EP1565588B1 - Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles - Google Patents

Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles Download PDF

Info

Publication number
EP1565588B1
EP1565588B1 EP03767465A EP03767465A EP1565588B1 EP 1565588 B1 EP1565588 B1 EP 1565588B1 EP 03767465 A EP03767465 A EP 03767465A EP 03767465 A EP03767465 A EP 03767465A EP 1565588 B1 EP1565588 B1 EP 1565588B1
Authority
EP
European Patent Office
Prior art keywords
steel alloy
motor vehicles
tubular component
producing thick
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03767465A
Other languages
German (de)
French (fr)
Other versions
EP1565588A1 (en
Inventor
Thomas SÄUBERLICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Stahl Rohr GmbH
Original Assignee
Benteler Stahl Rohr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Stahl Rohr GmbH filed Critical Benteler Stahl Rohr GmbH
Publication of EP1565588A1 publication Critical patent/EP1565588A1/en
Application granted granted Critical
Publication of EP1565588B1 publication Critical patent/EP1565588B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Definitions

  • Torques transmitting components in motor vehicles such as drive shafts, transmission shafts, camshafts and other highly stressed components, such as suspension stabilizers and damper piston rods are usually made of solid material.
  • Drive shafts which transmit engine power to the wheels of a motor vehicle, generate torques of up to 2000 Nm. At the same time drive shafts are easily excitable to vibrations.
  • drive shafts made of solid material are relatively inexpensive to manufacture, they have a very low first bending natural frequency and a high weight considered to be particularly disadvantageous. To reduce weight hollow drilled waves are known. The problem is the selection of materials, since the most cost-effective use of alternative materials of sufficient strength is desired. Because an increase in the diameter of the drive shafts due to the tight space in a motor vehicle is out of the question, excrete low-strength materials anyway.
  • chassis stabilizers in tube construction are known, but the material utilization must be raised to a previously unattained in the automotive industry, compared to tube stabilizers made of solid material to a 40% higher voltage level. Weight advantages in the double-digit percentage range can be achieved.
  • Tubes for hollow beads are usually made from water-hardened tempered steels, eg from 34 MnB5.
  • Such pipes according to DIN 2393 or DIN 2394 are usually deformed in normal or annealed condition by rotary swaging. This is followed by a heat treatment (water quenching). Finally, the finishing takes place.
  • the plant concept for pipes produced in this way from water-hardenable tempered steels with the process steps hardening, water quenching, tempering, is relatively complex and therefore prone to failure.
  • the water quenching following the hardening is additionally associated with the disadvantage that very high residual stresses are induced, which can lead to a hardening distortion of the workpiece.
  • EP 0 753 597 A2 relates to the use of a steel alloy, expressed in terms of weight percent, of carbon (C) 0.12% -0.25%, silicon (Si) 0.10% -0.40%, manganese (Mn) 1.30% - 2.00%, phosphorus (P) max. 0.025%, sulfur (S) max. 0.025%, chromium (Cr) 1.60% - 2.50%, molybdenum (Mo) 0.40% - 1.00%, aluminum (Al) 0.010% - 0.050%, remainder iron including impurities caused by melting.
  • This material is characterized by a good deformability and its toughness behavior. An additional fee is not required. Since the material is weldable, it can be used in addition to the use of seamless pipes for the production of longitudinally welded pipes, which are better suited for the intended use as a starting material for stabilizers.
  • WO 03/069005 A2 published in the priority interval relates to the use of a steel alloy consisting of 0.09% -0.13% carbon (C), 0.15% -0.50% silicon (Si), 1.10% 1.80% manganese (Mn), max. 0.02% phosphorus (P), max.
  • the present invention seeks to show a steel alloy for use as a material for the production of thick-walled pipe components for motor vehicles, which allows compared to previously used materials higher strength, better ductility and a simplified heat treatment, to simplify in this way thick-walled pipe components and cheaper to produce.
  • the use of the proposed steel alloy is particularly suitable due to the much simpler heat treatment to achieve the desired component strength, and meets the total in the
