläufe 1 für die Kühlflüssigkeit vorhanden, welche jeweils radial angeordnet und von außen durch das Gehäuse 12 und die Endmassen 10 hindurch in den Hohlraum 11 zwischen Spannstab 3 und Wandlerkörper 5, 6 geführt sind. Die Anschlusseinrichtungen 1 für den Anschluss der Kühlflüssigkeitsleitungen an den Hohlraum 11 sind somit an den gegenüberliegenden Enden des Wandlers angeordnet. Auf diese Weise wird die Kühlflüssigkeit von den gegenüberliegenden Enden aus unter Druck in den Hohlraum 11 eingebracht und durch die Durchströmkanäle 7 abgeleitet. Hierdurch ergibt sich vorteilhaft eine gleichmäßigere Wärmeabführung über die gesamte Länge der Vorrichtung als in Figur 1. Es wird somit eine noch effektivere Kühlung des Ultraschallwandlers als mit dem in Figur 1 dargestellten Ausführungsbeispiel erreicht. FIG. 2 shows schematically the longitudinal section of the structure of an ultrasonic transducer with a further embodiment of the device according to the invention for cooling the ultrasonic transducer, which substantially the in FIG. 1 shown corresponds. Unlike the build in FIG. 1 are two inlets 1 for the cooling liquid present, which are each arranged radially and are guided from the outside through the housing 12 and the end masses 10 into the cavity 11 between the tension rod 3 and transducer body 5, 6. The connection means 1 for the connection of the cooling liquid lines to the cavity 11 are thus arranged at the opposite ends of the transducer. In this way, the cooling liquid is introduced from the opposite ends under pressure into the cavity 11 and discharged through the flow channels 7. This results in a more uniform heat dissipation over the entire length of the device as in FIG. 1 , It is thus an even more effective cooling of the ultrasonic transducer as with in FIG. 1 achieved embodiment shown.

Figur 3 zeigt eine weitere Ausführungsvariante der Erfindung, bei welcher die Wandlerkörper 5, 6 keine Durchströmkanäle 7 aufweisen. Allerdings ist der Innenraum 11 mit dem Außenraum 14 über einen Verbindungskanal 15 verbunden. In einer ersten Variante wird die Kühlflüssigkeit über den Zulauf 1 zugeführt, gelangt über den Führungskanal 13 in den Innenraum 11, umströmt und kühlt die Wandlerkörper 5, 6, verlässt über den Verbindungskanal 15 den Innenraum 11 und wird über den Außenraum 14 und den Ablauf 2 abgeführt. Bei dieser Variante wird lediglich die Innenseite der Wandlerkörper 5, 6 gekühlt.
Alternativ ist es in einer zweiten Variante möglich, nur die Außenseite der Wandlerkörper 5, 6 zu kühlen, indem über den Gehäusezulauf 1a sowie eine Ringleitung 17 Kühlflüssigkeit zugeführt wird. Die über den Gehäusezulauf 1a zugeführte Kühlflüssigkeit wird über die Ringleitung 17 gleichmäßig zugeführt und verteilt und umströmt nun die Außenseite der Wandler 5, 6 oder bildet zumindest hier einen Kühlmittelfilm und wird über den Ablauf 2 abgeführt. In einer dritten Variante ist es möglich, sowohl die Innenseiten als auch die Außenseiten der Wandlerkörper 5, 6 zu kühlen, indem sowohl über den Zulauf 1 in den Innenraum 11 als auch über den Gehäusezulauf 1a in den Außenraum 14 Kühlmittel zugeführt wird.
Die Abführung des über den Zulauf 1 zur Kühlung der Innenseiten sowie des über den Gehäusezulauf 1a zur Kühlung der Außenseiten der Wandlerelemente 5, 6 zugeführten Kühlmittels erfolgt über den Ablauf 2.
Zur Vermeidung der Kavitation wird im vorliegenden Ausführungsbeispiel über den Gasdruckstutzen 6 im Gehäuse 12 ein Gasdruck erzeugt, welcher in diesem Ausführungsbeispiel 6 bar beträgt.
FIG. 3 shows a further embodiment of the invention, in which the transducer body 5, 6 have no flow channels 7. However, the inner space 11 is connected to the outer space 14 via a connecting channel 15. In a first variant, the cooling liquid is supplied via the inlet 1, passes through the guide channel 13 into the interior 11, flows around and cools the transducer body 5, 6, leaves the interior 11 via the connection channel 15 and is discharged via the exterior space 14 and the outlet 2 dissipated. In this variant, only the inside of the transducer body 5, 6 is cooled.
Alternatively, it is possible in a second variant, only to cool the outside of the transducer body 5, 6, 17 is supplied via the housing inlet 1a and a ring line 17 cooling liquid. The over the housing inlet 1a supplied coolant is uniformly supplied and distributed through the ring line 17 and now flows around the outside of the converter 5, 6 or at least here forms a coolant film and is discharged via the outlet 2. In a third variant, it is possible to cool both the inner sides and the outer sides of the transducer bodies 5, 6 by supplying coolant to the outer space 14 both via the inlet 1 into the inner space 11 and via the housing inlet 1a.
The discharge of the over the inlet 1 for cooling the inner sides and the over the housing inlet 1a for cooling the outer sides of the transducer elements 5, 6 supplied coolant via the flow of the second
To avoid cavitation, a gas pressure is generated in the present embodiment via the gas pressure port 6 in the housing 12, which is 6 bar in this embodiment.

