EP1561029B1 - Method and device for measuring the injection rate of an injection valve for liquids - Google Patents

Method and device for measuring the injection rate of an injection valve for liquids Download PDF

Info

Publication number
EP1561029B1
EP1561029B1 EP03809686A EP03809686A EP1561029B1 EP 1561029 B1 EP1561029 B1 EP 1561029B1 EP 03809686 A EP03809686 A EP 03809686A EP 03809686 A EP03809686 A EP 03809686A EP 1561029 B1 EP1561029 B1 EP 1561029B1
Authority
EP
European Patent Office
Prior art keywords
pressure
measurement
injection
measurement volume
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03809686A
Other languages
German (de)
French (fr)
Other versions
EP1561029B2 (en
EP1561029A1 (en
Inventor
Ulrich Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32087191&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1561029(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1561029A1 publication Critical patent/EP1561029A1/en
Publication of EP1561029B1 publication Critical patent/EP1561029B1/en
Application granted granted Critical
Publication of EP1561029B2 publication Critical patent/EP1561029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/001Measuring fuel delivery of a fuel injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing

Definitions

  • the injected fuel causes pressure oscillations in the corresponding natural frequencies of the measurement volume, these natural frequencies depending on the geometric dimensions of the measurement volume.
  • the fundamental vibration also many harmonics are usually excited, with several vibration modes are usually possible. This makes it difficult to filter the pressure sensor measuring signal, since the frequencies of the natural oscillations are partly in the range of the frequencies of the measuring signal.
  • the density depends on the temperature of the test medium. To take this into account, the temperature is measured by means of a temperature sensor in the measuring volume and the density is corrected accordingly. The temperature measurement is selective and does not take into account a possibly unequal temperature in the entire measuring volume. Such a method is described in WO 02/064970 A.
  • the method according to the invention with the features of claim 1 has the advantage that from the pressure curve in a simple manner, the injection quantity determine.
  • the time course of the pressure in the measuring volume is recorded during the injection and from this the time course of the injection quantity is calculated.
  • the sound velocity is determined. From the increase in pressure and the speed of sound can then directly the injection quantity or its time course, so calculate the rate of injection rate.
  • the speed of sound is determined by means of a separate measurement process, in which a sound pulse is emitted by a sound generator into the measurement volume and is collected by the pressure sensor. If the sound generator and the pressure sensor are arranged opposite each other, the sound velocity can be calculated directly from the distance and the running time. This is a very fast measuring method, which causes hardly any significant delays in the measurement process.
  • the measurement data of the pressure profile are stored with the aid of an electronic computer, which also makes direct further processing of the data possible.
  • the frequency of a natural pressure oscillation of the measuring volume is determined from the pressure measured values. From the natural frequency, the sound velocity then results as an average value over the entire measurement volume, without the need for a separate measurement with corresponding devices.
  • the filtering of the pressure readings is performed, for example, with a low-pass filter, so that noises and noise be largely eliminated. From the time differentiation of the pressure signal can then determine the injection rate.
  • the device according to the invention with the features of claim 9 has the advantage over the prior art that the measurement signal can be better filtered.
  • the pressure sensor is arranged in the pressure node of the first compressive natural vibration, that is, the natural vibration, so that the pressure sensor does not detect a signal of the natural vibration. Therefore, the cut-off frequency of the low-pass filter can be shifted upwards by a factor of two for smoothing the pressure measurement values.
  • the measuring device is shown in a partially sectioned view.
  • a cylindrical measuring volume 1 with a wall 2 is completely filled with a test liquid, wherein the measuring volume 1 is completed on all sides.
  • the wall 2 has a first base area 102 and a second base area 202, which are connected by the side wall 303, which has a longitudinal axis 4.
  • an injection valve 3 protrudes with its tip in the measuring volume 1, wherein the passage of the injection valve 3 is closed by the wall 2 liquid-tight.
  • the injection valve 3 has a valve body 7, in which in a bore 6, a piston-shaped valve needle 5 is arranged longitudinally displaceable.
  • test liquid flows from a pressure space 9 formed between the valve needle 5 and the wall of the bore 6 to the injection openings 12 and is injected from there into the measurement volume 1 until the injection openings 12 are closed again by the valve needle 5.
  • the injection of the test liquid takes place here with a high pressure, which can be up to 200 MPa depending on the injection valve used.
  • a pressure holding valve 17 line 16 In the side wall 303 of the cylindrical wall 2 opens a connected to a pressure holding valve 17 line 16, can be derived by the test liquid from the measuring volume 1 in a not shown in the drawing leakage volume.
  • a control valve 15 is also arranged, through which the line 16 can be closed if necessary, if a derivation of test liquid from the measuring volume 1 is not desired.
  • the pressure-maintaining valve 17 ensures that a certain pressure in the measuring volume 1 is maintained and this always remains completely filled with liquid.
  • a holder 22 projects through the second base 202 of the wall 2 into the measuring volume 1.
  • a pressure sensor 20 is arranged, which is connected via a signal line 24, which leads out of the measuring volume 1 in the holder 22 with an electronic computer 28, wherein the passage of the holder 22 is sealed by the wall 2 liquid-tight.
  • the pressure sensor 20 is arranged in the median plane between the two base surfaces 102, 202 of the wall 2 and thus has the same distance to both base surfaces 102, 202. Since the pressure sensor 20 is also located on the longitudinal axis 4, it has to the side surface 303 on all sides the same distance s.
  • the signal that the pressure sensor 20 supplies read and stored electronically.
  • the pressure sensor 20 is constructed, for example, on a piezo-based basis, so that even rapid changes in pressure can be measured without appreciable delay.
  • a sounder 21 is arranged, which has the distance s from the pressure sensor 20.
  • a separate sound receiver 30 diametrically opposite the sounder 21 on the side surface 303 in order to obtain the largest possible distance of the sound signal and thus greater accuracy in determining the speed of sound c.
  • the time course of the pressure is measured, from which in turn the injection rate r (t) can be determined, ie the amount dm (t) of the test liquid injected per unit time dt.
  • the pressure in the measuring volume 1 increases. Liquids are virtually incompressible compared to gases, so that even a small increase in volume leads to a well-measurable pressure increase. Due to the impact-like introduction of the test liquid, pressure oscillations are excited in the measuring volume 1.
  • the natural frequencies depend on the geometric dimensions of the measurement volume 1:
  • FIG. 2 shows this first compressive natural oscillation schematically, wherein the lines designated by p show the pressure curve, in which pressure bellies are to be found at the edges and in the middle, ie in the radial plane of the cylindrical measuring volume in which the pressure sensor 20 is arranged, a pressure node lies.
  • the pressure sensor 20 does not register the first natural pressure vibration since no pressure changes occur at the pressure node. Nor are the 2nd, 4th and all other even harmonics recorded by the pressure sensor 20.
  • the procedure is as follows: Into the measuring volume 1, in which the test liquid is located, the injection valve 3 injects a certain amount of liquid by a rapid longitudinal movement of the valve needle 5, through which the injection openings 12 are opened and closed again.
  • the pressure sensor 20 measures the pressure p (t) which is read out and stored by the computer 28 at a specific rate of, for example, 100 kHz.
  • equation (III) is used.
  • the measured values p (t) stored in the computer are time-differentiated and multiplied by the factor V / c 2 , which directly yields the injection rate r (t).
  • the cut-off frequency ⁇ G for the low-pass filter can be selected to be twice as large as the first fundamental vibration is not registered by the pressure sensor 20.
  • the smoothed pressure readings are then differentiated in time, and after multiplication by the factor V / c 2 results in a known volume V, the injection rate r (t).
  • the speed of sound c can also be determined in a separate method.
  • FIG. 3 shows the time profile of pressure p (t) and its derivative dp (t) / dt as a function of time t in arbitrary units U.
  • an injector as used for direct-injection, auto-ignition internal combustion engines, this corresponds to a fuel injection, which is divided into a pilot or pilot injection and a subsequent main injection.
  • the derivative dp (t) / dt gives a value which is proportional to the injection rate r (t).
  • V / c 2 By multiplication by the factor V / c 2 , one finally obtains from this the absolute value of the injection rate r (t).
  • the measurement method together with the described measurement setup thus makes it possible to measure the pressure profile and to determine the speed of sound c under the current test conditions, from which the injection quantity and the injection rate can be determined. If the speed of sound c is calculated from the frequency of the natural vibrations, then all the necessary variables from the pressure curve can be determined, which excludes errors due to additional components. Due to the arrangement of the pressure sensor 20 exactly between the two base areas 102, 202, the cut-off frequency ⁇ G of the low-pass filter can be raised to twice the frequency of the fundamental vibration ⁇ e , without a qualitative impairment is to be expected by the filtering. costly Calibration methods in which the speed of sound is determined in a separate measuring method can thus be dispensed with.
  • the test fluid may be fuel or another fluid whose properties are similar to that used in normal use of the fuel injector.
  • the measurement volume 1 need not be cylindrical, but instead of a cylinder, a cuboid measuring volume 1 or another suitable shape may be provided, for example a ball.
  • the pressure sensor 20 is also arranged here in a pressure node of the first natural pressure oscillation of the measuring volume 1 in order to be able to set the cutoff frequency for the filtering as high as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

