EP1447622B1 - Pulverized fuel fired flame-tube boiler - Google Patents

Pulverized fuel fired flame-tube boiler Download PDF

Info

Publication number
EP1447622B1
EP1447622B1 EP04000885A EP04000885A EP1447622B1 EP 1447622 B1 EP1447622 B1 EP 1447622B1 EP 04000885 A EP04000885 A EP 04000885A EP 04000885 A EP04000885 A EP 04000885A EP 1447622 B1 EP1447622 B1 EP 1447622B1
Authority
EP
European Patent Office
Prior art keywords
flame
flame tube
tube
boiler
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04000885A
Other languages
German (de)
French (fr)
Other versions
EP1447622A3 (en
EP1447622A2 (en
Inventor
Fritz Dr.-Ing. Schoppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1447622A2 publication Critical patent/EP1447622A2/en
Publication of EP1447622A3 publication Critical patent/EP1447622A3/en
Application granted granted Critical
Publication of EP1447622B1 publication Critical patent/EP1447622B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/03005Burners with an internal combustion chamber, e.g. for obtaining an increased heat release, a high speed jet flame or being used for starting the combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant

Definitions

  • the invention relates to a flame tube boiler for firing with fuel dust.
  • Known flame tube boilers designed for firing with oil or gas are characterized by the tightest possible flame tube dimensions and a temperature of the combustion exhaust gases at the outlet of the flame tube of 1,100 to 1,200 ° C.
  • An oil or gas burner forms a short, bushy flame, which comes close to the peripheral wall of the flame tube and generates there large heat flow peaks of up to 400 kW / m 2 .
  • These must be limited for reasons of the material, and the technical rules for steam boilers TRD 306, para. 11 therefore limit the wall thickness of the flame tube to 20 mm.
  • the diameter of the flame tube is limited, because larger diameter require larger wall thicknesses.
  • a lignite-fired flame tube must be substantially larger in length and diameter than a flame tube fired with oil or gas.
  • brown coal dust requires about 2.5 to three times as large a volume for burning out against oil or gas, and, on the other hand, that the exhaust gas temperature must be lowered so that they are at a sufficient distance below the ash melting point from about 920 to 940 ° C, in order to prevent slagging of the flame tube and the downstream piping.
  • the exhaust gas temperature of the fired with lignite dust flame tube should be in the range of 850 ° C, ie significantly below that of oil or gas-fired flame tubes.
  • the fire tube steam boiler has a pre-combustion chamber with an accelerating nozzle, a lance extending into the pre-combustion chamber, and a flame tube adjoining the accelerating nozzle.
  • a burner is known in which a part of the fuel is supplied via a first outer annular channel and is accelerated at the outlet end to high speed, while another part of the fuel is supplied via a second, inner annular channel and braked at the outlet end to low speed, whereby a stabilization and control of the main flame is to be achieved by a permanent pilot flame.
  • the burner is suitable for solid, liquid and gaseous fuels.
  • a pulverized coal boiler which has a burner adjacent to a burner, and in which connect to the firebox flue gas reins.
  • the burner produces flame jet speeds of 50 to 60 m / s.
  • the burner axis may be arranged at an angle of, for example, 17 ° with respect to the axis of the furnace.
  • the boiler comprises a burner to which is supplied by means of air fluidized pulverized fuel. Within the burner, at least 30% of the fuel is burned, with the burning air / fuel mixture being blown into the combustion chamber to a flame jet at a speed of at least 40 m / s.
  • the invention has the object of developing a flame-retardant steam boiler for firing with dust-like fuel so that increased firing rates are achieved.
  • the invention is based on the fact that larger wall thicknesses are permissible for the fire tube when reducing the heat flow density, and it is based on the consideration that one can achieve the reduction of the heat flux density, when producing a flame whose diameter is small in comparison is the diameter of the flame tube.
  • the diameter of a flame of given heat output becomes smaller the higher its velocity. As a result, one achieves a larger flame tube diameter, if one increases the flame speed.
  • the high flame speed is achieved in that the highest possible proportion, preferably at least 30%, better 60%, of the fuel is burned in a pre-combustion chamber and accelerated from the pre-combustion chamber, burning flame gases are accelerated and only then blown into the flame tube.
  • the acceleration is at a speed of at least 80 m / s, preferably 100 m / s, and at this speed they are blown into the flame tube, preferably coaxially therewith. But you can blow the flame gases above the axis of the flame tube at an inclination of 8 to 14 ° C against the axis of the flame tube obliquely down in this. This achieves that impurities, such as ash, which collect at the bottom of the flame tube, in the direction of the Trigger the flame tube to be blown.
  • the pre-combustion chamber is included in the water cycle of the boiler and absorbs heat from the flame.
  • the flame is already partially cooled when accelerated.
  • the accelerated flame jet acts like an injector in the flame tube and, during the burnout of the remaining unburned fuel portion from the outer region of the flame tube, entrains and cools already cooled gases there, which further reduces the temperature of the flame.
  • the consequence of the measures according to the invention is a reduction of the peak value of the heat flow density from the initially mentioned 400 kW / m 2 to about 150 to 160 kW / m 2 .
  • the flame tube diameter of 1,900 mm without reinforcing rings and 2,500 mm with reinforcing rings can be realized, which results in a firing capacity for lignite dust of 9 or 15 MW when using a single flame tube and 22 MW when using two flame tubes in the same Boiler corresponds.
  • FIG. 1 shows schematically as an exemplary embodiment of a flame tube steam boiler for carrying out the method, which in the example 9 MW has power and is fired with Rhenish brown coal dust.
  • the lignite dust is burned in a pre-combustion chamber 1, which widens conically starting from an inlet end.
  • an acceleration nozzle 2 At the extended end of the pre-combustion chamber 1 is followed by an acceleration nozzle 2, which narrows conically starting from the outlet diameter of the pre-combustion chamber 1 in the direction of an outlet end.
  • a lance 5 is guided concentrically with the pre-combustion chamber 1, which ends approximately at the location of the largest diameter of the pre-combustion chamber and carries there a deflection hood.
  • the lance 5 is used to supply by means of a carrier gas, in particular air, outside of the arrangement shown in a known manner fluidized brown coal dust.
  • a turning chamber 8 is arranged, into which the flame tube 7 opens.
  • a tube 9 from a plurality of mutually parallel tubes.
  • the pre-combustion chamber 1 at least partially, the acceleration nozzle 2, the flame tube 7 and the tube 9 are in a boiler 10 partially filled with water to a level 11, wherein the tube 9 preferably extends below the flame tube 7.
  • combustion air L 1 is injected into the collection chamber 3, and this is formed by the air guide vanes to toric flow, which flows near the wall of the pre-combustion chamber 1 in a spiral toward the end of larger diameter of the pre-combustion chamber 1. Due to physical conditions, a part of the combustion air flow in the region of the largest diameter of the pre-combustion chamber 1 reverses and flows centrally in the direction of the inlet end of the pre-combustion chamber 1. In this return flow of the fluidized lignite dust is blown by means of the lance 5. On its way inside the return flow of lignite dust is heated so that it spontaneously ignites when it comes into contact with the combustion air in the region of the inlet end of the pre-combustion chamber 1.
  • the flame which is not shown in the drawing within the pre-combustion chamber 1 and the acceleration nozzle 2, completely fills the pre-combustion chamber 1 and acceleration nozzle 2 except for a thin wall of cold air close to the wall.
  • the flame jet 6 emerging from the accelerating nozzle 2 has a speed which is at least about 80 m / s, preferably about 100 m / s.
  • the exit diameter d 1 of the flame acceleration nozzle 2 in the example shown is 488 mm for a flame acceleration to 100 m / s or 545 mm for a flame acceleration to about 80 m / s, provided that the total amount of combustion air L 1 passes through the pre-combustion chamber 1.
  • the mentioned, near-wall cold air layer extends into the mouth of the flame acceleration nozzle 2, which is there in FIG. 1 is indicated accordingly.
  • the flame jet By its momentum, the flame jet generates in a known manner a strong flue gas circulation in the flame tube 7, which has a corresponding heat transfer to the walls of the flame tube 7 by convection result, which adds to the heat transfer by flame radiation.
  • the inner diameter of the flame tube 7 is to be converted with the square root of the ratio of the services in a known manner.
  • the same rule applies to the outlet diameter d 1 of the flame acceleration nozzle 2.
  • the length L 1 of the flame tube 7 is 5800 mm in the example shown and thus meets the requirements for sufficient burnout and adjustment of the NO equilibrium. With a boiler output of 3.5 MW, a length of 4800 mm is sufficient; for a boiler output of 13.5 MW, 7100 mm are required. For other services, interpolate linearly.
  • the length measure is not particularly critical.
  • the flue gases developed by the flame jet leave the flame tube 7 at the opposite end of the flame acceleration nozzle 2 in the turning chamber 8, from where they are fed into the first pipe 9, which is arranged around the flame tube 7 in the lower part of the boiler. Fly ash settles in the turning chamber 8 and can be withdrawn from there.
  • the axial length of the turning chamber 8 is in the example 1250 mm and is to be converted for other boiler capacities proportional to the inner diameter of the flame tube 7.
  • FIG. 2 shows an embodiment in which the pre-combustion chamber 1 is arranged with the acceleration nozzle 2 above the axis of the flame tube 7 and obliquely to the axis of the flame tube 7, so that the emanating from the acceleration nozzle 2 flame jet 6 is directed obliquely downwards into the flame tube 7 in.
  • the angle of inclination ⁇ between the axis of the pre-combustion chamber 1 with flame acceleration nozzle 2 with respect to the axis of the flame tube 7 is preferably selected so that the distance A between the surface of the flame jet 6 and the flame tube 7 above the flame jet 6 over the length of the flame jet 6 is approximately constant , Stay that way the heat flow peaks unchanged.
  • the most favorable angle ⁇ is between 7 and 10 °.
  • the success of this measure is that at the lowest point of the pre-combustion chamber 1 occasionally accumulating impurities, such as ash residues, etc., can be blown out more easily.
  • the purging of these residues from the pre-combustion chamber 1 is favored when the pre-combustion chamber 1 is inclined in the manner described.
  • the oblique course of the flame jet 6 also favors the removal of impurities from the flame tube 7.
  • the angle ⁇ can also be selected to be larger and extend into the range from 12 ° to 14 °, because the peak value of the heat flow density depends not only on the distance A but also on the diameter ratio D 2 / D 1 of the flame jet 6 and flame tube 7.
  • blowpipes 12 can also be advantageously used to blow out deposits of fly ash from the flame tube 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

