EP1565588A1 - Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles - Google Patents

Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles

Info

Publication number
EP1565588A1
EP1565588A1 EP03767465A EP03767465A EP1565588A1 EP 1565588 A1 EP1565588 A1 EP 1565588A1 EP 03767465 A EP03767465 A EP 03767465A EP 03767465 A EP03767465 A EP 03767465A EP 1565588 A1 EP1565588 A1 EP 1565588A1
Authority
EP
European Patent Office
Prior art keywords
steel alloy
air
motor vehicles
thick
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03767465A
Other languages
German (de)
French (fr)
Other versions
EP1565588B1 (en
Inventor
Thomas SÄUBERLICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Stahl Rohr GmbH
Original Assignee
Benteler Stahl Rohr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Stahl Rohr GmbH filed Critical Benteler Stahl Rohr GmbH
Publication of EP1565588A1 publication Critical patent/EP1565588A1/en
Application granted granted Critical
Publication of EP1565588B1 publication Critical patent/EP1565588B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Definitions

  • Torque-transmitting components in motor vehicles are generally made from solid material.
  • drive shafts which transmit the engine power to the wheels of a motor vehicle
  • torques of up to 2000 numbers are generated.
  • drive shafts can be easily excited to vibrate.
  • Solid material drive shafts are relatively inexpensive to manufacture, but they have a very low first natural bending frequency and a high weight, which is considered to be particularly disadvantageous.
  • Hollow-drilled shafts are known for reducing weight. The choice of materials is problematic since the aim is to use alternative materials of sufficient strength that are as cost-effective as possible.
  • Chassis stabilizers in tubular construction are also known, although the material utilization has to be increased to a level of tension which is unprecedented in the automotive industry and, compared to tubular stabilizers made of solid material, to a 40% higher level. Weight advantages in the double-digit percentage range can be achieved.
  • Tubes for hollow shafts are usually made from hardenable tempered steels, e.g. 34 MnB5.
  • Such pipes according to DIN 2393 or DIN 2394 are usually formed by round kneading in the normal or soft annealed condition. This is followed by a heat treatment (water treatment). Finally, the finishing is done.
  • the system concept for pipes made in this way from water-hardenable tempering steels with the process steps hardening, water quenching, tempering, is relatively complex and therefore prone to failure.
  • the water quenching that follows hardening also has the disadvantage that very high residual stresses are induced, which can lead to a delay in the hardness of the workpiece.
  • the object of the invention is to disclose a steel alloy for use as a material for the production of thick-walled pipe components for motor vehicles, which enables higher strength, better deformability and simplified heat treatment in comparison to previously used materials, in order to simplify thick-walled pipe components in this way and to be able to manufacture more cheaply.
  • the use of the proposed steel alloy is particularly suitable for achieving the desired component strength due to the much simpler heat treatment, and overall fulfills the requirements mentioned in the task.