Die Erfindung ist nicht beschränkt auf die hier dargestellte Ausführungsvariante. Vielmehr ist es möglich, durch Kombination der beschriebenen Mittel und Merkmale weiterer Ausführungsvarianten zu realisieren, ohne den Rahmen der Erfindung zu verlassen.The invention is not limited to the embodiment shown here. Rather, it is possible to realize by combining the described means and features of further embodiments without departing from the scope of the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Anschlusseinrichtung für Kühlflüssigkeitsleitungen, ZulaufConnection device for coolant lines, inlet
1a1a
Gehäusezulaufhousing supply
22
Anschlusseinrichtung für Kühlflüssigkeitsleitungen, AblaufConnection device for coolant lines, drain
33
Spannstabtie rod
44
Piezopaketpiezo package
55
Wandlerkörpertransducer body
66
gemeinsamer Wandlerkörpercommon transducer body
77
Durchströmkanalflow-through
88th
Hornhorn
99
Flanschflange
1010
Endmassefinal mass
1111
Hohlraum, InnenraumCavity, interior
1212
flüssigkeitsdichtes Gehäuseliquid-tight housing
1313
Führungskanalguide channel
1414
Außenraumouter space
1515
Verbindungskanalconnecting channel
1616
GasdruckstutzenGas discharge nozzle
1717
Ringleitungloop

Claims (10)

  1. Method for cooling ultrasonic transducers by removing heat generated by power losses, characterized in that
    - a cooling fluid flows through and/or around the body of the ultrasonic transducer,
    - a pressure is generated in the cooling fluid is adjusted in a range from 200 to 2000 kPa, wherein the pressure is dimensioned so as to reduce or prevent cavitations, and
    - the pressure is generated by dimensioning the flow-through channels and/or by a gas pressure.
  2. Method according to claim 1, characterized in that the pressure of the cooling fluid is preferably 500 kPa.
  3. Method according to claim 1 or 2, characterized in that the cooling fluid flows through the body of the ultrasonic transducer from the interior region to the exterior region or from the exterior region to the interior region.
  4. Method according to one of the claims 1 to 3, characterized in that cooling fluid flows around the interior region and/or the exterior region of the body of the ultrasonic transducer.
  5. Method according to one of the claims 1 to 4, characterized in that the cooling fluid is an electrically non-conducting fluid.
  6. Device for cooling ultrasonic transducers, comprising at least one piezo stack (4) and at least two cylindrical transducer bodies (5), which together with the piezo stack (4) form a λ/2 oscillator, wherein two corresponding transducer bodies can be combined as multiple transducer arrangements to form a unitary transducer body (6), characterized in that the transducer bodies (5, 6) are surrounded by an interior space (11) and an exterior space (14), and that at least one of the at least two transducer bodies (5,6) includes at least one flow-through channel (7), through which a cooling fluid introduced under pressure can flow, and/or that at least one connecting channel (15) is arranged between the interior space (11) and the exterior space (14), wherein the pressure is dimensioned so as to reduce or prevent cavitations, and that the pressure is adjusted in a range from 200 to 2000 kPa , and preferably is 500 kPa .
  7. Device according to claim 6, characterized in that at least one flow-through channel (7) is formed as a slit and that the device comprises a tensioning rod (3) arranged in a hollow space (11) formed by at least two transducer bodies (5, 6) and having at least one opening and at least one guide channel (13), through which the cooling fluid introduced under pressure can flow, and that the cooling fluid can be supplied through the at least one guide channel (13) and removed through the at least one flow-through channel (7), and that the cooling fluid can be supplied through the at least one flow-through channel (7) and removed through the at least one guide channel (13) disposed in the tensioning rod (3).
  8. Device according to one of the claims 6 to 8, characterized in that the device includes a fluid-tight housing (12) and a flange, which is connected with the housing (12) and with a horn (8), and that the device includes at least one corresponding connection (1, 2) for a cooling liquid line through which the cooling liquid can flow into the hollow space (11) and/or be removed from the hollow space (11), or that the device includes at least one corresponding connection (1, 2) for a cooling fluid line, through which the cooling fluid can flow into the at least one guide channel (13) and/or be removed from the at least one guide channel (13), or that the device includes at least one corresponding connection (1a,2) for a cooling fluid line, through which the cooling fluid can flow into the housing (12) and/or be removed from the housing (12).
  9. Device according to one of the claims 6 to 8, characterized in that the cooling fluid can flow at least around a portion of the inner surface and/or at least around a portion of the outer surface of at least one of the at least two transducer bodies (5, 6).
  10. Device according to one of the claims 6 to 9, characterized in that openings are disposed on the ends of the flow-through channels (7), which openings have a diameter that is greater than the width of the flow-through channels (7).
EP03767582A 2002-11-20 2003-11-19 Method and device for cooling ultrasonic transducers Expired - Lifetime EP1565905B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10254894A DE10254894B3 (en) 2002-11-20 2002-11-20 Cooling device for ultrasonic transducers has cooling fluid passed through flow channels at defined pressure for reducing or preventing cavitation
DE10254894 2002-11-20
PCT/EP2003/013003 WO2004047073A2 (en) 2002-11-20 2003-11-19 Method and device for cooling ultrasonic transducers