A method for measuring the injection rate of an injection valve for liquids, preferably for liquid fuel, in which the injection valve injects the liquid into a liquid-filled measurement volume, the measurement volume being closed off on all sides and a pressure sensor being located in the measurement volume. From the measured pressure values or by a separate measurement, the speed of sound is determined and thus the injection quantity or the course over time of the injection rate is calculated. The apparatus includes a measurement volume, an injection valve, which protrudes with at least one injection opening into the measurement volume, and a pressure sensor, which is located in the pressure node of the first natural pressure oscillation of the measurement volume.

Description

Stand der TechnikState of the art

Bei der Fertigungs- und Funktionsprüfung von Kraftstoff-Einspritzkomponenten, wie beispielsweise von Einspritzventilen, Common-Rail-Injektoren und anderen Hochdruckeinspritzventilen, sind zur Mengenmessung verschiedene Prüfvorrich-tungen und -verfahren im Stand der Technik beschrieben. So ist beispielsweise aus der DE 100 64 511 A1 das Messkolben-prinzip bekannt, bei dem das Einspritzventil Kraftstoff in ein mit einem Prüfmedium gefülltes Messvolumen einspritzt. Der Druck in dem Messvolumen wird konstant gehalten, indem ein Messkolben durch die Einspritzmenge verdrängt wird. Aus der Verschiebung des Messkolbens kann dann unmittelbar die Einspritzmenge berechnet werden. Dieses Verfahren ist wegen der mechanischen Kolbenbewegung dynamisch begrenzt und kann dadurch die steigenden Anforderungen nach zeitlich hochaufgelöster Messung der Einspritzrate bei modernen Hochdruck-Einspritzsystemen für Brennkraftmaschinen, die pro Einspritzzyklus häufig mehrere Teileinspritzungen umfassen, nicht erfüllen.In manufacturing and functional testing of fuel injection components, such as injectors, common rail injectors, and other high pressure injectors, various prior art test devices and methods are described for volume measurement. For example, from DE 100 64 511 A1 the measuring piston principle is known, in which the injection valve injects fuel into a measuring volume filled with a test medium. The pressure in the measuring volume is kept constant by displacing a volumetric flask by the injection quantity. From the displacement of the volumetric flask, the injection quantity can then be calculated directly. This method is dynamically limited because of the mechanical piston movement and thus can not meet the increasing demands for high-temporal measurement of the injection rate in modern high-pressure injection systems for internal combustion engines, which often comprise multiple partial injections per injection cycle.

Ein alternatives und genaues Verfahren, wie es beispielsweise in W. Zeuch: "Neue Verfahren zur Messung des Einspritzgesetzes und der Einspritz-Regelmäßigkeit von Diesel-Einspritzpumpen", Motortechnische Zeitschrift (MTZ) 22 (1961), S. 344-349, beschrieben ist, ist das hydraulische Druckanstiegsverfahren (HDV). Hierbei spritzt das Einspritzventil ebenfalls in ein flüssigkeitsgefülltes Messvolumen ein, jedoch wird hier das Messvolumen konstant gehalten. Dadurch kommt es zu einem Druckanstieg im Messvolumen, was mit einem geeigneten Drucksensor gemessen wird. Moderne Drucksensoren auf Piezo-Basis zeichnen sich dabei durch eine sehr kurze Ansprechzeit aus, was zeitlich hochaufgelöste Messungen möglich macht. Aus dem zeitlichen Verlauf des Druckanstiegs lässt sich im Prinzip der Verlauf der Einspritzrate und die eingespritzte Menge berechnen.An alternative and accurate method, as described for example in W. Zeuch: "New methods for measuring the injection law and the injection regularity of diesel injection pumps", Motortechnische Zeitschrift (MTZ) 22 (1961), pp 344-349 described , is the hydraulic Pressure increase method (HDV). Here, the injection valve also injects into a liquid-filled measuring volume, but here the measuring volume is kept constant. This leads to a pressure increase in the measuring volume, which is measured with a suitable pressure sensor. Modern piezo-based pressure sensors are characterized by a very short response time, which makes temporally high-resolution measurements possible. In principle, the course of the injection rate and the injected quantity can be calculated from the time course of the pressure rise.

In der Praxis wird dies jedoch durch eine Reihe von Faktoren erschwert: Im Messvolumen V kommt es durch den eingespritzten Kraftstoff zu Druckschwingungen in den entsprechenden Eigenfrequenzen des Messvolumens, wobei diese Eigenfrequenzen von den geometrischen Abmessungen des Messvolumens abhängen. Neben der Grundschwingung werden in der Regel auch viele Oberschwingungen angeregt, wobei in der Regel mehrere Schwingungsmoden möglich sind. Dies erschwert eine Filterung des Drucksensor-Messsignals, da die Frequenzen der Eigenschwingungen zum Teil im Bereich der Frequenzen des Messsignals liegen.In practice, however, this is made difficult by a number of factors: In the measurement volume V, the injected fuel causes pressure oscillations in the corresponding natural frequencies of the measurement volume, these natural frequencies depending on the geometric dimensions of the measurement volume. In addition to the fundamental vibration also many harmonics are usually excited, with several vibration modes are usually possible. This makes it difficult to filter the pressure sensor measuring signal, since the frequencies of the natural oscillations are partly in the range of the frequencies of the measuring signal.