To fire a high power flue boiler, with a coal fuel dust, a high proportion of the fuel is burned in a pre-combustion chamber (1) with a supply of combustion air (L), and the emerging gas flame (6) is accelerated by at least 80% by a jet (2) to be blown into the boiler flue (7) . The gas flame is blown into the boiler flue coaxially, or at an angle of 8-14[deg] against the flue axis selected to ensure that the upper mantle line of the flame is parallel to the flue mantle line.

Description

Die Erfindung betrifft einen Flammrohrkessel zur Befeuerung mit Brennstaub.The invention relates to a flame tube boiler for firing with fuel dust.

Bekannte, für die Befeuerung mit Öl oder Gas ausgelegte Flammrohrkessel sind durch knappestmögliche Flammrohrabmessungen und eine Temperatur der Verbrennungsabgase am Austritt des Flammrohrs von 1.100 bis 1.200 °C gekennzeichnet. Ein Öl- oder Gasbrenner bildet eine kurze, buschige Flamme, die nahe an die Umfangswand des Flammrohres herankommt und dort große Wärmestromspitzen von bis zu 400 kW/m2 erzeugt. In der Rohrwand entsteht hierdurch ein großes Temperaturgefälle, das entsprechende Dehnungs- und damit Spannungsdifferenzen innerhalb der Rohrwand zur Folge hat. Diese müssen aus Gründen des Werkstoffs begrenzt werden, und die Technischen Regeln für Dampfkessel TRD 306, Ziff. 11 begrenzen daher die Wanddicke des Flammrohrs auf 20 mm. Damit ist auch der Durchmesser des Flammrohrs begrenzt, denn größere Durchmesser erfordern größere Wanddicken.Known flame tube boilers designed for firing with oil or gas are characterized by the tightest possible flame tube dimensions and a temperature of the combustion exhaust gases at the outlet of the flame tube of 1,100 to 1,200 ° C. An oil or gas burner forms a short, bushy flame, which comes close to the peripheral wall of the flame tube and generates there large heat flow peaks of up to 400 kW / m 2 . This results in a large temperature gradient in the pipe wall, which results in corresponding expansion and thus voltage differences within the pipe wall. These must be limited for reasons of the material, and the technical rules for steam boilers TRD 306, para. 11 therefore limit the wall thickness of the flame tube to 20 mm. Thus, the diameter of the flame tube is limited, because larger diameter require larger wall thicknesses.

