EP1563224B1 - Continuous steam generator with circulating atmospheric fluidised-bed combustion - Google Patents
Continuous steam generator with circulating atmospheric fluidised-bed combustion Download PDFInfo
- Publication number
- EP1563224B1 EP1563224B1 EP03767428.0A EP03767428A EP1563224B1 EP 1563224 B1 EP1563224 B1 EP 1563224B1 EP 03767428 A EP03767428 A EP 03767428A EP 1563224 B1 EP1563224 B1 EP 1563224B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heating surface
- combustion chamber
- steam generator
- pipes
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
- F22B31/0007—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
- F22B31/0084—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
- F22B31/0007—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
- F22B31/0015—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type
- F22B31/003—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type with tubes surrounding the bed or with water tube wall partitions
- F22B31/0038—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type with tubes surrounding the bed or with water tube wall partitions with tubes in the bed
Definitions
- the invention relates to a continuous steam generator with circulating atmospheric fluidized bed combustion.
- sloped smooth tubes ie tubes with smooth inner walls that slope within the containment tube walls
- internally ribbed vertical tubes ie Surround pipe walls are divided into several wall sections, which are flowed through successively, see also Figure 2c of the above document).
- the combustion chamber enclosing walls of continuous steam generators with circulating fluidized bed combustors can not be inclined or inclined as in conventionally pulverized coal continuous steam generators, but must be bored vertically.
- the circulating fluidized bed combustors have therefore been predominantly combined with evaporator systems which operate in recirculating or forced circulation operation and are therefore equipped with vertically bored containment walls.
- a few circulating fluidized bed combustors also produce the steam with a forced flow system, but as a downcomer system and at low vapor pressures (eg, KW Moabit). Considerations have already been made to use the once-through steam generator with ZWSF even in the pressure range from 100 to 300 bar, and thus more economically, ie with less fuel to operate. Because of the need to form combustor confinement walls from vertical evaporator tubes, internally ribbed tubes have been proposed for cooling the evaporator walls (see above reference).
- EP 1 030 150 A1 has become known as a fluidized bed combustion chamber for the gasification and combustion of combustibles.
- the heat released in the combustion chamber is dissipated on all sides of the heat exchanged heat exchanger heating surfaces, either immersed in the fluidized bed of a heat recovery chamber or come into contact with the gas stream above the combustion chamber.
- the walls of the combustion chamber are formed of a sheet steel housing or the like instead of one side of the heat-exposed and the combustion chamber comprising Schuphilrohren.
- the used and series-connected heat exchanger heating surfaces circulates a heat transfer medium operated by a circulation pump forced circulation steam generator in which, in contrast to a forced flow steam generator, the heat transfer medium flows several times in the circuit through the heat generator.
- the solid particles within the stationary fluidized bed in the main combustion chamber are directed into the energy recovery chamber such that the height of the stationary fluidized bed remains the same.
- the heat generated in the combustion chamber in the field of stationary fluidized bed is thereby within the thermal energy recovery chamber to the immersed in the fluidized bed and a working medium, for example, water or steam-conducting Schuvinrohre and to the water pipes of the outside and the combustion chamber bounding surrounding wall delivered.
- a working medium for example, water or steam-conducting Schuvinyake
- the forming the partition wall and immersed in the stationary fluidized bed water pipes take due to the surrounding outer wall no or only a negligible amount of heat and thus do not participate in this area in the energy production.
- the water pipes and the pipes of the heating surfaces are part of an unspecified steam generator or boiler type.
- a fluidized bed steam generator which is designed as a continuous steam generator.
- the tubes of the enclosure walls are vertical.
- an evaporator heating surface may be present in the combustion chamber to reduce the height of the combustion chamber.
- Out EP 0 025 975 A2 is a continuous steam generator with Um chargedsNasen known having vertically extending tubes. Within the combustion chamber partitions are arranged, which are connected to the Um venten. The tubes of the intermediate walls are heated on both sides. At least in sections, the tubes are provided on their inner surfaces with ribs or other elements for swirling the flow to ensure adequate cooling.
- a circulating fluidized bed reactor with heat exchange surface extensions is known in DE 694 04 423 T2 described. Inside the combustion chamber, the surrounding walls are provided with extensions extending transversely thereto, which are heated on both sides. The spaces between the extensions are to form channels or shafts through which the solids fall into the fluidized bed to increase the rate of sinking solids to the fluidized beds.
- US 6 470 833 Bl describes a fluidized bed steam generator with vertically drilled Um Publishedsplinn.
- chambers are arranged, which have vertically extending tubes. These chambers are supplied with secondary air and fuel. The chambers are spaced from the enclosure walls.
- the invention provides to heat the heating surface according to the invention on one side and form the one side heated heating surface with smooth tubes.
- this is designed as a box-shaped heating surface with a box-shaped cross-section. Due to the box-shaped design, the heating surface receives great stability, which makes it possible to form combustion chambers of the largest continuous steam generators with heating surfaces.
- the cross section of the box-shaped heating surface is rectangular.
- FIG. 1 schematically shows a continuous steam generator 1 with circulating fluidized bed 2 (ZWSF) for the combustion of coal or other combustible materials.
- the material to be incinerated is introduced either together with an inert material or separately through the feed line 10 into the fluidized bed or fluidized-bed combustion chamber 3 of the continuous-flow steam generator 1 with ZWSF.
- a fluidizing gas through the supply line 11 is usually the vortex combustion chamber 3 fed from below.
- the fluidizing gas is typically air and is thus used for combustion as the oxidant.
- the resulting during combustion exhaust gas or flue gas and carried along by the exhaust solids (inert material, ash particles and unburned) are in the upper part of the opening 12 from the.
- Combustion chamber 3 discharged and fed via an exhaust pipe 13 a separator, usually a centrifugal separator or cyclone 14.
- a separator usually a centrifugal separator or cyclone 14.
- the solids are largely separated from the exhaust gas and fed back to the combustion chamber 3 via the return line 15.
- the largely purified exhaust gas is supplied via the exhaust pipe 16 to a second flue 17, in which at least one economizer heating surface 18, at least one superheater heating surface 19 and possibly at least one reheater heating surface 20 is arranged for further use or decrease of the exhaust heat.
- the cross section of the combustion chamber 3 is generally rectangular. However, it can also be round or have a different shape.
- the combustion chamber 3 is surrounded on all sides by Um chargeds cleanse 4, the Um chargedswand 4 seen from bottom to top the combustion chamber 4.1, the combustion chamber side walls 4.2 and the combustion chamber ceiling 4.3 includes.
- the combustion chamber floor 4.1 is generally designed as a nozzle bottom, through which the fluidizing gas is introduced.
- FIG. 2 shows a combustion chamber 3 with a simple funnel 6 in the lower region of the combustion chamber 3, whereas FIG. 3 a combustion chamber 3 with double funnel 7, a so-called "pant leg” design shows.
- the combustion chamber surrounding walls 4 are designed as heating mediums through which working medium flows, these heating surfaces being formed from gas-tight membrane walls.
- Such membrane walls can be assembled by gas-tight welding of a pipe-web-tube combination.
- the tube-web-tube combination comprises tubes 5, which are smooth on the outer circumference and which are each connected to separate webs 21.
- fin tubes whose outer wall are already formed with webs and which are connected together.
- the present invention is directed to continuous steam generator 1 with circulating fluidized bed 2 high power (about 300 to 600 Mwel) and high steam parameters (about 250 to 300 bar pressure and 560 to 620 ° C temperature) from.