  • the steel alloy described is based on an alloying concept that allows for air hardening or air treatment.
  • An air cooling of the thick-walled pipe components after hardening in contrast to a water quenching to less high residual stress within the pipe components, so that it may even be possible to dispense with the previously required subsequent tempering of the workpieces.
  • suitable temperature control subsequent straightening and machining operations can be largely restricted.
  • the degree of scaling is significantly lower in air-hardened or air-tempered pipe components than in a water quench. Scaling can even be completely avoided under a protective gas atmosphere.
  • the pipe components produced using the claimed steel alloy also have better vibration resistance than comparable pipe components made of other steel alloys. Further, due to the lower carbon content, better ductility is possible, e.g. by swaging in soft annealed condition.
  • vanadium (-carbo) nitrides which have pronounced positive properties on the steel alloy used and for the inventive use of the steel alloy.
  • the vanadium (-carbo) nitrides formed by the targeted addition of nitrogen contribute to precipitation strengthening and refinement. It has been found that when mass fractions of nitrogen in a range of 0.005% and 0.05% on the one hand sufficient carbonitrides are formed and on the other hand, the nitrogen is sufficiently bound by vanadium.
  • Thick-walled pipe components in the sense of the invention are those in which the ratio of the outer diameter (AD) of the pipe component to the wall thickness (WD) of the pipe component is less than 14 (AD / WD ⁇ 14) and preferably less than 8 (AD / WD ⁇ 8 ).
  • the ratio AD / WD can also be less than 6.
  • the ratio AD / WD can vary over the length of the pipe component, but the thick wall is retained in the above sense.
  • Under thick-walled pipe components are torque-transmitting pipe components in the form of drive shafts, gear shafts, camshafts to understand.
  • the steel alloy used can have tensile strengths of Rm> 950 N / mm 2 and yield strengths of Rp0.2> 700 N / mm 2 at an elongation at break A 5> 14% be set.
  • Air hardening is preferably carried out at 950 ° C ⁇ 15 ° C in a continuous furnace under inert gas.
  • the steel alloy achieves a tensile strength Rm> 850 N / mm 2 and a yield strength of Rp0.2> 700 N / mm 2 with an elongation at break of A5> 15%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Drehmomente übertragende Bauteile in Kraftfahrzeugen, wie Antriebswellen, Getriebewellen, Nockenwellen und andere stark beanspruchte Bauteile, wie z.B. Fahrwerksstabilisatoren und Dämpferkolbenstangen sind in der Regel aus Vollmaterial hergestellt. Bei Antriebswellen, welche die Motorleistung auf die Räder eines Kraftfahrzeugs übertragen, entstehen Drehmomente von bis zu 2000 Nm. Gleichzeitig sind Antriebswellen leicht zu Schwingungen anregbar. Antriebswellen aus Vollmaterial sind zwar relativ günstig in der Herstellung, sie besitzen allerdings eine sehr tiefe erste Biegeeigenfrequenz und ein als besonders nachteilig angesehenes hohes Gewicht. Zur Gewichtsreduzierung sind hohl gebohrte Wellen bekannt. Problematisch ist die Werkstoffauswahl, da ein möglichst kostengünstiger Einsatz alternativer Materialien hinreichender Festigkeit angestrebt wird. Weil eine Vergrößerung des Durchmessers der Antriebswellen aufgrund des engen Bauraums in einem Kraftfahrzeug nicht infrage kommt, scheiden Werkstoffe geringer Festigkeit ohnehin aus.Torques transmitting components in motor vehicles, such as drive shafts, transmission shafts, camshafts and other highly stressed components, such as suspension stabilizers and damper piston rods are usually made of solid material. Drive shafts, which transmit engine power to the wheels of a motor vehicle, generate torques of up to 2000 Nm. At the same time drive shafts are easily excitable to vibrations. Although drive shafts made of solid material are relatively inexpensive to manufacture, they have a very low first bending natural frequency and a high weight considered to be particularly disadvantageous. To reduce weight hollow drilled waves are known. The problem is the selection of materials, since the most cost-effective use of alternative materials of sufficient strength is desired. Because an increase in the diameter of the drive shafts due to the tight space in a motor vehicle is out of the question, excrete low-strength materials anyway.