Bei vergleichbarer Leistung muß ein mit Braunkohlenstaub befeuertes Flammrohr wesentlich größer in seinen Längen- und Durchmessermaßen sein, als ein mit Öl oder Gas befeuertes Flammrohr. Die Gründe hierfür sind zum einen, daß Braunkohlenstaub für den Ausbrand gegenüber Öl oder Gas ein etwa 2,5- bis dreimal so großes Volumen erfordert, und zum anderen, daß die Abgastemperatur so weit abgesenkt werden muß, daß sie mit ausreichendem Abstand unterhalb des Ascheschmelzpunktes von etwa 920 bis 940 °C liegt, um ein Verschlacken des Flammrohrs und der nachgeschalteten Rohrzüge zu vermeiden. In der Praxis soll die Abgastemperatur des mit Braunkohlenstaub befeuerten Flammrohrs im Bereich von 850 °C liegen, also erheblich unter der von öl- oder gasgefeuerten Flammrohren.At comparable power, a lignite-fired flame tube must be substantially larger in length and diameter than a flame tube fired with oil or gas. The reasons for this are, on the one hand, that brown coal dust requires about 2.5 to three times as large a volume for burning out against oil or gas, and, on the other hand, that the exhaust gas temperature must be lowered so that they are at a sufficient distance below the ash melting point from about 920 to 940 ° C, in order to prevent slagging of the flame tube and the downstream piping. In practice, the exhaust gas temperature of the fired with lignite dust flame tube should be in the range of 850 ° C, ie significantly below that of oil or gas-fired flame tubes.

Innerhalb der durch die vorgenannten Technischen Regeln für Dampfkessel begrenzten Wanddicken von 20 mm und den in diesem Kesselbereich üblichen Dampfdrucken von z.B. 18x103 hPa (18 bar) entsprechend der Normdruckstufe von 16x103 hPA (16 bar) werden Flammrohrdurchmesser von höchstens 800 mm möglich, womit sich das für den Ausbrand von Braunkohlenstaub erforderliche Flammrohrvolumen nicht erreichen läßt.Within the limited by the aforementioned technical rules for steam boiler wall thicknesses of 20 mm and the usual in this boiler range steam pressure of eg 18x10 3 hPa (18 bar) corresponding to the standard pressure of 16x10 3 hPA (16 bar) Flammrohrdurchmesser of at most 800 mm are possible, this for the burnout of lignite dust required flame tube volume can not reach.

Wenn man Verstärkungsringe auf dem Flammrohr beispielsweise im Abstand von 1.000 mm anordnet, ist zwar eine Vergrößerung des Flammrohrdurchmessers auf 1.300 mm möglich, doch läßt sich damit eine Feuerungsleistung von nur ca. 4,6 MW erreichen. Der Markt verlangt aber Feuerungsleistungen, die im Bereich um 20 MW liegen. Die Klippe ist die durch die genannten Technischen Regeln begrenzte Wanddicke, über die hinweggekommen werden muß, wenn man größere Feuerungsleistungen erreichen will.If you place reinforcing rings on the flame tube, for example, at a distance of 1,000 mm, although an increase in the flame tube diameter to 1,300 mm is possible, but can thus achieve a firing capacity of only about 4.6 MW. However, the market requires firing capacities in the range of 20 MW. The cliff is the wall thickness limited by the technical rules mentioned above, which must be overcome if greater firing rates are to be achieved.

Aus der WO 92/03212 ist bereits ein Flammrohr-Dampfkessel zur Befeuerung mit staubförmigen Brennstoffen bekannt. Der Flammrohr-Dampfkessel hat eine Vorbrennkammer mit einer Beschleunigungsdüse, eine Lanze, die sich in die Vorbrennkammer erstreckt sowie ein Flammrohr, das sich an die Beschleunigungsdüse anschließt.From the WO 92/03212 is already known a flame tube steam boiler for firing with dust-like fuels. The fire tube steam boiler has a pre-combustion chamber with an accelerating nozzle, a lance extending into the pre-combustion chamber, and a flame tube adjoining the accelerating nozzle.

Aus der US 4848666 A1 ist ein Brenner bekannt, bei dem ein Teil des Brennstoffes über einen ersten äußeren Ringkanal zugeführt wird und am Auslassende auf hohe Geschwindigkeit beschleunigt wird, während ein weiterer Teil des Brennstoffs über einen zweiten, inneren Ringkanal zugeführt und am Auslassende auf niedrige Geschwindigkeit abgebremst wird, wodurch eine Stabilisierung und Regelung der Hauptflamme durch eine permanente Pilotflamme erreicht werden soll. Der Brenner sei für feste, flüssige und gasförmige Brennstoffe geeignet.From the US 4848666 A1 a burner is known in which a part of the fuel is supplied via a first outer annular channel and is accelerated at the outlet end to high speed, while another part of the fuel is supplied via a second, inner annular channel and braked at the outlet end to low speed, whereby a stabilization and control of the main flame is to be achieved by a permanent pilot flame. The burner is suitable for solid, liquid and gaseous fuels.

Aus der WO 83/02309 ist bereits ein mit Kohlenstaub befeuerbarer Kessel bekannt, der einen an einen Feuerraum angrenzenden Brenner aufweist, und bei dem sich an dem Feuerraum Rauchgaszügel anschließen. Der Brenner erzeugt Flammstrahlgeschwindigkeiten von 50 bis 60 m/s. Die Brennerachse kann in einem Winkel von beispielsweise 17° gegenüber der Achse des Feuerraums angeordnet sein.From the WO 83/02309 already known is a pulverized coal boiler, which has a burner adjacent to a burner, and in which connect to the firebox flue gas reins. The burner produces flame jet speeds of 50 to 60 m / s. The burner axis may be arranged at an angle of, for example, 17 ° with respect to the axis of the furnace.

Aus der DE 10055507 A1 ist bereits ein Kessel zur Befeuerung mit staubförmigen Brennstoffen bekannt. Der Kessel umfasst einen Brenner, dem mit Hilfe von Luft fluidisierter staubförmiger Brennstoff zugeführt wird. Innerhalb des Brenners werden wenigstens 30% des Brennstoffes verbrannt, wobei das brennende Luft/Brennstoff-Gemisch zu einem Flammstrahl mit einer Geschwindigkeit von wenigstens 40 m/s in den Feuerraum eingeblasen wird.From the DE 10055507 A1 already a boiler for firing with dust-like fuels is known. The boiler comprises a burner to which is supplied by means of air fluidized pulverized fuel. Within the burner, at least 30% of the fuel is burned, with the burning air / fuel mixture being blown into the combustion chamber to a flame jet at a speed of at least 40 m / s.

