EP1563224B1 - Durchlaufdampferzeuger mit zirkulierender atmosphärischer wirbelschichtfeuerung - Google Patents

Durchlaufdampferzeuger mit zirkulierender atmosphärischer wirbelschichtfeuerung Download PDF

Info

Publication number
EP1563224B1
EP1563224B1 EP03767428.0A EP03767428A EP1563224B1 EP 1563224 B1 EP1563224 B1 EP 1563224B1 EP 03767428 A EP03767428 A EP 03767428A EP 1563224 B1 EP1563224 B1 EP 1563224B1
Authority
EP
European Patent Office
Prior art keywords
heating surface
combustion chamber
steam generator
pipes
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03767428.0A
Other languages
English (en)
French (fr)
Other versions
EP1563224A2 (de
Inventor
Gerhard Weissinger
Georg-Nikolaus Stamatelopoulos
Günter Trautmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32318650&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1563224(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1563224A2 publication Critical patent/EP1563224A2/de
Application granted granted Critical
Publication of EP1563224B1 publication Critical patent/EP1563224B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0015Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type
    • F22B31/003Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type with tubes surrounding the bed or with water tube wall partitions
    • F22B31/0038Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type with tubes surrounding the bed or with water tube wall partitions with tubes in the bed

Definitions

  • the invention relates to a continuous steam generator with circulating atmospheric fluidized bed combustion.
  • sloped smooth tubes ie tubes with smooth inner walls that slope within the containment tube walls
  • internally ribbed vertical tubes ie Surround pipe walls are divided into several wall sections, which are flowed through successively, see also Figure 2c of the above document).
  • the combustion chamber enclosing walls of continuous steam generators with circulating fluidized bed combustors can not be inclined or inclined as in conventionally pulverized coal continuous steam generators, but must be bored vertically.
  • the circulating fluidized bed combustors have therefore been predominantly combined with evaporator systems which operate in recirculating or forced circulation operation and are therefore equipped with vertically bored containment walls.
  • a few circulating fluidized bed combustors also produce the steam with a forced flow system, but as a downcomer system and at low vapor pressures (eg, KW Moabit). Considerations have already been made to use the once-through steam generator with ZWSF even in the pressure range from 100 to 300 bar, and thus more economically, ie with less fuel to operate. Because of the need to form combustor confinement walls from vertical evaporator tubes, internally ribbed tubes have been proposed for cooling the evaporator walls (see above reference).
  • EP 1 030 150 A1 has become known as a fluidized bed combustion chamber for the gasification and combustion of combustibles.
  • the heat released in the combustion chamber is dissipated on all sides of the heat exchanged heat exchanger heating surfaces, either immersed in the fluidized bed of a heat recovery chamber or come into contact with the gas stream above the combustion chamber.
  • the walls of the combustion chamber are formed of a sheet steel housing or the like instead of one side of the heat-exposed and the combustion chamber comprising Schuphilrohren.
  • the used and series-connected heat exchanger heating surfaces circulates a heat transfer medium operated by a circulation pump forced circulation steam generator in which, in contrast to a forced flow steam generator, the heat transfer medium flows several times in the circuit through the heat generator.
  • the solid particles within the stationary fluidized bed in the main combustion chamber are directed into the energy recovery chamber such that the height of the stationary fluidized bed remains the same.
  • the heat generated in the combustion chamber in the field of stationary fluidized bed is thereby within the thermal energy recovery chamber to the immersed in the fluidized bed and a working medium, for example, water or steam-conducting Schuvinrohre and to the water pipes of the outside and the combustion chamber bounding surrounding wall delivered.
  • a working medium for example, water or steam-conducting Schuvinyake
  • the forming the partition wall and immersed in the stationary fluidized bed water pipes take due to the surrounding outer wall no or only a negligible amount of heat and thus do not participate in this area in the energy production.
  • the water pipes and the pipes of the heating surfaces are part of an unspecified steam generator or boiler type.
  • a fluidized bed steam generator which is designed as a continuous steam generator.
  • the tubes of the enclosure walls are vertical.
  • an evaporator heating surface may be present in the combustion chamber to reduce the height of the combustion chamber.
  • Out EP 0 025 975 A2 is a continuous steam generator with Um chargedsNasen known having vertically extending tubes. Within the combustion chamber partitions are arranged, which are connected to the Um venten. The tubes of the intermediate walls are heated on both sides. At least in sections, the tubes are provided on their inner surfaces with ribs or other elements for swirling the flow to ensure adequate cooling.
  • a circulating fluidized bed reactor with heat exchange surface extensions is known in DE 694 04 423 T2 described. Inside the combustion chamber, the surrounding walls are provided with extensions extending transversely thereto, which are heated on both sides. The spaces between the extensions are to form channels or shafts through which the solids fall into the fluidized bed to increase the rate of sinking solids to the fluidized beds.
  • US 6 470 833 Bl describes a fluidized bed steam generator with vertically drilled Um Publishedsplinn.
  • chambers are arranged, which have vertically extending tubes. These chambers are supplied with secondary air and fuel. The chambers are spaced from the enclosure walls.
  • the invention provides to heat the heating surface according to the invention on one side and form the one side heated heating surface with smooth tubes.
  • this is designed as a box-shaped heating surface with a box-shaped cross-section. Due to the box-shaped design, the heating surface receives great stability, which makes it possible to form combustion chambers of the largest continuous steam generators with heating surfaces.
  • the cross section of the box-shaped heating surface is rectangular.
  • FIG. 1 schematically shows a continuous steam generator 1 with circulating fluidized bed 2 (ZWSF) for the combustion of coal or other combustible materials.
  • the material to be incinerated is introduced either together with an inert material or separately through the feed line 10 into the fluidized bed or fluidized-bed combustion chamber 3 of the continuous-flow steam generator 1 with ZWSF.
  • a fluidizing gas through the supply line 11 is usually the vortex combustion chamber 3 fed from below.
  • the fluidizing gas is typically air and is thus used for combustion as the oxidant.
  • the resulting during combustion exhaust gas or flue gas and carried along by the exhaust solids (inert material, ash particles and unburned) are in the upper part of the opening 12 from the.
  • Combustion chamber 3 discharged and fed via an exhaust pipe 13 a separator, usually a centrifugal separator or cyclone 14.
  • a separator usually a centrifugal separator or cyclone 14.
  • the solids are largely separated from the exhaust gas and fed back to the combustion chamber 3 via the return line 15.
  • the largely purified exhaust gas is supplied via the exhaust pipe 16 to a second flue 17, in which at least one economizer heating surface 18, at least one superheater heating surface 19 and possibly at least one reheater heating surface 20 is arranged for further use or decrease of the exhaust heat.
  • the cross section of the combustion chamber 3 is generally rectangular. However, it can also be round or have a different shape.
  • the combustion chamber 3 is surrounded on all sides by Um chargeds cleanse 4, the Um chargedswand 4 seen from bottom to top the combustion chamber 4.1, the combustion chamber side walls 4.2 and the combustion chamber ceiling 4.3 includes.
  • the combustion chamber floor 4.1 is generally designed as a nozzle bottom, through which the fluidizing gas is introduced.
  • FIG. 2 shows a combustion chamber 3 with a simple funnel 6 in the lower region of the combustion chamber 3, whereas FIG. 3 a combustion chamber 3 with double funnel 7, a so-called "pant leg” design shows.
  • the combustion chamber surrounding walls 4 are designed as heating mediums through which working medium flows, these heating surfaces being formed from gas-tight membrane walls.
  • Such membrane walls can be assembled by gas-tight welding of a pipe-web-tube combination.