Auch bei Nockenwellen zählt es mittlerweile zum Stand der Technik, Vollgusswellen durch sogenannte gebaute Nockenwellen zu ersetzen und auf diese Weise Gewichtseinsparungen von 25 % bis 40 % zu erzielen.In the meantime, even with camshafts, it is now state of the art to replace solid cast shafts with so-called built-in camshafts and thus achieve weight savings of 25% to 40%.

Auch Fahrwerkstabilisatoren in Rohrbauweise sind bekannt, wobei jedoch die Werkstoffauslastung auf ein bislang in der Automobilindustrie unerreichtes, im Vergleich zu Rohrstabilisatoren aus Vollmaterial auf ein 40 % höheres Spannungsnivenau angehoben werden muss. Gewichtsvorteile im zweistelligen Prozentbereich können erreicht werden.Even chassis stabilizers in tube construction are known, but the material utilization must be raised to a previously unattained in the automotive industry, compared to tube stabilizers made of solid material to a 40% higher voltage level. Weight advantages in the double-digit percentage range can be achieved.

Rohre für Hohlwetlen werden in der Regel aus wasserhärtbaren Vergütungsstählen, z.B. aus 34 MnB5 hergestellt. Derartige Rohre nach DIN 2393 oder DIN 2394 werden im normal- oder weichgeglühten Zustand meist durch Rundkneten umgeformt. Es schließt sich eine Wärmebehandlung (Wasservergüten) an. Schließlich erfolgt die Fertigbearbeitung. Das Anlagenkonzept für derartig hergestellte Rohre aus wasserverhärtbaren Vergütungsstählen mit den Verfahrensschritten Härten, Wasserabschreckung, Anlassen, ist relativ aufwändig und daher störanfällig. Die dem Härten folgende Wasserabschreckung ist zudem mit dem Nachteil behaftet, dass sehr hohe Eigenspannungen induziert werden, die zu einem Härteverzug des Werkstücks führen können. Ein nachträgliches Richten und gegebenenfalls eine mechanische Nachbearbeitung geometrisch kritischer Bereiche wird dadurch unumgänglich. Bei rotierenden Bauteilen führt ein Verzug oder eine Abweichung der Bauteilgeometrie zudem zu einer Schwingung erregenden Unwucht. Bedingt durch die Art der Wärmebehandlung kommt es auch zu einer unerwünschten Verzunderung der behandelten Bauteilbereiche. Ein weiterer Nachteil ist, dass die Wärmebehandlung an hoch kohlenstoffhaltigen Stählen wie z.B. 34 MnB5 immer zu einer hohen Härte und einer Abnahme der Festigkeit führt, wodurch ein nachträgliches Anlassen zwingend notwendig ist. Die Spannungen innerhalb der Rohrbauteile führen zudem zu Spannungsspitzen, die ursächlich für eine Rissbildung sein können, die letztendlich zum Versagen der Rohrbauteile in der Praxis führen. Eine Rissbildung kann selbstverständlich nicht durch eine nachträgliche Wärmebehandlung rückgängig gemacht werden. Es ist daher eine relativ aufwändige Qualitätssicherung und strenge Aussortierung von Fehlteilen erforderlich.Tubes for hollow beads are usually made from water-hardened tempered steels, eg from 34 MnB5. Such pipes according to DIN 2393 or DIN 2394 are usually deformed in normal or annealed condition by rotary swaging. This is followed by a heat treatment (water quenching). Finally, the finishing takes place. The plant concept for pipes produced in this way from water-hardenable tempered steels with the process steps hardening, water quenching, tempering, is relatively complex and therefore prone to failure. The water quenching following the hardening is additionally associated with the disadvantage that very high residual stresses are induced, which can lead to a hardening distortion of the workpiece. Subsequent straightening and, if appropriate, mechanical post-processing of geometrically critical regions is thereby unavoidable. In the case of rotating components, a distortion or a deviation of the component geometry also leads to an oscillation-inducing imbalance. Due to the nature of the heat treatment, it also leads to an undesirable scaling of the treated component areas. Another disadvantage is that the heat treatment on high-carbon steels such as 34 MnB5 always leads to a high hardness and a decrease in strength, whereby a subsequent tempering is imperative. The stresses within the pipe components also lead to stress peaks, which can be the cause of cracking, which ultimately lead to failure of the pipe components in practice. Of course, cracking can not be undone by subsequent heat treatment. It is therefore a relatively complex quality assurance and strict sorting of missing parts required.