Der Erfindung liegt die Aufgabe zugrunde, einen Flammroh-Dampfkessel zur Befeuerung mit staubförmigem Brennstoff so weiterzubilden, dass erhöhte Feuerungsleistungen erzielt werden.The invention has the object of developing a flame-retardant steam boiler for firing with dust-like fuel so that increased firing rates are achieved.

Diese Aufgabe wird durch einen Flammrohr-Dampfkessel gemäß Anspruch 1 gelöst.This object is achieved by a flame tube steam boiler according to claim 1.

Die Erfindung geht von der Tatsache aus, daß größere Wanddicken für das Flammrohr zulässig sind, wenn man die Wärmestromdichte verringert, und ihr liegt die Überlegung zugrunde, daß man die Verringerung der Wärmestromdichte erreichen kann, wenn man eine Flamme erzeugt, deren Durchmesser klein im Vergleich zum Durchmesser des Flammrohrs ist. Der Durchmesser einer Flamme gegebener Wärmeleistung wird um so kleiner, je höher ihre Geschwindigkeit ist. Im Ergebnis erreicht man somit einen größeren Flammrohrdurchmesser, wenn man die Flammgeschwindigkeit erhöht.The invention is based on the fact that larger wall thicknesses are permissible for the fire tube when reducing the heat flow density, and it is based on the consideration that one can achieve the reduction of the heat flux density, when producing a flame whose diameter is small in comparison is the diameter of the flame tube. The diameter of a flame of given heat output becomes smaller the higher its velocity. As a result, one achieves a larger flame tube diameter, if one increases the flame speed.

Die hohe Flammgeschwindigkeit wird dadurch erzielt, daß ein möglichst hoher Anteil, bevorzugt wenigstens 30%, besser 60%, des Brennstoffs in einer Vorbrennkammer verbrannt wird und die aus der Vorbrennkammer austretenden, brennenden Flammgase beschleunigt und erst dann in das Flammrohr eingeblasen werden.The high flame speed is achieved in that the highest possible proportion, preferably at least 30%, better 60%, of the fuel is burned in a pre-combustion chamber and accelerated from the pre-combustion chamber, burning flame gases are accelerated and only then blown into the flame tube.

Gemäß der Erfindung erfolgt die Beschleunigung auf eine Geschwindigkeit von wenigstens 80 m/s, bevorzugt 100 m/s, und mit dieser Geschwindigkeit werden sie in das Flammrohr, bevorzugt koaxial mit diesem, eingeblasen. Man kann die Flammgase aber auch oberhalb der Achse des Flammrohrs unter einer Neigung von 8 bis 14 °C gegen die Achse des Flammrohrs schräg nach unten in dieses einblasen. Man erreicht dadurch, daß Verunreinigungen, etwa Asche, die sich am Boden des Flammrohrs sammeln, in Richtung auf den Abzug des Flammrohrs geblasen werden.According to the invention, the acceleration is at a speed of at least 80 m / s, preferably 100 m / s, and at this speed they are blown into the flame tube, preferably coaxially therewith. But you can blow the flame gases above the axis of the flame tube at an inclination of 8 to 14 ° C against the axis of the flame tube obliquely down in this. This achieves that impurities, such as ash, which collect at the bottom of the flame tube, in the direction of the Trigger the flame tube to be blown.

Zwar hat der Anmelder auf dem Weg, der ihn zu dieser Erfindung gebracht hat, früher bereits Flammbeschleunigungsdüsen eingesetzt. Damit wurden aber ganz andere Zwecke verfolgt, und die Flammstrahlgeschwindigkeit lag denn auch bei nur 50 bis 60 m/s und war durch die Flammstabilität begrenzt. Die Beschleunigung des Flammstrahls diente früher allein dem Fortblasen ausfallender Verbrennungsasche vom Boden des Flammrohrs, wozu der Flammstrahl von oben schräg zur Flammrohrachse gerichtet wurde, und wozu die genannte Flammstrahlgeschwindigkeit ausreichte. Von dem erläuterten Merkmal kann, wie schon erwähnt, auch bei der Erfindung vorteilhaft Gebrauch gemacht werden, doch verfolgt die weitere Erhöhung der Flammstrahlgeschwindigkeit das bereits erläuterte andere Ziel, das mit den Merkmalen des Standes der Technik nicht erreichbar ist.Although the Applicant has previously used flame-retardant nozzles along the way that has brought him to this invention. However, quite different purposes were pursued, and the flame jet speed was then only 50 to 60 m / s and was limited by the flame stability. The acceleration of the flame jet was formerly used solely to blow away ausfallendes combustion ash from the bottom of the flame tube, to which the flame jet was directed from above obliquely to the flame tube axis, and what the said flame jet velocity was sufficient. As has already been mentioned, advantageous features of the invention can also be utilized in the invention, but the further increase in the flame jet velocity pursues the already described other goal, which can not be achieved with the features of the prior art.

Die Vorbrennkammer ist in den Wasserkreislauf des Kessels einbezogen und nimmt aus der Flamme Wärme auf. Die Flamme ist also bereits teilweise gekühlt, wenn sie beschleunigt wird. Der beschleunigte Flammstrahl wirkt im Flammrohr wie ein Injektor und reißt während des Ausbrandes des restlichen unverbrannten Brennstoffanteils aus dem Außenbereich des Flammrohrs dort bereits abgekühlte Gase mit und mischt sich mit diesen, was weiter dazu beiträgt, die Temperatur der Flamme herabzusetzen.The pre-combustion chamber is included in the water cycle of the boiler and absorbs heat from the flame. The flame is already partially cooled when accelerated. The accelerated flame jet acts like an injector in the flame tube and, during the burnout of the remaining unburned fuel portion from the outer region of the flame tube, entrains and cools already cooled gases there, which further reduces the temperature of the flame.

