EP1561029A1 - Method and device for measuring the injection rate of an injection valve for liquids - Google Patents

Method and device for measuring the injection rate of an injection valve for liquids

Info

Publication number
EP1561029A1
EP1561029A1 EP03809686A EP03809686A EP1561029A1 EP 1561029 A1 EP1561029 A1 EP 1561029A1 EP 03809686 A EP03809686 A EP 03809686A EP 03809686 A EP03809686 A EP 03809686A EP 1561029 A1 EP1561029 A1 EP 1561029A1
Authority
EP
European Patent Office
Prior art keywords
pressure
injection
measuring
sound
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03809686A
Other languages
German (de)
French (fr)
Other versions
EP1561029B2 (en
EP1561029B1 (en
Inventor
Ulrich Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32087191&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1561029(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1561029A1 publication Critical patent/EP1561029A1/en
Application granted granted Critical
Publication of EP1561029B1 publication Critical patent/EP1561029B1/en
Publication of EP1561029B2 publication Critical patent/EP1561029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/001Measuring fuel delivery of a fuel injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing

Definitions

  • volumetric piston principle is known from DE 100 64 511 AI, in which the injection valve injects fuel into a measuring volume filled with a test medium. The pressure in the measuring volume is kept constant by displacing a volumetric piston with the injection quantity. The injection quantity can then be calculated directly from the displacement of the volumetric piston.
  • This method is dynamically limited due to the mechanical piston movement and can therefore not meet the increasing requirements for a temporally high-resolution measurement of the injection rate in modern high-pressure injection systems for internal combustion engines, which often comprise several partial injections per injection cycle.
  • the injected fuel causes pressure fluctuations in the corresponding natural frequencies of the measurement volume, these natural frequencies depending on the geometric dimensions of the measurement volume.
  • many harmonics are usually also excited, whereby several oscillation modes are generally possible. This makes filtering the pressure sensor measurement signal more difficult, since the frequencies of the natural vibrations are in part in the range of the frequencies of the measurement signal.
  • the density depends on the temperature of the test medium. To take this into account, the temperature is measured in the measuring volume by means of a temperature sensor and the density is corrected accordingly. The temperature measurement is selective and does not take into account a possibly unequal temperature in the entire measurement volume.
  • the method according to the invention with the features of patent claim 1 has the advantage that the injection quantity can be derived from the pressure curve in a simple manner can be determined. For this purpose, the time course of the pressure in the measurement volume during the injection is recorded and the time course of the injection quantity is calculated therefrom. In order to determine the factor for calculating the absolute value of the injection quantity, the speed of sound is determined. From the pressure increase and the speed of sound, the injection quantity or its time course, that is the quantity injection rate, can then be calculated directly.
  • the speed of sound is determined by means of a separate measuring process, in which a sound pulse is emitted by a sound generator into the measuring volume and is collected by the pressure sensor. If the sound generator and the pressure sensor are arranged opposite each other, the speed of sound can be calculated directly from the distance and the travel time. This is a very fast measuring process that hardly causes any significant delays in the measuring process.
  • the measurement data of the pressure curve are stored with the aid of an electronic computer, which also enables direct further processing of the data.
  • the frequency of a natural pressure oscillation of the measuring volume is determined from the pressure measured values.
  • the speed of sound then results from the natural frequency as an averaged variable over the entire measurement volume, without the need for a separate measurement using appropriate devices.
  • the filtering of the measured pressure values is carried out, for example, with a low-pass filter, so that interference and noise largely eliminated.
  • the injection quantity rate can then be determined from the temporal differentiation of the pressure signal.
  • the device according to the invention with the features of patent claim 10 has the advantage over the prior art that the measurement signal can be filtered better.
  • the pressure sensor is arranged in the pressure node of the first natural pressure vibration, that is to say the fundamental vibration, so that the pressure sensor does not detect a signal of the fundamental vibration. Therefore, the cut-off frequency of the low-pass filter can be shifted up by a factor of two to smooth the pressure measurements.
  • FIG. 1 shows the measuring device with the schematically represented components
  • FIG. 2 shows the measurement volume with the pressure curve of the first natural pressure oscillation
  • FIG. 3 shows the diagram of a measurement, the pressure and its derivation being plotted over time.
  • a cylindrical measuring volume 1 with a wall 2 is completely filled with a test liquid, the measuring volume 1 being closed on all sides.
  • the wall 2 has a first base area 102 and a second base area 202, which are connected by the side wall 303, which has a longitudinal axis 4.
  • An injection valve 3 protrudes with its tip through an opening 10 in the first base area 102 of the wall 2 into the measuring volume 1, the passage of the injection valve 3 through the wall 2 being closed in a liquid-tight manner.