  • the tube-web-tube combination comprises tubes 5, which are smooth on the outer circumference and which are each connected to separate webs 21.
  • fin tubes whose outer wall are already formed with webs and which are connected together.
  • the present invention is directed to continuous steam generator 1 with circulating fluidized bed 2 high power (about 300 to 600 Mwel) and high steam parameters (about 250 to 300 bar pressure and 560 to 620 ° C temperature) from.
  • high power about 300 to 600 Mwel
  • high steam parameters about 250 to 300 bar pressure and 560 to 620 ° C temperature
  • additional heating surfaces 8 which for reasons of thermal engineering (uniform heat absorption) are preferably arranged inside the combustion chamber 3.
  • the continuous steam generator 1 according to the invention with ZWSF 2 provides that all the tubes 5, 9 of the enclosing walls 4 and lying within the combustion chamber 3 heating surfaces 8 are formed as Verdampfersammlung operation and are connected in parallel for the flow of the entire working medium to be evaporated, that all tubes 5 of Surrounding walls 4 are formed with a smooth inner tube surface and the heating surfaces 8 extend between the combustion chamber bottom 4.1 or funnel top edge 24 and the combustion chamber ceiling 4.3.
  • the parallel connection of the heating surfaces 8 and the heating surface of the enclosure wall 4 of the continuous steam generator 1 and the use of both heating surfaces as Verdampfershirts configuration is achieved in an advantageous manner that on the one hand by means of adjusting the number of heating surfaces 8, the combustion chamber 3 can be designed efficiently. D.
  • the combustion chamber dimensions can be optimized, especially the combustion chamber height (distance between combustion chamber floor and ceiling) can be significantly reduced by the integration of the heating surfaces 8.
  • the effective heat flux densities within the fluidized-bed combustion chamber 3 in the aforementioned circuit of the continuous steam generator 1 despite reduced working medium mass flow densities of about 400 to 1200 kg / m 2 s allow for the tubes 5 of the enclosing walls 4 to use those inside smooth surface. Due to the reduced working medium mass flow densities, an improved natural circulation characteristic within the evaporator heating surfaces is achieved, which means that an increase in the working medium throughput also takes place in the event of a localized multiple heating, thus ensuring reliable tube cooling.
  • tubes 5 with an inner smooth surface also called smooth tubes for short
  • smooth tubes are much cheaper than internally ribbed tubes, have shorter delivery times, are available in much larger sizes and generally better available, since ribbed tubes are usually only available as custom-made, smooth tubes are also much easier to handle in terms of assembly.
  • smooth tubes have a much smaller friction pressure loss of the working medium compared with internally ribbed tubes, which has a positive effect on the uniform distribution of the working fluid to the individual tubes 5 and a reduction of the feed pump power of the continuous steam generator 1.
  • continuous steam generators 1 are increasingly being used in the supercritical range, i. H. operated at a vapor pressure of over 220 bar and in sliding pressure between supercritical and subcritical pressure (the operating pressure of the steam generator slides in the load range of the continuous steam generator, eg between 20 to 100% load).
  • the steam generator reaches the critical pressure range at a partial load of about 70% and is operated subcritically below this partial load, ie. H. that in the partial load range approximately below 70% in the evaporator during the evaporation process, a two-phase mixture occurs.
  • the abovementioned solution according to the invention ensures that no segregation of steam and water occurs within the evaporator heating surface (enclosing walls 4 and heating surfaces 8). This is further supported by the advantageous embodiment of the continuous steam generator 1 according to the invention that the working medium flow through the tubes 5, 9 of the enclosing walls 4 and the heating surfaces 8 takes place without the aid of intermediate collectors.
  • the additional heating surfaces 8 used in the fluidized-bed combustion chamber 3 are so-called Schott heating surfaces.
  • Schott heating surfaces are self-contained and plate-like heating surfaces (ie the individual ones side by side arranged tubes 9 are connected to webs 22 - welded tube-web-tube combination - together to a bulkhead), which are in contrast to bundle heating surfaces that are open (ie, the individual juxtaposed tubes are not connected to each other with webs).
  • the heating surfaces 8 are arranged substantially vertically within the combustion chamber 3 and the tubes 9 contained therein also extend substantially vertically.
  • the heating surfaces 8 extend, depending on the combustion chamber formation, either between the combustion chamber bottom 4.1 or the upper edge of the funnel 24 and the combustion chamber ceiling 4.3. As a result, they can be used together with the enclosure wall 4 fully for parallel flow through the entire working medium to be evaporated.
  • the heating surfaces 8 thus spring in the lower region of the fluidized-bed combustion chamber 3 substantially at the combustion chamber bottom or at the funnel lower edge 4.1 in the case of a combustion chamber 3 with a funnel 6 (FIG. FIG. 2 ) and central arrangement of the heating surfaces 8 within the combustion chamber 3 or at the funnel upper edge 24 in a combustion chamber 3 with two funnels 7 (FIG. FIG.
  • the heating surfaces 8 can be welded, for example, to the combustion chamber bottom 4.1 or upper edge of the funnel 24 and the combustion chamber ceiling 4.3. If more than two funnels are provided in the lower region of the combustion chamber 3, the integration of the heating surfaces 8 can take place analogously.
  • the parallel supply of the heating surfaces 8 and the enclosure wall 4 is effected by collectors, not shown, by means of which the above-mentioned heating surfaces, the working medium to be evaporated is supplied from below.
  • the heating surfaces 8 start at a combustion chamber 3 with two hoppers 7 according to the FIG. 3 only at the upper edge of the funnel or on the funnel saddle 24, these heating surfaces 8 can be fed via the funnel enclosing walls 4 with working medium. A separate, parallel feed of the heating surfaces 8 is possible.
  • FIG. 6 shows a heating surface 8 heated on one side.
  • This heating surface 8 comprises an inner space 23 on the circumference and is box-shaped, which is why the heating surface 8 is also referred to in the following description as a box-shaped heating surface or as a box bulkhead (s) 8.
  • the FIG. 6 shows an advantageous embodiment of the box-shaped heating surface 8 with a rectangular cross-section.
  • the box bulkhead 8 according to the FIG. 6 has four sidewalls of welded membrane tube walls welded together at the corners, the membrane tube walls being formed of tubes 9 and lands 22. This results in a box in gas-tight welded tube-web-tube design or combination.
  • FIG. 6 shows a heating surface 8 heated on one side.
  • This heating surface 8 comprises an inner space 23 on the circumference and is box-shaped, which is why the heating surface 8 is also referred to in the following description as a box-shaped heating surface or as a box bulkhead (s) 8.
  • the FIG. 6 shows an advantageous embodiment of the box-shaped heating surface 8 with
  • the tubes 5, 9 Due to the vertical arrangement of the heating surfaces 8 and thus also of the tubes 9 and the vertical tubes 5 of the enclosure walls 4, the tubes 5, 9 give the lowest possible erosion attack points in the combustion chamber 3 from the bottom upwards flowing gas and particle flow. In order to protect the tubes 5, 9 in the lower combustion chamber area or in the funnel area 6, 7 from the high transverse or turbulence flows of the gas and particle flow of the fluidized bed, these are provided with a refractory lining 25.
  • An advantageous embodiment of the invention provides according to the FIGS. 7 to 9 before, the tubes 9 of the combustion chamber in the hopper area 6, 7 with a refractory lining 25th provided box-shaped heating surface 8 in the transition region 26 between lined and non-lined Bank lake 27 inwardly into the region of the interior 23 andmonsenten the leading edges of the refractory lining 25 and the non-lined portion 27 of the heating surface 8 in the vertical direction aligned.
  • This measure prevents 26 erosion attack points are given to the tubes 9 for turbulence flows of the gas and particle flow in the transition region.
  • the tubes 9 used for the box-shaped heating surfaces 8 have in an advantageous embodiment outer diameter between 20 mm and 70 mm.
  • the production of the box-shaped heating surfaces 8 is possible with customary in steam generator construction materials and manufacturing processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Spray-Type Burners (AREA)