Publications (2)

Publication Number Publication Date
EP1565905A2 EP1565905A2 (en) 2005-08-24
EP1565905B1 true EP1565905B1 (en) 2011-10-05

Family

ID=32185938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767582A Expired - Lifetime EP1565905B1 (en) 2002-11-20 2003-11-19 Method and device for cooling ultrasonic transducers

Country Status (9)

Country Link
US (1) US8004158B2 (en)
EP (1) EP1565905B1 (en)
JP (1) JP4739759B2 (en)
KR (1) KR101248716B1 (en)
CN (1) CN1739137A (en)
AT (1) ATE527651T1 (en)
AU (1) AU2003292052A1 (en)
DE (1) DE10254894B3 (en)
WO (1) WO2004047073A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254894B3 (en) * 2002-11-20 2004-05-27 Dr. Hielscher Gmbh Cooling device for ultrasonic transducers has cooling fluid passed through flow channels at defined pressure for reducing or preventing cavitation
EP1868182A1 (en) * 2006-06-14 2007-12-19 Telsonic Holding AG Ultrasonic generator with cooling-fluid, a welding system, and a method for operating an ultrasonic generator
US8475375B2 (en) * 2006-12-15 2013-07-02 General Electric Company System and method for actively cooling an ultrasound probe
US7879200B2 (en) * 2007-07-05 2011-02-01 Nevada Heat Treating, Inc. Ultrasonic transducer and horn used in oxidative desulfurization of fossil fuels
US7790002B2 (en) * 2007-07-05 2010-09-07 Nevada Heat Treating, Inc. Ultrasonic transducer and horn used in oxidative desulfurization of fossil fuels
FR2929040B1 (en) * 2008-03-18 2010-04-23 Super Sonic Imagine INSONIFYING DEVICE HAVING AN INTERNAL COOLING CHAMBER
US20100191113A1 (en) * 2009-01-28 2010-07-29 General Electric Company Systems and methods for ultrasound imaging with reduced thermal dose
RU2452872C2 (en) 2010-07-15 2012-06-10 Андрей Леонидович Кузнецов Piezoelectric pump
WO2013150071A2 (en) * 2012-04-03 2013-10-10 Siemens Aktiengesellschaft Cooling device
DE102012014892A1 (en) 2012-07-27 2014-01-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Actuator and method for reheating a Festkörperaktors housed in an actuator with an actuator
WO2015110955A1 (en) * 2014-01-21 2015-07-30 Promedica Bioelectronics S.R.L. Device for ultrasound tests
WO2015152752A1 (en) * 2014-03-31 2015-10-08 Общество С Ограниченной Ответственностью "Рэнк" Device for generating mechanical vibrations
CN104148270A (en) * 2014-08-05 2014-11-19 曹学良 Energy converter connecting mode suitable for anti-explosion environment
CN106139426A (en) * 2015-04-16 2016-11-23 金相植 There is ultrasonic operation handpiece and the device of liquid-cooling system
US11039814B2 (en) 2016-12-04 2021-06-22 Exo Imaging, Inc. Imaging devices having piezoelectric transducers
RU2667476C2 (en) * 2016-12-05 2018-09-20 Общество с Ограниченной Ответственностью "РЭНК" ООО "РЭНК" Stepper piezoelectric motor
CN108333574B (en) * 2017-12-22 2022-09-06 中国船舶重工集团公司第七一五研究所 Underwater acoustic transducer covered by special space
US10648852B2 (en) 2018-04-11 2020-05-12 Exo Imaging Inc. Imaging devices having piezoelectric transceivers
US10656007B2 (en) 2018-04-11 2020-05-19 Exo Imaging Inc. Asymmetrical ultrasound transducer array
CN109513598B (en) * 2018-12-28 2023-09-19 深圳先进技术研究院 Backing structure, manufacturing method of backing structure and ultrasonic transducer
CN110479687B (en) * 2019-08-01 2022-04-15 合肥国轩高科动力能源有限公司 Ultrasonic cleaning device for power battery aluminum shell
TWI793447B (en) 2019-09-12 2023-02-21 美商艾克索影像股份有限公司 Increased mut coupling efficiency and bandwidth via edge groove, virtual pivots, and free boundaries
CA3153080A1 (en) 2019-10-10 2021-04-15 Sunnybrook Research Institute Systems and methods for cooling ultrasound transducers and ultrasound transducer arrays
CN111111583A (en) * 2019-12-17 2020-05-08 湖州师范学院 Multi-ultrasonic coupling reinforced high-viscosity organic waste pyrolysis carbonization device
WO2021178057A1 (en) 2020-03-05 2021-09-10 Exo Imaging, Inc. Ultrasonic imaging device with programmable anatomy and flow imaging
CN112370595B (en) * 2020-11-13 2023-04-14 武汉盛大康成医药科技有限公司 Multifunctional debridement instrument
US11819881B2 (en) 2021-03-31 2023-11-21 Exo Imaging, Inc. Imaging devices having piezoelectric transceivers with harmonic characteristics
US11951512B2 (en) 2021-03-31 2024-04-09 Exo Imaging, Inc. Imaging devices having piezoelectric transceivers with harmonic characteristics
DE102021123704A1 (en) 2021-09-14 2023-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein ULTRASOUND TRANSDUCER, METHOD OF MANUFACTURE OF ULTRASOUND TRANSDUCER AND DEVICE FOR MEDICAL THERAPY WITH HIGH INTENSITY FOCUSED ULTRASOUND