  • the injection valve 3 has a valve body 7, in which a piston-shaped valve needle 5 is arranged to be longitudinally displaceable in a bore 6.
  • a longitudinal movement of the valve needle 5 opens or closes a plurality of injection openings 12 which are formed on the tip of the injection valve 3 protruding into the measurement volume 1.
  • test liquid flows from a pressure space 9 formed between the valve needle 5 and the wall of the bore 6 to the injection openings 12 and is injected from there into the measuring volume 1 until the injection openings 12 are closed again by the valve needle 5.
  • the test liquid is injected at a high pressure, which can be up to 200 MPa depending on the injector used.
  • a line 16 connected to a pressure holding valve 17, through which the test liquid can be derived from the measurement volume 1 into a leak volume, not shown in the drawing.
  • a control valve 15 is arranged in the line 16, by means of which the line 16 can be closed if necessary, if a derivation of test liquid from the measurement volume 1 is not desired.
  • the pressure holding valve 17 ensures that a certain pressure is maintained in the measuring volume 1 and that this always remains completely filled with liquid.
  • a bracket 22 projects through the second base 202 of the wall 2 into the measurement volume 1.
  • a pressure sensor 20 which is connected to an electronic computer 28 via a signal line 24 which leads out of the measurement volume 1 in the holder 22, the passage of the holder 22 through the wall 2 being sealed liquid-tight.
  • the pressure sensor 20 is arranged in the center plane between the two base surfaces 102, 202 of the wall 2 and is therefore at the same distance from both base surfaces 102, 202. Since the pressure sensor 20 also lies on the longitudinal axis 4, it is at an equal distance s from the side surface 303 on all sides. Via the electronic computer 28, the signal that the pressure sensor 20 supplies can be read out and stored electronically.
  • the pressure sensor 20 is built, for example, on a piezo basis, so that rapid changes in the pressure can also be measured without any significant delay.
  • a sound generator 21 is arranged on the side surface 303 of the wall 2 and is at a distance s from the pressure sensor 20.
  • a separate sound receiver 30 is diametrically opposed to the sound generator 21 on the side surface 303 in order to obtain the longest possible path of the sound signal and thus greater accuracy in determining the speed of sound c.
  • the injection quantity ⁇ of the test liquid to be measured can be calculated from the pressure increase and the speed of sound. If p is the density of the test liquid and V is the volume of the measurement volume, the injection of the injection valve results in a change in density ⁇ p at constant volume V, so that the following applies
  • the pressure sensor 20 is used to measure the pressure over time, from which the injection rate r (t) can in turn be determined, that is to say the quantity dm (t) of the test liquid injected per unit time dt. From the above context, the following equation results for the injection rate r (t), i.e. the time derivative of the injected quantity dm (t) / dt:
  • the test liquid When the test liquid is injected into the measuring volume 1, which initially has a constant pressure, which corresponds, for example, to 1 MPa, the pressure in the measuring volume 1 increases. Liquids are practically incompressible in comparison to gases, so that even a small increase in volume leads to an easily measurable pressure increase. Due to the sudden introduction of the test liquid, 1 natural pressure vibrations are excited in the measuring volume.
  • the natural frequencies depend on the geometric dimensions of the measurement volume 1:
  • the so-called basic vibration in which a longitudinal wave oscillates along the longitudinal axis 4, half the wavelength ⁇ / 2 is equal to the length L of the measurement volume 1, so the following applies
  • FIG. 2 shows this first natural pressure oscillation schematically, the lines denoted by p showing the pressure curve at which pressure bellows can be found at the edges and a pressure node in the middle, that is to say in the radial plane of the cylindrical measuring volume in which the pressure sensor 20 is arranged lies.
  • the pressure sensor 20 does not register the first natural pressure vibration since there are no pressure changes at the pressure node.
  • the second, fourth and all other even harmonics are also not picked up by the pressure sensor 20.
  • the evaluation of the measurement is carried out as follows: In the measurement volume 1 in which the test liquid is located, the injection valve 3 injects a certain amount of liquid through a rapid longitudinal movement of the valve needle 5, through which the injection openings 12 are opened and closed again.
  • the pressure sensor 20 measures the pressure p (t), which is read out and stored by the computer 28 at a specific rate of, for example, 100 kHz.
  • Equation (III) is used to determine the time course of the injection quantity dm (t) / dt, that is to say the injection rate r (t).
  • the measured values p (t) stored in the computer are differentiated over time and multiplied by the factor V / c 2 , which directly gives the injection rate r (t).
  • V / c 2 the factor of the injection rate
  • the approximate size of c is of course known, there are fluctuations due to changes in the composition of the test liquid or changed temperatures, which would otherwise lead to a reduction in the measurement accuracy.