Weiter wird eine genaue Messung des Absolutwerts der Einspritzmenge Δm dadurch erschwert, dass die Messgröße des Drucks erst auf die eingespritzte Flüssigkeitsmenge umgerechnet werden muss. Die Umrechnungsfaktoren beinhalten hierbei den Kompressionsmodul und die Dichte. Diese Größen hängen von den jeweiligen Prüfbedingungen und der Vorgeschichte ab und stehen deshalb nicht mit der notwendigen Genauigkeit aus früheren Messungen zur Verfügung. Um diese Größen zu ermitteln ist für jede Messung ein separater, aufwendiger Kalibriervorgang nötig, was die Messung umständlich und in der Praxis schwer durchführbar macht. Hierzu wird über einen separaten Kalibrierzylinder ein definiertes Kalibrier-Volumen ΔVk in das Messvolumen V eingebracht und die Druckänderung Δpk gemessen. Der Kompressionsmodul K ergibt sich dann aus der Beziehung K = Δ p k / Δ V k V

Figure imgb0001
Furthermore, an accurate measurement of the absolute value of the injection quantity Δm is made more difficult by the fact that the measured variable of the pressure must first be converted to the amount of liquid injected. The conversion factors include the compression modulus and the density. These quantities depend on the test conditions and history and therefore are not available with the necessary accuracy from previous measurements. In order to determine these quantities, a separate, complex calibration process is necessary for each measurement, which makes the measurement cumbersome and difficult to carry out in practice. To this end, is introduced via a separate calibrating a defined calibration volume .DELTA.V k in the measurement volume V and the Pressure change Δp k measured. The compression modulus K then results from the relationship K = Δ p k / Δ V k V
Figure imgb0001

Damit lässt sich jetzt das eingespritzte Volumen ΔV berechnen: Δ V = V / K Δ p

Figure imgb0002
This now allows to calculate the injected volume ΔV: Δ V = V / K Δ p
Figure imgb0002

Um letztendlich die Einspritzmenge zu berechnen ist eine Umrechnung auf die Masse erforderlich, was die Kenntnis der Dichte ρ notwendig macht: Δ m = ρ Δ V = V ρ / K Δ p

Figure imgb0003
In order to finally calculate the injection quantity, a conversion to the mass is necessary, which makes the knowledge of the density ρ necessary: Δ m = ρ Δ V = V ρ / K Δ p
Figure imgb0003

Hierbei hängt die Dichte von der Temperatur des Prüfmediums ab. Um dies zu berücksichtigen wird die Temperatur mittels eines Temperatursensors im Messvolumen gemessen und die Dichte entsprechend korrigiert. Die Temperaturmessung ist dabei punktuell und berücksichtigt nicht eine eventuell ungleiche Temperatur im gesamten Messvolumen. Ein derartiges Verfahren wird in der WO 02/064970 A beschrieben.The density depends on the temperature of the test medium. To take this into account, the temperature is measured by means of a temperature sensor in the measuring volume and the density is corrected accordingly. The temperature measurement is selective and does not take into account a possibly unequal temperature in the entire measuring volume. Such a method is described in WO 02/064970 A.

Für die Ermittlung des Kompressionsmoduls K nach der angegebenen Gleichung (I) ist die Einbringung eines definierten Kalibrier-Volumens in das Messvolumen notwendig, was einen separaten Volumengeber nötig macht. Darüber hinaus ergibt sich der Nachteil, dass für die Kalibriermessung eine separate Messzeit notwendig ist, was die mögliche Frequenz von aufeinanderfolgenden Messungen reduziert.For the determination of the compression modulus K according to the given equation (I), the introduction of a defined calibration volume into the measurement volume is necessary, which makes a separate volume sensor necessary. In addition, there is the disadvantage that a separate measuring time is necessary for the calibration measurement, which reduces the possible frequency of successive measurements.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren mit den Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass sich aus dem Druckverlauf in einfacher Weise die Einspritzmenge bestimmen lässt. Hierzu wird der zeitliche Verlauf des Drucks im Messvolumen bei der Einspritzung aufgezeichnet und daraus der zeitliche Verlauf der Einspritzmenge berechnet. Um den Faktor zur Berechnung des Absolutwerts der Einspritzmenge zu ermitteln, wird die Schallgeschwindigkeit bestimmt. Aus dem Druckanstieg und der Schallgeschwindigkeit lässt sich dann direkt die Einspritzmenge bzw. deren zeitlicher Verlauf, also die Mengen-Einspritzrate, berechnen.The method according to the invention with the features of claim 1 has the advantage that from the pressure curve in a simple manner, the injection quantity determine. For this purpose, the time course of the pressure in the measuring volume is recorded during the injection and from this the time course of the injection quantity is calculated. To determine the factor for calculating the absolute value of the injection quantity, the sound velocity is determined. From the increase in pressure and the speed of sound can then directly the injection quantity or its time course, so calculate the rate of injection rate.

In einer vorteilhaften Weiterbildung des Verfahrens wird die Schallgeschwindigkeit mittels eines separaten Messvorgangs ermittelt, bei dem ein Schallimpuls von einem Schallgeber in das Messvolumen abgegeben wird und durch den Drucksensor aufgefangen wird. Sind der Schallgeber und der Drucksensor einander gegenüber angeordnet, so lässt sich aus dem Abstand und der Laufzeit direkt die Schallgeschwindigkeit berechnen. Dies ist ein sehr schnelles Messverfahren, das kaum nennenswerte Verzögerungen des Messablaufs bewirkt.In an advantageous development of the method, the speed of sound is determined by means of a separate measurement process, in which a sound pulse is emitted by a sound generator into the measurement volume and is collected by the pressure sensor. If the sound generator and the pressure sensor are arranged opposite each other, the sound velocity can be calculated directly from the distance and the running time. This is a very fast measuring method, which causes hardly any significant delays in the measurement process.

In einer weiteren vorteilhaften Weiterbildung des Verfahrens werden die Messdaten des Druckverlaufs mit Hilfe eines elektronischen Rechners gespeichert, der auch eine direkte Weiterbearbeitung der Daten möglich macht.In a further advantageous embodiment of the method, the measurement data of the pressure profile are stored with the aid of an electronic computer, which also makes direct further processing of the data possible.

In einer weiteren vorteilhaften Weiterbildung des Messverfahrens wird aus den Druckmesswerten die Frequenz einer Druckeigenschwingung des Messvolumens bestimmt. Aus der Eigenfrequenz ergibt sich dann die Schallgeschwindigkeit als gemittelte Größe über das gesamten Messvolumen, ohne dass eine separate Messung mit entsprechenden Vorrichtungen nötig wäre. Beispielshaft ist es hierbei möglich, die Frequenzanalyse mit Hilfe eines Fourier-Verfahrens zu berechnen, wobei auch andere, moderne Verfahren möglich sind.In a further advantageous development of the measuring method, the frequency of a natural pressure oscillation of the measuring volume is determined from the pressure measured values. From the natural frequency, the sound velocity then results as an average value over the entire measurement volume, without the need for a separate measurement with corresponding devices. By way of example, it is possible in this case to calculate the frequency analysis with the aid of a Fourier method, although other modern methods are also possible.

Die Filterung der Druckmesswerte wird beispielsweise mit einem Tiefpass durchgeführt, so dass Störungen und Rauschen weitgehend eliminiert werden. Aus der zeitlichen Differentiation des Drucksignals lässt sich dann die Einspritzmengenrate bestimmen.The filtering of the pressure readings is performed, for example, with a low-pass filter, so that noises and noise be largely eliminated. From the time differentiation of the pressure signal can then determine the injection rate.

Die erfindungsgemäße Vorrichtung mit den Merkmalen des Patentanspruchs 9 weist gegenüber dem Stand der Technik den Vorteil auf, dass das Messsignal besser gefiltert werden kann. Hierzu ist der Drucksensor im Druckknoten der ersten Druckeigenschwingung, also der Grundeigenschwingung, angeordnet, so dass der Drucksensor kein Signal der Grundeigenschwingung erfasst. Deshalb kann die Grenzfrequenz des Tiefpassfilters zur Glättung der Druckmesswerte um einen Faktor zwei nach oben verschoben werden.The device according to the invention with the features of claim 9 has the advantage over the prior art that the measurement signal can be better filtered. For this purpose, the pressure sensor is arranged in the pressure node of the first compressive natural vibration, that is, the natural vibration, so that the pressure sensor does not detect a signal of the natural vibration. Therefore, the cut-off frequency of the low-pass filter can be shifted upwards by a factor of two for smoothing the pressure measurement values.