- high power about 300 to 600 Mwel
- high steam parameters about 250 to 300 bar pressure and 560 to 620 ° C temperature
- additional heating surfaces 8 which for reasons of thermal engineering (uniform heat absorption) are preferably arranged inside the combustion chamber 3.
- the continuous steam generator 1 according to the invention with ZWSF 2 provides that all the tubes 5, 9 of the enclosing walls 4 and lying within the combustion chamber 3 heating surfaces 8 are formed as Verdampfersammlung operation and are connected in parallel for the flow of the entire working medium to be evaporated, that all tubes 5 of Surrounding walls 4 are formed with a smooth inner tube surface and the heating surfaces 8 extend between the combustion chamber bottom 4.1 or funnel top edge 24 and the combustion chamber ceiling 4.3.
- the parallel connection of the heating surfaces 8 and the heating surface of the enclosure wall 4 of the continuous steam generator 1 and the use of both heating surfaces as Verdampfershirts configuration is achieved in an advantageous manner that on the one hand by means of adjusting the number of heating surfaces 8, the combustion chamber 3 can be designed efficiently. D.
- the combustion chamber dimensions can be optimized, especially the combustion chamber height (distance between combustion chamber floor and ceiling) can be significantly reduced by the integration of the heating surfaces 8.
- the effective heat flux densities within the fluidized-bed combustion chamber 3 in the aforementioned circuit of the continuous steam generator 1 despite reduced working medium mass flow densities of about 400 to 1200 kg / m 2 s allow for the tubes 5 of the enclosing walls 4 to use those inside smooth surface. Due to the reduced working medium mass flow densities, an improved natural circulation characteristic within the evaporator heating surfaces is achieved, which means that an increase in the working medium throughput also takes place in the event of a localized multiple heating, thus ensuring reliable tube cooling.
- tubes 5 with an inner smooth surface also called smooth tubes for short
- smooth tubes are much cheaper than internally ribbed tubes, have shorter delivery times, are available in much larger sizes and generally better available, since ribbed tubes are usually only available as custom-made, smooth tubes are also much easier to handle in terms of assembly.
- smooth tubes have a much smaller friction pressure loss of the working medium compared with internally ribbed tubes, which has a positive effect on the uniform distribution of the working fluid to the individual tubes 5 and a reduction of the feed pump power of the continuous steam generator 1.
- continuous steam generators 1 are increasingly being used in the supercritical range, i. H. operated at a vapor pressure of over 220 bar and in sliding pressure between supercritical and subcritical pressure (the operating pressure of the steam generator slides in the load range of the continuous steam generator, eg between 20 to 100% load).
- the steam generator reaches the critical pressure range at a partial load of about 70% and is operated subcritically below this partial load, ie. H. that in the partial load range approximately below 70% in the evaporator during the evaporation process, a two-phase mixture occurs.
- the abovementioned solution according to the invention ensures that no segregation of steam and water occurs within the evaporator heating surface (enclosing walls 4 and heating surfaces 8). This is further supported by the advantageous embodiment of the continuous steam generator 1 according to the invention that the working medium flow through the tubes 5, 9 of the enclosing walls 4 and the heating surfaces 8 takes place without the aid of intermediate collectors.
- the additional heating surfaces 8 used in the fluidized-bed combustion chamber 3 are so-called Schott heating surfaces.
- Schott heating surfaces are self-contained and plate-like heating surfaces (ie the individual ones side by side arranged tubes 9 are connected to webs 22 - welded tube-web-tube combination - together to a bulkhead), which are in contrast to bundle heating surfaces that are open (ie, the individual juxtaposed tubes are not connected to each other with webs).
- the heating surfaces 8 are arranged substantially vertically within the combustion chamber 3 and the tubes 9 contained therein also extend substantially vertically.
- the heating surfaces 8 extend, depending on the combustion chamber formation, either between the combustion chamber bottom 4.1 or the upper edge of the funnel 24 and the combustion chamber ceiling 4.3. As a result, they can be used together with the enclosure wall 4 fully for parallel flow through the entire working medium to be evaporated.
- the heating surfaces 8 thus spring in the lower region of the fluidized-bed combustion chamber 3 substantially at the combustion chamber bottom or at the funnel lower edge 4.1 in the case of a combustion chamber 3 with a funnel 6 (FIG. FIG. 2 ) and central arrangement of the heating surfaces 8 within the combustion chamber 3 or at the funnel upper edge 24 in a combustion chamber 3 with two funnels 7 (FIG. FIG.
- the heating surfaces 8 can be welded, for example, to the combustion chamber bottom 4.1 or upper edge of the funnel 24 and the combustion chamber ceiling 4.3. If more than two funnels are provided in the lower region of the combustion chamber 3, the integration of the heating surfaces 8 can take place analogously.
- the parallel supply of the heating surfaces 8 and the enclosure wall 4 is effected by collectors, not shown, by means of which the above-mentioned heating surfaces, the working medium to be evaporated is supplied from below.
- the heating surfaces 8 start at a combustion chamber 3 with two hoppers 7 according to the FIG. 3 only at the upper edge of the funnel or on the funnel saddle 24, these heating surfaces 8 can be fed via the funnel enclosing walls 4 with working medium. A separate, parallel feed of the heating surfaces 8 is possible.
- FIG. 6 shows a heating surface 8 heated on one side.
- This heating surface 8 comprises an inner space 23 on the circumference and is box-shaped, which is why the heating surface 8 is also referred to in the following description as a box-shaped heating surface or as a box bulkhead (s) 8.
- the FIG. 6 shows an advantageous embodiment of the box-shaped heating surface 8 with a rectangular cross-section.
- the box bulkhead 8 according to the FIG. 6 has four sidewalls of welded membrane tube walls welded together at the corners, the membrane tube walls being formed of tubes 9 and lands 22. This results in a box in gas-tight welded tube-web-tube design or combination.
- FIG. 6 shows a heating surface 8 heated on one side.
- This heating surface 8 comprises an inner space 23 on the circumference and is box-shaped, which is why the heating surface 8 is also referred to in the following description as a box-shaped heating surface or as a box bulkhead (s) 8.
- the FIG. 6 shows an advantageous embodiment of the box-shaped heating surface 8 with
- the tubes 5, 9 Due to the vertical arrangement of the heating surfaces 8 and thus also of the tubes 9 and the vertical tubes 5 of the enclosure walls 4, the tubes 5, 9 give the lowest possible erosion attack points in the combustion chamber 3 from the bottom upwards flowing gas and particle flow. In order to protect the tubes 5, 9 in the lower combustion chamber area or in the funnel area 6, 7 from the high transverse or turbulence flows of the gas and particle flow of the fluidized bed, these are provided with a refractory lining 25.
- An advantageous embodiment of the invention provides according to the FIGS. 7 to 9 before, the tubes 9 of the combustion chamber in the hopper area 6, 7 with a refractory lining 25th provided box-shaped heating surface 8 in the transition region 26 between lined and non-lined Bank lake 27 inwardly into the region of the interior 23 andmonsenten the leading edges of the refractory lining 25 and the non-lined portion 27 of the heating surface 8 in the vertical direction aligned.
- This measure prevents 26 erosion attack points are given to the tubes 9 for turbulence flows of the gas and particle flow in the transition region.
- the tubes 9 used for the box-shaped heating surfaces 8 have in an advantageous embodiment outer diameter between 20 mm and 70 mm.
- the production of the box-shaped heating surfaces 8 is possible with customary in steam generator construction materials and manufacturing processes.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Spray-Type Burners (AREA)
Description
Die Erfindung bezieht sich auf einen Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung.The invention relates to a continuous steam generator with circulating atmospheric fluidized bed combustion.