Die EP 0 753 597 A2 betrifft die Verwendung einer Stahllegierung, die in Gewichtsprozenten ausgedrückt besteht aus Kohlenstoff (C) 0,12% - 0,25%, Silizium (Si) 0,10% - 0,40%, Mangan (Mn) 1,30% - 2,00%, Phosphor (P) max. 0,025%, Schwefel (S) max. 0,025%, Chrom (Cr) 1,60% - 2,50%, Molybdän (Mo) 0,40% - 1,00%, Aluminium (Al) 0,010% - 0,050%, Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen. Dieser Werkstoff zeichnet sich durch eine gute Verformbarkeit und sein Zähigkeitsverhalten aus. Eine zusätzliche Vergütung ist nicht erforderlich. Da der Werkstoff schweißbar ist, kann er neben der Verwendung für nahtlose Rohre auch zur Herstellung von längsnahtgeschweißten Rohren eingesetzt werden, die für den vorgesehenen Verwendungszweck als Ausgangsprodukt für Stabilisatoren besser geeignet sind.EP 0 753 597 A2 relates to the use of a steel alloy, expressed in terms of weight percent, of carbon (C) 0.12% -0.25%, silicon (Si) 0.10% -0.40%, manganese (Mn) 1.30% - 2.00%, phosphorus (P) max. 0.025%, sulfur (S) max. 0.025%, chromium (Cr) 1.60% - 2.50%, molybdenum (Mo) 0.40% - 1.00%, aluminum (Al) 0.010% - 0.050%, remainder iron including impurities caused by melting. This material is characterized by a good deformability and its toughness behavior. An additional fee is not required. Since the material is weldable, it can be used in addition to the use of seamless pipes for the production of longitudinally welded pipes, which are better suited for the intended use as a starting material for stabilizers.

Die im Prioritätsintervall veröffentlichte WO 03/069005 A2 betrifft die Verwendung einer Stahllegierung, die aus 0,09% - 0,13% Kohlenstoff (C), 0,15% - 0,50% Silizium (Si), 1,10% - 1,80% Mangan (Mn), max. 0,02% Phosphor (P), max. 0,02% Schwefel (S), 1,00% - 2,00% Chrom (Cr), 0,20% - 0,60% Molybdän (Mo), 0,02% - 0,06% Aluminium (Al), 0,10% - 0,25% Vanadium (V) und Eisen sowie den üblichen Verunreinigungen als Rest besteht, als Werkstoff für unter Schutzgas luftgehärtete Rohre zur Herstellung von Druckgasbehältem oder als Werkstoff zur Herstellung von Formbauteilen im Stahlleichtbau.WO 03/069005 A2 published in the priority interval relates to the use of a steel alloy consisting of 0.09% -0.13% carbon (C), 0.15% -0.50% silicon (Si), 1.10% 1.80% manganese (Mn), max. 0.02% phosphorus (P), max. 0.02% sulfur (S), 1.00% - 2.00% chromium (Cr), 0.20% - 0.60% molybdenum (Mo), 0.02% - 0.06% aluminum (Al) , 0.10% - 0.25% vanadium (V) and iron and the usual impurities as a remainder, as a material for air under inert gas-hardened tubes for the production of compressed gas containers or as a material for the production of molded parts in lightweight steel construction.

Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine Stahllegierung zur Verwendung als Werkstoff zur Herstellung von dickwandigen Rohrbauteilen für Kraftfahrzeuge aufzuzeigen, welche bei gegenüber bislang verwendeten Werkstoffen eine höhere Festigkeit, eine bessere Verformbarkeit und eine vereinfachte Wärmebehandlung ermöglicht, um auf diese Weise dickwandige Rohrbauteile einfacher und kostengünstiger herstellen zu können.Proceeding from this, the present invention seeks to show a steel alloy for use as a material for the production of thick-walled pipe components for motor vehicles, which allows compared to previously used materials higher strength, better ductility and a simplified heat treatment, to simplify in this way thick-walled pipe components and cheaper to produce.