Zeichnungdrawing

In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung dargestellt. Es zeigt

Figur 1
die Messvorrichtung mit den schematisch dargestellten Komponenten,
Figur 2
eine Darstellung des Messvolumens mit dem Druckverlauf der ersten Druckeigenschwingung und
Figur 3
das Diagramm einer Messung, wobei der Druck und dessen Ableitung über der Zeit abgetragen sind.
In the drawing, an embodiment of the device according to the invention is shown. It shows
FIG. 1
the measuring device with the schematically illustrated components,
FIG. 2
a representation of the measuring volume with the pressure curve of the first natural pressure oscillation and
FIG. 3
the diagram of a measurement, where the pressure and its derivative are plotted over time.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In der Figur 1 ist die Messvorrichtung in einer teilweise geschnittenen Darstellung gezeigt. Ein zylinderförmiges Messvolumen 1 mit einer Wandung 2 ist mit einer Prüfflüssigkeit vollständig gefüllt, wobei das Messvolumen 1 allseitig abgeschlossen ist. Die Wandung 2 weist eine erste Grundfläche 102 und eine zweite Grundfläche 202 auf, die durch die Seitenwand 303 verbunden sind, welche eine Längsachse 4 aufweist. Durch eine Öffnung 10 in der ersten Grundfläche 102 der Wandung 2 ragt ein Einspritzventil 3 mit seiner Spitze in das Messvolumen 1, wobei der Durchtritt des Einspritzventils 3 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Das Einspritzventil 3 weist einen Ventilkörper 7 auf, in dem in einer Bohrung 6 eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet ist. Durch eine Längsbewegung der Ventilnadel 5 werden mehrere Einspritzöffnungen 12, die an der in das Messvolumen 1 hineinragenden Spitze des Einspritzventils 3 ausgebildet sind, geöffnet oder geschlossen. Bei geöffneten Einspritzöffnungen 12 strömt Prüfflüssigkeit aus einem zwischen der Ventilnadel 5 und der Wand der Bohrung 6 ausgebildeten Druckraum 9 zu den Einspritzöffnungen 12 und wird von dort in das Messvolumen 1 eingespritzt, bis die Einspritzöffnungen 12 durch die Ventilnadel 5 wieder verschlossen werden. Die Einspritzung der Prüfflüssigkeit erfolgt hierbei mit einem hohen Druck, der je nach verwendetem Einspritzventil bis zu 200 MPa betragen kann.In the figure 1, the measuring device is shown in a partially sectioned view. A cylindrical measuring volume 1 with a wall 2 is completely filled with a test liquid, wherein the measuring volume 1 is completed on all sides. The wall 2 has a first base area 102 and a second base area 202, which are connected by the side wall 303, which has a longitudinal axis 4. Through an opening 10 in the first base 102 of the wall 2, an injection valve 3 protrudes with its tip in the measuring volume 1, wherein the passage of the injection valve 3 is closed by the wall 2 liquid-tight. The injection valve 3 has a valve body 7, in which in a bore 6, a piston-shaped valve needle 5 is arranged longitudinally displaceable. By a longitudinal movement of the valve needle 5, a plurality of injection openings 12, which are formed on the projecting into the measuring volume 1 tip of the injection valve 3, opened or closed. When the injection openings 12 are open, test liquid flows from a pressure space 9 formed between the valve needle 5 and the wall of the bore 6 to the injection openings 12 and is injected from there into the measurement volume 1 until the injection openings 12 are closed again by the valve needle 5. The injection of the test liquid takes place here with a high pressure, which can be up to 200 MPa depending on the injection valve used.

In die Seitenwand 303 der zylinderförmigen Wandung 2 mündet eine mit einem Druckhalteventil 17 verbundene Leitung 16, durch die Prüfflüssigkeit aus dem Messvolumen 1 in ein in der Zeichnung nicht dargestelltes Leckvolumen abgeleitet werden kann. In der Leitung 16 ist darüber hinaus ein Steuerventil 15 angeordnet, durch das im Bedarfsfall die Leitung 16 verschlossen werden kann, falls eine Ableitung von Prüfflüssigkeit aus dem Messvolumen 1 nicht gewünscht wird. Durch das Druckhalteventil 17 ist sichergestellt, dass ein gewisser Druck im Messvolumen 1 aufrecht erhalten wird und dieses stets völlig mit Flüssigkeit gefüllt bleibt.In the side wall 303 of the cylindrical wall 2 opens a connected to a pressure holding valve 17 line 16, can be derived by the test liquid from the measuring volume 1 in a not shown in the drawing leakage volume. In the line 16, a control valve 15 is also arranged, through which the line 16 can be closed if necessary, if a derivation of test liquid from the measuring volume 1 is not desired. By the pressure-maintaining valve 17 ensures that a certain pressure in the measuring volume 1 is maintained and this always remains completely filled with liquid.

Eine Halterung 22 ragt durch die zweite Grundfläche 202 der Wandung 2 in das Messvolumen 1 hinein. Am Ende der Halterung 22 ist ein Drucksensor 20 angeordnet, der über eine Signalleitung 24, die in der Halterung 22 aus dem Messvolumen 1 hinausführt, mit einem elektronischen Rechner 28 verbunden ist, wobei der Durchtritt der Halterung 22 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Der Drucksensor 20 ist in der Mittelebene zwischen den beiden Grundflächen 102, 202 der Wandung 2 angeordnet und hat somit zu beiden Grundflächen 102, 202 denselben Abstand. Da der Drucksensor 20 auch auf der Längsachse 4 liegt, weist er zur Seitenfläche 303 einen allseitig gleichen Abstand s auf. Über den elektronischen Rechner 28 kann das Signal, das der Drucksensor 20 liefert, ausgelesen und elektronisch gespeichert werden. Um eine schnelle Messung des Druckverlaufs zu ermöglichen ist der Drucksensor 20 beispielsweise auf Piezo-Basis gebaut, so dass auch schnelle Änderungen des Drucks ohne nennenswerte Verzögerung gemessen werden können. An der Seitenfläche 303 der Wandung 2 ist ein Schallgeber 21 angeordnet, der vom Drucksensor 20 den Abstand s aufweist. Alternativ kann es auch vorgesehen sein, dass ein separater Schallempfänger 30 diametral dem Schallgeber 21 an der Seitenfläche 303 gegenüberliegt, um eine möglichst große Laufstrecke des Schallsignals zu erhalten und damit eine größere Genauigkeit bei der Bestimmung der Schallgeschwindigkeit c.A holder 22 projects through the second base 202 of the wall 2 into the measuring volume 1. At the end of the holder 22, a pressure sensor 20 is arranged, which is connected via a signal line 24, which leads out of the measuring volume 1 in the holder 22 with an electronic computer 28, wherein the passage of the holder 22 is sealed by the wall 2 liquid-tight. The pressure sensor 20 is arranged in the median plane between the two base surfaces 102, 202 of the wall 2 and thus has the same distance to both base surfaces 102, 202. Since the pressure sensor 20 is also located on the longitudinal axis 4, it has to the side surface 303 on all sides the same distance s. About the electronic calculator 28, the signal that the pressure sensor 20 supplies read and stored electronically. In order to enable a rapid measurement of the pressure curve, the pressure sensor 20 is constructed, for example, on a piezo-based basis, so that even rapid changes in pressure can be measured without appreciable delay. On the side surface 303 of the wall 2, a sounder 21 is arranged, which has the distance s from the pressure sensor 20. Alternatively, it can also be provided that a separate sound receiver 30 diametrically opposite the sounder 21 on the side surface 303 in order to obtain the largest possible distance of the sound signal and thus greater accuracy in determining the speed of sound c.