Neben Naturumlauf-und Zwangumlaufdampferzeugern sind Zwangdurchlauf-bzw. Durchlaufdampferzeuger zur Erzeugung von elektrischer Energie durch Verfeuerung von beispielsweise fossilen Brennstoffen bekannt. Letztere werden insbesondere bei modernen bzw. großen Kraftwerksanlagen eingesetzt. Dabei wird die bei der Verbrennung des Brennstoffes in der Brennkammer des Durchlaufdampferzeugers entbundene Wärme an von Arbeitsmedium durchströmte Heizflächen, bestehend aus z. B. Brennkammer- Umfassungswände, Strahlungs-bzw. Konvektivheizflächen, des Durchlaufdampferzeugers abgegeben. Das Arbeitsmedium ist dabei in einen Wasser/Dampfkreislauf einer Dampfturbine eingebunden, in der es die aufgenommene thermische Energie weitergibt.In addition to natural circulation and forced circulation steam generators are Zwangdurchlauf- or. Continuous steam generator for generating electrical energy by burning of, for example, fossil fuels known. The latter are used in particular in modern or large power plants. In the process, the heat released during the combustion of the fuel in the combustion chamber of the continuous-flow steam generator flows through heating surfaces through which working medium flows, consisting of, for example, steam. B. combustion chamber surrounding walls, radiation or. Convective heating surfaces, the continuous steam generator delivered. The working medium is incorporated into a water / steam cycle of a steam turbine in which it passes on the absorbed thermal energy.
Derartige Durchlaufdampferzeuger, bei denen das Arbeitsmedium im wesentlichen in einem Durchlauf des Dampferzeugers vorgewärmt, verdampft, überhitzt und ggf. zwischenüberhitzt wird, sind seit langem bekannt und üblicherweise mit Brennern zur Verfeuerung von fossilen Brennstoffen bestückt. Aus der Druckschrift "
In den letzten Jahren ist man auch daran gegangen, Durchlaufdampferzeuger mit zirkulierenden Wirbelschichtfeuerungen (ZWSF) auszubilden. Dabei wird wie bei sämtlichen mit fossilen Brennstoffen befeuerten Kraftwerksanlagen versucht, die durch die Verbrennung entstehenden Emissionen zum Schutze der Umwelt zu minimieren. Dies kann durch Erhöhung des Kraftwerkprozesswirkungsgrades und die einhergehende Verminderung des Brennstoffes bewirkt werden. Ein Teil der Wirkungsgradsteigerung erfolgt dabei durch Erzeugung von Dampf mit hohen Dampfparametern (hohe Dampfdrücke und -temperaturen). Damit die Kraftwerksblöcke innerhalb eines großen Lastbereiches wirtschaftlich arbeiten, werden die Dampferzeuger im Gleitdruck betrieben. Um gleichzeitig die diversen Anforderungen (konstant hohe Dampftemperatur, gleitender Dampfdruck, hohe Laständerungsgeschwindigkeit) zu erfüllen, kommen nur die vorerwähnten Zwangdurchlaufdampferzeugersysteme zum Einsatz bzw. in Frage.In recent years, it has also gone to train continuous steam generator with circulating fluidized bed combustion (ZWSF). As with all fossil fuel-fired power plants, attempts are made to minimize the emissions produced by combustion to protect the environment. This can be accomplished by increasing power plant process efficiency and the concomitant reduction in fuel. Part of the increase in efficiency takes place by generating steam with high steam parameters (high steam pressures and temperatures). So that the power plant blocks operate economically within a large load range, the steam generators are operated in sliding pressure. At the same time to meet the various requirements (constant high steam temperature, sliding vapor pressure, high load change rate), only the above-mentioned forced-circulation steam generator systems are used or in question.
Aus Erosionsgründen können die Brennkammerumfassungswände von Durchlaufdampferzeugern mit zirkulierenden Wirbelschichtfeuerungen nicht wie bei herkömmlich kohlenstaubbefeuerten Durchlaufdampferzeugern geneigt bzw. schräg angeordnet werden, sondern müssen vertikal berohrt sein. Die zirkulierenden Wirbelschichtfeuerungen wurden deshalb vorwiegend mit Verdampfersystemen kombiniert, die im Naturumlauf- oder Zwangumlaufbetrieb arbeiten und deswegen mit vertikal berohrten Umfassungswänden ausgestattet sind. Einige wenige zirkulierende Wirbelschichtfeuerungen erzeugen den Dampf auch mit einem Zwangdurchlaufsystem, jedoch als Fall-/Steigrohrsystem und bei niedrigen Dampfdrücken (z. B. KW Moabit). Es wurden bereits Überlegungen angestellt, den Zwangdurchlaufdampferzeuger mit ZWSF auch im Druckbereich 100 bis 300 bar einzusetzen und damit wirtschaftlicher, d. h. mit weniger Brennstoff, zu betreiben. Wegen der Notwendigkeit, Brennkammerumfassungswände aus vertikalen Verdampferrohren zu bilden, wurden für die Kühlung der Verdampferwände innenberippte Rohre vorgeschlagen (siehe obengenannte Druckschrift) .For reasons of erosion, the combustion chamber enclosing walls of continuous steam generators with circulating fluidized bed combustors can not be inclined or inclined as in conventionally pulverized coal continuous steam generators, but must be bored vertically. The circulating fluidized bed combustors have therefore been predominantly combined with evaporator systems which operate in recirculating or forced circulation operation and are therefore equipped with vertically bored containment walls. A few circulating fluidized bed combustors also produce the steam with a forced flow system, but as a downcomer system and at low vapor pressures (eg, KW Moabit). Considerations have already been made to use the once-through steam generator with ZWSF even in the pressure range from 100 to 300 bar, and thus more economically, ie with less fuel to operate. Because of the need to form combustor confinement walls from vertical evaporator tubes, internally ribbed tubes have been proposed for cooling the evaporator walls (see above reference).
Beim Übergang von Naturumlauf- zu (überkritischen) Zwangdurchlaufdampferzeugern mit hohen Dampfparametern (typischerweise 250 bis 300 bar, 560 bis 620 C) im Leistungsbereich von 300 bis 600 MWel, ergeben sich folgende Probleme bzw. Nachteile mit dem Stand der Technik :
- ZWSF-Durchlaufdampferzeuger, die mit unterkritischen Dampfdrücken betrieben werden, benötigen im Vergleich zu überkritischen Dampfdrücken bei gleicher Dampferzeugerleistung einen höheren Brennstoffeinsatz und erzeugen dadurch mehr schädliche Emissionen.
- Vertikal berohrte Zwangdurchlaufdampferzeuger besitzen im Gegensatz zu geneigten Rohren den Nachteil, dass die Anzahl der Rohre bei einer gegebenen Brennkammergeometrie größer ist und damit die Massenstromdichte (Maß des Arbeitsmediumstromes in kg pro m2 Durchströmungsquerschnitt und pro Sekunde) pro Rohr abnimmt. Um trotzdem eine ausreichende Kühlung der Rohre sicherzustellen, werden innenberippte Rohre eingesetzt oder die einzelnen Wände der Brennkammerumfassungswände hintereinander durchströmt.
- Die Aufteilung des gesamten Verdampferstromes auf mehrere in Serie geschaltete Wände besitzt mehrere Nachteile :
- 1) Die einzelnen Wände müssen über Fallrohre verbunden werden.
- 2) Bei der erneuten Verteilung des Verdampferstromes treten Entmischungsvorgänge auf (unterschiedliche Dampfgehalte), die am Austritt des Verdampfers als Temperaturschieflagen sichtbar werden und infolge behinderter Wärmedehnung zu Rissen in den Wänden führen können.