  • the steel alloy described is based on an alloy concept that enables air hardening or air conditioning. A water quench that was previously required is no longer available. Air cooling of the thick-walled pipe components after hardening, in contrast to water quenching, leads to less high internal stress within the pipe components, so that it may even be possible to do without the subsequent tempering of the workpieces that was previously required. With suitable temperature control, subsequent straightening and machining processes can be largely restricted. The degree of scaling is also significantly lower with air-hardened or air-tempered pipe components than with water quenching. Scaling can even be avoided entirely under a protective gas atmosphere.
  • the pipe components manufactured using the claimed steel alloy also have better fatigue strength than comparable pipe components made of other steel alloys. Furthermore, due to the lower carbon content, better ductility is possible, e.g. by kneading in the soft annealed condition.
  • vanadium (carbo) nitrides which have extremely positive properties on the steel alloy used and for the have use of the steel alloy according to the invention.
  • the vanadium (carbo) nitrides formed by the targeted addition of nitrogen contribute to the strengthening of precipitation and refinement. It has been shown that with mass fractions of nitrogen in a range of 0.005% and 0.05% on the one hand enough carbonitrides are formed and on the other hand the nitrogen is sufficiently bound by vanadium.
  • Thick-walled pipe components in the sense of the invention are those in which the ratio of the outer diameter (AD) of the pipe component to the wall thickness (WD) of the pipe component is less than 14 (AD / WD ⁇ 14) and preferably less than 8 (AD / WD ⁇ 8 ).
  • the ratio AD / WD can also be less than 6.
  • the ratio AD / WD can vary over the length of the pipe component, but the thick-walled structure is retained in the above sense.
  • Thick-walled pipe components are primarily torque-transmitting pipe components, such as drive shafts, transmission shafts, camshafts, but also other highly stressed pipe components, such as e.g. Stabilizers and damper piston rods.
  • the steel alloy used can be set to tensile strengths of Rm> 950 N / mm 2 and yield strengths of Rp0.2> 700 N / mm 2 with an elongation at break A 5> 14%.
  • Air hardening is preferably carried out at 950 ° C ⁇ 15 ° C in a continuous furnace under protective gas.
  • the steel alloy When air-tempered, the steel alloy has a tensile strength Rm> 850 N / mm 2 and a yield strength of Rp0.2> 700 N / mm 2 with an elongation at break of A5> 15%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The invention relates to a steel alloy that consists, in percentages by mass, of: 0.09 0.13 % carbon (C); 0.15 0.30 % silicon (Si); 1.10 1.60 % manganese (Mn); a maximum of 0.015 % phosphorous (P); a maximum of 0.011 % sulfur (S); 1.00 1.60 % chromium (Cr); 0.30 0.60 % molybdenum (Mo); 0.020 0.050 % aluminum (AI); 0.12 0.25 % vanadium (V), and; as the remainder, iron as well as impurities that result during smelting. This steel alloy is used as a material for tubes, which are air-hardened or both air-hardened and tempered, for producing thick-walled tubular parts for motor vehicles.