Die zu messende Einspritzmenge Δm der Prüfflüssigkeit kann aus dem Druckanstieg und der Schallgeschwindigkeit berechnet werden. Ist ρ die Dichte der Prüfflüssigkeit und V das Volumen des Messvolumens, so ergibt sich durch das Einspritzen des Einspritzventils bei konstantem Volumen V eine Änderung der Dichte Δρ, so dass gilt Δ m = V Δ ρ

Figure imgb0004
The injection quantity Δm of the test liquid to be measured can be calculated from the pressure increase and the sound velocity. If ρ is the density of the test liquid and V is the volume of the measuring volume, injection of the injector at constant volume V results in a change in the density Δρ, so that Δ m = V Δ ρ
Figure imgb0004

Nach der bekannten akustischen Theorie ist der Zusammenhang zwischen der Schallgeschwindigkeit c, der Dichteänderung Δρ und dem Druckanstieg Δp wie folgt Δ ρ = Δ p 1 / c 2

Figure imgb0005
und damit gilt Δ m = V 1 / c 2 Δ p = V ρ / K Δ p
Figure imgb0006
According to the known acoustic theory, the relationship between the speed of sound c, the density change Δρ and the pressure increase Δp is as follows Δ ρ = Δ p 1 / c 2
Figure imgb0005
and with that applies Δ m = V 1 / c 2 Δ p = V ρ / K Δ p
Figure imgb0006

Es gibt also einen direkten Zusammenhang zwischen dem Druckanstieg Δp und der Mengenänderung Δm.So there is a direct relationship between the pressure increase Δp and the amount change Δm.

Mit dem Drucksensor 20 wird der zeitliche Verlauf des Drucks gemessen, woraus sich wiederum die Einspritzrate r(t) bestimmen lässt, also die pro Zeiteinheit dt eingespritzte Menge dm(t) der Prüfflüssigkeit. Aus dem obigen Zusammenhang ergibt sich damit für die Einspritzrate r(t), also die zeitliche Ableitung der eingespritzten Menge dm(t)/dt, folgende Gleichung: r ( t ) = d m ( t ) / d t = V / c 2 d p ( t ) / d t

Figure imgb0007
With the pressure sensor 20, the time course of the pressure is measured, from which in turn the injection rate r (t) can be determined, ie the amount dm (t) of the test liquid injected per unit time dt. From the above connection, the following equation thus results for the injection rate r (t), ie the time derivative of the injected quantity dm (t) / dt: r ( t ) = d m ( t ) / d t = V / c 2 d p ( t ) / d t
Figure imgb0007

Das heißt, dass bei Kenntnis der Schallgeschwindigkeit c und des Volumens V aus dem zeitlichen Verlauf des Drucks p(t) der Absolutwert der Einspritzrate r(t) berechnet werden kann.This means that with knowledge of the speed of sound c and the volume V from the time course of the pressure p (t), the absolute value of the injection rate r (t) can be calculated.

Beim Einspritzen der Prüfflüssigkeit in das Messvolumen 1, das anfänglich einen konstanten Druck aufweist, der beispielsweise 1 MPa entspricht, steigt der Druck im Messvolumen 1 an. Flüssigkeiten sind im Vergleich zu Gasen praktisch inkompressibel, so dass auch eine kleine Mengenzunahme zu einer gut messbaren Druckerhöhung führt. Durch das stoßartige Einbringen der Prüfflüssigkeit werden im Messvolumen 1 Druckeigenschwingungen angeregt. Die Eigenfrequenzen hängen von den geometrischen Abmessungen des Messvolumens 1 ab: Für die erste Druckeigenschwingung, die sogenannte Grundschwingung, bei der eine Longitudinalwelle entlang der Längsachse 4 schwingt, ist die halbe Wellenlänge λ/2 gleich der Länge L des Messvolumens 1, also gilt λ = λ e = 2 L .

Figure imgb0008
When injecting the test liquid into the measuring volume 1, which initially has a constant pressure, which corresponds for example to 1 MPa, the pressure in the measuring volume 1 increases. Liquids are virtually incompressible compared to gases, so that even a small increase in volume leads to a well-measurable pressure increase. Due to the impact-like introduction of the test liquid, pressure oscillations are excited in the measuring volume 1. The natural frequencies depend on the geometric dimensions of the measurement volume 1: For the first natural pressure oscillation, the so-called fundamental oscillation, in which a longitudinal wave oscillates along the longitudinal axis 4, the half wavelength λ / 2 is equal to the length L of the measurement volume 1, that is λ = λ e = 2 L ,
Figure imgb0008

Figur 2 zeigt diese erste Druckeigenschwingung schematisch, wobei die mit p bezeichneten Linien den Druckverlauf zeigen, bei dem an den Rändern Druckbäuche zu finden sind und in der Mitte, also in der Radialebene des zylinderförmigen Messvolumens, in der der Drucksensor 20 angeordnet ist, ein Druckknoten liegt. Die Frequenz νe der ersten Druckeigenschwingung errechnet sich dann einfach aus der Schallgeschwindigkeit c nach der Beziehung λe·νe = c zu ν e = c / λ e = c / ( 2 L )

Figure imgb0009
FIG. 2 shows this first compressive natural oscillation schematically, wherein the lines designated by p show the pressure curve, in which pressure bellies are to be found at the edges and in the middle, ie in the radial plane of the cylindrical measuring volume in which the pressure sensor 20 is arranged, a pressure node lies. The frequency ν e of the first natural pressure oscillation is then simply calculated from the speed of sound c according to the relationship λ e · ν e = c ν e = c / λ e = c / ( 2 L )
Figure imgb0009

Für die Frequenz νn der n. Oberschwingung gilt entsprechend, dass die Länge des Messvolumens L ein Vielfaches von λ/2 sein muss: ν n = ( n c ) / ( 2 L )

Figure imgb0010
Accordingly, for the frequency ν n of the nth harmonic, the length of the measurement volume L must be a multiple of λ / 2: ν n = ( n c ) / ( 2 L )
Figure imgb0010

Der Drucksensor 20 registriert die erste Druckeigenschwingung nicht, da am Druckknoten keine Druckänderungen auftreten. Ebensowenig werden die 2., 4. und alle anderen geradzahligen Oberschwingungen vom Drucksensor 20 aufgenommen.The pressure sensor 20 does not register the first natural pressure vibration since no pressure changes occur at the pressure node. Nor are the 2nd, 4th and all other even harmonics recorded by the pressure sensor 20.

Zur Auswertung der Messung geht man folgendermaßen vor: In das Messvolumen 1, in dem sich die Prüfflüssigkeit befindet, spritzt das Einspritzventil 3 durch eine schnelle Längsbewegung der Ventilnadel 5, durch welche die Einspritzöffnungen 12 geöffnet und wieder verschlossen werden, eine bestimmte Flüssigkeitsmenge ein. Der Drucksensor 20 misst den Druck p(t), der mit einer bestimmen Rate von beispielsweise 100 kHz vom Rechner 28 ausgelesen und gespeichert wird.To evaluate the measurement, the procedure is as follows: Into the measuring volume 1, in which the test liquid is located, the injection valve 3 injects a certain amount of liquid by a rapid longitudinal movement of the valve needle 5, through which the injection openings 12 are opened and closed again. The pressure sensor 20 measures the pressure p (t) which is read out and stored by the computer 28 at a specific rate of, for example, 100 kHz.

Um den zeitlichen Verlauf der Einspritzmenge dm(t)/dt, also die Einspritzrate r(t) zu bestimmen, benutzt man Gleichung (III). Die im Rechner gespeicherten Messwerte p(t) werden zeitlich differenziert und mit dem Faktor V/c2 multipliziert, was direkt die Einspritzrate r(t) ergibt.In order to determine the time course of the injection quantity dm (t) / dt, ie the injection rate r (t), equation (III) is used. The measured values p (t) stored in the computer are time-differentiated and multiplied by the factor V / c 2 , which directly yields the injection rate r (t).