Die Aufgabe wird durch die Verwendung einer Stahllegierung mit den Merkmalen des Patentanspruchs 1 gelöst.The object is achieved by the use of a steel alloy having the features of patent claim 1.

Die Verwendung der vorgeschlagenen Stahllegierung ist insbesondere aufgrund der wesentlich einfacheren Wärmebehandlung hervorragend zur Erreichung der gewünschten Bauteilfestigkeit geeignet, und erfüllt insgesamt die in derThe use of the proposed steel alloy is particularly suitable due to the much simpler heat treatment to achieve the desired component strength, and meets the total in the

Aufgabenstellung genannten Anforderungen. Der beschriebenen Stahllegierung liegt ein Legierungskonzept zugrunde, das eine Lufthärtung oder Luftvergütung ermöglicht. Eine bislang erforderliche Wasserabschreckung entfällt ersatzlos. Eine Luftabkühlung der dickwandigen Rohrbauteile nach dem Härten führt im Gegensatz zu einer Wasserabschreckung zu weniger hohen Eigenspannung innerhalb der Rohrbauteile, so dass es gegebenenfalls sogar möglich ist, auf das bislang erforderliche nachträgliche Anlassen der Werkstücke zu verzichten. Bei geeigneter Temperaturführung können nachfolgende Richt- und Bearbeitungsvorgänge weitgehend eingeschränkt werden. Auch der Grad der Verzunderung ist bei luftgehärteten oder luftvergüteten Rohrbauteilen deutlich geringer als bei einer Wasserabschreckung. Eine Verzunderung kann unter Schutzgasatmosphäre sogar gänzlich vermieden werden.Task specified requirements. The steel alloy described is based on an alloying concept that allows for air hardening or air treatment. A previously required Wasserabschreckung deleted without replacement. An air cooling of the thick-walled pipe components after hardening, in contrast to a water quenching to less high residual stress within the pipe components, so that it may even be possible to dispense with the previously required subsequent tempering of the workpieces. With suitable temperature control, subsequent straightening and machining operations can be largely restricted. The degree of scaling is significantly lower in air-hardened or air-tempered pipe components than in a water quench. Scaling can even be completely avoided under a protective gas atmosphere.

Der anlagetechnische Aufwand zur Fertigung von dickwandigen Rohrbauteilen kann infolge der Verwendung der vorgeschlagenen Stahllegierung um ein erhebliches Maß reduziert werden. Da durch die Reduzierung der notwendigen Verfahrensschritte mögliche Fehlerquellen eliminiert werden, ist der gesamte Herstellungsprozess weniger störungsanfällig. Im Ergebnis kann hierdurch ein höherer Qualitätsstandard sichergestellt werden.The investment technical effort for the production of thick-walled pipe components can be reduced as a result of the use of the proposed steel alloy to a considerable degree. Since possible sources of error are eliminated by reducing the necessary process steps, the entire manufacturing process is less prone to failure. As a result, a higher quality standard can be ensured thereby.