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2917642A (en) * 1955-02-21 1959-12-15 Wright Pressure-responsive transducer
US3104335A (en) * 1959-09-15 1963-09-17 Endevco Corp Accelerometer
AT215704B (en) * 1959-10-02 1961-06-26 Hans Dipl Ing Dr Techn List Piezoelectric pressure transmitter
US3555297A (en) * 1969-10-13 1971-01-12 Eastman Kodak Co Cooled ultrasonic transducer
CA933276A (en) * 1971-02-05 1973-09-04 J. Last Anthony Ultrasonic motor
US3694675A (en) * 1971-02-25 1972-09-26 Eastman Kodak Co Cooled ultrasonic transducer
GB2137316A (en) * 1983-03-31 1984-10-03 Paul Fuller Valve apparatus
JPS60104762A (en) * 1983-11-10 1985-06-10 Nippon Soken Inc Electro-distorsion actuator and fuel injection valve
DE4026458A1 (en) * 1990-08-17 1992-02-20 Mannesmann Ag US TEST DEVICE
FR2665844B1 (en) * 1990-08-20 1996-02-09 Cogema TREATMENT OF AGGLOMERATES OF SOLID PARTICLES SUSPENDED IN A LIQUID IN ORDER TO OBTAIN A CIRCULATING MIXTURE WITHOUT DEPOSITS.
JPH04181041A (en) * 1990-11-16 1992-06-29 Toyota Motor Corp Vibration reduction device for vehicle
US5213103A (en) * 1992-01-31 1993-05-25 Acoustic Imaging Technologies Corp. Apparatus for and method of cooling ultrasonic medical transducers by conductive heat transfer
US5371429A (en) * 1993-09-28 1994-12-06 Misonix, Inc. Electromechanical transducer device
US5560362A (en) * 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
US5630420A (en) * 1995-09-29 1997-05-20 Ethicon Endo-Surgery, Inc. Ultrasonic instrument for surgical applications
US5721463A (en) * 1995-12-29 1998-02-24 General Electric Company Method and apparatus for transferring heat from transducer array of ultrasonic probe
US5961465A (en) 1998-02-10 1999-10-05 Hewlett-Packard Company Ultrasound signal processing electronics with active cooling
US5955823A (en) 1998-05-12 1999-09-21 Ultra Sonus Ab High power ultrasonic transducer
US5936163A (en) * 1998-05-13 1999-08-10 Greathouse; John D. Portable high temperature ultrasonic testing (UT) piezo probe with cooling apparatus
DE19836229C1 (en) 1998-08-04 2000-03-23 Hielscher Gmbh Arrangement for heat dissipation, especially for high-power ultrasonic transducers
DE19837262A1 (en) 1998-08-17 2000-03-09 Kari Richter Combined ultrasound and X-ray device for breast examination; has maximum ultrasonic coupling liquid depth at ultrasonic transducer height, where liquid may be remove for X-ray investigation
DE10027264C5 (en) * 2000-05-31 2004-10-28 Dr. Hielscher Gmbh ultrasound transducer
DE10254894B3 (en) * 2002-11-20 2004-05-27 Dr. Hielscher Gmbh Cooling device for ultrasonic transducers has cooling fluid passed through flow channels at defined pressure for reducing or preventing cavitation

Also Published As

Publication number Publication date
WO2004047073A3 (en) 2004-09-10
KR20050075035A (en) 2005-07-19
AU2003292052A1 (en) 2004-06-15
DE10254894B3 (en) 2004-05-27