Neben der Bestimmung der Schallgeschwindigkeit durch eine separate Messung ist es auch möglich, diese aus den gemessenen Druckmesswerten direkt zu bestimmen. Die im Rechner 28 aufgezeichneten Druckmesswerte sind zum einen verrauscht und zum anderen sind Druckeigenschwingungen des Messvolumens 1 überlagert, was zu weiteren Verfälschungen führt. Aus einer Frequenzanalyse kann aus den Druckmesswerten die Frequenzen der ersten Oberschwingung der Druckeigenschwingungen bestimmt werden, woraus nach der oben angegebenen Beziehung c = ν·L die Schallgeschwindigkeit c berechnet wird, die in der verwendeten Prüfflüssigkeit bei den vorliegenden Bedingungen herrscht. Obwohl die ungefähre Größe von c natürlich bekannt ist, kommt es doch zu Schwankungen durch veränderte Zusammensetzungen der Prüfflüssigkeit oder geänderte Temperaturen, was andernfalls zu einer Verminderung der Messgenauigkeit führen würde. Durch eine Filterung der Druckmesswerte durch einen Tiefpass kann hochfrequentes Rauschen unterdrückt werden. Wegen der Anordnung des Drucksensors 20 in der Mitte des Messvolumens kann die Grenzfrequenz νG für den Tiefpass doppelt so groß gewählt werden, da die erste Grundschwingung vom Drucksensor 20 nicht registriert wird. Die geglätteten Druckmesswerte werden anschließend zeitlich differenziert, und nach Multiplikation mit dem Faktor V/c2 ergibt sich bei bekanntem Volumen V die Einspritzrate r(t).In addition to the determination of the speed of sound by a separate measurement, it is also possible to directly determine these from the measured pressure measurements. The pressure readings recorded in the computer 28 are, on the one hand, noisy and, on the other, compressive oscillations of the measuring volume 1 are superimposed, which leads to further distortions. From a frequency analysis, the frequencies of the first harmonic of the natural pressure oscillations can be determined from the pressure measurements, from which, according to the above-mentioned relationship c = ν · L, the speed of sound c is calculated, which prevails in the test fluid used under the present conditions. Although the approximate size of c is of course known, variations in test fluid composition or altered temperatures will result, which would otherwise result in a reduction in measurement accuracy. By filtering the pressure readings through a low pass, high frequency noise can be suppressed. Because of the arrangement of the pressure sensor 20 in the middle of the measuring volume, the cut-off frequency ν G for the low-pass filter can be selected to be twice as large as the first fundamental vibration is not registered by the pressure sensor 20. The smoothed pressure readings are then differentiated in time, and after multiplication by the factor V / c 2 results in a known volume V, the injection rate r (t).

Die Schallgeschwindigkeit c kann auch in einem separaten Verfahren bestimmt werden. Hierzu wird vom Schallgeber 21 ein Schallimpuls ausgesandt, der von dem als Schallempfänger dienenden Drucksensor 20 oder von einem separaten Schallempfänger 30 nach einer Laufzeit tL aufgefangen wird. Aus dem Abstand s von Schallgeber 21 und Drucksensor 20 berechnet sich dann nach c = s / t L

Figure imgb0011
die Schallgeschwindigkeit c. Nach der oben gezeigten Gleichung (II) ergibt sich dadurch sofort die eingespritzte Menge Δm.The speed of sound c can also be determined in a separate method. For this purpose, a sound pulse is emitted from the sounder 21, which is collected by the serving as a sound receiver pressure sensor 20 or by a separate sound receiver 30 after a running time t L. From the distance s of sounder 21 and pressure sensor 20 is calculated then c = s / t L
Figure imgb0011
the speed of sound c. According to equation (II) shown above, the injected quantity Δm is thus obtained immediately.

Figur 3 zeigt den zeitlichen Verlauf von Druck p(t) und dessen Ableitung dp(t)/dt als Funktion der Zeit t in willkürlichen Einheiten U. Der Druck p(t) steigt etwa zum Zeitpunkt t = 1 ms auf ein erstes Niveau an und etwa zum Zeitpunkt t = 2 ms auf ein zweites, deutlich höheres Niveau. Dies entspricht einer Einspritzung von zuerst einer kleineren Menge Prüfflüssigkeit und in einem Abstand von etwa 1 ms einer größeren Menge. Wird ein Einspritzventil gemessen, wie es für direkteinspritzende, selbstzündende Brennkraftmaschinen verwendet wird, entspricht dies einer Kraftstoffeinspritzung, die sich in eine Pilot- oder Voreinspritzung und eine nachfolgende Haupteinspritzung gliedert. Nachdem das vom Drucksensor 20 gemessene Drucksignal p(t) nach der oben geschilderten Methode geglättet worden ist, ergibt die Ableitung dp(t)/dt einen Wert, der proportional zur Einspritzrate r(t) ist. Durch Multiplikation mit dem Faktor V/c2 erhält man daraus schließlich den Absolutwert der Einspritzrate r(t).FIG. 3 shows the time profile of pressure p (t) and its derivative dp (t) / dt as a function of time t in arbitrary units U. The pressure p (t) increases to a first level at about time t = 1 ms and at the time t = 2 ms to a second, significantly higher level. This corresponds to an injection of first a smaller amount of test liquid and a distance of about 1 ms of a larger amount. When an injector is used, as used for direct-injection, auto-ignition internal combustion engines, this corresponds to a fuel injection, which is divided into a pilot or pilot injection and a subsequent main injection. After the pressure signal p (t) measured by the pressure sensor 20 has been smoothed according to the above-described method, the derivative dp (t) / dt gives a value which is proportional to the injection rate r (t). By multiplication by the factor V / c 2 , one finally obtains from this the absolute value of the injection rate r (t).

Das Messverfahren zusammen mit dem beschriebenen Messaufbau ermöglicht es also, den Druckverlauf zu messen und die Schallgeschwindigkeit c bei den aktuellen Prüfbedingungen zu bestimmen, woraus sich die Einspritzmenge und die Einspritzrate bestimmen lässt. Wird die Schallgeschwindigkeit c aus der Frequenz der Eigenschwingungen berechnet, so können sämtliche notwendigen Größen aus dem Druckverlauf bestimmt werden, was Fehler durch zusätzliche Bauteile ausschließt. Durch die Anordnung des Drucksensors 20 genau zwischen den beiden Grundflächen 102, 202 kann die Grenzfrequenz νG des Tiefpassfilters auf die doppelte Frequenz der Grundschwingung νe angehoben werden, ohne dass eine qualitative Beeinträchtigung durch das Filtern zu erwarten ist. Aufwendige Kalibrierverfahren, bei denen in einem separaten Messverfahren die Schallgeschwindigkeit bestimmt wird, können somit entfallen.The measurement method together with the described measurement setup thus makes it possible to measure the pressure profile and to determine the speed of sound c under the current test conditions, from which the injection quantity and the injection rate can be determined. If the speed of sound c is calculated from the frequency of the natural vibrations, then all the necessary variables from the pressure curve can be determined, which excludes errors due to additional components. Due to the arrangement of the pressure sensor 20 exactly between the two base areas 102, 202, the cut-off frequency ν G of the low-pass filter can be raised to twice the frequency of the fundamental vibration ν e , without a qualitative impairment is to be expected by the filtering. costly Calibration methods in which the speed of sound is determined in a separate measuring method can thus be dispensed with.