Description

Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dickwandigen Rohrbauteilen für Kraftfahrzeuge Use of a steel alloy as a material for the manufacture of thick-walled pipe components for motor vehicles
Drehmomente übertragende Bauteile in Kraftfahrzeugen, wie Antriebswellen, Getriebewellen, Nockenwellen und andere stark beanspruchte Bauteile, wie z.B. Fahrwerksstabilisatoren und Dämpferkolbenstangen sind in der Regel aus Vollmaterial hergestellt. Bei Antriebswellen, welche die Motorleistung auf die Räder eines Kraftfahrzeugs übertragen, entstehen Drehmomente von bis zu 2000 Nrn. Gleichzeitig sind Antriebswellen leicht zu Schwingungen anregbar. Antriebswellen aus Vollmaterial sind zwar relativ günstig in der Herstellung, sie besitzen allerdings eine sehr tiefe erste Biegeeigenfrequenz und ein als besonders nachteilig angesehenes hohes Gewicht. Zur Gewichtsreduzierung sind hohl gebohrte Wellen bekannt. Problematisch ist die Werkstoffauswahl, da ein möglichst kostengünstiger Einsatz alternativer Materialien hinreichender Festigkeit angestrebt wird. Weil eine Vergrößerung des Durchmessers der Antriebswellen aufgrund des engen Bauraums in einem Kraftfahrzeug nicht in- frage kommt, scheiden Werkstoffe geringer Festigkeit ohnehin aus. Auch bei Nockenwellen zählt es mittlerweise zum Stand der Technik, Vollgusswellen durch sogenannte gebaute Nockenwellen zu ersetzen und auf diese Weise Gewichtseinsparungen von 25 % bis 40 % zu erzielen.Torque-transmitting components in motor vehicles, such as drive shafts, transmission shafts, camshafts and other highly stressed components, such as chassis stabilizers and damper piston rods, are generally made from solid material. In the case of drive shafts, which transmit the engine power to the wheels of a motor vehicle, torques of up to 2000 numbers are generated. At the same time, drive shafts can be easily excited to vibrate. Solid material drive shafts are relatively inexpensive to manufacture, but they have a very low first natural bending frequency and a high weight, which is considered to be particularly disadvantageous. Hollow-drilled shafts are known for reducing weight. The choice of materials is problematic since the aim is to use alternative materials of sufficient strength that are as cost-effective as possible. Because an increase in the diameter of the drive shafts is not an option in a motor vehicle due to the narrow installation space, materials of low strength are eliminated anyway. Even with camshafts, it is now part of the state of the art to replace cast iron shafts with so-called built camshafts and thus achieve weight savings of 25% to 40%.
Auch Fahrwerkstabilisatoren in Rohrbauweise sind bekannt, wobei jedoch die Werkstoffauslastung auf ein bislang in der Automobilindustrie unerreichtes, im Vergleich zu Rohrstabilisatoren aus Vollmaterial auf ein 40 % höheres Span- nungsnivenau angehoben werden muss. Gewichtsvorteile im zweistelligen Prozentbereich können erreicht werden.Chassis stabilizers in tubular construction are also known, although the material utilization has to be increased to a level of tension which is unprecedented in the automotive industry and, compared to tubular stabilizers made of solid material, to a 40% higher level. Weight advantages in the double-digit percentage range can be achieved.
Rohre für Hohlwellen werden in der Regel aus wasserhärtbaren Vergütungsstählen, z.B. aus 34 MnB5 hergestellt. Derartige Rohre nach DIN 2393 oder DIN 2394 werden im normal- oder weichgeglühten Zustand meist durch Rundkneten umgeformt. Es schließt sich eine Wärmebehandlung (Wasservergüten) an. Schließlich erfolgt die Fertigbearbeitung. Das Anlagenkonzept für derartig hergestellte Rohre aus wasserverhärtbaren Vergütungsstählen mit den Verfahrensschritten Härten, Wasserabschreckung, Anlassen, ist relativ aufwändig und daher störanfällig. Die dem Härten folgende Wasserabschreckung ist zudem mit dem Nachteil behaftet, dass sehr hohe Eigenspannungen induziert werden, die zu einem Härteverzug des Werkstücks führen können. Ein nachträgliches Richten und gegebenenfalls eine mechanische Nachbearbeitung geometrisch kritischer Bereiche wird dadurch unumgänglich. Bei rotierenden Bauteilen führt ein Verzug oder eine Abweichung der Bauteilgeometrie zudem zu einer Schwingung