Die Folge der erfindungsgemäßen Maßnahmen ist eine Herabsetzung des Spitzenwertes der Wärmestromdichte von den eingangs genannten 400 kW/m2 auf etwa 150 bis 160 kW/m2. Bei gleicher Materialbeanspruchung wird somit eine dem Verhältnis der vorgenannten Wärmestromdichten proportionale Vergrößerung der Wanddicke des Flammrohrs von ursprünglich 20 mm entsprechend dem Zusammenhang 20 x 400/160 auf nun 50 mm möglich. Bei dem angegebenen Dampfdruck von 18x103 hPa lassen sich Flammrohrdurchmesser von 1.900 mm ohne Verstärkungsringe und von 2.500 mm mit Verstärkungsringen realisieren, was einer Feuerungsleistung bei Braunkohlenstaub von 9 bzw. 15 MW bei Verwendung eines einzelnen Flammrohrs und von 22 MW bei Verwendung zweier Flammrohre im selben Kessel entspricht. Theoretisch ließen sich auch zwei Flammrohre von je 15 MW Leistung in einem einzigen Kessel vereinigen, doch wäre dieser dann aufgrund seiner Abmessungen nicht mehr auf Straße oder Schiene transportierbar. Mit der angegebenen Kesselleistung von 22 MW kommt man in den Bereich, der für Abnehmer solcher Kessel interessant ist. Da die Energiekosten bei Braunkohlenstaub erheblich niedriger sind, als bei Öl und Gas, ist die durch den größeren Kessel, den zugehörigen Platzbedarf und die Brennstoffaufbereitung bedingte Mehrinvestition gegenüber einem öl- oder gasbefeuerten Kessel schnell amortisiert.The consequence of the measures according to the invention is a reduction of the peak value of the heat flow density from the initially mentioned 400 kW / m 2 to about 150 to 160 kW / m 2 . With the same material stress thus a proportion of the aforementioned heat flux densities proportional increase in the wall thickness of the flame tube from originally 20 mm corresponding to the context 20 x 400/160 to 50 mm now possible. At the given steam pressure of 18x10 3 hPa, the flame tube diameter of 1,900 mm without reinforcing rings and 2,500 mm with reinforcing rings can be realized, which results in a firing capacity for lignite dust of 9 or 15 MW when using a single flame tube and 22 MW when using two flame tubes in the same Boiler corresponds. Theoretically, two 15-MW tubes could all be combined in a single boiler, but due to its dimensions this would no longer be transportable by road or rail. With the specified boiler capacity of 22 MW it is possible to reach the area of interest to customers of such boilers. As the energy costs of lignite dust are significantly lower than those of oil and gas, this is due to the larger boiler, the associated space requirements and the fuel preparation conditional additional investment compared to an oil- or gas-fired boiler quickly amortized.

Die Erfindung wird nachfolgend unter Bezugnahme auf zwei in den Zeichnungen schematisch dargestellte Ausführungsbeispiele näher erläutert. Es zeigt:

Fig. 1
einen Längsschnitt durch einen Flammrohrkessel mit koaxial daran angesetztem Brenner zur Ausführung des Verfahrens, und
Fig. 2
einen Längsschnitt durch einen Flammrohrkessel mit einem außerhalb der Achse des Flammrohrs angesetzten, schräg nach unten gerichteten Brenner.
The invention will be explained in more detail with reference to two embodiments schematically illustrated in the drawings. It shows:
Fig. 1
a longitudinal section through a flame tube with coaxially attached burner for performing the method, and
Fig. 2
a longitudinal section through a flame tube boiler with an outside of the axis of the flame tube attached, obliquely downward burner.

Figur 1 zeigt schematisch als Ausführungsbeispiel einen Flammrohr-Dampfkessel zur Ausführung des Verfahrens, der im Beispiel 9 MW Leistung hat und der mit rheinischem Braunkohlenstaub befeuert wird. Der Braunkohlenstaub wird in einer Vorbrennkammer 1 verbrannt, die sich von einem Eintrittsende ausgehend konisch erweitert. An das erweiterte Ende der Vorbrennkammer 1 schließt sich eine Beschleunigungsdüse 2 an, die vom Austrittsdurchmesser der Vorbrennkammer 1 ausgehend sich in Richtung auf ein Austrittsende konisch verengt. FIG. 1 shows schematically as an exemplary embodiment of a flame tube steam boiler for carrying out the method, which in the example 9 MW has power and is fired with Rhenish brown coal dust. The lignite dust is burned in a pre-combustion chamber 1, which widens conically starting from an inlet end. At the extended end of the pre-combustion chamber 1 is followed by an acceleration nozzle 2, which narrows conically starting from the outlet diameter of the pre-combustion chamber 1 in the direction of an outlet end.

Am Eintrittsende der Vorbrennkammer 1 befindet sich ein Sammelgehäuse 3 mit Luftleitschaufeln 4, die in der Lage sind, einer aus dem Sammelgehäuse 3 zuströmenden Brennluftmenge L1 in der Vorbrennkammer 1 einen Drall zu verleihen.At the inlet end of the pre-combustion chamber 1 there is a collecting housing 3 with air guide vanes 4, which are capable of imparting a twist to a combustion air quantity L 1 flowing in from the collecting housing 3 in the pre-combustion chamber 1.

Durch das Eintrittsende der Vorbrennkammer 1 ist konzentrisch mit der Vorbrennkammer 1 eine Lanze 5 geführt, die etwa am Ort größten Durchmessers der Vorbrennkammer endet und dort eine Umlenkhaube trägt. Die Lanze 5 dient der Zuführung von mittels eines Trägergases, insbesondere Luft, außerhalb der gezeigten Anordnung auf bekannte Weise fluidierten Braunkohlenstaubs.Through the inlet end of the pre-combustion chamber 1, a lance 5 is guided concentrically with the pre-combustion chamber 1, which ends approximately at the location of the largest diameter of the pre-combustion chamber and carries there a deflection hood. The lance 5 is used to supply by means of a carrier gas, in particular air, outside of the arrangement shown in a known manner fluidized brown coal dust.

An den Ausgang der Beschleunigungsdüse 2 schließt sich koaxial ein Flammrohr 7 an, an dessen der Beschleunigungsdüse 2 gegenüberliegenden Ende eine Wendekammer 8 angeordnet ist, in die hinein sich das Flammrohr 7 öffnet. Von der Wendekammer ausgehend erstreckt sich parallel zum Flammrohr 7 ein Rohrzug 9 aus mehreren, parallel zueinander verlaufenden Rohren. Die Vorbrennkammer 1 wenigstens teilweise, die Beschleunigungsdüse 2, das Flammrohr 7 und der Rohrzug 9 liegen in einem mit Wasser bis zu einem Pegel 11 teilgefüllten Kessel 10, wobei sich der Rohrzug 9 vorzugsweise unterhalb des Flammrohrs 7 erstreckt.At the exit of the acceleration nozzle 2 is coaxially followed by a flame tube 7, at the opposite end of the acceleration nozzle 2 a turning chamber 8 is arranged, into which the flame tube 7 opens. Starting from the turning chamber extends parallel to the flame tube 7, a tube 9 from a plurality of mutually parallel tubes. The pre-combustion chamber 1 at least partially, the acceleration nozzle 2, the flame tube 7 and the tube 9 are in a boiler 10 partially filled with water to a level 11, wherein the tube 9 preferably extends below the flame tube 7.