- 3) Höherer Druckverlust infolge höherer Massenstromdichte. - Innenberippte Rohre besitzen größere Reibungsdruckverluste und haben den Nachteil einer Sonderfertigung und einen erhöhten Fertigungsaufwand beim Zusammensetzen von Teilflächen.
- ZWSF Continuous Steam Generators operating at subcritical vapor pressures require higher fuel input compared to supercritical vapor pressures with the same steam generator output, thereby producing more harmful emissions.
- Vertical-bore forced-circulation steam generators have the disadvantage, in contrast to inclined pipes, that the number of pipes is greater for a given combustion chamber geometry and thus the mass flow density (measure of the working medium flow in kg per m2 flow cross section and per second) per pipe decreases. Nevertheless, in order to ensure sufficient cooling of the tubes, inside ribbed tubes are used or the individual walls of the combustion chamber surrounding walls flow one behind the other.
- The distribution of the entire evaporator flow to several walls connected in series has several disadvantages:
- 1) The individual walls must be connected via downpipes.
- 2) In the redistribution of the evaporator stream segregation occur (different levels of steam), which are visible at the outlet of the evaporator as temperature imbalances and can lead to cracks in the walls due to impaired thermal expansion.
- 3) Higher pressure loss due to higher mass flow density. - Internal ribbed tubes have greater friction pressure losses and have the disadvantage of a special production and increased manufacturing costs in the assembly of partial surfaces.
Durch Druckschrift
Durch Druckschrift
Aus
Aus
Aus
Ein zirkulierender Wirbelschichtreaktor mit Wärmeaustauschflächenerweiterungen ist in
Aufgabe der Erfindung ist es nun, einen Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung zu schaffen, bei dem die vorgenannten Nachteile vermieden werden bzw. die nachfolgend genannten Kriterien erfüllt bzw. eingehalten werden.
- Einsatz von wirtschaftlicheren und ökologischeren Durchlaufdampferzeugern mit ZWSF im Leistungsbereich von etwa 300 bis 600 MWel und in einem Druckbereich von etwa 100 bis 300 bar,
- Erzielung einer effizienten Brennkammerauslegung für einen derartigen Durchlaufdampferzeuger unter Berücksichtigung von innerhalb bzw. ggf. außerhalb der Brennkammer zusätzlich installierter Heizflächen.
- Use of more economical and ecological continuous flow steam generators with ZWSF in the power range of about 300 to 600 MWel and in a pressure range of about 100 to 300 bar,
- Achieving an efficient combustion chamber design for such a continuous steam generator taking into account additionally installed inside or outside the combustion chamber heating surfaces.
Die vorstehend genannte Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst.The above object is solved by the characterizing features of
Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.Advantageous embodiments of the invention can be found in the dependent claims.
Durch die erfindungsgemäße Lösung wird ein Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung geschaffen, der die nachfolgenden Vorteile aufweist :
- Durch die Kombination von Brennkammerumfassungswänden und zusätzlicher, in der Brennkammer angeordneter, Heizflächen als Verdampferheizflächen und paralleler Arbeitsmittel-durchströmung dieser Verdampferheizheizflächen kann die Wirbelbrennkammer und somit auch der Durchlaufdumpferzeuger in den baulichen Ausmaßen wesentlich niedriger und damit kostengünstiger ausgebildet werden.
- Durch die Verwendung von Glattrohren, d. h. Rohre mit auf der Innenseite glatten Oberflächen, in den Umfassungswänden des Durchlaufdampferzeugers ergeben sich wirtschaftliche Vorteile, da sie gegenüber innenberippten Rohren billiger sind und auch keine Sonderanfertigungen nötig sind. Glattrohr werden im Gegensatz zu innenberippten Rohren von vielen Herstellern in einer großen Vielfalt produziert.
- Durch den Einsatz von Glattrohren in den Umfassungswänden des Durchlaufdampferzeugers ergibt sich ein niedrigerer Druckverlust in der Verdampferheizfläche im Vergleich zu einer mit innenberippten Rohren ausgebildeten Verdampferheizfläche.
- Durch die parallele Durchströmung der Umfassungswände und der in der Wirbelbrennkammer zusätzlich angeordneten Heizflächen ergeben sich wirtschaftliche Vorteile, da der Einbau von Zwischensammlern (Misch- oder Druckausgleichsammler) nicht mehr erforderlich ist.
- Der Zusammenbau der Heizflächen, die aus Glattrohren hergestellt sind, ist wirtschaftlicher (Keine Anpassung der Innenberippung erforderlich, dadurch weniger Rohrverluste bei der Montage).
- Die Länge bzw. Höhe der vertikalen, in der Wirbelbrennkammer zusätzlich angeordneten Heizflächen ist der Höhe und Bauweise (unterschiedliche Trichter im unteren Bereich der Brennkammer) der Wirbelbrennkammer angepasst. Daraus resultieren Vorteile bei der Montage der Heizflächen, da sie effizient in den Brennkammerboden bzw. in die Trichteroberkante sowie in die Brennkammerdecke eingebunden werden können.
- Die in der Wirbelbrennkammer zusätzlich angeordneten Heizflächen sind als einseitig beheizte zu Kasten verschweißte Heizflächen ausgeführt.
- Durch die Integration beheizter zusätzlicher Heizflächen wird die gewünschte Massenstromdichte eingestellt, die erforderlich ist, um Massenstrom- und Beheizungsunterschiede auszugleichen und annähernd gleiche Austrittstemperaturen zu erzielen.
- Die Brennkammerabmessungen (Querschnitt, Höhe) und die integrierten Heizflächen sind so bemessen, dass die wirksamen Wärmestromdichten den Einsatz vertikaler Glattrohr in den Umfassungswänden bei kleinen Massenstromdichten zulassen.
- By combining Brennkammerumfassungswänden and additional, arranged in the combustion chamber, heating surfaces as Verdampferheizflächen and parallel working medium flow through this Verdampferheizheizflächen the vortex combustion chamber and thus the Durchlaufdumpferzeuger in the structural dimensions are much lower and thus cheaper.
- The use of smooth tubes, ie tubes with smooth surfaces on the inside, in the surrounding walls of the continuous steam generator, there are economic benefits, since they are cheaper than internally ribbed tubes and no special designs are needed. Smooth pipe, in contrast to internally ribbed pipes, is produced in many varieties by many manufacturers.
- The use of smooth tubes in the surrounding walls of the continuous-flow steam generator results in a lower pressure loss in the evaporator heating surface in comparison to an evaporator heating surface formed with internally ribbed tubes.
- The parallel flow through the enclosing walls and the additional arranged in the fluidized combustion chamber heating surfaces have economic benefits, since the installation of intermediate collector (mixing or pressure compensation collector) is no longer required.
- The assembly of the heating surfaces, which are made of smooth tubes, is more economical (no adjustment of the internal ribbing required, thereby less pipe losses during assembly).
- The length or height of the vertical heating surfaces additionally arranged in the fluidized-bed combustion chamber is adapted to the height and construction (different funnels in the lower region of the combustion chamber) of the fluidized-bed combustion chamber. This results in advantages in the installation of the heating surfaces, as they can be efficiently integrated into the combustion chamber floor or in the upper edge of the funnel and in the combustion chamber ceiling.
- The additionally arranged in the fluidized combustion chamber heating surfaces are designed as unilaterally heated to box welded heating surfaces.
- By integrating heated additional heating surfaces, the desired mass flow density is set, which is necessary to compensate for mass flow and heating differences and to achieve approximately the same outlet temperatures.