Die Prüfflüssigkeit kann Kraftstoff sein oder eine andere Flüssigkeit, deren Eigenschaften dem Stoff nahekommen, der im normalen Gebrauch des Einspritzventils verwendet wird. Das Messvolumens 1 muss nicht zylinderförmig ausgebildet sein, sondern statt eines Zylinders kann auch ein quaderförmiges Messvolumen 1 oder eine andere geeignete Form vorgesehen sein, beispielsweise eine Kugel. Der Drucksensor 20 wird auch hier in einem Druckknoten der ersten Druckeigenschwingung des Messvolumens 1 angeordnet, um die Grenzfrequenz für die Filterung möglichst hoch ansetzen zu können.The test fluid may be fuel or another fluid whose properties are similar to that used in normal use of the fuel injector. The measurement volume 1 need not be cylindrical, but instead of a cylinder, a cuboid measuring volume 1 or another suitable shape may be provided, for example a ball. The pressure sensor 20 is also arranged here in a pressure node of the first natural pressure oscillation of the measuring volume 1 in order to be able to set the cutoff frequency for the filtering as high as possible.

Claims (14)

  1. Method for measuring the injection rate of an injection valve for liquids, preferably for liquid fuel, in which the injection valve (3) injects the liquid into a liquid-filled measurement volume (1), the measurement volume (1) being closed off on all sides, and a pressure sensor (20) being arranged in the measurement volume (1), characterized by the following method steps:
    - injection of liquid into the measurement volume (1) by means of the injection valve (3),
    - measurement of the pressure (p(t)) in the measurement volume (1) by means of the pressure sensor (20) during injection, and recording of these measurement values,
    - determination of the sound velocity (c) in the measurement volume (1) by the measurement of the transit time of a sound signal in the measurement volume (1) or directly from the pressure measurement values,
    - determination of the injected test-liquid quantity (m(t); Δm) from the pressure measurement values (p(t)) and from the sound velocity (c).
  2. Method according to Claim 1, characterized in that the pressure measurement values (p(t)) are recorded, during injection, by an electronic computer (28).
  3. Method according to Claim 1, characterized in that the sound velocity (c) is determined by means of a separate measurement method.
  4. Method according to Claim 3, characterized in that the sound velocity is calculated from the transit time of a sound signal running from a sound transmitter (21) to a sound receiver (20; 30).
  5. Method according to Claim 1, characterized in that the sound velocity (c) is determined from the characteristic frequencies (vn) of the measurement volume (1).
  6. Method according to Claim 5, characterized in that the characteristic frequencies (vn) are determined by means of a frequency analysis of the pressure measurement values (p(t)).
  7. Method according to Claim 6, characterized in that the pressure measurement values (p(t)) are filtered by means of a low-pass filter.
  8. Method according to Claim 7, characterized in that a variable proportional to the injection rate (r(t)) is calculated from the profile of the pressure measurement values (p(t)) by means of time differentiation.
  9. Device for measuring the injection rate (r(t)) of an injection valve (3) for liquids, with a measurement volume (1) which is closed off on all sides and is filled with a test liquid, with an orifice (10) in the wall (2) of the measurement volume (1) for receiving an injection valve (3), so that, in the installation position, the injection valve (3) projects with at least one injection orifice (12) into the measurement volume (1), and with a pressure sensor (20) which is arranged in the measurement volume (1), characterized in that the pressure sensor (20) is arranged at the pressure node of the first natural pressure oscillation of the measurement volume (1), and the sound velocity can be determined by the measurement of the transit time of a sound signal in the measurement volume (1) or directly from the pressure measurement values.
  10. Device according to Claim 9, characterized in that the measurement volume (1) is of cylindrical design.
  11. Device according to Claim 10, characterized in that the pressure sensor (20) is arranged in the radial plane which lies centrally between the two bases (102; 202) of the cylinder.
  12. Device according to Claim 9, characterized in that an electronic computer (28) detects and stores the measurement values of the pressure sensor (20).
  13. Device according to Claim 12, characterized in that the electronic computer (28) runs a program which calculates the characteristic frequencies of the measurement volume (1) from the recorded pressure measurement values (p(t)).
  14. Device according to Claim 9, characterized in that a sound transmitter (21) and a separate sound receiver (30) are arranged in the measurement volume (1).
EP03809686A 2002-10-25 2003-06-04 Method and device for measuring the injection rate of an injection valve for liquids Expired - Lifetime EP1561029B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10249754A DE10249754A1 (en) 2002-10-25 2002-10-25 Method and device for measuring the injection rate of a liquid injection valve
DE10249754 2002-10-25
PCT/DE2003/001852 WO2004040129A1 (en) 2002-10-25 2003-06-04 Method and device for measuring the injection rate of an injection valve for liquids

Publications (3)

Publication Number Publication Date
EP1561029A1 EP1561029A1 (en) 2005-08-10
EP1561029B1 true EP1561029B1 (en) 2006-08-23
EP1561029B2 EP1561029B2 (en) 2011-07-06

Family

ID=32087191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03809686A Expired - Lifetime EP1561029B2 (en) 2002-10-25 2003-06-04 Method and device for measuring the injection rate of an injection valve for liquids

Country Status (6)