erregenden Unwucht. Bedingt durch die Art der Wärmebehandlung kommt es auch zu einer unerwünschten Verzunderung der behandelten Bauteilbereiche. Ein weiterer Nachteil ist, dass die Wärmebehandlung an hoch kohlenstoffhaltigen Stählen wie z.B. 34 MnB5 immer zu einer hohen Härte und einer Abnahme der Festigkeit führt, wodurch ein nachträgliches Anlassen zwingend notwendig ist. Die Spannungen innerhalb der Rohrbauteile führen zudem zu Spannungspitzen, die ursächlich für eine Rissbildung sein können, die letztendlich zum Versagen der Rohrbauteile in der Praxis führen. Eine Rissbildung kann selbstverständlich nicht durch eine nachträgliche Wärmebehandlung rückgängig gemacht werden. Es ist daher eine relativ aufwändige Qualitätssicherung und strenge Aussortierung von Fehlteilen erforderlich.Tubes for hollow shafts are usually made from hardenable tempered steels, e.g. 34 MnB5. Such pipes according to DIN 2393 or DIN 2394 are usually formed by round kneading in the normal or soft annealed condition. This is followed by a heat treatment (water treatment). Finally, the finishing is done. The system concept for pipes made in this way from water-hardenable tempering steels with the process steps hardening, water quenching, tempering, is relatively complex and therefore prone to failure. The water quenching that follows hardening also has the disadvantage that very high residual stresses are induced, which can lead to a delay in the hardness of the workpiece. Subsequent straightening and, if necessary, mechanical reworking of geometrically critical areas is therefore unavoidable. In the case of rotating components, a warpage or a deviation in the component geometry also leads to an oscillation-causing imbalance. Due to the type of heat treatment, there is also an undesirable scaling of the treated component areas. Another disadvantage is that the heat treatment on high carbon steels such as 34 MnB5 always leads to high hardness and a decrease in strength, which means that subsequent tempering is absolutely necessary. The stresses within the pipe components also lead to stress peaks that can be the cause of cracking, which ultimately lead to the failure of the pipe components in practice. Crack formation cannot, of course, be caused by subsequent heat treatment undone. A relatively complex quality assurance and strict sorting of missing parts is therefore necessary.
Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine Stahllegierung zur Verwendung als Werkstoff zur Herstellung von dickwandigen Rohrbauteilen für Kraftfahrzeuge aufzuzeigen, welche bei gegenüber bislang verwendeten Werkstoffen eine höhere Festigkeit, eine bessere Verformbarkeit und eine vereinfachte Wärmebehandlung ermöglicht, um auf diese Weise dickwandige Rohrbauteile einfacher und kostengünstiger herstellen zu können.Proceeding from this, the object of the invention is to disclose a steel alloy for use as a material for the production of thick-walled pipe components for motor vehicles, which enables higher strength, better deformability and simplified heat treatment in comparison to previously used materials, in order to simplify thick-walled pipe components in this way and to be able to manufacture more cheaply.
Die Aufgabe wird durch die Verwendung einer Stahllegierung mit den Merkmalen der Patentansprüche 1 und 2 gelöst.The object is achieved by using a steel alloy with the features of claims 1 and 2.
Die Verwendung der vorgeschlagenen Stahllegierung ist insbesondere aufgrund der wesentlich einfacheren Wärmebehandlung hervorragend zur Erreichung der gewünschten Bauteilfestigkeit geeignet, und erfüllt insgesamt die in der Aufgabenstellung genannten Anforderungen. Der beschriebenen Stahllegierung liegt ein Legierungskonzept zugrunde, das eine Lufthärtung oder Luftvergütung ermöglicht. Eine bislang erforderliche Wasserabschreckung entfällt ersatzlos. Eine Luftabkühlung der dickwandigen Rohrbauteile nach dem Härten führt im Gegensatz zu einer Wasserabschreckung zu weniger hohen Eigenspannung innerhalb der Rohrbauteile, so dass es gegebenenfalls sogar möglich ist, auf das bislang erforderliche nachträgliche Anlassen der Werkstücke zu verzichten. Bei geeigneter Temperaturführung können nachfolgende Rieht- und Bearbeitungsvorgänge weitgehend eingeschränkt werden. Auch der Grad der