Description

  • Die Erfindung bezieht sich auf einen Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung.
  • Neben Naturumlauf-und Zwangumlaufdampferzeugern sind Zwangdurchlauf-bzw. Durchlaufdampferzeuger zur Erzeugung von elektrischer Energie durch Verfeuerung von beispielsweise fossilen Brennstoffen bekannt. Letztere werden insbesondere bei modernen bzw. großen Kraftwerksanlagen eingesetzt. Dabei wird die bei der Verbrennung des Brennstoffes in der Brennkammer des Durchlaufdampferzeugers entbundene Wärme an von Arbeitsmedium durchströmte Heizflächen, bestehend aus z. B. Brennkammer- Umfassungswände, Strahlungs-bzw. Konvektivheizflächen, des Durchlaufdampferzeugers abgegeben. Das Arbeitsmedium ist dabei in einen Wasser/Dampfkreislauf einer Dampfturbine eingebunden, in der es die aufgenommene thermische Energie weitergibt.
  • Derartige Durchlaufdampferzeuger, bei denen das Arbeitsmedium im wesentlichen in einem Durchlauf des Dampferzeugers vorgewärmt, verdampft, überhitzt und ggf. zwischenüberhitzt wird, sind seit langem bekannt und üblicherweise mit Brennern zur Verfeuerung von fossilen Brennstoffen bestückt. Aus der Druckschrift "Zwangdurchlaufkessel für Gleitdruckbetrieb mit vertikaler Brennkammerberohrung", VGB Kraftwerkstechnik 64, Heft 4, April 1984, H. Juzi, A. Salem und W. Stocker ist ein konventioneller, kohlenstaubbefeuerter Durchlaufdampferzeuger bekannt geworden. In der Regel werden die Brennkammerumfassungswände der Durchlaufdampferzeuger aus verschweißten Rohr-Steg-Rohr Verdampferheizflächen gebildet. Zur Sicherstellung einer ausreichenden Kühlung der Umfassungs-Rohrwände werden entweder geneigte Glattrohr (d. h. Rohre mit glatten Innenwänden, die innerhalb der Umfassungs-Rohrwände schräg verlaufen), innenberippte Vertikalrohre oder Fall-/Steigrohrsysteme (d. h. die Umfassungs-Rohrwände sind in mehrere Wandsektionen aufgeteilt, die nacheinander durchströmt werden, siehe auch Bild 2c der obengenannten Druckschrift) eingesetzt.
  • In den letzten Jahren ist man auch daran gegangen, Durchlaufdampferzeuger mit zirkulierenden Wirbelschichtfeuerungen (ZWSF) auszubilden. Dabei wird wie bei sämtlichen mit fossilen Brennstoffen befeuerten Kraftwerksanlagen versucht, die durch die Verbrennung entstehenden Emissionen zum Schutze der Umwelt zu minimieren. Dies kann durch Erhöhung des Kraftwerkprozesswirkungsgrades und die einhergehende Verminderung des Brennstoffes bewirkt werden. Ein Teil der Wirkungsgradsteigerung erfolgt dabei durch Erzeugung von Dampf mit hohen Dampfparametern (hohe Dampfdrücke und -temperaturen). Damit die Kraftwerksblöcke innerhalb eines großen Lastbereiches wirtschaftlich arbeiten, werden die Dampferzeuger im Gleitdruck betrieben. Um gleichzeitig die diversen Anforderungen (konstant hohe Dampftemperatur, gleitender Dampfdruck, hohe Laständerungsgeschwindigkeit) zu erfüllen, kommen nur die vorerwähnten Zwangdurchlaufdampferzeugersysteme zum Einsatz bzw. in Frage.
  • Aus Erosionsgründen können die Brennkammerumfassungswände von Durchlaufdampferzeugern mit zirkulierenden Wirbelschichtfeuerungen nicht wie bei herkömmlich kohlenstaubbefeuerten Durchlaufdampferzeugern geneigt bzw. schräg angeordnet werden, sondern müssen vertikal berohrt sein. Die zirkulierenden Wirbelschichtfeuerungen wurden deshalb vorwiegend mit Verdampfersystemen kombiniert, die im Naturumlauf- oder Zwangumlaufbetrieb arbeiten und deswegen mit vertikal berohrten Umfassungswänden ausgestattet sind. Einige wenige zirkulierende Wirbelschichtfeuerungen erzeugen den Dampf auch mit einem Zwangdurchlaufsystem, jedoch als Fall-/Steigrohrsystem und bei niedrigen Dampfdrücken (z. B. KW Moabit). Es wurden bereits Überlegungen angestellt, den Zwangdurchlaufdampferzeuger mit ZWSF auch im Druckbereich 100 bis 300 bar einzusetzen und damit wirtschaftlicher, d. h. mit weniger Brennstoff, zu betreiben. Wegen der Notwendigkeit, Brennkammerumfassungswände aus vertikalen Verdampferrohren zu bilden, wurden für die Kühlung der Verdampferwände innenberippte Rohre vorgeschlagen (siehe obengenannte Druckschrift) .
  • Beim Übergang von Naturumlauf- zu (überkritischen) Zwangdurchlaufdampferzeugern mit hohen Dampfparametern (typischerweise 250 bis 300 bar, 560 bis 620 C) im Leistungsbereich von 300 bis 600 MWel, ergeben sich folgende Probleme bzw. Nachteile mit dem Stand der Technik :
    • ZWSF-Durchlaufdampferzeuger, die mit unterkritischen Dampfdrücken betrieben werden, benötigen im Vergleich zu überkritischen Dampfdrücken bei gleicher Dampferzeugerleistung einen höheren Brennstoffeinsatz und erzeugen dadurch mehr schädliche Emissionen.
    • Vertikal berohrte Zwangdurchlaufdampferzeuger besitzen im Gegensatz zu geneigten Rohren den Nachteil, dass die Anzahl der Rohre bei einer gegebenen Brennkammergeometrie größer ist und damit die Massenstromdichte (Maß des Arbeitsmediumstromes in kg pro m2 Durchströmungsquerschnitt und pro Sekunde) pro Rohr abnimmt. Um trotzdem eine ausreichende Kühlung der Rohre sicherzustellen, werden innenberippte Rohre eingesetzt oder die einzelnen Wände der Brennkammerumfassungswände hintereinander durchströmt.
    • Die Aufteilung des gesamten Verdampferstromes auf mehrere in Serie geschaltete Wände besitzt mehrere Nachteile :
      1. 1) Die einzelnen Wände müssen über Fallrohre verbunden werden.
      2. 2) Bei der erneuten Verteilung des Verdampferstromes treten Entmischungsvorgänge auf (unterschiedliche Dampfgehalte), die am Austritt des Verdampfers als Temperaturschieflagen sichtbar werden und infolge behinderter Wärmedehnung zu Rissen in den Wänden führen können.
      3. 3) Höherer Druckverlust infolge höherer Massenstromdichte. - Innenberippte Rohre besitzen größere Reibungsdruckverluste und haben den Nachteil einer Sonderfertigung und einen erhöhten Fertigungsaufwand beim Zusammensetzen von Teilflächen.
  • Durch Druckschrift EP 1 030 150 A1 ist eine mit Wirbelschicht betriebene Brennkammer für die Vergasung und Verbrennung von Verbrennstoffen bekannt geworden. Die in der Brennkammer freigesetzte Wärme wird an allseits der Wärme ausgesetzten Wärmetauscher-Heizflächen abgegeben, die entweder in die Wirbelschicht einer Wärmerückgewinnungskammer eintauchen oder mit dem Gasstrom oberhalb der Brennkammer in Kontakt kommen. Die Wände der Brennkammer sind aus einem Stahlblechgehäuse oder dergleichen ausgebildet anstelle aus einseitig der wärmeausgesetzten und die Brennkammer umfassenden Heizflächenrohren. In den eingesetzten und in Serie geschalteten Wärmetauscher-Heizflächen zirkuliert ein Wärmeträgermedium eines mit einer Umlaufpumpe betriebenen Zwangumlaufdampferzeugers, bei dem im Gegensatz zu einem Zwangdurchlaufdampferzeuger das Wärmeträgermedium mehrmals im Kreislauf durch den Wärmeerzeuger strömt.
  • Durch Druckschrift EP 0 882 872 A2 ist ein gegenüber dem atmosphärischen Druck mit weitaus höherem Druck operierender Druck-Wirbelschichtkessel mit interner zirkulierender, das heißt mit stationärer Wirbelschicht für die Verbrennung von Brennstoff bekannt geworden, bei dem das bei der Verbrennung erzeugte Abgas einer Gasturbine zugeführt wird. Um die Betriebslast eines derartigen Kessels regeln zu können ohne die Höhe des Wirbelschichtbettes innerhalb der zylindrischen Brennkammer variieren zu müssen, ist die in einem Druckbehälter befindliche Brennkammer mit einer Hauptverbrennungskammer und mit einer thermischen Energierückgewinnungskammer ausgebildet. Zu verbrennungstechnischen und verfahrenseitigen Trennung dieser beiden Kammern, die Hauptverbrennungskammer liegt zentral in der Mitte und die thermische Energierückgewinnungskammer umfasst die Hauptverbrennungskammer außen, ist eine mit Ausmauerung versehene Trennwand angeordnet, die durch einzelne, nicht mittels Stegen untereinander verbundene Wasserrohre in ihrer Position fixiert wird. Durch die im oberen Teil konische Ausbildung der gemauerten Trennwand werden die Feststoffpartikel innerhalb der stationären Wirbelschicht in der Hauptverbrennungskammer derart in die Energierückgewinnungskammer geleitet, dass die Höhe des stationären Wirbelschichtbettes gleich bleibt. Die in der Brennkammer im Bereich der stationären Wirbelschicht erzeugte Wärme wird dabei innerhalb der thermischen Energierückgewinnungskammer an die in die Wirbelschicht eintauchenden und ein Arbeitsmedium, zum Beispiel wasser- bzw. dampfführenden Heizflächenrohre sowie an die Wasserrohre der außen liegenden und die Brennkammer begrenzenden Umfassungswand abgegebenen. Die die Trennwand bildenden und in die stationäre Wirbelschicht eintauchenden Wasserrohre nehmen aufgrund der sie umgebenden Außenmauerung keine oder nur eine unwesentliche Wärmemenge auf und nehmen somit in diesem Bereich nicht an der Energiegewinnung teil. Die Wasserohre sowie die Rohre der Heizflächen sind Teil eines nicht näher bezeichneten Dampferzeuger- bzw. Boilertyps.