Im Betrieb wird Brennluft L1 in die Sammelkammer 3 eingeblasen, und diese wird durch die Luftleitschaufeln zu torischen Strömung geformt, die nahe der Wand der Vorbrennkammer 1 spiralförmig in Richtung auf das Ende größeren Durchmessers der Vorbrennkammer 1 strömt. Aufgrund physikalischer Gegebenheiten kehrt ein Teil der Brennluftströmung im Bereich des größten Durchmessers der Vorbrennkammer 1 um und strömt zentral in Richtung auf das Eintrittsende der Vorbrennkammer 1. In diese Rückströmung wird mittels der Lanze 5 der fluidisierte Braunkohlenstaub eingeblasen. Auf seinem Weg innerhalb der Rückströmung wird der Braunkohlenstaub aufgeheizt, so daß er spontan zündet, wenn er im Bereich des Eintrittsendes der Vorbrennkammer 1 mit der Verbrennungsluft in Berührung gelangt. Die Flamme, die in der Zeichnung innerhalb der Vorbrennkammer 1 und der Beschleunigungsdüse 2 nicht dargestellt ist, füllt Vorbrennkammer 1 und Beschleunigungsdüse 2 bis auf eine dünne, wandnahe Kaltluftschicht vollständig aus. Der aus der Beschleunigungsdüse 2 austretende Flammstrahl 6 hat eine Geschwindigkeit, die wenigstens etwa 80 m/s, vorzugsweise etwa 100 m/s beträgt.In operation, combustion air L 1 is injected into the collection chamber 3, and this is formed by the air guide vanes to toric flow, which flows near the wall of the pre-combustion chamber 1 in a spiral toward the end of larger diameter of the pre-combustion chamber 1. Due to physical conditions, a part of the combustion air flow in the region of the largest diameter of the pre-combustion chamber 1 reverses and flows centrally in the direction of the inlet end of the pre-combustion chamber 1. In this return flow of the fluidized lignite dust is blown by means of the lance 5. On its way inside the return flow of lignite dust is heated so that it spontaneously ignites when it comes into contact with the combustion air in the region of the inlet end of the pre-combustion chamber 1. The flame, which is not shown in the drawing within the pre-combustion chamber 1 and the acceleration nozzle 2, completely fills the pre-combustion chamber 1 and acceleration nozzle 2 except for a thin wall of cold air close to the wall. The flame jet 6 emerging from the accelerating nozzle 2 has a speed which is at least about 80 m / s, preferably about 100 m / s.

Der Austrittsdurchmesser d1 der Flammbeschleunigungsdüse 2 ist im dargestellten Beispiel 488 mm für eine Flammbeschleunigung auf 100 m/s oder 545 mm für eine Flammbeschleunigung auf etwa 80 m/s, sofern die Gesamtbrennluftmenge L1 durch die Vorbrennkammer 1 geht. Die erwähnte, wandnahe Kaltluftschicht erstreckt sich bis in die Mündung der Flammbeschleunigungsdüse 2, was dort in Figur 1 entsprechend angedeutet ist.The exit diameter d 1 of the flame acceleration nozzle 2 in the example shown is 488 mm for a flame acceleration to 100 m / s or 545 mm for a flame acceleration to about 80 m / s, provided that the total amount of combustion air L 1 passes through the pre-combustion chamber 1. The mentioned, near-wall cold air layer extends into the mouth of the flame acceleration nozzle 2, which is there in FIG. 1 is indicated accordingly.

Der Flammstrahl 6 wird in das Flammrohr 7 eines Durchmessers von D1 = 1800 mm koaxial eingeblasen und erweitert sich im Zuge des Ausbrandes der noch unverbrannten Brennstaubanteile vom ursprünglichen Durchmesser, der unter dem Austrittsdurchmesser der Flammbeschleunigungsdüse 2 liegt, auf einen Durchmesser D2 von etwa 700 bis 800 mm. Durch seinen Impuls erzeugt der Flammstrahl in bekannter Weise eine starke Rauchgaszirkulation im Flammrohr 7, die einen entsprechenden Wärmeübergang auf die Wände des Flammrohrs 7 durch Konvektion zur Folge hat, die sich zum Wärmeübergang durch Flammstrahlung addiert.The flame jet 6 is coaxially blown into the flame tube 7 of a diameter of D 1 = 1800 mm and widens in the course of the burnout of the still unburned Brennstaubanteile from the original diameter, which is below the exit diameter of the flame acceleration nozzle 2, to a diameter D 2 of about 700th up to 800 mm. By its momentum, the flame jet generates in a known manner a strong flue gas circulation in the flame tube 7, which has a corresponding heat transfer to the walls of the flame tube 7 by convection result, which adds to the heat transfer by flame radiation.

Im Gegensatz zu konventionellen Brennern ergibt sich aufgrund des erfindungsgemäßen Verbrennungsverfahrens eine sehr gleichmäßige Wärmestromdichte entlang der Heizfläche des Flammrohrs 7 von im Mittel etwa 150 KW/m2 mit einem schwach ausgeprägten Maximum von 170 KW/m2 im Bereich des größten Durchmessers D2 des Flammstrahls 6 im Flammrohr 7. Damit sind die thermischen Voraussetzungen für die angestrebten größeren Wanddicken gegeben. Die Wanddicke kann im dargestellten Beispiel 35 mm sein, so daß für den Innendurchmesser des Flammrohrs 7 ein Maß von 1730 mm verbleibt.In contrast to conventional burners results due to the invention Combustion process a very uniform heat flux along the heating surface of the flame tube 7 of about 150 KW / m 2 with a weak maximum of 170 KW / m 2 in the region of the largest diameter D 2 of the flame jet 6 in the flame tube 7. Thus, the thermal conditions given for the desired larger wall thicknesses. The wall thickness may be 35 mm in the illustrated example, so that a dimension of 1730 mm remains for the inner diameter of the flame tube 7.