  • the cut-off frequency V Q for the low-pass filter can be chosen to be twice as large, since the first fundamental oscillation is not registered by the pressure sensor 20.
  • the smoothed pressure measured values are then differentiated in time, and after multiplication by the factor V / c 2 , the injection rate r (t) is obtained for a known volume V.
  • the speed of sound c can also be determined in a separate method.
  • a sound pulse is emitted by the sound generator 21, which is collected by the pressure sensor 20 serving as a sound receiver or by a separate sound receiver 30 after a running time t ⁇ .
  • the distance s between the sound generator 21 and the pressure sensor 20 is then calculated
  • FIG. 3 shows the time course of pressure p (t) and its derivation dp (t) / dt as a function of time t in arbitrary units U.
  • the measurement method together with the measurement setup described thus makes it possible to measure the pressure curve and to determine the speed of sound c under the current test conditions, from which the injection quantity and the injection rate can be determined. If the speed of sound c is calculated from the frequency of the natural vibrations, all the necessary quantities can be determined from the pressure curve, which excludes errors due to additional components.
  • the cut-off frequency V of the low-pass filter can be raised to twice the frequency of the fundamental oscillation v e without a qualitative impairment due to the filtering being expected. costly Calibration procedures in which the speed of sound is determined in a separate measurement procedure can thus be omitted.
  • the test liquid can be fuel or another liquid, the properties of which approximate the substance used in normal use of the injector.
  • the measuring volume 1 does not have to be cylindrical, but instead of a cylinder, a cuboid measuring volume 1 or another suitable shape can be provided, for example a sphere.
  • the pressure sensor 20 is also arranged here in a pressure node of the first natural pressure vibration of the measurement volume 1 in order to be able to set the cutoff frequency as high as possible for the filtering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

A method for measuring the injection rate of an injection valve for liquids, preferably for liquid fuel, in which the injection valve injects the liquid into a liquid-filled measurement volume, the measurement volume being closed off on all sides and a pressure sensor being located in the measurement volume. From the measured pressure values or by a separate measurement, the speed of sound is determined and thus the injection quantity or the course over time of the injection rate is calculated. The apparatus includes a measurement volume, an injection valve, which protrudes with at least one injection opening into the measurement volume, and a pressure sensor, which is located in the pressure node of the first natural pressure oscillation of the measurement volume.

Description

Verfahren und Vorrichtung zur Messung der Einspritzrate eines Einspritzventils für FlüssigkeitenMethod and device for measuring the injection rate of a liquid injection valve
Stand der TechnikState of the art
Bei der Fertigungs- und Funktionsprüfung von Kraftstoff- Einspritzkomponenten, wie beispielsweise von Einspritzventilen, Common-Rail-Injektoren und anderen Hochdruckeinspritzventilen, sind zur Mengenmessung verschiedene Prüfvorrichtungen und -verfahren im Stand der Technik beschrieben. So ist beispielsweise aus der DE 100 64 511 AI das Messkolbenprinzip bekannt, bei dem das Einspritzventil Kraftstoff in ein mit einem Prüfmedium gefülltes Messvolumen einspritzt. Der Druck in dem Messvolumen wird konstant gehalten, indem ein Messkolben durch die Einspritzmenge verdrängt wird. Aus der Verschiebung des Messkolbens kann dann unmittelbar die Einspritzmenge berechnet werden. Dieses Verfahren ist wegen der mechanischen Kolbenbewegung dynamisch begrenzt und kann dadurch die steigenden Anforderungen nach zeitlich hochaufgelöster Messung der Einspritzrate bei modernen Hochdruck- Einspritzsystemen für Brennkraftmaschinen, die pro Einspritzzyklus häufig mehrere Teileinspritzungen umfassen, nicht erfüllen.In the production and functional testing of fuel injection components, such as, for example, injection valves, common rail injectors and other high-pressure injection valves, various test devices and methods for quantity measurement are described in the prior art. For example, the volumetric piston principle is known from DE 100 64 511 AI, in which the injection valve injects fuel into a measuring volume filled with a test medium. The pressure in the measuring volume is kept constant by displacing a volumetric piston with the injection quantity. The injection quantity can then be calculated directly from the displacement of the volumetric piston. This method is dynamically limited due to the mechanical piston movement and can therefore not meet the increasing requirements for a temporally high-resolution measurement of the injection rate in modern high-pressure injection systems for internal combustion engines, which often comprise several partial injections per injection cycle.