  • Aus Goidich, Lundqvist, "The utility CFB Boiler - Present status short and long term feature with super critical and ultra-super critical steam parameters" Power-Gen Conference Europe, Mailand, 11. bis 13. Juni 2002, ist ein Wirbelschichtdampferzeuger bekannt, der als Durchlaufdampferzeuger ausgestaltet ist. Die Rohre der Umfassungswände verlaufen vertikal. Zusätzlich kann in der Brennkammer eine Verdampferheizfläche vorhanden sein, um die Höhe der Brennkammer zu verringern.
  • Aus Goidich, "Integration of the BENSON vertical OTU technology and the compact CFB Boiler", Power-Gen International, Orlando, Florida, November 2000 ist ein Durchlaufdampferzeuger mit Umfassungswänden bekannt, dessen Rohre vertikal verlaufen und parallel durchströmt sind. Zusätzliche Verdampferheizflächen innerhalb der Brennkammer sind nicht erwähnt.
  • Aus EP 0 025 975 A2 ist ein Durchlaufdampferzeuger mit Umfassungswänden bekannt, die vertikal verlaufende Rohre aufweisen. Innerhalb der Brennkammer sind Zwischenwände angeordnet, die mit den Umfassungswänden verbunden sind. Die Rohre der Zwischenwände sind beidseitig beheizt. Zumindest abschnittsweise sind die Rohre an ihren Innenflächen mit Rippen oder anderen Elementen zur Verwirbelung der Strömung ausgestattet, um eine ausreichende Kühlung sicherzustellen.
  • Ein zirkulierender Wirbelschichtreaktor mit Wärmeaustauschflächenerweiterungen ist in DE 694 04 423 T2 beschrieben. Im Inneren der Brennkammer sind die Umfassungswände mit quer dazu verlaufenden Erweiterungen versehen, die beidseitig beheizt sind. Die Räume zwischen den Erweiterungen sollen Kanäle oder Schächte bilden, durch die die Feststoffe in die Wirbelschichtbetten fallen, um den Durchsatz an absinkenden Feststoffen zu den Wirbelschichtbetten zu erhöhen.
  • US 6 470 833 Bl beschreibt einen Wirbelschichtdampferzeuger mit vertikal berohrten Umfassungswänden. In der Brennkammer sind Kammern angeordnet, die vertikal verlaufende Rohre aufweisen. Diesen Kammern wird Sekundärluft und Brennstoff zugeführt. Die Kammern sind von den Umfassungswänden mit Abstand angeordnet.
  • Aufgabe der Erfindung ist es nun, einen Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung zu schaffen, bei dem die vorgenannten Nachteile vermieden werden bzw. die nachfolgend genannten Kriterien erfüllt bzw. eingehalten werden.
    • Einsatz von wirtschaftlicheren und ökologischeren Durchlaufdampferzeugern mit ZWSF im Leistungsbereich von etwa 300 bis 600 MWel und in einem Druckbereich von etwa 100 bis 300 bar,
    • Erzielung einer effizienten Brennkammerauslegung für einen derartigen Durchlaufdampferzeuger unter Berücksichtigung von innerhalb bzw. ggf. außerhalb der Brennkammer zusätzlich installierter Heizflächen.
  • Die vorstehend genannte Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst.
  • Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.
  • Durch die erfindungsgemäße Lösung wird ein Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung geschaffen, der die nachfolgenden Vorteile aufweist :
    • Durch die Kombination von Brennkammerumfassungswänden und zusätzlicher, in der Brennkammer angeordneter, Heizflächen als Verdampferheizflächen und paralleler Arbeitsmittel-durchströmung dieser Verdampferheizheizflächen kann die Wirbelbrennkammer und somit auch der Durchlaufdumpferzeuger in den baulichen Ausmaßen wesentlich niedriger und damit kostengünstiger ausgebildet werden.
    • Durch die Verwendung von Glattrohren, d. h. Rohre mit auf der Innenseite glatten Oberflächen, in den Umfassungswänden des Durchlaufdampferzeugers ergeben sich wirtschaftliche Vorteile, da sie gegenüber innenberippten Rohren billiger sind und auch keine Sonderanfertigungen nötig sind. Glattrohr werden im Gegensatz zu innenberippten Rohren von vielen Herstellern in einer großen Vielfalt produziert.
    • Durch den Einsatz von Glattrohren in den Umfassungswänden des Durchlaufdampferzeugers ergibt sich ein niedrigerer Druckverlust in der Verdampferheizfläche im Vergleich zu einer mit innenberippten Rohren ausgebildeten Verdampferheizfläche.
    • Durch die parallele Durchströmung der Umfassungswände und der in der Wirbelbrennkammer zusätzlich angeordneten Heizflächen ergeben sich wirtschaftliche Vorteile, da der Einbau von Zwischensammlern (Misch- oder Druckausgleichsammler) nicht mehr erforderlich ist.
    • Der Zusammenbau der Heizflächen, die aus Glattrohren hergestellt sind, ist wirtschaftlicher (Keine Anpassung der Innenberippung erforderlich, dadurch weniger Rohrverluste bei der Montage).
    • Die Länge bzw. Höhe der vertikalen, in der Wirbelbrennkammer zusätzlich angeordneten Heizflächen ist der Höhe und Bauweise (unterschiedliche Trichter im unteren Bereich der Brennkammer) der Wirbelbrennkammer angepasst. Daraus resultieren Vorteile bei der Montage der Heizflächen, da sie effizient in den Brennkammerboden bzw. in die Trichteroberkante sowie in die Brennkammerdecke eingebunden werden können.
    • Die in der Wirbelbrennkammer zusätzlich angeordneten Heizflächen sind als einseitig beheizte zu Kasten verschweißte Heizflächen ausgeführt.
    • Durch die Integration beheizter zusätzlicher Heizflächen wird die gewünschte Massenstromdichte eingestellt, die erforderlich ist, um Massenstrom- und Beheizungsunterschiede auszugleichen und annähernd gleiche Austrittstemperaturen zu erzielen.
    • Die Brennkammerabmessungen (Querschnitt, Höhe) und die integrierten Heizflächen sind so bemessen, dass die wirksamen Wärmestromdichten den Einsatz vertikaler Glattrohr in den Umfassungswänden bei kleinen Massenstromdichten zulassen.
  • die erfindungsgemäße Die Erfindung sieht vor, die erfindungsgemäße - Heizfläche einseitig zu beheizen und dieeinseitig beheizte Heizfläche mit Glattrohren auszubilden. Dadurch wird wie bereits bei den Glattrohren der Umfassungswand angeführt ein wesentlicher wirtschaftlicher Vorteil erzielt, da Glattrohr wesentlich billiger sind, leichter zu montieren sind und einen geringeren Reibungsdruckverlust bedingen.
  • In zweckmäßiger Ausgestaltung der einseitig beheizten Heizfläche ist diese als kastenförmige Heizfläche mit einem kastenförmigem Querschnitt ausgebildet. Durch die kastenförmige Ausbildung erhalt die Heizfläche eine große Stabilität, die es ermöglicht, Brennkammern von größten Durchlaufdampferzeugern mit Heizflächen auszubilden. In weiterer zweckmäßiger Ausgestaltung ist der Querschnitt der kastenförmigen Heizfläche rechteckig ausgebildet.
  • Um eine gleichmäßige Erwärmung des Arbeitsmediums innerhalb der Rohre der Umfassungswände zu erzielen ist es vorteilhaft, dass diese Rohre im wesentlichen die gleiche beheizte Länge besitzen. Um dieselbe Wirkung auch auf die Rohre der Heizflächen zu übertragen ist es ferner vorteilhaft, dass die Rohre der Heizflächen die gleiche beheizte Länge wie die Rohre der Umfassungswänden besitzen.
  • Nachstehend sind Ausführungsbeispiele der Erfindung an Hand der Zeichnung und der Beschreibung näher erläutert.