Verzunderung ist bei luftgehärteten oder luftvergüteten Rohrbauteilen deutlich geringer als bei einer Wasserabschreckung. Eine Verzunderung kann unter Schutzgasatmosphäre sogar gänzlich vermieden werden.The use of the proposed steel alloy is particularly suitable for achieving the desired component strength due to the much simpler heat treatment, and overall fulfills the requirements mentioned in the task. The steel alloy described is based on an alloy concept that enables air hardening or air conditioning. A water quench that was previously required is no longer available. Air cooling of the thick-walled pipe components after hardening, in contrast to water quenching, leads to less high internal stress within the pipe components, so that it may even be possible to do without the subsequent tempering of the workpieces that was previously required. With suitable temperature control, subsequent straightening and machining processes can be largely restricted. The degree of scaling is also significantly lower with air-hardened or air-tempered pipe components than with water quenching. Scaling can even be avoided entirely under a protective gas atmosphere.
Der anlagetechnische Aufwand zur Fertigung von dickwandigen Rohrbauteilen kann infolge der Verwendung der vorgeschlagenen Stahllegierung um ein erhebliches Maß reduziert werden. Da durch die Reduzierung der notwendigen Verfahrensschritte mögliche Fehlerquellen eliminiert werden, ist der gesamte Herstellungsprozess weniger störungsanfällig. Im Ergebnis kann hierdurch ein höherer Qualitätsstandard sichergestellt werden.The investment in engineering for the production of thick-walled pipe components can be reduced to a considerable extent as a result of the use of the proposed steel alloy. Since possible sources of error are eliminated by reducing the necessary procedural steps, the whole is Manufacturing process less prone to failure. As a result, a higher quality standard can be ensured.
Die geringeren Eigenspannungen innerhalb der Rohrbauteile führen gegenüber wasservergütbaren Stählen weit weniger zu einer Reduktion der Zähigkeit. Die Verbesserung der Zähigkeit sowie die Reduzierung der Kerbempfindlichkeit erlaubt größere fertigungstechnische Toleranzen und damit eine einfachere Verfahrensführung, die in besseren konstruktiven Gestaltungsmöglichkeiten resultiert. Die größere Plastifizierbarkeit der verwendeten Stahllegierungen macht bei der Wärmebehandlung entstehende Risse an fertigungsbedingten kritischen Stellen weitaus weniger wahrscheinlich, was sich in einer niedrigeren Ausschussrate der Rohrbauteile wiederspiegelt, bzw. den Aufwand für die Fertigung der Rohre, insbesondere hinsichtlich der Prüfschärfe verringert. Zusammenfassend sind dickwandige Rohrbauteile für Kraftfahrzeuge unter Verwendung der vorgeschlagenen Stahllegierungen aufgrund der daraus resultierenden fertigungstechnischen Vorteile wesentlich günstiger herzustellen als vergleichbare Rohrbauteile aus bislang verwendeten Stahllegierungen insbesondere aus wasservergütbaren Stahllegierungen mit hohem Kohlenstoffgehalt.The lower residual stresses within the pipe components lead to a less reduction in toughness than water-temperable steels. Improving toughness and reducing notch sensitivity allows greater manufacturing tolerances and thus simpler process control, which results in better design options. The greater plasticizability of the steel alloys used makes the cracks that occur during heat treatment at production-related critical points far less likely, which is reflected in a lower reject rate of the pipe components, or reduces the effort for the production of the pipes, especially with regard to the test accuracy. In summary, thick-walled pipe components for motor vehicles are much cheaper to manufacture using the proposed steel alloys due to the resulting manufacturing advantages than comparable pipe components made from previously used steel alloys, in particular from water-hardenable steel alloys with a high carbon content.