Ein alternatives und genaues Verfahren, wie es beispielsweise in W. Zeuch: „Neue Verfahren zur Messung des Einspritzgesetzes und der Einspritz-Regelmäßigkeit von Diesel- Einspritzpumpen", Motortechnische Zeitschrift (MTZ) 22 (1961), S. 344-349, beschrieben ist, ist das hydraulische Druckanstiegsverfahren (HDV) . Hierbei spritzt das Einspritzventil ebenfalls in ein flüssigkeitsgefülltes Messvolumen ein, jedoch wird hier das Messvolumen konstant gehalten. Dadurch kommt es zu einem Druckanstieg im Messvolumen, was mit einem geeigneten Drucksensor gemessen wird. Moderne Drucksensoren auf Piezo-Basis zeichnen sich dabei durch eine sehr kurze Ansprechzeit aus, was zeitlich hochaufgelöste Messungen möglich macht. Aus dem zeitlichen Verlauf des Druckanstiegs lässt sich im Prinzip der Verlauf der Einspritzrate und die eingespritzte Menge berechnen.An alternative and precise method, as described, for example, in W. Zeuch: "New methods for measuring the injection law and the regularity of injection of diesel injection pumps", Motortechnische Zeitschrift (MTZ) 22 (1961), pp. 344-349 , is the hydraulic Pressure increase procedure (HDV). Here, the injection valve also injects into a liquid-filled measuring volume, but here the measuring volume is kept constant. This leads to an increase in pressure in the measuring volume, which is measured with a suitable pressure sensor. Modern piezo-based pressure sensors are characterized by a very short response time, which makes high-resolution measurements possible. In principle, the course of the injection rate and the injected quantity can be calculated from the time course of the pressure increase.
In der Praxis wird dies jedoch durch eine Reihe von Faktoren erschwert: Im Messvolumen V kommt es durch den eingespritzten Kraftstoff zu Druckschwingungen in den entsprechenden Eigenfrequenzen des Messvolumens, wobei diese Eigenfrequenzen von den geometrischen Abmessungen des Messvolumens abhängen. Neben der Grundschwingung werden in der Regel auch viele Oberschwingungen angeregt, wobei in der Regel mehrere Schwingungsmoden möglich sind. Dies erschwert eine Filterung des Drucksensor-Messsignals, da die Frequenzen der Eigenschwingungen zum Teil im Bereich der Frequenzen des Messsignals liegen.In practice, however, this is made difficult by a number of factors: In the measurement volume V, the injected fuel causes pressure fluctuations in the corresponding natural frequencies of the measurement volume, these natural frequencies depending on the geometric dimensions of the measurement volume. In addition to the fundamental oscillation, many harmonics are usually also excited, whereby several oscillation modes are generally possible. This makes filtering the pressure sensor measurement signal more difficult, since the frequencies of the natural vibrations are in part in the range of the frequencies of the measurement signal.
Weiter wird eine genaue Messung des Absolutwerts der Einspritzmenge Δm dadurch erschwert, dass die Messgröße des Drucks erst auf die eingespritzte Flüssigkeitsmenge umgerechnet werden muss. Die ümrechnungsfaktoren beinhalten hierbei den Kompressionsmodul und die Dichte. Diese Größen hängen von den jeweiligen Prüfbedingungen und der Vorgeschichte ab und stehen deshalb nicht mit der notwendigen Genauigkeit aus früheren Messungen zur Verfügung. Um diese Größen zu ermitteln ist für jede Messung ein separater, aufwendiger Kalibriervorgang nötig, was die Messung umständlich und in der Praxis schwer durchführbar macht. Hierzu wird ü- ber einen separaten Kalibrierzylinder ein definiertes Kalib- rier-Volumen ΔV-^ in das Messvolumen V eingebracht und die Druckänderung Δpk gemessen. Der Kompressionsmodul K ergibt sich dann aus der BeziehungFurthermore, an accurate measurement of the absolute value of the injection quantity Δm is made more difficult by the fact that the measured quantity of the pressure first has to be converted to the injected liquid quantity. The conversion factors include the compression modulus and the density. These quantities depend on the respective test conditions and the previous history and are therefore not available with the necessary accuracy from previous measurements. In order to determine these values, a separate, complex calibration process is necessary for each measurement, which makes the measurement cumbersome and difficult to carry out in practice. For this purpose, a defined calibration volume ΔV- ^ is introduced into the measuring volume V via a separate calibration cylinder and the Pressure change Δp k measured. The compression module K then results from the relationship
K = Δpk/ΔV - V (I)K = Δp k / ΔV - V (I)
Damit lässt sich jetzt das eingespritzte Volumen ΔV berechnen:Now the injected volume ΔV can be calculated:
ΔV = V/K ΔpΔV = V / K Δp
Um letztendlich die Einspritzmenge zu berechnen ist eine Umrechnung auf die Masse erforderlich, was die Kenntnis der Dichte p notwendig macht:In order to ultimately calculate the injection quantity, a conversion to mass is required, which requires knowledge of the density p:
Δm = p • ΔV = V • p/K • ΔpΔm = p • ΔV = V • p / K • Δp
Hierbei hängt die Dichte von der Temperatur des Prüfmediums ab. Um dies zu berücksichtigen wird die Temperatur mittels eines Temperatursensors im Messvolumen gemessen und die Dichte entsprechend korrigiert. Die Temperaturmessung ist dabei punktuell und berücksichtigt nicht eine eventuell ungleiche Temperatur im gesamten Messvolumen.The density depends on the temperature of the test medium. To take this into account, the temperature is measured in the measuring volume by means of a temperature sensor and the density is corrected accordingly. The temperature measurement is selective and does not take into account a possibly unequal temperature in the entire measurement volume.