  • Es zeigt :
  • Fig. 1
    schematisch dargestellt einen Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung im Längsschnitt
    Fig. 2
    schematisch dargestellt eine Wirbelbrennkammer eines Wirbelschicht-Durchlaufdampferzeugers mit einem Brennkammertrichter im Längsschnitt,
    Fig. 3
    wie Figur 2, jedoch Wirbelbrennkammer mit zwei Brennkammertrichter ("Pant leg") im Längsschnitt,
    Fig. 4
    schematisch dargestellt eine Brennkammer eines Wirbelschicht- Durchlaufdampferzeugers (mit einem Brennkammertrichter) im Querschnitt gemäß Schnitt A-A der Figur 2, Schnitt um 90 gedreht,
    Fig. 5
    schematisch dargestellt eine Brennkammer eines Wirbelschicht-Durchlaufdampferzeugers (mit zwei Brennkammertrichter) im Querschnitt gemäß Schnitt B-B der Figur 3, Schnitt um 90 ° gedreht,
    Fig.6
    schematischer Querschnitt einer alternativen kastenförmigen Heizfläche (Kastenschott) gemäß Detail C der Figuren 4 und 5,
    Fig.7
    schematisch dargestellt eine kastenförmige Heizfläche mit vertikal fluchtendem Übergang von der Feuerfestauskleidung zur oberen Membranrohrwand im Längsschnitt, entspricht Schnitt A - A der Figur 8,
    Fig.8
    schematischer Querschnitt einer kastenförmigen Heizfläche gemäß Schnitt C - C der Figur 9,
    Fig.9
    schematischer Längsschnitt einer kastenförmigen Heizfläche gemäß Schnitt B - B der Figur 8.
  • Bei fossil befeuerten Durchlaufdampferzeugern von konventionellen Kraftwerken wird bekanntlich das Arbeitsmedium, üblicherweise Wasser/Dampf im wesentlichen in einem Durchgang eines Dampfturbinen-Kreislaufes vorgewärmt, verdampft, überhitzt und gegebenenfalls zwischenüberhitzt. Der Durchlaufdampferzeuger einschließlich der dazugehörigen Feuerung ist nachfolgend beschrieben.
  • Figur 1 zeigt schematisch dargestellt einen Durchlaufdampferzeuger 1 mit zirkulierender Wirbelschichtfeuerung 2 (ZWSF) für die Verbrennung von Kohle oder anderen verbrennbaren Stoffen. Der zu verbrennende Stoff wird entweder gemeinsam mit einem Inertmaterial oder separat durch die Zuführungsleitung 10 in die Wirbelschicht- bzw. Wirbelbrennkammer 3 des Durchlaufdampferzeugers 1 mit ZWSF eingetragen. Zum Aufbau des Wirbelschichtbettes und zur Verbrennung des eingebrachten Stoffes innerhalb der Brennkammer 3 wird ein Fluidisierungsgas durch die Zuführungsleitung 11 üblicherweise der Wirbelbrennkammer 3 von unten zugeführt. Das Fluidisierungsgas ist in der Regel Luft und wird somit für die Verbrennung als Oxidationsmittel benutzt. Das bei der Verbrennung entstehende Abgas bzw. Rauchgas und die vom Abgas mitgetragenen Feststoffe (Inertmaterial, Aschepartikel und Unverbranntes) werden im oberen Bereich über die Öffnung 12 aus der. Brennkammer 3 abgeführt und über eine Abgasleitung 13 einem Abscheider, in der Regel einem Fliehkraftabscheider bzw. Zyklonabscheider 14 zugeführt. Im Abscheider 14 werden die Feststoffe vom Abgas weitgehendst abgetrennt und über die Rückführleitung 15 wieder der Brennkammer 3 zugeführt. Das weitgehend gereinigte Abgas wird über die Abgasleitung 16 einem zweiten Rauchgaszug 17 zugeführt, in dem wenigstens eine Economizer-Heizfläche 18, wenigstens eine Überhitzer-Heizfläche 19 und ggf. wenigstens eine Zwischenüberhitzer-Heizfläche 20 zur weiteren Nutzung bzw. Abnahme der Abgaswärme angeordnet ist. Der Querschnitt der Brennkammer 3 ist in der Regel rechteckig ausgebildet. Er kann jedoch auch rund sein oder eine andere Form aufweisen.
  • Die Figuren 2 bis 5 zeigen im Längs- sowie im Querschnitt die rechteckig ausgebildete und im wesentlichen vertikal angeordnete Wirbelbrennkammer 3 eines Durchlaufdampferzeugers 1. Die Brennkammer 3 ist im wesentlichen allseits durch Umfassungswände 4 umschlossen, wobei die Umfassungswand 4 von unten nach oben gesehen den Brennkammerboden 4.1, die Brennkammerseitenwände 4.2 und die Brennkammerdecke 4.3 umfasst. Der Brennkammerboden 4.1 ist in der Regel als Düsenboden ausgebildet, durch den das Fluidisierungsgas eingebracht wird. Figur 2 zeigt eine Brennkammer 3 mit einem einfachen Trichter 6 im unteren Bereich der Brennkammer 3, wogegen Figur 3 eine Brennkammer 3 mit zweifachem Trichter 7, eine sogenannte "pant leg" Ausführung, zeigt. Die Brennkammerumfassungswände 4 sind als arbeitsmediumdurchströmte Heizflächen ausgebildet, wobei diese Heizflächen aus gasdichten Membranwänden gebildet sind. Derartige Membranwände können durch gasdichtes Verschweißen einer Rohr-Steg-Rohr-Kombination zusammengesetzt werden. In der Regel umfasst die Rohr-Steg-Rohr-Kombination Rohre 5, die am Außenumfang glatt sind und die jeweils mit separaten Stegen 21 verbunden sind. Möglich sind jedoch auch Flossenrohre, deren Außenwand bereits mit Stegen ausgebildet sind und die miteinander verbunden werden.
  • Die vorliegende Erfindung zielt auf Durchlaufdampferzeuger 1 mit zirkulierender Wirbelschichtfeuerung 2 hoher Leistung (etwa 300 bis 600 Mwel) und hoher Dampfparameter (etwa 250 bis 300 bar Druck und 560 bis 620 °C Temperatur) ab. Dabei ist es zur Erzielung einer effizienten Brennkammerauslegung in diesem Leistungsbereich erforderlich, zusätzliche Heizflächen 8 zu installieren, die aus wärmetechnischen Gründen (gleichmäßige Wärmeaufnahme) bevorzugt innerhalb der Brennkammer 3 angeordnet werden.
  • Der erfindungsgemäße Durchlaufdampferzeuger 1 mit ZWSF 2 sieht vor, dass sämtliche Rohre 5, 9 der Umfassungswände 4 und der innerhalb der Brennkammer 3 liegenden Heizflächen 8 als Verdampferheizfläche ausgebildet sind und für den Durchfluss des gesamten zu verdampfenden Arbeitsmediums parallel geschaltet sind, dass sämtliche Rohre 5 der Umfassungswände 4 mit innen glatter Rohroberfläche ausgebildet sind und die Heizflächen 8 sich zwischen Brennkammerboden 4.1 bzw. Trichteroberkante 24 und Brennkammerdecke 4.3 erstrecken. Durch die Parallelschaltung der Heizflächen 8 und der Heizfläche der Umfassungswand 4 des Durchlaufdampferzeugers 1 sowie der Benutzung beider Heizflächen als Verdampferheizfläche wird in vorteilhafter Weise erreicht, dass zum einen mittels Anpassung der Anzahl der Heizflächen 8 die Brennkammer 3 effizient ausgelegt werden kann. D. h., dass mit dieser Maßnahme die Brennkammerabmessungen optimiert werden können, vor allem die Brennkammerhöhe (Abstand zwischen Brennkammerboden und -decke) kann durch die Einbindung der Heizflächen 8 wesentlich reduziert werden. Zum anderen lassen die wirksamen Wärmestromdichten innerhalb der Wirbelschichtbrennkammer 3 bei der vorgenannten, erfindungsgemäßen Schaltung des Durchlaufdampferzeugers 1 trotz herabgesetzten Arbeitsmedium-Massenstromdichten von etwa 400 bis 1200 kg/m2s es zu, für die Rohre 5 der Umfassungswände 4 solche einzusetzen, die innen eine glatte Oberfläche aufweisen. Durch die herabgesetzten Arbeitsmedium-Massenstromdichten wird auch eine verbesserte Naturumlaufcharakteristik innerhalb der Verdampferheizflächen erzielt, was bedeutet, dass bei einer eventuellen örtlichen Mehrbeheizung hier auch ein Anstieg des Arbeitsmedium-Durchsatzes erfolgt und somit eine sichere Rohrkühlung gewährleistet ist.
  • Der Einsatz von Rohren 5 mit innen glatter Oberfläche, auch kurz Glattrohre genannt, hat gegenüber den sonst bei derart niedrigen Massenstromdichten eingesetzten innenberippten Rohren mehrere Vorteile. Zum einen sind glatte Rohre gegenüber innenberippten Rohren wesentlich kostengünstiger, haben kürzere Lieferzeiten, sind in wesentlich mehr Größen lieferbar und allgemein besser verfügbar, da innen berippte Rohre meistens nur als Sonderanfertigung erhältlich sind, auch in Hinsicht der Montage sind glatte Rohre wesentlich einfacher zu handhaben. Zum anderen besitzen glatte Rohre einen wesentlich kleineren Reibungsdruckverlust des Arbeitsmediums gegenüber innenberippten Rohren, was sich positiv auf die gleichmäßige Verteilung des Arbeitsmediums auf die einzelnen Rohre 5 sowie auf eine Verringerung der Speisepumpenleistung des Durchlaufdampferzeugers 1 auswirkt.