- The combustion chamber dimensions (cross-section, height) and the integrated heating surfaces are dimensioned such that the effective heat flux densities make the use of vertical Allow smooth tube in the enclosure walls at low mass flow densities.
die erfindungsgemäße Die Erfindung sieht vor, die erfindungsgemäße - Heizfläche einseitig zu beheizen und dieeinseitig beheizte Heizfläche mit Glattrohren auszubilden. Dadurch wird wie bereits bei den Glattrohren der Umfassungswand angeführt ein wesentlicher wirtschaftlicher Vorteil erzielt, da Glattrohr wesentlich billiger sind, leichter zu montieren sind und einen geringeren Reibungsdruckverlust bedingen.the invention The invention provides to heat the heating surface according to the invention on one side and form the one side heated heating surface with smooth tubes. As a result, as already mentioned in the smooth tubes of Umfassungswand a significant economic advantage achieved because smooth-tube are much cheaper, easier to assemble and cause a lower friction pressure loss.
In zweckmäßiger Ausgestaltung der einseitig beheizten Heizfläche ist diese als kastenförmige Heizfläche mit einem kastenförmigem Querschnitt ausgebildet. Durch die kastenförmige Ausbildung erhalt die Heizfläche eine große Stabilität, die es ermöglicht, Brennkammern von größten Durchlaufdampferzeugern mit Heizflächen auszubilden. In weiterer zweckmäßiger Ausgestaltung ist der Querschnitt der kastenförmigen Heizfläche rechteckig ausgebildet.In an advantageous embodiment of the heating surface heated on one side, this is designed as a box-shaped heating surface with a box-shaped cross-section. Due to the box-shaped design, the heating surface receives great stability, which makes it possible to form combustion chambers of the largest continuous steam generators with heating surfaces. In a further advantageous embodiment, the cross section of the box-shaped heating surface is rectangular.
Um eine gleichmäßige Erwärmung des Arbeitsmediums innerhalb der Rohre der Umfassungswände zu erzielen ist es vorteilhaft, dass diese Rohre im wesentlichen die gleiche beheizte Länge besitzen. Um dieselbe Wirkung auch auf die Rohre der Heizflächen zu übertragen ist es ferner vorteilhaft, dass die Rohre der Heizflächen die gleiche beheizte Länge wie die Rohre der Umfassungswänden besitzen.In order to achieve a uniform heating of the working medium within the tubes of the enclosure walls, it is advantageous that these tubes have substantially the same heated length. The same effect on the pipes of the heating surfaces To transfer it is also advantageous that the tubes of the heating surfaces have the same heated length as the tubes of Umfassungswänden.
Nachstehend sind Ausführungsbeispiele der Erfindung an Hand der Zeichnung und der Beschreibung näher erläutert.Embodiments of the invention with reference to the drawings and the description are explained in more detail below.
Es zeigt :
- Fig. 1
- schematisch dargestellt einen Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung im Längsschnitt
- Fig. 2
- schematisch dargestellt eine Wirbelbrennkammer eines Wirbelschicht-Durchlaufdampferzeugers mit einem Brennkammertrichter im Längsschnitt,
- Fig. 3
- wie
Figur 2 , jedoch Wirbelbrennkammer mit zwei Brennkammertrichter ("Pant leg") im Längsschnitt, - Fig. 4
- schematisch dargestellt eine Brennkammer eines Wirbelschicht- Durchlaufdampferzeugers (mit einem Brennkammertrichter) im Querschnitt gemäß Schnitt A-A der
Figur 2 , Schnitt um 90 gedreht, - Fig. 5
- schematisch dargestellt eine Brennkammer eines Wirbelschicht-Durchlaufdampferzeugers (mit zwei Brennkammertrichter) im Querschnitt gemäß Schnitt B-B der
Figur 3 , Schnitt um 90 ° gedreht, - Fig.6
- schematischer Querschnitt einer alternativen kastenförmigen Heizfläche (Kastenschott) gemäß Detail
C der Figuren 4 und 5 , - Fig.7
- schematisch dargestellt eine kastenförmige Heizfläche mit vertikal fluchtendem Übergang von der Feuerfestauskleidung zur oberen Membranrohrwand im Längsschnitt, entspricht Schnitt A -
A der Figur 8 , - Fig.8
- schematischer Querschnitt einer kastenförmigen Heizfläche gemäß Schnitt C -
C der Figur 9 , - Fig.9
- schematischer Längsschnitt einer kastenförmigen Heizfläche gemäß Schnitt B -
B der Figur 8 .
- Fig. 1
- schematically shows a continuous steam generator with circulating atmospheric fluidized bed combustion in longitudinal section
- Fig. 2
- schematically a vortex combustion chamber of a fluidized bed continuous steam generator with a combustion funnel in longitudinal section,
- Fig. 3
- as
FIG. 2 , but vortex combustion chamber with two combustion chamber funnels ("pant leg") in longitudinal section, - Fig. 4
- schematically shows a combustion chamber of a fluidized bed continuous steam generator (with a combustion chamber funnel) in cross section according to section AA of
FIG. 2 , Cut at 90, - Fig. 5
- schematically shows a combustion chamber of a fluidized bed continuous steam generator (with two combustion funnel) in cross section according to section BB of
FIG. 3 , Section rotated 90 °, - Figure 6
- schematic cross section of an alternative box-shaped heating surface (box bulkhead) according to detail C of
FIGS. 4 and 5 . - Figure 7
- schematically shows a box-shaped heating surface with vertically aligned transition from the refractory lining to the upper membrane tube wall in longitudinal section, corresponding section A - A of
FIG. 8 . - Figure 8
- schematic cross section of a box-shaped heating surface according to section C - C of
FIG. 9 . - Figure 9
- schematic longitudinal section of a box-shaped heating surface according to section B - B of
FIG. 8 ,
Bei fossil befeuerten Durchlaufdampferzeugern von konventionellen Kraftwerken wird bekanntlich das Arbeitsmedium, üblicherweise Wasser/Dampf im wesentlichen in einem Durchgang eines Dampfturbinen-Kreislaufes vorgewärmt, verdampft, überhitzt und gegebenenfalls zwischenüberhitzt. Der Durchlaufdampferzeuger einschließlich der dazugehörigen Feuerung ist nachfolgend beschrieben.In fossil-fired continuous steam generators of conventional power plants, it is known that the working medium, usually water / steam preheated substantially in one pass of a steam turbine cycle, evaporated, superheated and possibly reheated. The continuous steam generator including the associated furnace is described below.