Für die Ermittlung des Kompressionsmoduls K nach der angegebenen Gleichung (I) ist die Einbringung eines definierten Kalibrier-Volumens in das Messvolumen notwendig, was einen separaten Volumengeber nötig macht. Darüber hinaus ergibt sich der Nachteil, dass für die Kalibriermessung eine separate Messzeit notwendig ist, was die mögliche Frequenz von aufeinanderfolgenden Messungen reduziert.To determine the compression module K according to the given equation (I), it is necessary to introduce a defined calibration volume into the measurement volume, which makes a separate volume transmitter necessary. In addition, there is the disadvantage that a separate measurement time is required for the calibration measurement, which reduces the possible frequency of successive measurements.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass sich aus dem Druckverlauf in einfacher Weise die Einspritzmenge bestimmen lässt. Hierzu wird der zeitliche Verlauf des Drucks im Messvolumen bei der Einspritzung aufgezeichnet und daraus der zeitliche Verlauf der Einspritzmenge berechnet. Um den Faktor zur Berechnung des Absolutwerts der Einspritzmenge zu ermitteln, wird die Schallgeschwindigkeit bestimmt. Aus dem Druckanstieg und der Schallgeschwindigkeit lässt sich dann direkt die Einspritzmenge bzw. deren zeitlicher Verlauf, also die Mengen-Einspritzrate, berechnen.The method according to the invention with the features of patent claim 1 has the advantage that the injection quantity can be derived from the pressure curve in a simple manner can be determined. For this purpose, the time course of the pressure in the measurement volume during the injection is recorded and the time course of the injection quantity is calculated therefrom. In order to determine the factor for calculating the absolute value of the injection quantity, the speed of sound is determined. From the pressure increase and the speed of sound, the injection quantity or its time course, that is the quantity injection rate, can then be calculated directly.
In einer vorteilhaften Weiterbildung des Verfahrens wird die Schallgeschwindigkeit mittels eines separaten Messvorgangs ermittelt, bei dem ein Schallimpuls von einem Schallgeber in das Messvolumen abgegeben wird und durch den Drucksensor aufgefangen wird. Sind der Schallgeber und der Drucksensor einander gegenüber angeordnet, so lässt sich aus dem Abstand und der Laufzeit direkt die Schallgeschwindigkeit berechnen. Dies ist ein sehr schnelles Messverfahren, das kaum nennenswerte Verzögerungen des Messablaufs bewirkt.In an advantageous development of the method, the speed of sound is determined by means of a separate measuring process, in which a sound pulse is emitted by a sound generator into the measuring volume and is collected by the pressure sensor. If the sound generator and the pressure sensor are arranged opposite each other, the speed of sound can be calculated directly from the distance and the travel time. This is a very fast measuring process that hardly causes any significant delays in the measuring process.
In einer weiteren vorteilhaften Weiterbildung des Verfahrens werden die Messdaten des Druckverlaufs mit Hilfe eines e- lektronischen Rechners gespeichert, der auch eine direkte Weiterbearbeitung der Daten möglich macht.In a further advantageous development of the method, the measurement data of the pressure curve are stored with the aid of an electronic computer, which also enables direct further processing of the data.
In einer weiteren vorteilhaften Weiterbildung des Messverfahrens wird aus den Druckmesswerten die Frequenz einer Druckeigenschwingung des Messvolumens bestimmt. Aus der Eigenfrequenz ergibt sich dann die Schallgeschwindigkeit als gemittelte Größe über das gesamten Messvolumen, ohne dass eine separate Messung mit entsprechenden Vorrichtungen nötig wäre. Beispielshaft ist es hierbei möglich, die Frequenzanalyse mit Hilfe eines Fourier-Verfahrens zu berechnen, wobei auch andere, moderne Verfahren möglich sind.In a further advantageous development of the measuring method, the frequency of a natural pressure oscillation of the measuring volume is determined from the pressure measured values. The speed of sound then results from the natural frequency as an averaged variable over the entire measurement volume, without the need for a separate measurement using appropriate devices. As an example, it is possible to calculate the frequency analysis using a Fourier method, although other modern methods are also possible.