  • Zur Erhöhung des Durchlaufdampferzeuger-Prozesswirkungsgrades und damit zur Verringerung von von der Dampferzeuger-Feuerung verursachten schädlichen Emissionen in die Atmosphäre werden Durchlaufdampferzeuger 1 immer häufiger im überkritischen Bereich, d. h. bei einem Dampfdruck von über 220 bar sowie im Gleitdruck zwischen über - und unterkritischem Druck, betrieben (der Betriebsdruck des Dampferzeugers gleitet im Lastbereich des Durchlaufdampferzeugers, z. B. zwischen 20 bis 100 % Last). Bei einem Durchlaufdampferzeuger-Betriebsdruck von beispielsweise 270 bar bei Volllast erreicht der Dampferzeuger bei einer Teillast von etwa 70 % den kritischen Druckbereich und wird unterhalb dieser Teillast unterkritisch betrieben, d. h. dass im Teillastbereich etwa unterhalb von 70 % im Verdampfer während des Verdampfungsvorganges ein Zweiphasengemisch auftritt. Durch die obengenannte erfindungsgemäße Lösung ist gewährleistet, dass innerhalb der Verdampferheizfläche (Umfassungswände 4 und Heizflächen 8) keine Entmischung von Dampf und Wasser eintritt. Dies wird noch unterstützt durch die vorteilhafte Ausbildung des erfindungsgemäßen Durchlaufdampferzeuger 1, dass die Arbeitsmedium-Durchströmung der Rohre 5, 9 der Umfassungswände 4 und der Heizflächen 8 ohne Zuhilfenahme von Zwischensammlern erfolgt.
  • Bei den in der Wirbelbrennkammer 3 eingesetzten zusätzlichen Heizflächen 8 handelt es sich um sogenannte Schottheizflächen. Bei Schott-Heizflächen handelt es sich um in sich geschlossene und plattenartige Heizflächen (d.h. die einzelnen nebeneinander angeordneten Rohre 9 sind mit Stegen 22 - verschweißte Rohr-Steg-Rohr-Kombination - miteinander zu einem Schott verbunden), die im Gegensatz zu Bündelheizflächen stehen, die offen ausgebildet sind (d.h. die einzelnen nebeneinander angeordneten Rohre sind nicht mit Stegen miteinander verbunden). Die Heizflächen 8 sind im wesentlichen vertikal innerhalb der Brennkammer 3 angeordnet und die darin enthaltenen Rohre 9 verlaufen ebenfalls im wesentlichen vertikal.
  • Erfindungsgemäß erstrecken sich die Heizflächen 8 je nach Brennkammerausbildung entweder zwischen Brennkammerboden 4.1 oder Trichteroberkante 24 und Brennkammerdecke 4.3. Dadurch können sie gemeinsam mit der Umfassungswand 4 voll zur Paralleldurchströmung des gesamten zu verdampfenden Arbeitsmediums herangezogen werden. Die Heizflächen 8 entspringen somit im unteren Bereich der Wirbelbrennkammer 3 im wesentlichen am Brennkammerboden bzw. an der Trichterunterkante 4.1 bei einer Brennkammer 3 mit einem Trichter 6 (Figur 2) und mittiger Anordnung der Heizflächen 8 innerhalb der Brennkammer 3 oder an der Trichteroberkante 24 bei einer Brennkammer 3 mit zwei Trichter 7 (Figur 3) sowie mittiger Anordnung der Heizflächen 8 und endet im oberen Bereich der Wirbelbrennkammer 3 im wesentlichen an der Brennkammerdecke 4.3. Zur Befestigung der einzelnen Heizflächen 8 können diese beispielsweise mit dem Brennkammerboden 4.1 bzw. Trichteroberkante 24 und der Brennkammerdecke 4.3 verschweißt sein. Sollten mehr als zwei Trichter im unteren Bereich der Brennkammer 3 vorgesehen werden, so kann die Einbindung der Heizflächen 8 sinngemäß erfolgen.
  • Die parallele Speisung der Heizflächen 8 sowie der Umfassungswand 4 erfolgt durch nicht dargestellte Sammler, mittels denen den vorgenannten Heizflächen das zu verdampfende Arbeitsmedium von unten zugeführt wird. Beginnen die Heizflächen 8 bei einer Brennkammer 3 mit zwei Trichtern 7 gemäß der Figur 3 erst an der Trichteroberkante bzw. am Trichtersattel 24, so können diese Heizflächen 8 über die Trichter-Umfassungswände 4 mit Arbeitsmedium eingespeist werden. Auch eine gesonderte, parallele Einspeisung der Heizflächen 8 ist möglich.
  • Die erfindungsgemäße Lösung sieht vor, die innerhalb der Wirbelbrennkammer 3 angeordneten Heizflächen 8 einseitig zu beheizen. Figur 6 zeigt eine einseitig beheizte Heizfläche 8 auf. Diese Heizfläche 8 umfasst umfangseitig einen Innenraum 23 und ist kastenförmig ausgebildet, weshalb die Heizfläche 8 in der weiteren Beschreibung auch als kastenförmige Heizfläche oder als Kastenschott(en) 8 bezeichnet wird. Die Figur 6 zeigt dabei eine vorteilhafte Ausbildung der kastenförmigen Heizfläche 8 mit rechteckigem Querschnitt auf. Das Kastenschott 8 gemäß der Figur 6 weist vier Seitenwände aus verschweißten Membranrohrwänden auf, die an den Ecken zusammengeschweißt sind, wobei die Membranrohrwände aus Rohren 9 und Stegen 22 gebildet wird. Es ergibt sich somit ein Kasten in gasdicht verschweißter Rohr-Steg-Rohr-Ausführung bzw. -Kombination. Anstelle der in Figur 6 querschnittseitig aufgezeigten rechteckigen Ausführung der kastenförmigen Heizfläche 8 kann diese auch mit einem anderen Querschnitt ausgebildet sein, z. B n-eckig (wenigstens 3-eckig), rund etc. D. h. in diesem Fall hat der durch die kastenförmige Heizfläche 8 umfasste Innenraum 23 einen n-eckigen bzw. runden Querschnitt.
  • Durch die vertikale Anordnung der Heizflächen 8 und somit auch der Rohre 9 sowie der vertikalen Rohre 5 der Umfassungswände 4 geben die Rohre 5, 9 dem in der Brennkammer 3 von unten nach oben strömenden Gas- und Partikelstrom möglichst wenig Erosionsangriffspunkte. Um die Rohre 5, 9 im unteren Brennkammerbereich bzw. im Trichterbereich 6, 7 vor den hohen Quer- bzw. Turbulenzströmungen des Gas- und Partikelstromes der Wirbelschicht zu schützen, sind diese mit einer feuerfesten Auskleidung 25 versehen.
  • Eine vorteilhafte Ausgestaltung der Erfindung sieht gemäß der Figuren 7 bis 9 vor, die Rohre 9 der im Brennkammer-Trichterbereich 6, 7 mit einer Feuerfestauskleidung 25 versehenen kastenförmigen Heizfläche 8 im Übergangsbereich 26 zwischen ausgekleidetem und nicht ausgekleidetem Heizflächenbereich 27 nach innen in den Bereich des Innenraumes 23 auszubiegen und die Vorderkanten der Feuerfestauskleidung 25 und des nicht ausgekleideten Bereiches 27 der Heizfläche 8 in vertikaler Richtung fluchtend auszubilden. Durch diese Maßnahme wird verhindert, dass im Übergangsbereich 26 Erosionsangriffspunkte auf die Rohre 9 für Turbulenzströmungen des Gas- und Partikelstromes gegeben sind.
  • Durch die Feuerfestauskleidung 25 der Rohre 5, 9 im Trichterbereich 6, 7 ergeben sich in vorteilhafter Weise im wesentlichen gleich beheizte Längen der Rohre 5, 9 innerhalb der Brennkammer 3.
  • Die kastenförmigen Heizflächen 8, die sich über eine Länge L und über ihren Querschnitt über eine Breite B und eine Tiefe T erstrecken, besitzen in zweckmäßiger Ausbildung Abmessungen von ca. 1,0 bis 4,0 m über die Breite B, ca. 0,1 bis 1,0 m über die Tiefe T und ca. 20 m bis 50 m über die Länge L. Damit wird es ermöglicht, die Brennkammer 3 auch größter Durchlaufdampferzeuger 1 zu bestücken.
  • Die für die kastenförmigen Heizflächen 8 eingesetzten Rohre 9 besitzen in vorteilhafter Ausbildung Außendurchmesser zwischen 20 mm und 70 mm. Die Fertigung der kastenförmigen Heizflächen 8 ist mit im Dampferzeugerbau üblichen Materialien und Fertigungsverfahren möglich. Bezugszeichenliste:
    1 Durchlaufdampferzeuger
    2 Zirkulierende Wirbelschichtfeuerung
    3 Wirbelbrennkammer
    4 Umfassungswände
    4.1 Brennkammerboden bzw. Trichterunterkante
    4.2 Brennkammerseitenwand
    4.3 Brennkammerdecke
    5 Rohr
    6 Trichter, einfach
    7 Trichter, zweifach
    8 Heizfläche
    9 Rohr
    10 Zufuhr Brennstoff
    11 Zufuhr Fluidisierungsgas
    12 Öffnung bzw. Austritt Rauchgas
    13 Abgasleitung
    14 Fliehkraftabscheider
    15 Rückführleitung
    16 Abgasleitung
    17 Zweiter Rauchgaszug
    18 Eco-Heizfläche
    19 Überhitzer-Heizfläche
    20 Zwischenüberhitzer-Heizfläche
    21 Steg Umfassungswand
    22 Steg Heizfläche
    23 Innenraum
    24 Trichteroberkante
    25 Feuerfestauskleidung
    26 Übergangsbereich
    27 Nicht ausgekleideter Bereich der Heizfläche