Die geringeren Eigenspannungen innerhalb der Rohrbauteile führen gegenüber wasservergütbaren Stählen weit weniger zu einer Reduktion der Zähigkeit. Die Verbesserung der Zähigkeit sowie die Reduzierung der Kerbempfindlichkeit erlaubt größere fertigungstechnische Toleranzen und damit eine einfachere Verfahrensführung, die in besseren konstruktiven Gestaltungsmöglichkeiten resultiert. Die größere Plastifizierbarkeit der verwendeten Stahllegierungen macht bei der Wärmebehandlung entstehende Risse an fertigungsbedingten kritischen Stellen weitaus weniger wahrscheinlich, was sich in einer niedrigeren Ausschussrate der Rohrbauteile wiederspiegelt, bzw. den Aufwand für die Fertigung der Rohre, insbesondere hinsichtlich der Prüfschärfe verringert. Zusammenfassend sind dickwandige Rohrbauteile für Kraftfahrzeuge unter Verwendung der vorgeschlagenen Stahllegierungen aufgrund der daraus resultierenden fertigungstechnischen Vorteile wesentlich günstiger herzustellen als vergleichbare Rohrbauteite aus bislang verwendeten Stahllegierungen insbesondere aus wasservergütbaren Stahllegierungen mit hohem Kohlenstoffgehalt.The lower internal stresses within the pipe components lead to less toughness compared to water-resistant steels. The improvement of the toughness as well as the reduction of notch sensitivity allows larger manufacturing tolerances and thus a simpler process management, resulting in better structural design options. The greater plasticizability of the steel alloys used makes far less likely in the heat treatment cracks on manufacturing critical points, which is reflected in a lower reject rate of the pipe components, or reduces the cost of manufacturing the pipes, especially in terms of the test. In summary, thick-walled pipe components for motor vehicles using the proposed steel alloys are much cheaper to manufacture than comparable ones due to the resulting manufacturing advantages Pipe-building site from previously used steel alloys, in particular from high-carbon water-treatable steel alloys.

Die unter Verwendung der beanspruchten Stahllegierung hergestellten Rohrbauteile besitzen zudem bessere Schwingfestigkeiten als vergleichbare Rohrbauteile aus anderen Stahllegierungen. Ferner ist aufgrund des niedrigeren Kohlenstoffgehalts eine bessere Verformbarkeit möglich, z.B. durch Rundkneten im weichgeglühten Zustand.The pipe components produced using the claimed steel alloy also have better vibration resistance than comparable pipe components made of other steel alloys. Further, due to the lower carbon content, better ductility is possible, e.g. by swaging in soft annealed condition.

Es ist bekannt, dass geringste Stickstoffgehalte nachhaltig die mechanischen Eigenschaften eines Stahls schädigen, Streckgrenze und Festigkeit erhöhen, das Verformungsvermögen und die Kerbschlagzähigkeit stark herabsetzen sowie gleichzeitig eine alternde Wirkung auf den Stahl besitzen. Im Rahmen der Erfindung hat sich herausgestellt, dass die gezielte Zugabe von Stickstoff zur Bildung von Vanadium(-carbo)-Nitriden führt, die ausgesprochen positive Eigenschaften auf die verwendete Stahllegierung und für die erfindungsgemäße Verwendung der Stahllegierung haben. Die durch gezielte Zugabe von Stickstoff gebildeten Vanadium(-carbo)-Nitride leisten einen Beitrag zur Ausscheidungsverfestigung und Komfeinung. Dabei hat sich gezeigt, dass bei Massenanteilen des Stickstoffs in einem Bereich von 0,005 % und 0,05 % einerseits genügend Carbonitride gebildet werden und andererseits der Stickstoff hinreichend durch Vanadium gebunden wird.It is known that the lowest nitrogen contents sustainably damage the mechanical properties of a steel, increase yield strength and strength, greatly reduce the deformability and the notched impact strength and at the same time have an aging effect on the steel. In the context of the invention it has been found that the targeted addition of nitrogen leads to the formation of vanadium (-carbo) nitrides, which have pronounced positive properties on the steel alloy used and for the inventive use of the steel alloy. The vanadium (-carbo) nitrides formed by the targeted addition of nitrogen contribute to precipitation strengthening and refinement. It has been found that when mass fractions of nitrogen in a range of 0.005% and 0.05% on the one hand sufficient carbonitrides are formed and on the other hand, the nitrogen is sufficiently bound by vanadium.

Dickwandige Rohrbauteile im Sinne der Erfindung sind solche, bei denen das Verhältnis des Außendurchmessers (AD) des Rohrbauteils zur Wanddicke (WD) des Rohrbauteils kleiner als 14 ist (AD/WD < 14) und vorzugsweise kleiner als 8 ist (AD/WD < 8). Das Verhältnis AD/WD kann auch kleiner als 6 sein. Das Verhältnis AD/WD kann über die Länge des Rohrbauteils variieren, wobei die Dickwandigkeit in obigem Sinne jedoch erhalten bleibt.Thick-walled pipe components in the sense of the invention are those in which the ratio of the outer diameter (AD) of the pipe component to the wall thickness (WD) of the pipe component is less than 14 (AD / WD <14) and preferably less than 8 (AD / WD <8 ). The ratio AD / WD can also be less than 6. The ratio AD / WD can vary over the length of the pipe component, but the thick wall is retained in the above sense.