Die
Die vorliegende Erfindung zielt auf Durchlaufdampferzeuger 1 mit zirkulierender Wirbelschichtfeuerung 2 hoher Leistung (etwa 300 bis 600 Mwel) und hoher Dampfparameter (etwa 250 bis 300 bar Druck und 560 bis 620 °C Temperatur) ab. Dabei ist es zur Erzielung einer effizienten Brennkammerauslegung in diesem Leistungsbereich erforderlich, zusätzliche Heizflächen 8 zu installieren, die aus wärmetechnischen Gründen (gleichmäßige Wärmeaufnahme) bevorzugt innerhalb der Brennkammer 3 angeordnet werden.The present invention is directed to
Der erfindungsgemäße Durchlaufdampferzeuger 1 mit ZWSF 2 sieht vor, dass sämtliche Rohre 5, 9 der Umfassungswände 4 und der innerhalb der Brennkammer 3 liegenden Heizflächen 8 als Verdampferheizfläche ausgebildet sind und für den Durchfluss des gesamten zu verdampfenden Arbeitsmediums parallel geschaltet sind, dass sämtliche Rohre 5 der Umfassungswände 4 mit innen glatter Rohroberfläche ausgebildet sind und die Heizflächen 8 sich zwischen Brennkammerboden 4.1 bzw. Trichteroberkante 24 und Brennkammerdecke 4.3 erstrecken. Durch die Parallelschaltung der Heizflächen 8 und der Heizfläche der Umfassungswand 4 des Durchlaufdampferzeugers 1 sowie der Benutzung beider Heizflächen als Verdampferheizfläche wird in vorteilhafter Weise erreicht, dass zum einen mittels Anpassung der Anzahl der Heizflächen 8 die Brennkammer 3 effizient ausgelegt werden kann. D. h., dass mit dieser Maßnahme die Brennkammerabmessungen optimiert werden können, vor allem die Brennkammerhöhe (Abstand zwischen Brennkammerboden und -decke) kann durch die Einbindung der Heizflächen 8 wesentlich reduziert werden. Zum anderen lassen die wirksamen Wärmestromdichten innerhalb der Wirbelschichtbrennkammer 3 bei der vorgenannten, erfindungsgemäßen Schaltung des Durchlaufdampferzeugers 1 trotz herabgesetzten Arbeitsmedium-Massenstromdichten von etwa 400 bis 1200 kg/m2s es zu, für die Rohre 5 der Umfassungswände 4 solche einzusetzen, die innen eine glatte Oberfläche aufweisen. Durch die herabgesetzten Arbeitsmedium-Massenstromdichten wird auch eine verbesserte Naturumlaufcharakteristik innerhalb der Verdampferheizflächen erzielt, was bedeutet, dass bei einer eventuellen örtlichen Mehrbeheizung hier auch ein Anstieg des Arbeitsmedium-Durchsatzes erfolgt und somit eine sichere Rohrkühlung gewährleistet ist.The
Der Einsatz von Rohren 5 mit innen glatter Oberfläche, auch kurz Glattrohre genannt, hat gegenüber den sonst bei derart niedrigen Massenstromdichten eingesetzten innenberippten Rohren mehrere Vorteile. Zum einen sind glatte Rohre gegenüber innenberippten Rohren wesentlich kostengünstiger, haben kürzere Lieferzeiten, sind in wesentlich mehr Größen lieferbar und allgemein besser verfügbar, da innen berippte Rohre meistens nur als Sonderanfertigung erhältlich sind, auch in Hinsicht der Montage sind glatte Rohre wesentlich einfacher zu handhaben. Zum anderen besitzen glatte Rohre einen wesentlich kleineren Reibungsdruckverlust des Arbeitsmediums gegenüber innenberippten Rohren, was sich positiv auf die gleichmäßige Verteilung des Arbeitsmediums auf die einzelnen Rohre 5 sowie auf eine Verringerung der Speisepumpenleistung des Durchlaufdampferzeugers 1 auswirkt.The use of tubes 5 with an inner smooth surface, also called smooth tubes for short, has several advantages over the inner-ribbed tubes otherwise used with such low mass flow densities. On the one hand, smooth tubes are much cheaper than internally ribbed tubes, have shorter delivery times, are available in much larger sizes and generally better available, since ribbed tubes are usually only available as custom-made, smooth tubes are also much easier to handle in terms of assembly. On the other hand, smooth tubes have a much smaller friction pressure loss of the working medium compared with internally ribbed tubes, which has a positive effect on the uniform distribution of the working fluid to the individual tubes 5 and a reduction of the feed pump power of the
Zur Erhöhung des Durchlaufdampferzeuger-Prozesswirkungsgrades und damit zur Verringerung von von der Dampferzeuger-Feuerung verursachten schädlichen Emissionen in die Atmosphäre werden Durchlaufdampferzeuger 1 immer häufiger im überkritischen Bereich, d. h. bei einem Dampfdruck von über 220 bar sowie im Gleitdruck zwischen über - und unterkritischem Druck, betrieben (der Betriebsdruck des Dampferzeugers gleitet im Lastbereich des Durchlaufdampferzeugers, z. B. zwischen 20 bis 100 % Last). Bei einem Durchlaufdampferzeuger-Betriebsdruck von beispielsweise 270 bar bei Volllast erreicht der Dampferzeuger bei einer Teillast von etwa 70 % den kritischen Druckbereich und wird unterhalb dieser Teillast unterkritisch betrieben, d. h. dass im Teillastbereich etwa unterhalb von 70 % im Verdampfer während des Verdampfungsvorganges ein Zweiphasengemisch auftritt. Durch die obengenannte erfindungsgemäße Lösung ist gewährleistet, dass innerhalb der Verdampferheizfläche (Umfassungswände 4 und Heizflächen 8) keine Entmischung von Dampf und Wasser eintritt. Dies wird noch unterstützt durch die vorteilhafte Ausbildung des erfindungsgemäßen Durchlaufdampferzeuger 1, dass die Arbeitsmedium-Durchströmung der Rohre 5, 9 der Umfassungswände 4 und der Heizflächen 8 ohne Zuhilfenahme von Zwischensammlern erfolgt.In order to increase the continuous steam generator process efficiency, and thus to reduce harmful emissions to the atmosphere caused by the steam generator furnace,
Bei den in der Wirbelbrennkammer 3 eingesetzten zusätzlichen Heizflächen 8 handelt es sich um sogenannte Schottheizflächen. Bei Schott-Heizflächen handelt es sich um in sich geschlossene und plattenartige Heizflächen (d.h. die einzelnen nebeneinander angeordneten Rohre 9 sind mit Stegen 22 - verschweißte Rohr-Steg-Rohr-Kombination - miteinander zu einem Schott verbunden), die im Gegensatz zu Bündelheizflächen stehen, die offen ausgebildet sind (d.h. die einzelnen nebeneinander angeordneten Rohre sind nicht mit Stegen miteinander verbunden). Die Heizflächen 8 sind im wesentlichen vertikal innerhalb der Brennkammer 3 angeordnet und die darin enthaltenen Rohre 9 verlaufen ebenfalls im wesentlichen vertikal.The
Erfindungsgemäß erstrecken sich die Heizflächen 8 je nach Brennkammerausbildung entweder zwischen Brennkammerboden 4.1 oder Trichteroberkante 24 und Brennkammerdecke 4.3. Dadurch können sie gemeinsam mit der Umfassungswand 4 voll zur Paralleldurchströmung des gesamten zu verdampfenden Arbeitsmediums herangezogen werden. Die Heizflächen 8 entspringen somit im unteren Bereich der Wirbelbrennkammer 3 im wesentlichen am Brennkammerboden bzw. an der Trichterunterkante 4.1 bei einer Brennkammer 3 mit einem Trichter 6 (
Die parallele Speisung der Heizflächen 8 sowie der Umfassungswand 4 erfolgt durch nicht dargestellte Sammler, mittels denen den vorgenannten Heizflächen das zu verdampfende Arbeitsmedium von unten zugeführt wird. Beginnen die Heizflächen 8 bei einer Brennkammer 3 mit zwei Trichtern 7 gemäß der
Die erfindungsgemäße Lösung sieht vor, die innerhalb der Wirbelbrennkammer 3 angeordneten Heizflächen 8 einseitig zu beheizen.