Die unter Verwendung der beanspruchten Stahllegierung hergestellten Rohrbauteile besitzen zudem bessere Schwingfestigkeiten als vergleichbare Rohrbauteile aus anderen Stahllegierungen. Ferner ist aufgrund des niedrigeren Kohlenstoffgehalts eine bessere Verformbarkeit möglich, z.B. durch Rundkneten im weichgeglühten Zustand.The pipe components manufactured using the claimed steel alloy also have better fatigue strength than comparable pipe components made of other steel alloys. Furthermore, due to the lower carbon content, better ductility is possible, e.g. by kneading in the soft annealed condition.
Es ist bekannt, dass geringste Stickstoffgehalte nachhaltig die mechanischen Eigenschaften eines Stahls schädigen, Streckgrenze und Festigkeit erhöhen, das Verformungsvermögen und die Kerbschlagzähigkeit stark herabsetzen sowie gleichzeitig eine alternde Wirkung auf den Stahl besitzen. Im Rahmen der Erfindung hat sich herausgestellt, dass die gezielte Zugabe von Stickstoff zur Bildung von Vanadium(-carbo)-Nitriden führt, die ausgesprochen positive Eigenschaften auf die verwendete Stahllegierung und für die erfindungsgemäße Verwendung der Stahllegierung haben. Die durch gezielte Zugabe von Stickstoff gebildeten Vanadium(-carbo)-Nitride leisten einen Beitrag zur Ausscheidungsverfestigung und Komfeinung. Dabei hat sich gezeigt, dass bei Massenanteilen des Stickstoffs in einem Bereich von 0,005 % und 0,05 % einerseits genügend Carbonitride gebildet werden und andererseits der Stickstoff hinreichend durch Vanadium gebunden wird.It is known that the lowest nitrogen content sustainably damages the mechanical properties of a steel, increases the yield strength and strength, greatly reduces the deformability and the impact strength and at the same time has an aging effect on the steel. It has been found in the context of the invention that the targeted addition of nitrogen leads to the formation of vanadium (carbo) nitrides, which have extremely positive properties on the steel alloy used and for the have use of the steel alloy according to the invention. The vanadium (carbo) nitrides formed by the targeted addition of nitrogen contribute to the strengthening of precipitation and refinement. It has been shown that with mass fractions of nitrogen in a range of 0.005% and 0.05% on the one hand enough carbonitrides are formed and on the other hand the nitrogen is sufficiently bound by vanadium.
Dickwandige Rohrbauteile im Sinne der Erfindung sind solche, bei denen das Verhältnis des Außendurchmessers (AD) des Rohrbauteils zur Wanddicke (WD) des Rohrbauteils kleiner als 14 ist (AD/WD < 14) und vorzugsweise kleiner als 8 ist (AD/WD < 8). Das Verhältnis AD/WD kann auch kleiner als 6 sein. Das Verhältnis AD/WD kann über die Länge des Rohrbauteils variieren, wobei die Dickwandigkeit in obigem Sinne jedoch erhalten bleibt.Thick-walled pipe components in the sense of the invention are those in which the ratio of the outer diameter (AD) of the pipe component to the wall thickness (WD) of the pipe component is less than 14 (AD / WD <14) and preferably less than 8 (AD / WD <8 ). The ratio AD / WD can also be less than 6. The ratio AD / WD can vary over the length of the pipe component, but the thick-walled structure is retained in the above sense.
Unter dickwandigen Rohrbauteilen sind in erster Linie Drehmoment übertragende Rohrbauteile zu verstehen, wie Antriebswellen, Getriebewellen, Nockenwellen, aber auch andere hochbelastete Rohrbauteile, wie z.B. Stabilisatoren und Dämpferkolbenstangen.Thick-walled pipe components are primarily torque-transmitting pipe components, such as drive shafts, transmission shafts, camshafts, but also other highly stressed pipe components, such as e.g. Stabilizers and damper piston rods.
Die verwendete Stahllegierung kann auf Zugfestigkeiten von Rm > 950 N/mm2 und Streckgrenzen von Rp0,2 > 700 N/mm2 bei einer Bruchdehnung A 5 > 14% eingestellt werden. Eine Lufthärtung erfolgt vorzugsweise bei 950 °C ± 15 °C im Durchlaufofen unter Schutzgas.The steel alloy used can be set to tensile strengths of Rm> 950 N / mm 2 and yield strengths of Rp0.2> 700 N / mm 2 with an elongation at break A 5> 14%. Air hardening is preferably carried out at 950 ° C ± 15 ° C in a continuous furnace under protective gas.
Im luftvergüteten Zustand erreicht die Stahllegierung eine Zugefestigkeit Rm > 850 N/mm2 und eine Streckgrenze von Rp0,2 > 700 N/mm2 bei einer Bruchdehnung von A5 > 15%. When air-tempered, the steel alloy has a tensile strength Rm> 850 N / mm 2 and a yield strength of Rp0.2> 700 N / mm 2 with an elongation at break of A5> 15%.