Die Filterung der Druckmesswerte wird beispielsweise mit einem Tiefpass durchgeführt, so dass Störungen und Rauschen weitgehend eliminiert werden. Aus der zeitlichen Differentiation des Drucksignals lässt sich dann die Einspritzmengenrate bestimmen.The filtering of the measured pressure values is carried out, for example, with a low-pass filter, so that interference and noise largely eliminated. The injection quantity rate can then be determined from the temporal differentiation of the pressure signal.
Die erfindungsgemäße Vorrichtung mit den Merkmalen des Patentanspruchs 10 weist gegenüber dem Stand der Technik den Vorteil auf, dass das Messsignal besser gefiltert werden kann. Hierzu ist der Drucksensor im Druckknoten der ersten Druckeigenschwingung, also der Grundeigenschwingung, angeordnet, so dass der Drucksensor kein Signal der Grundeigenschwingung erfasst. Deshalb kann die Grenzfrequenz des Tief- passfilters zur Glättung der Druckmesswerte um einen Faktor zwei nach oben verschoben werden.The device according to the invention with the features of patent claim 10 has the advantage over the prior art that the measurement signal can be filtered better. For this purpose, the pressure sensor is arranged in the pressure node of the first natural pressure vibration, that is to say the fundamental vibration, so that the pressure sensor does not detect a signal of the fundamental vibration. Therefore, the cut-off frequency of the low-pass filter can be shifted up by a factor of two to smooth the pressure measurements.
Zeichnungdrawing
In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung dargestellt. Es zeigt Figur 1 die Messvorrichtung mit den schematisch dargestellten Komponenten, Figur 2 eine Darstellung des Messvolumens mit dem Druckverlauf der ersten Druckeigenschwingung und Figur 3 das Diagramm einer Messung, wobei der Druck und dessen Ableitung über der Zeit abgetragen sind.In the drawing, an embodiment of the device according to the invention is shown. FIG. 1 shows the measuring device with the schematically represented components, FIG. 2 shows the measurement volume with the pressure curve of the first natural pressure oscillation, and FIG. 3 shows the diagram of a measurement, the pressure and its derivation being plotted over time.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In der Figur 1 ist die Messvorrichtung in einer teilweise geschnittenen Darstellung gezeigt. Ein zylinderförmiges Messvolumen 1 mit einer Wandung 2 ist mit einer Prüfflüssigkeit vollständig gefüllt, wobei das Messvolumen 1 allseitig abgeschlossen ist. Die Wandung 2 weist eine erste Grundfläche 102 und eine zweite Grundfläche 202 auf, die durch die Seitenwand 303 verbunden sind, welche eine Längsachse 4 aufweist. Durch eine Öffnung 10 in der ersten Grundfläche 102 der Wandung 2 ragt ein Einspritzventil 3 mit seiner Spitze in das Messvolumen 1, wobei der Durchtritt des Einspritzventils 3 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Das Einspritzventil 3 weist einen Ventilkörper 7 auf, in dem in einer Bohrung 6 eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet ist. Durch eine Längsbewegung der Ventilnadel 5 werden mehrere Einspritzöffnungen 12, die an der in das Messvolumen 1 hineinragenden Spitze des Einspritzventils 3 ausgebildet sind, geöffnet oder geschlossen. Bei geöffneten Einspritzöffnungen 12 strömt Prüfflüssigkeit aus einem zwischen der Ventilnadel 5 und der Wand der Bohrung 6 ausgebildeten Druckraum 9 zu den Einspritzöffnungen 12 und wird von dort in das Messvolumen 1 eingespritzt, bis die Einspritzöffnungen 12 durch die Ventilnadel 5 wieder verschlossen werden. Die Einspritzung der Prüfflüssigkeit erfolgt hierbei mit einem hohen Druck, der je nach verwendetem Einspritzventil bis zu 200 MPa betragen kann.1 shows the measuring device in a partially sectioned illustration. A cylindrical measuring volume 1 with a wall 2 is completely filled with a test liquid, the measuring volume 1 being closed on all sides. The wall 2 has a first base area 102 and a second base area 202, which are connected by the side wall 303, which has a longitudinal axis 4. An injection valve 3 protrudes with its tip through an opening 10 in the first base area 102 of the wall 2 into the measuring volume 1, the passage of the injection valve 3 through the wall 2 being closed in a liquid-tight manner. The injection valve 3 has a valve body 7, in which a piston-shaped valve needle 5 is arranged to be longitudinally displaceable in a bore 6. A longitudinal movement of the valve needle 5 opens or closes a plurality of injection openings 12 which are formed on the tip of the injection valve 3 protruding into the measurement volume 1. When the injection openings 12 are open, test liquid flows from a pressure space 9 formed between the valve needle 5 and the wall of the bore 6 to the injection openings 12 and is injected from there into the measuring volume 1 until the injection openings 12 are closed again by the valve needle 5. The test liquid is injected at a high pressure, which can be up to 200 MPa depending on the injector used.