Durch die vertikale Anordnung der Heizflächen 8 und somit auch der Rohre 9 sowie der vertikalen Rohre 5 der Umfassungswände 4 geben die Rohre 5, 9 dem in der Brennkammer 3 von unten nach oben strömenden Gas- und Partikelstrom möglichst wenig Erosionsangriffspunkte. Um die Rohre 5, 9 im unteren Brennkammerbereich bzw. im Trichterbereich 6, 7 vor den hohen Quer- bzw. Turbulenzströmungen des Gas- und Partikelstromes der Wirbelschicht zu schützen, sind diese mit einer feuerfesten Auskleidung 25 versehen.Due to the vertical arrangement of the heating surfaces 8 and thus also of the
Eine vorteilhafte Ausgestaltung der Erfindung sieht gemäß der
Durch die Feuerfestauskleidung 25 der Rohre 5, 9 im Trichterbereich 6, 7 ergeben sich in vorteilhafter Weise im wesentlichen gleich beheizte Längen der Rohre 5, 9 innerhalb der Brennkammer 3.Through the
Die kastenförmigen Heizflächen 8, die sich über eine Länge L und über ihren Querschnitt über eine Breite B und eine Tiefe T erstrecken, besitzen in zweckmäßiger Ausbildung Abmessungen von ca. 1,0 bis 4,0 m über die Breite B, ca. 0,1 bis 1,0 m über die Tiefe T und ca. 20 m bis 50 m über die Länge L. Damit wird es ermöglicht, die Brennkammer 3 auch größter Durchlaufdampferzeuger 1 zu bestücken.The box-shaped
Die für die kastenförmigen Heizflächen 8 eingesetzten Rohre 9 besitzen in vorteilhafter Ausbildung Außendurchmesser zwischen 20 mm und 70 mm. Die Fertigung der kastenförmigen Heizflächen 8 ist mit im Dampferzeugerbau üblichen Materialien und Fertigungsverfahren möglich.
Claims (7)
- Once-through steam generator with circulating atmospheric fluidized-bed combustion, having a turbulence combustion chamber (3),
wherein the turbulence combustion chamber (3) is bounded essentially on all sides by enclosure walls (4) and comprises gas-tight pipe walls, formed by essentially vertical pipes (5), and has at least one hopper (6, 7) in the lower region,
and the turbulence combustion chamber (3) contains at least one essentially vertically arranged heating surface (8) provided with vertical pipes (9), wherein the heating surface (8) comprises a welded pipe-web-pipe combination,
and wherein the pipes (5, 9) of the enclosure walls (4) and of the heating surface (8) have a water/steam working medium flowing through them,
characterized in that all the pipes (5, 9) of the enclosure walls (4) and of the heating surface (8) are designed in the form of an evaporator heating surface and are connected in parallel for the throughflow of all working medium which is to be evaporated,
in that all the pipes (5) of the enclosure walls (4) and of the heating surface (8) are formed with an internally smooth pipe surface,
in that the heating surface (8) extends between the combustion-chamber floor (4.1) or upper hopper edge (24) and combustion-chamber ceiling (4.3),
in that the heating surface (8) is designed in the form of a box which can be heated on one side and is of pipe-web-pipe configuration with gas-tight welding,
and in that the flow of working medium through the pipes (5, 9) of the enclosure walls (4) and of the heating surface (8) takes place without the aid of intermediate collectors. - Once-through steam generator according to Claim 1, characterized in that the heating surface (8) has a box-like cross section with a width (B) and a depth (T), its circumference surrounds an interior (23), and it is closed over its circumference.
- Once-through steam generator according to Claim 2, characterized in that the cross section of the box-like heating surface (8) is at least triangular or round.
- Once-through steam generator according to Claim 2, characterized in that the cross section of the box-like heating surface (8) is rectangular.
- Once-through steam generator according to Claim 2, characterized in that the pipes (9) of the box-like heating surface (8), which is provided with a refractory lining (25) in the hopper region (6, 7) of the combustion chamber, are curved out into the region of the interior (23) in the transition region (26) between the lined heating-surface region and non-lined heating-surface region (27), and the front edges of the refractory lining (25) and of the non-lined region (27) of the heating surface (8) are aligned in the vertical direction.
- Once-through steam generator according to at least one of the preceding claims, characterized in that the pipes (5) of the enclosure walls (4) have essentially the same heated length.
- Once-through steam generator according to at least one of the preceding claims, characterized in that the pipes (9) of the heating surface (8) have essentially the same heated length as the pipes (5) of the enclosure walls (4).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10254780A DE10254780B4 (en) | 2002-11-22 | 2002-11-22 | Continuous steam generator with circulating atmospheric fluidized bed combustion |
DE10254780 | 2002-11-22 | ||
PCT/DE2003/003808 WO2004048848A2 (en) | 2002-11-22 | 2003-11-18 | Continuous steam generator with circulating atmospheric fluidised-bed combustion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1563224A2 EP1563224A2 (en) | 2005-08-17 |
EP1563224B1 true EP1563224B1 (en) | 2013-07-10 |
Family
ID=32318650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03767428.0A Revoked EP1563224B1 (en) | 2002-11-22 | 2003-11-18 | Continuous steam generator with circulating atmospheric fluidised-bed combustion |
Country Status (7)
Country | Link |
---|---|
US (1) | US7331313B2 (en) |
EP (1) | EP1563224B1 (en) |
CN (1) | CN100396991C (en) |
DE (1) | DE10254780B4 (en) |
ES (1) | ES2429872T3 (en) |
PL (1) | PL207502B1 (en) |
WO (1) | WO2004048848A2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2884900B1 (en) * | 2005-04-26 | 2007-11-30 | Alstom Technology Ltd | FLUIDIZED BED REACTOR WITH DOUBLE WALL EXTENSION |
FI122210B (en) * | 2006-05-18 | 2011-10-14 | Foster Wheeler Energia Oy | The cooking surface of a circulating bed boiler |
EP2180251A1 (en) * | 2008-09-09 | 2010-04-28 | Siemens Aktiengesellschaft | Continuous-flow steam generator |
DE102009012322B4 (en) * | 2009-03-09 | 2017-05-18 | Siemens Aktiengesellschaft | Flow evaporator |
DE102009012321A1 (en) * | 2009-03-09 | 2010-09-16 | Siemens Aktiengesellschaft | Flow evaporator |
US9638418B2 (en) * | 2009-05-19 | 2017-05-02 | General Electric Technology Gmbh | Oxygen fired steam generator |
DE102009040249B4 (en) * | 2009-09-04 | 2011-12-08 | Alstom Technology Ltd. | Forced-circulation steam generator for the burning of dry brown coal |
RS56360B1 (en) * | 2012-03-20 | 2017-12-29 | General Electric Technology Gmbh | Circulating fluidized bed boiler |
CN104344401B (en) * | 2013-08-09 | 2016-09-14 | 中国科学院工程热物理研究所 | Boiler hearth of circulating fluidized bed with variable cross-section water-cooled column |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2997031A (en) * | 1955-12-12 | 1961-08-22 | Combustion Eng | Method of heating and generating steam |
US3932426A (en) * | 1973-08-23 | 1976-01-13 | Shionogi & Co., Ltd. | 3-[1-Hydroxy-2-(3- or 4-hydroxypiperidino)ethyl]-5-phenylisoxazole |
US3893426A (en) * | 1974-03-25 | 1975-07-08 | Foster Wheeler Corp | Heat exchanger utilizing adjoining fluidized beds |
US4290389A (en) | 1979-09-21 | 1981-09-22 | Combustion Engineering, Inc. | Once through sliding pressure steam generator |
FR2527760B1 (en) * | 1982-05-26 | 1985-08-30 | Creusot Loire | METHOD FOR CONTROLLING THE TRANSFER OF HEAT BETWEEN A GRANULAR MATERIAL AND AN EXCHANGE SURFACE AND HEAT EXCHANGER FOR IMPLEMENTING THE METHOD |
DE3525676A1 (en) * | 1985-07-18 | 1987-01-22 | Kraftwerk Union Ag | STEAM GENERATOR |
FI84202C (en) * | 1989-02-08 | 1991-10-25 | Ahlstroem Oy | Reactor chamber in a fluidized bed reactor |
US5069171A (en) * | 1990-06-12 | 1991-12-03 | Foster Wheeler Agency Corporation | Fluidized bed combustion system and method having an integral recycle heat exchanger with a transverse outlet chamber |