Claims (7)

  1. Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung, mit einer Wirbelbrennkammer (3),
    wobei die Wirbelbrennkammer (3) im wesentlichen allseits durch Umfassungswände (4) begrenzt ist und aus gasdichten, mit im wesentlichen vertikalen Rohren (5) ausgebildeten Rohrwänden besteht und im unteren Bereich mindestens einen Trichter (6,7) aufweist,
    und in der Wirbelbrennkammer (3) mindestens eine im wesentlichen vertikal angeordnete und mit vertikalen Rohren (9) versehene Heizfläche (8) angeordnet ist, wobei die Heizfläche (8) aus einer verschweissten Rohr-Steg-Rohr-Kombination besteht,
    und wobei die Rohre (5,9) der Umfassungswände (4) und der Heizfläche (8) von einem Wasser/Dampf-Arbeitsmedium durchströmt werden,
    dadurch gekennzeichnet, dass sämtliche Rohre (5,9) der Umfassungswände (4) und der Heizfläche (8) als Verdampferheizfläche ausgebildet sind und für den Durchfluss des gesamten zu verdampfenden Arbeitsmediums parallel geschaltet sind,
    dass sämtliche Rohre (5) der Umfassungswände (4) und der Heizfläche (8) mit innen glatter Rohroberfläche ausgebildet sind,
    dass die Heizfläche (8) sich zwischen Brennkammerboden (4.1) oder Trichteroberkante (24) und Brennkammerdecke (4.3) erstreckt,
    dass die Heizfläche (8) als einseitig beheizbarer Kasten in gasdicht verschweißter Rohr-Steg-Rohr-Ausführung ausgebildet ist,
    und dass die Arbeitsmittel-Durchströmung der Rohre (5,9) der Umfassungswände (4) und der Heizfläche (8) ohne Zuhilfenahme von Zwischensammlern erfolgt.
  2. Durchlaufdampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass die Heizfläche (8) einen kastenförmigen Querschnitt mit einer Breite (B) und einer Tiefe (T) aufweist und umfangseitig einen Innenraum (23) umfasst und über ihren Umfang geschlossen ist.
  3. Durchlaufdampferzeuger nach Anspruch 2, dadurch gekennzeichnet, dass der Querschnitt der kastenförmigen Heizfläche (8) wenigstens 3-eckig oder rund ausgebildet ist.
  4. Durchlaufdampferzeuger nach Anspruch 2, dadurch gekennzeichnet, dass der Querschnitt der kastenförmigen Heizfläche (8) rechteckig ausgebildet ist.
  5. Durchlaufdampferzeuger nach Anspruch 2, dadurch gekennzeichnet, dass die Rohre (9) der im Brennkammer-Trichterbereich (6, 7) mit einer Feuerfestauskleidung (25) versehenen kastenförmigen Heizfläche (8) im Übergangsbereich (26) zwischen ausgekleidetem und nicht ausgekleidetem Heizflächenbereich (27) in den Bereich des Innenraumes (23) ausgebogen sind und die Vorderkanten der Feuerfestauskleidung (25) und des nicht ausgekleideten Bereiches (27) der Heizfläche (8) in vertikaler Richtung fluchtend ausgebildet sind.
  6. Durchlaufdampferzeuger nach wenigstens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Rohre (5) der Umfassungswände (4) im wesentlichen gleiche beheizte Länge besitzen.
  7. Durchlaufdampferzeuger nach wenigstens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Rohre (9) der Heizfläche (8) im wesentlichen die gleiche beheizte Länge wie die Rohre (5) der Umfassungswände (4) besitzen.
EP03767428.0A 2002-11-22 2003-11-18 Durchlaufdampferzeuger mit zirkulierender atmosphärischer wirbelschichtfeuerung Revoked EP1563224B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10254780 2002-11-22
DE10254780A DE10254780B4 (de) 2002-11-22 2002-11-22 Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung
PCT/DE2003/003808 WO2004048848A2 (de) 2002-11-22 2003-11-18 Durchlaufdampferzeuger mit zirkulierender atmosphärischer wirbelschichtfeuerung

Publications (2)

Publication Number Publication Date
EP1563224A2 EP1563224A2 (de) 2005-08-17
EP1563224B1 true EP1563224B1 (de) 2013-07-10