Unter dickwandigen Rohrbauteilen sind Drehmoment übertragende Rohrbauteile in Form von Antriebswellen, Getriebewellen, Nockenwellen zu verstehen.Under thick-walled pipe components are torque-transmitting pipe components in the form of drive shafts, gear shafts, camshafts to understand.

Die verwendete Stahllegierung kann auf Zugfestigkeiten von Rm > 950 N/mm2 und Streckgrenzen von Rp0,2 > 700 N/mm2 bei einer Bruchdehnung A 5 > 14% eingestellt werden. Eine Lufthärtung erfolgt vorzugsweise bei 950 °C ± 15 °C im Durchlaufofen unter Schutzgas.The steel alloy used can have tensile strengths of Rm> 950 N / mm 2 and yield strengths of Rp0.2> 700 N / mm 2 at an elongation at break A 5> 14% be set. Air hardening is preferably carried out at 950 ° C ± 15 ° C in a continuous furnace under inert gas.

Im luftvergüteten Zustand erreicht die Stahllegierung eine Zugfestigkeit Rm > 850 N/mm2 und eine Streckgrenze von Rp0,2 > 700 N/mm2 bei einer Bruchdehnung von A5 > 15%.In the air-tempered state, the steel alloy achieves a tensile strength Rm> 850 N / mm 2 and a yield strength of Rp0.2> 700 N / mm 2 with an elongation at break of A5> 15%.

Claims (3)

  1. Use of a steel alloy which consists of, in mass terms,
    0.09 - 0.12% of carbon (C),
    0.15 - 0.30% of silicon (Si),
    1.45 - 1.60% of manganese (Mn),
    max. 0.015% of phosphorus (P),
    max. 0.011% of sulphur (S),
    1.25 - 1.50% of chromium (Cr),
    0.40 - 0.60% of molybdenum (Mo),
    0.020 - 0.060% of aluminium (Al),
    0.12 - 0.20% of vanadium (V),
    0.005 - 0.05% of nitrogen (N)
    remainder iron and melting-related impurities, as a material for air-hardened or air-treated tubes for producing thick-walled, torque-transmitting tubular components in the form of drive shafts, transmission shafts or camshafts for motor vehicles.
  2. Use of a steel alloy according to Patent Claim 1, characterized in that the ratio of the external diameter (ED) of the tubular component to the wall thickness (WT) of the tubular component is less than 14 (ED/WT < 14).
  3. Use of a steel alloy according to Patent Claim 1 or 2, characterized in that the ratio of the external diameter (ED) of the tubular component to the wall thickness (WT) of the tubular component is less than 8 (ED/WT < 8).
EP03767465A 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles Expired - Fee Related EP1565588B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10255264 2002-11-27
DE2002155264 DE10255264A1 (en) 2002-11-27 2002-11-27 Use of a steel alloy as a material for the manufacture of thick-walled pipe components for motor vehicles
PCT/DE2003/003925 WO2004048628A1 (en) 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles

Publications (2)

Publication Number Publication Date
EP1565588A1 EP1565588A1 (en) 2005-08-24
EP1565588B1 true EP1565588B1 (en) 2006-03-22

Family

ID=32318717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767465A Expired - Fee Related EP1565588B1 (en) 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles

Country Status (4)