AU685766B2 (en) * | 1993-03-03 | 1998-01-29 | Ebara Corporation | Pressurized internal circulating fluidized-bed boiler |
FR2712378B1 (en) * | 1993-11-10 | 1995-12-29 | Stein Industrie | Circulating fluidized bed reactor with heat exchange surface extensions. |
US5537941A (en) * | 1994-04-28 | 1996-07-23 | Foster Wheeler Energy Corporation | Pressurized fluidized bed combustion system and method with integral recycle heat exchanger |
DE4431185A1 (en) * | 1994-09-01 | 1996-03-07 | Siemens Ag | Continuous steam generator |
WO1999023431A1 (en) * | 1997-11-04 | 1999-05-14 | Ebara Corporation | Fluidized bed gasification combustion furnace |
FI105499B (en) * | 1998-11-20 | 2000-08-31 | Foster Wheeler Energia Oy | Process and apparatus in fluidized bed reactor |
DE19914760C1 (en) * | 1999-03-31 | 2000-04-13 | Siemens Ag | Fossil-fuel through-flow steam generator for power plant |
-
2002
- 2002-11-22 DE DE10254780A patent/DE10254780B4/en not_active Expired - Lifetime
-
2003
- 2003-11-18 EP EP03767428.0A patent/EP1563224B1/en not_active Revoked
- 2003-11-18 PL PL377705A patent/PL207502B1/en unknown
- 2003-11-18 US US10/535,810 patent/US7331313B2/en not_active Expired - Lifetime
- 2003-11-18 ES ES03767428T patent/ES2429872T3/en not_active Expired - Lifetime
- 2003-11-18 CN CNB2003801037713A patent/CN100396991C/en not_active Expired - Lifetime
- 2003-11-18 WO PCT/DE2003/003808 patent/WO2004048848A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2004048848A3 (en) | 2004-07-29 |
US7331313B2 (en) | 2008-02-19 |
PL207502B1 (en) | 2010-12-31 |
PL377705A1 (en) | 2006-02-06 |
US20060124077A1 (en) | 2006-06-15 |
ES2429872T3 (en) | 2013-11-18 |
WO2004048848A2 (en) | 2004-06-10 |
DE10254780A1 (en) | 2004-06-17 |
EP1563224A2 (en) | 2005-08-17 |
CN1714255A (en) | 2005-12-28 |
DE10254780B4 (en) | 2005-08-18 |
CN100396991C (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69425430T2 (en) | Fluid bed reactor with return of the particles | |
EP0657010B2 (en) | Steam generator | |
EP1563224B1 (en) | Continuous steam generator with circulating atmospheric fluidised-bed combustion | |
DE69324658T2 (en) | Combustion or gasification system for use in pressure systems | |
EP0152529A2 (en) | Steam generator with a stationary fluidized bed combuster | |
EP2652396B1 (en) | Forced flow steam generator having wall heating surface and method for its operation | |
DE69216726T2 (en) | Circulating fluidized bed boiler | |
DD296542A5 (en) | FIRE, ESPECIALLY SWITCHING | |
WO2000037851A1 (en) | Fossil fuel fired continuos-flow steam generator | |
DE69606093T2 (en) | Fluid bed reactor for the thermal treatment of waste | |
DE10039317A1 (en) | Steam generating plant | |
DE3133298A1 (en) | STEAM GENERATOR WITH A MAIN BOILER AND A FLUID BURN FIRING | |
DE10354136B4 (en) | Circulating fluidized bed reactor | |
KR19990071571A (en) | Circulating fluidized bed reactor with multiple furnace outlets | |
DE2804073A1 (en) | FLUIDED BED COMBUSTION AND HEAT TRANSFER DEVICE AND METHOD FOR OPERATING SUCH DEVICE | |
DE20220794U1 (en) | Circulating fluidised bed reactor for combustion of solid fuel or refuse incineration has zone surrounded by heated surfaces | |
DE69313415T2 (en) | Waste incineration plant and method | |
EP1447622B1 (en) | Pulverized fuel fired flame-tube boiler | |
DE102014100692B4 (en) | Furnace of a boiler, boiler, method of burning at least one fuel and method of generating steam | |
DE69513039T2 (en) | METHOD AND DEVICE FOR CHANGING THE HEAT TRANSFER SURFACE OF A FLUID BED | |
WO2000032987A1 (en) | Method for operating a steam generator and steam generator for carrying out this method | |
DE975701C (en) | Dust combustion with two combustion chambers arranged one above the other with a common vertical axis | |
DE10159381B4 (en) | steam generator | |
AT390663B (en) | Water-tube steam generator with grate or fluidized-bed firing | |
DE102005036305B4 (en) | Combustion plant (steam generator) and process for burning high calorific value fossil dusty fuels with low ash softening point in the furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050421 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TRAUTMANN, GUENTER Inventor name: STAMATELOPOULOS, GEORG-NIKOLAUS Inventor name: WEISSINGER, GERHARD |
|
TPAC | Observations by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 621183 Country of ref document: AT Kind code of ref document: T Effective date: 20130715 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50314831 Country of ref document: DE Effective date: 20130905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2429872 Country of ref document: ES Kind code of ref document: T3 Effective date: 20131118 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20130402085 Country of ref document: GR Effective date: 20131118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131111 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
26 | Opposition filed |
Opponent name: FOSTER WHEELER ENERGIA OY Effective date: 20140409 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
BERE | Be: lapsed |
Owner name: ALSTOM TECHNOLOGY LTD Effective date: 20131130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 50314831 Country of ref document: DE Effective date: 20140409 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: HU Ref legal event code: AG4A Ref document number: E019299 Country of ref document: HU |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131118 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131202 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 621183 Country of ref document: AT Kind code of ref document: T Effective date: 20131118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131118 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: AMEC FOSTER WHEELER ENERGIA OY Effective date: 20140409 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: HC9C Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER(S): ALSTOM TECHNOLOGY LTD, CH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50314831 Country of ref document: DE Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 50314831 Country of ref document: DE Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 50314831 Country of ref document: DE Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 50314831 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE Ref country code: DE Ref legal event code: R081 Ref document number: 50314831 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM POWER BOILER GMBH, 70329 STUTTGART, DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH Effective date: 20161115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161123 Year of fee payment: 14 Ref country code: HU Payment date: 20161109 Year of fee payment: 14 Ref country code: FI Payment date: 20161123 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20161128 Year of fee payment: 14 Ref country code: ES Payment date: 20161128 Year of fee payment: 14 Ref country code: IT Payment date: 20161124 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50314831 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171119 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171118 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171119 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: SUMITOMO SHI FW ENERGIA OY Effective date: 20140409 |
|
APBY | Invitation to file observations in appeal sent |
Free format text: ORIGINAL CODE: EPIDOSNOBA2O |
|
APCA | Receipt of observations in appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNOBA4O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20201023 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 50314831 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 50314831 Country of ref document: DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MGE |
|
27W | Patent revoked |
Effective date: 20210608 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 621183 Country of ref document: AT Kind code of ref document: T Effective date: 20210608 |