Für andere Leistungen ist der Innendurchmesser des Flammrohrs 7 mit der Quadratwurzel aus dem Verhältnis der Leistungen in bekannter Art umzurechnen. Die gleiche Regel gilt für den Austrittsdurchmesser d1 der Flammbeschleunigungsdüse 2.For other services, the inner diameter of the flame tube 7 is to be converted with the square root of the ratio of the services in a known manner. The same rule applies to the outlet diameter d 1 of the flame acceleration nozzle 2.

Die Länge L 1 des Flammrohrs 7 beträgt im dargestellten Beispiel 5800 mm und genügt damit den Forderungen nach hinreichendem Ausbrand sowie Einstellung des NO-Gleichgewichts. Bei einer Kesselleistung von 3,5 MW genügt eine Länge von 4800 mm, für eine Kesselleistung von 13,5 MW sind 7100 mm erforderlich. Für andere Leistungen ist linear zu interpolieren. Das Längenmaß ist nicht besonders kritisch.The length L 1 of the flame tube 7 is 5800 mm in the example shown and thus meets the requirements for sufficient burnout and adjustment of the NO equilibrium. With a boiler output of 3.5 MW, a length of 4800 mm is sufficient; for a boiler output of 13.5 MW, 7100 mm are required. For other services, interpolate linearly. The length measure is not particularly critical.

Die vom Flammstrahl entwickelten Rauchgase verlassen das Flammrohr 7 an dem der Flammbeschleunigungsdüse 2 gegenüberliegenden Ende in die Wendekammer 8, von wo sie in den ersten Rohrzug 9 geleitet werden, der im unteren Bereich des Kessels um das Flammrohr 7 herum angeordnet ist. Flugasche setzt sich in der Wendekammer 8 ab und kann von dort abgezogen werden.The flue gases developed by the flame jet leave the flame tube 7 at the opposite end of the flame acceleration nozzle 2 in the turning chamber 8, from where they are fed into the first pipe 9, which is arranged around the flame tube 7 in the lower part of the boiler. Fly ash settles in the turning chamber 8 and can be withdrawn from there.

Die axiale Länge der Wendekammer 8 beträgt im Beispiel 1250 mm und ist für andere Kesselleistungen proportional dem Innendurchmesser des Flammrohrs 7 umzurechnen.The axial length of the turning chamber 8 is in the example 1250 mm and is to be converted for other boiler capacities proportional to the inner diameter of the flame tube 7.

Figur 2 zeigt eine Ausführungsform, bei der die Vorbrennkammer 1 mit Beschleunigungsdüse 2 oberhalb der Achse des Flammrohrs 7 angeordnet ist und schräg zur Achse des Flammrohrs 7 verläuft, so daß der von der Beschleunigungsdüse 2 ausgehende Flammstrahl 6 schräg nach unten in das Flammrohr 7 hinein gerichtet ist. FIG. 2 shows an embodiment in which the pre-combustion chamber 1 is arranged with the acceleration nozzle 2 above the axis of the flame tube 7 and obliquely to the axis of the flame tube 7, so that the emanating from the acceleration nozzle 2 flame jet 6 is directed obliquely downwards into the flame tube 7 in.

Der Neigungswinkel α zwischen der Achse der Vorbrennkammer 1 mit Flammbeschleunigungsdüse 2 gegenüber der Achse des Flammrohrs 7 ist vorzugsweise so gewählt, daß der Abstand A zwischen der Oberfläche des Flammstrahls 6 und dem Flammrohr 7 oberhalb des Flammstrahls 6 über die Länge des Flammstrahls 6 etwa konstant ist. Damit bleiben die Wärmestromspitzen unverändert. Der günstigste Winkel α liegt zwischen 7 und 10°.The angle of inclination α between the axis of the pre-combustion chamber 1 with flame acceleration nozzle 2 with respect to the axis of the flame tube 7 is preferably selected so that the distance A between the surface of the flame jet 6 and the flame tube 7 above the flame jet 6 over the length of the flame jet 6 is approximately constant , Stay that way the heat flow peaks unchanged. The most favorable angle α is between 7 and 10 °.

Der Erfolg dieser Maßnahme ist, daß sich am tiefsten Punkt der Vorbrennkammer 1 gelegentlich ansammelnde Verunreinigungen, wie Ascherückstände usw., leichter ausgeblasen werden können. Das Ausblasen dieser Rückstände aus der Vorbrennkammer 1 wird begünstigt, wenn die Vorbrennkammer 1 in der geschilderten Weise geneigt ist. Auch begünstigt der schräge Verlauf des Flammstrahls 6 ein Ausblasen von Verunreinigungen aus dem Flammrohr 7.The success of this measure is that at the lowest point of the pre-combustion chamber 1 occasionally accumulating impurities, such as ash residues, etc., can be blown out more easily. The purging of these residues from the pre-combustion chamber 1 is favored when the pre-combustion chamber 1 is inclined in the manner described. The oblique course of the flame jet 6 also favors the removal of impurities from the flame tube 7.

Der Winkel α kann gegebenenfalls auch größer gewählt werden und bis in den Bereich von 12° bis 14° reichen, weil der Spitzenwert der Wärmestromdichte nicht allein vom Abstand A, sondern auch vom Durchmesserverhältnis D2/D1 von Flammstrahl 6 und Flammrohr 7 abhängt.If appropriate, the angle α can also be selected to be larger and extend into the range from 12 ° to 14 °, because the peak value of the heat flow density depends not only on the distance A but also on the diameter ratio D 2 / D 1 of the flame jet 6 and flame tube 7.

Bei Kohlenstoffsorten, die Stickstoffanteile von mehr als 0,3 % enthalten, können Maßnahmen zur NOx-Verminderung notwendig sein. Hierzu ist es wirksam, wenn die Vorbrennkammer 1 nahe dem stöchiometrischen Punkt oder unterstöchiometrisch betrieben wird und die für die Verbrennung erforderliche Restluftmenge L2 durch Blasrohre 12, die an der Stirnseite des Flammrohrs 7, an der die Beschleunigungsdüse 2 in das Flammrohr 7 mündet, angesetzt sind, direkt in das Flammrohr 7 geblasen werden. Diese Blasrohre 12 können vorteilhaft auch dazu verwendet werden, Ablagerungen von Flugasche aus dem Flammrohr 7 hinauszublasen.For types of carbon containing nitrogen contents of more than 0.3%, measures for NO x alleviation may be necessary. For this purpose, it is effective when the pre-combustion chamber 1 is operated near the stoichiometric point or substoichiometrically and the required amount of residual air for combustion L 2 through blowpipes 12, which opens at the end of the flame tube 7, where the accelerating nozzle 2 into the flame tube 7, attached are to be blown directly into the flame tube 7. These blowpipes 12 can also be advantageously used to blow out deposits of fly ash from the flame tube 7.