In die Seitenwand 303 der zylinderförmigen Wandung 2 mündet eine mit einem Druckhalteventil 17 verbundene Leitung 16, durch die Prüfflüssigkeit aus dem Messvolumen 1 in ein in der Zeichnung nicht dargestelltes Leckvolumen abgeleitet werden kann. In der Leitung 16 ist darüber hinaus ein Steuerventil 15 angeordnet, durch das im Bedarfsfall die Leitung 16 verschlossen werden kann, falls eine Ableitung von Prüfflüssigkeit aus dem Messvolumen 1 nicht gewünscht wird. Durch das Druckhalteventil 17 ist sichergestellt, dass ein gewisser Druck im Messvolumen 1 aufrecht erhalten wird und dieses stets völlig mit Flüssigkeit gefüllt bleibt.In the side wall 303 of the cylindrical wall 2 there opens a line 16 connected to a pressure holding valve 17, through which the test liquid can be derived from the measurement volume 1 into a leak volume, not shown in the drawing. In addition, a control valve 15 is arranged in the line 16, by means of which the line 16 can be closed if necessary, if a derivation of test liquid from the measurement volume 1 is not desired. The pressure holding valve 17 ensures that a certain pressure is maintained in the measuring volume 1 and that this always remains completely filled with liquid.
Eine Halterung 22 ragt durch die zweite Grundfläche 202 der Wandung 2 in das Messvolumen 1 hinein. Am Ende der Halterung 22 ist ein Drucksensor 20 angeordnet, der über eine Signalleitung 24, die in der Halterung 22 aus dem Messvolumen 1 hinausführt, mit einem elektronischen Rechner 28 verbunden ist, wobei der Durchtritt der Halterung 22 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Der Drucksensor 20 ist in der Mittelebene zwischen den beiden Grundflächen 102, 202 der Wandung 2 angeordnet und hat somit zu beiden Grundflächen 102, 202 denselben Abstand. Da der Drucksensor 20 auch auf der Längsachse 4 liegt, weist er zur Seitenfläche 303 einen allseitig gleichen Abstand s auf. Über den elektronischen Rechner 28 kann das Signal, das der Drucksensor 20 liefert, ausgelesen und elektronisch gespeichert werden. Um eine schnelle Messung des Druckverlaufs zu ermöglichen ist der Drucksensor 20 beispielsweise auf Piezo-Basis gebaut, so dass auch schnelle Änderungen des Drucks ohne nennenswerte Verzögerung gemessen werden können. An der Seitenfläche 303 der Wandung 2 ist ein Schallgeber 21 angeordnet, der vom Drucksensor 20 den Abstand s aufweist. Alternativ kann es auch vorgesehen sein, dass ein separater Schallempfänger 30 diametral dem Schallgeber 21 an der Seitenfläche 303 gegenüberliegt, um eine möglichst große Laufstrecke des Schallsignals zu erhalten und damit eine größere Genauigkeit bei der Bestimmung der Schallgeschwindigkeit c.A bracket 22 projects through the second base 202 of the wall 2 into the measurement volume 1. At the end of the holder 22 there is a pressure sensor 20 which is connected to an electronic computer 28 via a signal line 24 which leads out of the measurement volume 1 in the holder 22, the passage of the holder 22 through the wall 2 being sealed liquid-tight. The pressure sensor 20 is arranged in the center plane between the two base surfaces 102, 202 of the wall 2 and is therefore at the same distance from both base surfaces 102, 202. Since the pressure sensor 20 also lies on the longitudinal axis 4, it is at an equal distance s from the side surface 303 on all sides. Via the electronic computer 28, the signal that the pressure sensor 20 supplies can be read out and stored electronically. In order to enable a rapid measurement of the pressure curve, the pressure sensor 20 is built, for example, on a piezo basis, so that rapid changes in the pressure can also be measured without any significant delay. A sound generator 21 is arranged on the side surface 303 of the wall 2 and is at a distance s from the pressure sensor 20. Alternatively, it can also be provided that a separate sound receiver 30 is diametrically opposed to the sound generator 21 on the side surface 303 in order to obtain the longest possible path of the sound signal and thus greater accuracy in determining the speed of sound c.