Country Link
US (1) US7171847B2 (en)
EP (1) EP1561029B2 (en)
JP (1) JP4130823B2 (en)
AT (1) ATE337484T1 (en)
DE (2) DE10249754A1 (en)
WO (1) WO2004040129A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049002A1 (en) * 2004-10-06 2006-04-13 Robert Bosch Gmbh Method for measuring the tightness of an injection valve for liquids
ATE482379T1 (en) * 2005-07-20 2010-10-15 Aea Srl MEASURING DEVICE FOR MEASURING THE QUANTITY OF FLUID INJECTED BY AN INJECTOR
DE102005040768B4 (en) * 2005-08-24 2007-05-10 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method and device for injection rate and / or injection mass determination
DE102005056153A1 (en) * 2005-11-23 2007-05-24 Robert Bosch Gmbh Method for measuring injection quantity and injection rate of injection valve for liquids, involves measurement of pressure in measuring volume by means of pressure sensor during injection and recording these measuring value
JP5103600B2 (en) * 2007-07-09 2012-12-19 国立大学法人群馬大学 Measuring method of instantaneous flow rate of gaseous fuel injector
DE102007032745A1 (en) 2007-07-13 2009-01-15 Robert Bosch Gmbh Device for determining the total pressure in a gas measuring stream of a combustion engine comprises a pressure measuring unit or a removal site arranged within a back-up channel through which flows a medium at high speed
GB0713678D0 (en) * 2007-07-13 2007-08-22 Delphi Tech Inc Apparatus and methods for testing a fuel injector nozzle
DE102008040628A1 (en) 2008-07-23 2010-01-28 Robert Bosch Gmbh Fluid i.e. fuel, quantity measuring method for engine of vehicle, involves determining injected fluid quantity from sound velocity of fluid found in chamber and from pressure drop that is measured in chamber during injection of fluid
US7950267B2 (en) * 2008-07-30 2011-05-31 Bi-Phase Technologies, Llc Liquid propane gas injector testing system and methods
IT1392001B1 (en) * 2008-11-27 2012-02-09 Aea Srl METHOD FOR MEASURING THE INSTANTANEOUS FLOW OF AN INJECTOR FOR GASEOUS FUELS
EP2295788A1 (en) * 2009-08-06 2011-03-16 Continental Automotive GmbH Method and arrangement for determining a mass flow of an injection process of an injection valve
JP5418259B2 (en) * 2010-02-02 2014-02-19 株式会社デンソー Injection quantity measuring device
DE102010002898A1 (en) * 2010-03-16 2011-09-22 Robert Bosch Gmbh Method and device for evaluating an injection device
JP5790999B2 (en) * 2011-03-08 2015-10-07 株式会社リコー Cooling device and image forming apparatus
DE102011007611B4 (en) 2011-04-18 2022-01-27 Robert Bosch Gmbh Device and method for determining at least one spray quantity and/or one spray rate of a liquid sprayed with a valve
FR2995640B1 (en) * 2012-09-19 2015-03-20 Efs Sa DEVICE FOR MEASURING A QUANTITY OF FLUID INJECTED BY AN INJECTOR
JP5918683B2 (en) * 2012-10-16 2016-05-18 株式会社小野測器 Injection measuring device
JP5956912B2 (en) * 2012-11-08 2016-07-27 株式会社小野測器 Injection measuring device and bulk modulus measuring device
JP5956915B2 (en) * 2012-11-15 2016-07-27 株式会社小野測器 Injection measuring device and bulk modulus measuring device
JP6163013B2 (en) * 2013-05-15 2017-07-12 株式会社小野測器 Injection measuring device
JP6163012B2 (en) * 2013-05-15 2017-07-12 株式会社小野測器 Injection measuring device
CN104295425B (en) * 2014-06-05 2017-04-12 河南科技大学 Oil injection law measuring system and method
DE102014211498B4 (en) 2014-06-16 2018-03-01 Ford Global Technologies, Llc Improvement of temporal flow rate measurement of unsteady injection processes of weakly compressible media
DE102014212392A1 (en) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Method and device for characterizing an injector
JP6344851B2 (en) * 2014-08-26 2018-06-20 株式会社小野測器 Injection measuring device
JP6306983B2 (en) * 2014-08-26 2018-04-04 株式会社小野測器 Injection measurement device and injection measurement method
JP6335070B2 (en) * 2014-08-26 2018-05-30 株式会社小野測器 Injection measurement device and injection measurement method
DE102014225858A1 (en) * 2014-12-15 2016-06-16 Robert Bosch Gmbh Method for calibrating a micromechanical sensor element and a system for calibrating a micromechanical sensor element
DE102015209398A1 (en) * 2015-05-22 2016-11-24 Robert Bosch Gmbh Apparatus for measuring the injection rate, method for producing such a device and measuring method
JP6497283B2 (en) 2015-09-11 2019-04-10 株式会社デンソー Data analysis device
US10048228B2 (en) 2015-10-07 2018-08-14 Cummins Inc. Systems and methods for estimating fuel type and fuel properties using sonic speed
WO2018057087A2 (en) * 2016-09-21 2018-03-29 Bai Yufeng Shower/safety shower/fire sprinkler testing device
EP3456953B1 (en) * 2017-09-13 2021-07-14 Vitesco Technologies GmbH Apparatus and method for testing a fuel injector nozzle
CN109083790B (en) * 2018-09-28 2023-07-18 西安交通大学 System and method for measuring oil injection rate based on Zeuch piezomagnetic method
CN109386420B (en) * 2018-10-15 2021-02-02 哈尔滨工程大学 Method for measuring multi-time fuel injection rule
KR20200144246A (en) * 2019-06-18 2020-12-29 현대자동차주식회사 Method and system for compensating fuel injection amount
CN111946519A (en) * 2020-08-07 2020-11-17 哈尔滨工程大学 Oil injection rule testing device based on ringing method sound velocity correction

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118425A1 (en) * 1981-05-09 1982-12-09 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR DETECTING THE AMOUNT OF FUEL SUPPLIED TO THE COMBUSTION SPACES OF A DIESEL ENGINE
US4856321A (en) * 1983-07-29 1989-08-15 Panametrics, Inc. Apparatus and methods for measuring fluid flow parameters
DE3916418A1 (en) * 1989-05-19 1990-11-22 Daimler Benz Ag DEVICE FOR DETERMINING THE PERIOD OF THE FUEL LEAVING FROM A FUEL INJECTION NOZZLE OF AN AIR-COMPRESSING INJECTION COMBUSTION ENGINE
US5753806A (en) * 1996-10-30 1998-05-19 Southwest Research Institute Apparatus and method for determining the distribution and flow rate characteristics of an injection nozzle
GB9930120D0 (en) * 1999-12-21 2000-02-09 Assembly Technology & Test Lim Monitoring equipment for monitoring the performance of an engine fuel injector valve
GB0009165D0 (en) * 2000-04-14 2000-05-31 Assembly Technology & Test Lim Monitoring equipment
DE10107032A1 (en) * 2001-02-15 2002-08-29 Bosch Gmbh Robert Method, computer program and device for measuring the injection quantity of injection nozzles, in particular for motor vehicles
US7080550B1 (en) * 2003-08-13 2006-07-25 Cummins Inc. Rate tube measurement system
US7197918B2 (en) * 2003-08-14 2007-04-03 International Engine Intellectual Property Company, Llc Apparatus and method for evaluating fuel injectors

Also Published As

Publication number Publication date
US20060156801A1 (en) 2006-07-20
WO2004040129A1 (en) 2004-05-13
JP4130823B2 (en) 2008-08-06
EP1561029B2 (en) 2011-07-06
DE10249754A1 (en) 2004-05-06
DE50304788D1 (en) 2006-10-05
US7171847B2 (en) 2007-02-06
ATE337484T1 (en) 2006-09-15
EP1561029A1 (en) 2005-08-10
JP2006504038A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
EP1561029B1 (en) Method and device for measuring the injection rate of an injection valve for liquids
EP1064457B1 (en) Method for determining the injection time in a direct injection internal combustion engine
Payri et al. A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS.
EP1644707B1 (en) Device for measuring time-resolved volumetric throughflow processes
EP3298266B1 (en) Device for measuring the injection rate and measuring method
EP1954938B2 (en) Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids
EP1368620B1 (en) Method, computer program and device for measuring the amount injected by an injection system
DE10301264B4 (en) Method and device for determining the temperature of the fuel in a storage injection system
WO1999005494A1 (en) Method and device for determing gas pressure and temperature in an hollow space
DE2440493A1 (en) PIEZOELECTRIC TRANSDUCER FOR THE INTERNAL OVERPRESSURE OF ELASTICALLY DEFORMED HOLLOW BODIES
DE102013224706A1 (en) Method for calculating the injection rate profile
DE102008040628A1 (en) Fluid i.e. fuel, quantity measuring method for engine of vehicle, involves determining injected fluid quantity from sound velocity of fluid found in chamber and from pressure drop that is measured in chamber during injection of fluid
DE102006042098B3 (en) Method for determining a correction of a partial injection quantity of an internal combustion engine
DE102015208416B3 (en) Determination method for determining an absolute value of an injected fuel mass
DE102017201877A1 (en) Measuring arrangement and method for determining the time-related mass flow profile during an injection carried out by a fuel injector into a measuring space
DE3806129C2 (en)
DE102020210984B4 (en) Method and device for determining a fluid injection quantity of an injection system
DE3916418C2 (en)
DE60019365T2 (en) Device for determining the fuel injection timing for a diesel internal combustion engine
DE102015204684A1 (en) Method for operating a fuel injector
EP2347117B1 (en) Method for measuring flow paths in valves
WO2008083791A1 (en) Measuring device and measuring method for an injector
DE102004049002A1 (en) Method for measuring the tightness of an injection valve for liquids
DE102015203341A1 (en) Method for operating an internal combustion engine
DE102015206128A1 (en) Method for operating a fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060823

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50304788

Country of ref document: DE

Date of ref document: 20061005

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: IAV GMBH INGENIEURSGESELLSCHAFT AUTO UND VERKEHR

Effective date: 20070523

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20070630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061124

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070224

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20110706

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50304788

Country of ref document: DE

Effective date: 20110706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130620

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 337484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140604

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140604

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210823

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103