US20060126884A1 (en) 2006-06-15
WO2004047073A2 (en) 2004-06-03
JP4739759B2 (en) 2011-08-03
CN1739137A (en) 2006-02-22
KR101248716B1 (en) 2013-03-28
ATE527651T1 (en) 2011-10-15
US8004158B2 (en) 2011-08-23
JP2006506633A (en) 2006-02-23
EP1565905A2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
EP1565905B1 (en) Method and device for cooling ultrasonic transducers
EP1398511B1 (en) Local cooling system
DE112007000829B4 (en) Arrangement of inverter and radiator and their use
DE102005002897B4 (en) Liquid-cooled electrical machine with cast housing
DE102018101640B4 (en) Electric drive device
DE3403429C2 (en)
EP2454456A1 (en) Thermoelectric device comprising tube bundles
DE102006014305B4 (en) Cooling device for the arrangement between two surface coils of a gradient coil, gradient coil comprising such a cooling device and method for He setting of such a gradient coil
WO2008083838A1 (en) Semiconductor module for connecting to a transformer winding, and transformer arrangement
WO2017036757A1 (en) Tool holder
EP1859436B1 (en) Rod-shaped ultrasonic resonator for producing ultrasound in liquids
EP2815638B1 (en) Cooling device
EP1653592A2 (en) Drive for machine tools
EP2847464B1 (en) Device and arrangement for production of an air flow
WO2021198477A1 (en) Device for curing a pipeline lining
DE102007032496B3 (en) Apparatus for generating a plasma jet
EP2562485B1 (en) Media heater
DE102012219943A1 (en) Cooling device for electromotor, has cooling jacket surrounding stator, and cooling jacket surrounding resiliently deformable annular plates whose inner diameters are smaller than outer diameter of cooling jacket in relaxed state
EP3593078B1 (en) Cooling device
WO2009015956A1 (en) Fluid pump
DE102017205701B4 (en) High-voltage storage
DE10151992B4 (en) Cooling element for use in oscillating systems
EP0548021B1 (en) Cooling apparatus
EP2112745A1 (en) Method for cooling an electric conductor
EP2174014A1 (en) Method for withdrawing heat from components of a fluid pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050620

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20091005

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313990

Country of ref document: DE

Effective date: 20111208

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: DR. HIELSCHER G.M.B.H.

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

26N No opposition filed

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313990

Country of ref document: DE

Effective date: 20120601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 527651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181219

Year of fee payment: 16

Ref country code: FR

Payment date: 20181227

Year of fee payment: 16

Ref country code: CH

Payment date: 20181219

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191119

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130