Die übrigen Merkmale der dargestellten Ausführungsform entsprechen denen der zuvor erläuterten, so daß auf Wiederholungen verzichtet werden kann.The remaining features of the illustrated embodiment correspond to those of the previously explained, so that can be dispensed with repetitions.

Claims (2)

  1. Flame-tube steam boiler for firing with pulverized fuel, comprising:
    - a prefiring chamber (1) having an acceleration nozzle (2);
    - a lance (5) extending into the prefiring chamber (1); and
    - a flame tube (7) following the acceleration nozzle (2);
    wherein at least 30% of the pulverized fuel is burned in the firing of the flame-tube steam boiler, and the flame gases exiting the prefiring chamber are accelerated to at least 80 m/s; and
    wherein the wall thickness of the flame tube (7) is greater than 20 mm and not greater than 50 mm.
  2. Flame-tube steam boiler according to claim 1, wherein reinforcement rings are arranged on the flame tube (7) in the flame region.
EP04000885A 2003-01-17 2004-01-16 Pulverized fuel fired flame-tube boiler Expired - Lifetime EP1447622B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10301857 2003-01-17
DE10301857A DE10301857A1 (en) 2003-01-17 2003-01-17 Firing a high power flue boiler, using a lignite dust fuel, has a pre-combustion chamber to burn the fuel with a jet to accelerate the gas flame into the flue for a high firing power

Publications (3)

Publication Number Publication Date
EP1447622A2 EP1447622A2 (en) 2004-08-18
EP1447622A3 EP1447622A3 (en) 2004-09-15
EP1447622B1 true EP1447622B1 (en) 2010-04-28

Family

ID=32602729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04000885A Expired - Lifetime EP1447622B1 (en) 2003-01-17 2004-01-16 Pulverized fuel fired flame-tube boiler

Country Status (3)

Country Link
EP (1) EP1447622B1 (en)
AT (1) ATE466238T1 (en)
DE (2) DE10301857A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944014A (en) * 2012-10-22 2013-02-27 瑞焓能源科技有限公司 Industrial boiler burner and industrial boiler with same
CN103791494B (en) * 2014-01-22 2016-04-13 煤炭科学技术研究院有限公司 A kind of air-cooled coal dust low NO and using method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2854170A1 (en) * 1978-12-15 1980-06-19 Gewerk Sophia Jakoba METHOD FOR OPERATING AN ENVIRONMENTALLY FRIENDLY COAL POWER PLANT AND DEVICE FOR IMPLEMENTING THE METHOD
WO1983002309A1 (en) 1981-12-30 1983-07-07 Fritz Schoppe Boiler furnace
DE3312353C2 (en) * 1983-04-06 1985-05-23 Azo-Maschinenfabrik Adolf Zimmermann Gmbh, 6960 Osterburken Pulverized coal burners
DE3715453A1 (en) 1987-05-08 1988-11-24 Krupp Polysius Ag METHOD AND BURNER FOR FIREING FUEL
WO1992003212A1 (en) 1990-08-17 1992-03-05 Fritz Schoppe Process and device for improving the utilization of heat from combustion waste gases containing dust or ash
DE10055507A1 (en) 2000-11-09 2002-05-23 Fritz Schoppe Oil or gas fired boiler firing method involves introducing fluidized coal dust into combustion chamber and blowing flame into boiler firing chamber

Also Published As

Publication number Publication date
EP1447622A3 (en) 2004-09-15
ATE466238T1 (en) 2010-05-15
DE10301857A1 (en) 2004-07-29
DE502004011085D1 (en) 2010-06-10
EP1447622A2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
DE2527618C2 (en) Process and device for the combustion of coal dust
EP0834040B1 (en) Combustion chamber with a burner arrangement and method of operating a combustion chamber
DE3930037C2 (en) Water tube boiler for steam generation
DE4326802A1 (en) Fuel lance for liquid and / or gaseous fuels and process for their operation
WO2007101427A1 (en) Round burner
EP0392158A2 (en) Method for operating a combustion plant for fossil fuels
DE102005038662B4 (en) Combustion head and method for burning fuel
EP1447622B1 (en) Pulverized fuel fired flame-tube boiler
DE10254780B4 (en) Continuous steam generator with circulating atmospheric fluidized bed combustion
DE4324298A1 (en) Process and furnace for the combustion of liquid and gaseous fuels
EP0005714B1 (en) Burner for the combustion of pulverised coal
DE19507088B4 (en) premix
WO2007028711A1 (en) Burner arrangement for a combustion chamber, associated combustion chamber and method for combusting fuel
DE2816674C3 (en) Pulverized coal burners
DE4436728A1 (en) Method of burning liq. or gas fuel with low harmful emission, e.g. for producing steam
DE19520720C2 (en) Process and plant for generating steam
DE19531387C2 (en) Process for burning liquid fuels in particular and burners for carrying out the process
DE102008063709B4 (en) Flame tube boiler with mechanical grate firing
DE19541178C2 (en) Method for burning dusty fuel, especially lignite, in a combustion chamber
DE3701364A1 (en) Fire-tube boiler
AT218160B (en) Process for burning liquid or gaseous fuels and boiler firing for performing the process
DE4209734C2 (en) Burner with a flame tube
DE19654732C2 (en) Shell boiler with exhaust gas recirculation
DE543432C (en) Boiler with a fire chamber lined with water chill pipes
DE956049C (en) Steam boiler with superheater

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050311

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060725

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PULVERIZED FUEL FIRED FLAME-TUBE BOILER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011085

Country of ref document: DE

Date of ref document: 20100610

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100808

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

26N No opposition filed

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 466238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011085

Country of ref document: DE

Representative=s name: SCHOPPE, ZIMMERMANN, STOECKELER, ZINKLER, SCHE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011085

Country of ref document: DE

Owner name: BUCHBERGER, AUGUST, DE

Free format text: FORMER OWNER: SCHOPPE, FRITZ, DR.-ING., 82057 ICKING, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011085

Country of ref document: DE

Owner name: HENTSCHEL, ANDREAS, DE

Free format text: FORMER OWNER: SCHOPPE, FRITZ, DR.-ING., 82057 ICKING, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20191218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200125

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200128

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210114

Year of fee payment: 18

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230104

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004011085

Country of ref document: DE