Family

ID=32318650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767428.0A Revoked EP1563224B1 (de) 2002-11-22 2003-11-18 Durchlaufdampferzeuger mit zirkulierender atmosphärischer wirbelschichtfeuerung

Country Status (7)

Country Link
US (1) US7331313B2 (de)
EP (1) EP1563224B1 (de)
CN (1) CN100396991C (de)
DE (1) DE10254780B4 (de)
ES (1) ES2429872T3 (de)
PL (1) PL207502B1 (de)
WO (1) WO2004048848A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884900B1 (fr) * 2005-04-26 2007-11-30 Alstom Technology Ltd Reacteur a lit fluidise avec double extension de paroi
FI122210B (fi) * 2006-05-18 2011-10-14 Foster Wheeler Energia Oy Kiertopetikattilan keittopintarakenne
EP2180251A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009012322B4 (de) * 2009-03-09 2017-05-18 Siemens Aktiengesellschaft Durchlaufverdampfer
US9638418B2 (en) * 2009-05-19 2017-05-02 General Electric Technology Gmbh Oxygen fired steam generator
DE102009040249B4 (de) * 2009-09-04 2011-12-08 Alstom Technology Ltd. Zwangdurchlaufdampferzeuger für die Verfeuerung von Trockenbraunkohle
EP2642199B1 (de) * 2012-03-20 2017-06-21 General Electric Technology GmbH Zirkulierender Wirbelschichtkessel
CN104344401B (zh) * 2013-08-09 2016-09-14 中国科学院工程热物理研究所 带变截面水冷柱的循环流化床锅炉炉膛

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2997031A (en) * 1955-12-12 1961-08-22 Combustion Eng Method of heating and generating steam
US3932426A (en) * 1973-08-23 1976-01-13 Shionogi & Co., Ltd. 3-[1-Hydroxy-2-(3- or 4-hydroxypiperidino)ethyl]-5-phenylisoxazole
US3893426A (en) * 1974-03-25 1975-07-08 Foster Wheeler Corp Heat exchanger utilizing adjoining fluidized beds
US4290389A (en) 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator
FR2527760B1 (fr) * 1982-05-26 1985-08-30 Creusot Loire Procede de controle du transfert de chaleur entre une matiere granulaire et une surface d'echange et echangeur de chaleur pour la mise en oeuvre du procede
DE3525676A1 (de) * 1985-07-18 1987-01-22 Kraftwerk Union Ag Dampferzeuger
FI84202C (fi) * 1989-02-08 1991-10-25 Ahlstroem Oy Reaktorkammare i en reaktor med fluidiserad baedd.
US5069171A (en) * 1990-06-12 1991-12-03 Foster Wheeler Agency Corporation Fluidized bed combustion system and method having an integral recycle heat exchanger with a transverse outlet chamber
AU685766B2 (en) * 1993-03-03 1998-01-29 Ebara Corporation Pressurized internal circulating fluidized-bed boiler
FR2712378B1 (fr) * 1993-11-10 1995-12-29 Stein Industrie Réacteur à lit fluidisé circulant à extensions de surface d'échange thermique.
US5537941A (en) * 1994-04-28 1996-07-23 Foster Wheeler Energy Corporation Pressurized fluidized bed combustion system and method with integral recycle heat exchanger
DE4431185A1 (de) * 1994-09-01 1996-03-07 Siemens Ag Durchlaufdampferzeuger
CA2309139C (en) * 1997-11-04 2008-08-19 Ebara Corporation Fluidized-bed gasification and combustion furnace
FI105499B (fi) * 1998-11-20 2000-08-31 Foster Wheeler Energia Oy Menetelmä ja laite leijupetireaktorissa
DE19914760C1 (de) * 1999-03-31 2000-04-13 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger

Also Published As

Publication number Publication date
US20060124077A1 (en) 2006-06-15
DE10254780A1 (de) 2004-06-17
WO2004048848A2 (de) 2004-06-10
CN1714255A (zh) 2005-12-28
US7331313B2 (en) 2008-02-19
CN100396991C (zh) 2008-06-25
DE10254780B4 (de) 2005-08-18
PL207502B1 (pl) 2010-12-31
PL377705A1 (pl) 2006-02-06
EP1563224A2 (de) 2005-08-17
WO2004048848A3 (de) 2004-07-29
ES2429872T3 (es) 2013-11-18

Similar Documents

Publication Publication Date Title
EP0657010B2 (de) Dampferzeuger
EP1563224B1 (de) Durchlaufdampferzeuger mit zirkulierender atmosphärischer wirbelschichtfeuerung
EP0152529A2 (de) Dampferzeuger mit einer stationären Wirbelschichtfeuerung
WO2010029100A2 (de) Durchlaufdampferzeuger
EP2652396B1 (de) Zwangsdurchlauf-dampferzeuger mit wandheizfläche und verfahren zu seinem betrieb
DD296542A5 (de) Feuerung, insbesondere wirbelschichtfeuerung
DE4227985A1 (de) Gasturbinen-anordnung mit einem combustor vom rohrbuendel-brennkammer-typ
WO2000037851A1 (de) Fossilbeheizter durchlaufdampferzeuger
DE3133298C2 (de)
DE3514974A1 (de) Wasserrohr - dampferzeuger
DE10039317A1 (de) Dampferzeugeranlage
DE2804073A1 (de) Wirbelschicht-verbrennungs- und waermeuebertragungsvorrichtung sowie verfahren zum betreiben einer solchen vorrichtung
DE10354136B4 (de) Zirkulierender Wirbelschichtreaktor
KR19990071571A (ko) 복수의 노 출구를 갖춘 순환유동상 반응로
DE20220794U1 (de) Zirkulierender Wirbelschichtreaktor
WO2007028711A1 (de) Brenneranordnung für eine brennkammer, zugehörige brennkammer sowie verfahren zum verbrennen eines brennstoffs
EP1447622B1 (de) Staubgefeuerter Flammrohrkessel
DE102014100692B4 (de) Feuerraum eines Kessels, Kessel, Verfahren zur Verbrennung wenigstens eines Brennstoffes sowie Verfahren zur Erzeugung von Dampf
EP2564117B1 (de) Dampferzeuger
WO2000032987A1 (de) Verfahren zum betreiben eines dampferzeugers und dampferzeuger zur durchführung des verfahrens
DE975701C (de) Brennstaubfeuerung mit zwei uebereinander angeordneten Brennkammern mit gemeinsamer lotrechter Achse
EP3193082B1 (de) Verfahren und vorrichtung zur erzeugung von überhitztem dampf mittels der im kessel einer verbrennungsanlage erzeugten wärme
DE10159381B4 (de) Dampferzeuger
AT390663B (de) Wasserrohr-dampferzeuger mit einer rost- oder wirbelschichtfeuerung
WO1998046938A1 (en) Modular boiler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050421

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TRAUTMANN, GUENTER

Inventor name: STAMATELOPOULOS, GEORG-NIKOLAUS

Inventor name: WEISSINGER, GERHARD

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 621183

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314831

Country of ref document: DE

Effective date: 20130905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2429872

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131118

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130710

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20130402085

Country of ref document: GR

Effective date: 20131118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131111

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

26 Opposition filed

Opponent name: FOSTER WHEELER ENERGIA OY

Effective date: 20140409

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20131130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50314831

Country of ref document: DE

Effective date: 20140409

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E019299

Country of ref document: HU

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131118

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 621183

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131118

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: AMEC FOSTER WHEELER ENERGIA OY

Effective date: 20140409

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER(S): ALSTOM TECHNOLOGY LTD, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314831

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314831

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314831

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314831

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314831

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM POWER BOILER GMBH, 70329 STUTTGART, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

Effective date: 20161115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161123

Year of fee payment: 14

Ref country code: HU

Payment date: 20161109

Year of fee payment: 14

Ref country code: FI

Payment date: 20161123

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20161128

Year of fee payment: 14

Ref country code: ES

Payment date: 20161128

Year of fee payment: 14

Ref country code: IT

Payment date: 20161124

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314831

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171119

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171118

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171119

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SUMITOMO SHI FW ENERGIA OY

Effective date: 20140409

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20201023

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 50314831

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 50314831

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20210608

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 621183

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210608