Claims

Patentansprüche claims
1. Verwendung einer Stahllegierung, die in Massenanteilen aus1. Use a steel alloy that is made in mass fractions
0,09 - 0,13 % Kohlenstoff (C),0.09 - 0.13% carbon (C),
0,15 - 0,30 % Silizium (Si),0.15 - 0.30% silicon (Si),
1,10 - 1 ,60 % Mangan (Mn), max. 0,015 % Phosphor (P), max. 0,011 % Schwefel (S),1.10 - 1.60% manganese (Mn), max. 0.015% phosphorus (P), max. 0.011% sulfur (S),
1 ,00 - 1,60 % Chrom (Cr),1.00 - 1.60% chromium (Cr),
0,30 - 0,60 % Molybdän (Mo),0.30 - 0.60% molybdenum (Mo),
0,020 - 0,050 % Aluminium (AI),0.020 - 0.050% aluminum (AI),
0,12 - 0,25 % Vanadium (V)0.12 - 0.25% vanadium (V)
und Eisen sowie erschmelzungsbedingter Verunreinigungen als Rest besteht, als Werkstoff für unter Schutzgas luftgehärtete oder luftvergütete Rohre zur Herstellung von dickwandigen Rohrbauteilen für Kraftfahrzeuge.and iron and melting-related impurities as the remainder, as a material for air-hardened or air-hardened pipes under protective gas for the production of thick-walled pipe components for motor vehicles.
2. Verwendung einer Stahllegierung, die in Massenanteilen aus2. Use a steel alloy that is made in mass fractions
0,09 - 0,12 % Kohlenstoff (C),0.09 - 0.12% carbon (C),
0,15 - 0,30 % Silizium (Si),0.15 - 0.30% silicon (Si),
1,45 - 1,60 % Mangan (Mn), max. 0,015 % Phosphor (P), max. 0,011 % Schwefel (S),1.45 - 1.60% manganese (Mn), max. 0.015% phosphorus (P), max. 0.011% sulfur (S),
1 ,25 - 1,50 % Chrom (Cr),1, 25 - 1.50% chromium (Cr),
0,40 - 0,60 % Molybdän (Mo),0.40 - 0.60% molybdenum (Mo),
0,020 - 0,060 % Aluminium (AI),0.020 - 0.060% aluminum (AI),
0,12 - 0,20 % Vanadium (V)0.12 - 0.20% vanadium (V)
und Eisen sowie erschmelzungsbedingter Verunreinigungen als Rest besteht, als Werkstoff für luftgehärtete oder luftvergütete Rohre zur Herstellung von dickwandigen Rohrbauteilen für Kraftfahrzeuge. and iron and melting-related impurities as the remainder, as a material for air-hardened or air-tempered pipes for the production of thick-walled pipe components for motor vehicles.
3. Verwendung einer Stahllegierung nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass in der Stahllegierung zusätzlich Stickstoff (N) in Massenanteilen von 0,005 % - 0,05 % enthalten ist.3. Use of a steel alloy according to claim 1 or 2, characterized in that the steel alloy also contains nitrogen (N) in mass fractions of 0.005% - 0.05%.
4. Verwendung einer Stahllegierung nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verhältnis des Außendurchmessers (AD) des Rohrbauteils zur Wanddicke (WD) des Rohrbauteils kleiner als 14 ist (AD/WD < 14).4. Use of a steel alloy according to one of the claims 1 to 3, characterized in that the ratio of the outer diameter (AD) of the tubular component to the wall thickness (WD) of the tubular component is less than 14 (AD / WD <14).
5. Verwendung einer Stahllegierung nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass das Verhältnis des Außendurchmessers (AD) des Rohrbauteils zur Wanddicke (WD) des Rohrbauteils kleiner als 8 ist (AD/WD < 8). 5. Use of a steel alloy according to one of the claims 1 to 4, characterized in that the ratio of the outer diameter (AD) of the tubular component to the wall thickness (WD) of the tubular component is less than 8 (AD / WD <8).
EP03767465A 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles Expired - Fee Related EP1565588B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2002155264 DE10255264A1 (en) 2002-11-27 2002-11-27 Use of a steel alloy as a material for the manufacture of thick-walled pipe components for motor vehicles
DE10255264 2002-11-27
PCT/DE2003/003925 WO2004048628A1 (en) 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles

Publications (2)

Publication Number Publication Date
EP1565588A1 true EP1565588A1 (en) 2005-08-24
EP1565588B1 EP1565588B1 (en) 2006-03-22

Family

ID=32318717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767465A Expired - Fee Related EP1565588B1 (en) 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles

Country Status (4)

Country Link
EP (1) EP1565588B1 (en)
AU (1) AU2003291954A1 (en)
DE (2) DE10255264A1 (en)
WO (1) WO2004048628A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007033950A1 (en) * 2006-07-19 2008-01-31 Benteler Automobiltechnik Gmbh Workpiece made of a high-strength steel alloy and its use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2750867C2 (en) * 1977-11-14 1983-10-20 Benteler-Werke Ag Werk Neuhaus, 4790 Paderborn Use of a steel alloy for pipes for door reinforcement
JPH05302119A (en) * 1992-03-27 1993-11-16 Sumitomo Metal Ind Ltd Production of high strength automotive parts
EP0753597A3 (en) * 1995-07-06 1998-09-02 Benteler Ag Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
WO2003069005A2 (en) * 2002-02-15 2003-08-21 Benteler Automobiltechnik Gmbh Use of a steel alloy as a material for pipes for producing gas cylinders, or as a material for producing moulded elements in light-gauge steel construction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004048628A1 *

Also Published As

Publication number Publication date
EP1565588B1 (en) 2006-03-22
DE10255264A1 (en) 2004-06-17
WO2004048628A1 (en) 2004-06-10
AU2003291954A1 (en) 2004-06-18
DE50302755D1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP3524229B2 (en) High toughness case hardened steel machine parts and their manufacturing method
US5527401A (en) High toughness and high strength untempered steel and processing method thereof
WO1999005333A1 (en) Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
WO2013051513A1 (en) Steel wire for bolt, bolt, and manufacturing processes therefor
JP2008539331A (en) Tempered martensitic steel, method for producing parts from the steel, and parts so obtained
DE102006017263A1 (en) Crankshaft and method for its production
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
KR20140129081A (en) Steel for nitrocarburizing and nitrocarburized component using the steel as material
DE102008040689B4 (en) Ball studs and sleeves made of high manganese steel
EP2414552B1 (en) Ball pins made of bainitic steels for passenger car and light commercial vehicle
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
KR20050061476A (en) Steel product for induction hardening, induction-hardened member using the same and methods for producing them
JP6454635B2 (en) High-strength bolts with excellent delayed fracture resistance and fatigue characteristics, and manufacturing method thereof
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
DE10105809C1 (en) Production of a round link chain made from heat-treatable steel, used in drive and conveying elements, comprises forming a chain strand, heat treating while calibrating the chain and post-treating
US20060057419A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
EP3040437A1 (en) Mechanical structural component and method for manufacturing same
DE19950264B4 (en) Method for producing a double joint with improved cold workability and strength
WO2004048628A1 (en) Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles
DE69909940T2 (en) Martensitic stainless steel parts and process for their manufacture
JP3502744B2 (en) Method of manufacturing shaft-shaped parts for machine structure with excellent fatigue characteristics
JPH08260039A (en) Production of carburized and case hardened steel
DE102016208400A1 (en) Ultrahigh-strength spring steel for a valve spring
EP3517639A1 (en) Carburized shaft component
EP3517638A1 (en) Shaft component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

REF Corresponds to:

Ref document number: 50302755

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101019

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302755

Country of ref document: DE

Representative=s name: BOCKERMANN, KSOLL, GRIEPENSTROH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50302755

Country of ref document: DE

Owner name: BENTELER DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: BENTELER STAHL/ROHR GMBH, 33104 PADERBORN, DE

Effective date: 20110822

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302755

Country of ref document: DE

Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE

Effective date: 20110822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50302755

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601