Country Link
EP (1) EP1565588B1 (en)
AU (1) AU2003291954A1 (en)
DE (2) DE10255264A1 (en)
WO (1) WO2004048628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1881083A1 (en) * 2006-07-19 2008-01-23 Benteler Stahl/Rohr Gmbh Workpiece made of a high-strength steel alloy and its use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2750867C2 (en) * 1977-11-14 1983-10-20 Benteler-Werke Ag Werk Neuhaus, 4790 Paderborn Use of a steel alloy for pipes for door reinforcement
JPH05302119A (en) * 1992-03-27 1993-11-16 Sumitomo Metal Ind Ltd Production of high strength automotive parts
EP0753597A3 (en) * 1995-07-06 1998-09-02 Benteler Ag Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
ATE345403T1 (en) * 2002-02-15 2006-12-15 Benteler Automobiltechnik Gmbh USE OF A STEEL ALLOY AS A MATERIAL FOR PIPES FOR THE PRODUCTION OF COMPRESSED GAS TANKS OR AS A MATERIAL FOR THE PRODUCTION OF MOLDED COMPONENTS IN LIGHTWEIGHT BEAM CONSTRUCTION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1881083A1 (en) * 2006-07-19 2008-01-23 Benteler Stahl/Rohr Gmbh Workpiece made of a high-strength steel alloy and its use

Also Published As

Publication number Publication date
EP1565588A1 (en) 2005-08-24
AU2003291954A1 (en) 2004-06-18
WO2004048628A1 (en) 2004-06-10
DE50302755D1 (en) 2006-05-11
DE10255264A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
EP0753595B1 (en) Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
DE19955385B4 (en) Outer shaft half for double joints with improved abrasion resistance and improved durability for the shaft and method of making the same
EP1780293B1 (en) Procedure for manufacturing of steel starting material by warm deforming
DE60020263T2 (en) USE OF A DESIGN-HARDENED MARTENSITIC STAINLESS STEEL
DE60300561T3 (en) Process for producing a hot-rolled steel strip
EP2111475B1 (en) Components made of steels with an ultrahigh carbon content and with a reduced density and high scaling resistance
DE60035616T2 (en) LEAD-FREE MACHINE BLAST WITH EXCELLENT PROCESSABILITY AND REDUCED ANISOTROPY OF STRENGTH
DE19955386C2 (en) High strength drive shaft and method of manufacturing the same
DE102016117508B4 (en) Process for producing a flat steel product from a medium manganese steel and such a flat steel product
DE102008040689B4 (en) Ball studs and sleeves made of high manganese steel
EP2414552B1 (en) Ball pins made of bainitic steels for passenger car and light commercial vehicle
DE19920324B4 (en) Use of a steel with excellent fracture splittability and fatigue strength in connecting rods
DE112008001181B4 (en) Use of a steel alloy for axle tubes and axle tube
EP1565588B1 (en) Use of a steel alloy as a material for producing thick-walled tubular parts for motor vehicles
EP2255021B1 (en) Steel alloy for a low alloy steel for producing high-tensile seamless steel tubing
DE10105809C1 (en) Production of a round link chain made from heat-treatable steel, used in drive and conveying elements, comprises forming a chain strand, heat treating while calibrating the chain and post-treating
EP1961832B1 (en) Use of a steel alloy as a substance for producing dynamically loaded tube components and tube component
US20060057419A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
DE2326882A1 (en) PROCESS FOR PRODUCING HIGH STRENGTH STEEL WITH LOW PROPORTION TO DELAYED BREAKAGE
DE19950264B4 (en) Method for producing a double joint with improved cold workability and strength
DE112017006053T5 (en) HIGH-TEN AND HIGH-TIMING TUBE FOR A PERFORIER PISTOL AND METHOD OF MANUFACTURING THEREOF
EP0753597A2 (en) Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
DE102016208400A1 (en) Ultrahigh-strength spring steel for a valve spring
DE19902665A1 (en) Low carbon special steel for producing lightweight, high strength and corrosion resistant vehicle body and chassis components contains chromium and nickel
CN113265581B (en) Steel pipe for stabilizer bar and manufacturing method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

REF Corresponds to:

Ref document number: 50302755

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101019

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302755

Country of ref document: DE

Representative=s name: BOCKERMANN, KSOLL, GRIEPENSTROH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50302755

Country of ref document: DE

Owner name: BENTELER DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: BENTELER STAHL/ROHR GMBH, 33104 PADERBORN, DE

Effective date: 20110822

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302755

Country of ref document: DE

Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE

Effective date: 20110822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50302755

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601