Die zu messende Einspritzmenge Δ der Prüfflüssigkeit kann aus dem Druckanstieg und der Schallgeschwindigkeit berechnet werden. Ist p die Dichte der Prüfflüssigkeit und V das Volumen des Messvolumens, so ergibt sich durch das Einspritzen des Einspritzventils bei konstantem Volumen V eine Änderung der Dichte Δp, so dass giltThe injection quantity Δ of the test liquid to be measured can be calculated from the pressure increase and the speed of sound. If p is the density of the test liquid and V is the volume of the measurement volume, the injection of the injection valve results in a change in density Δp at constant volume V, so that the following applies
Δm = V • ΔpΔm = V • Δp
Nach der bekannten akustischen Theorie ist der Zusammenhang zwischen der Schallgeschwindigkeit c, der Dichteänderung Δp und dem Druckanstieg Δp wie folgtAccording to the known acoustic theory, the relationship between the speed of sound c, the change in density Δp and the pressure increase Δp is as follows
Δp = Δp 1/c2 Δp = Δp 1 / c 2
und damit gilt Δm =- V 1 /c2 • Δp = V p/K Δp ( I I )and with that applies Δm = - V 1 / c 2 • Δp = V p / K Δp (II)
Es gibt also einen direkten Zusammenhang zwischen dem Druckanstieg Δp und der Mengenänderung Δm.So there is a direct relationship between the pressure increase Δp and the change in quantity Δm.
Mit dem Drucksensor 20 wird der zeitliche Verlauf des Drucks gemessen, woraus sich wiederum die Einspritzrate r(t) bestimmen lässt, also die pro Zeiteinheit dt eingespritzte Menge dm(t) der Prüfflüssigkeit. Aus dem obigen Zusammenhang ergibt sich damit für die Einspritzrate r(t), also die zeitliche Ableitung der eingespritzten Menge dm(t)/dt, folgende Gleichung:The pressure sensor 20 is used to measure the pressure over time, from which the injection rate r (t) can in turn be determined, that is to say the quantity dm (t) of the test liquid injected per unit time dt. From the above context, the following equation results for the injection rate r (t), i.e. the time derivative of the injected quantity dm (t) / dt:
r(t) = dm(t)/dt = V/c2 • dp(t)/dt (III)r (t) = dm (t) / dt = V / c 2 • dp (t) / dt (III)
Das heißt, dass bei Kenntnis der Schallgeschwindigkeit c und des Volumens V aus dem zeitlichen Verlauf des Drucks p(t) der Absolutwert der Einspritzrate r(t) berechnet werden kann.This means that if the speed of sound c and the volume V are known, the absolute value of the injection rate r (t) can be calculated from the time profile of the pressure p (t).
Beim Einspritzen der Prüfflüssigkeit in das Messvolumen 1, das anfänglich einen konstanten Druck aufweist, der beispielsweise 1 MPa entspricht, steigt der Druck im Messvolumen 1 an. Flüssigkeiten sind im Vergleich zu Gasen praktisch inkompressibel, so dass auch eine kleine Mengenzunahme zu einer gut messbaren Druckerhöhung führt. Durch das stoßartige Einbringen der Prüfflüssigkeit werden im Messvolumen 1 Druckeigenschwingungen angeregt. Die Eigenfrequenzen hängen von den geometrischen Abmessungen des Messvolumens 1 ab: Für die erste Druckeigenschwingung, die sogenannte Grundschwingung, bei der eine Longitudinalwelle entlang der Längsachse 4 schwingt, ist die halbe Wellenlänge λ/2 gleich der Länge L des Messvolumens 1, also giltWhen the test liquid is injected into the measuring volume 1, which initially has a constant pressure, which corresponds, for example, to 1 MPa, the pressure in the measuring volume 1 increases. Liquids are practically incompressible in comparison to gases, so that even a small increase in volume leads to an easily measurable pressure increase. Due to the sudden introduction of the test liquid, 1 natural pressure vibrations are excited in the measuring volume. The natural frequencies depend on the geometric dimensions of the measurement volume 1: For the first pressure natural vibration, the so-called basic vibration, in which a longitudinal wave oscillates along the longitudinal axis 4, half the wavelength λ / 2 is equal to the length L of the measurement volume 1, so the following applies
λ — ΛQ — 2-L. Figur 2 zeigt diese erste Druckeigenschwingung schematisch, wobei die mit p bezeichneten Linien den Druckverlauf zeigen, bei dem an den Rändern Druckbäuche zu finden sind und in der Mitte, also in der Radialebene des zylinderförmigen Messvolumens, in der der Drucksensor 20 angeordnet ist, ein Druckknoten liegt. Die Frequenz ve der ersten Druckeigenschwingung errechnet sich dann einfach aus der Schallgeschwindigkeit c nach der Beziehung λe-ve = c zuλ - Λ Q - 2-L. FIG. 2 shows this first natural pressure oscillation schematically, the lines denoted by p showing the pressure curve at which pressure bellows can be found at the edges and a pressure node in the middle, that is to say in the radial plane of the cylindrical measuring volume in which the pressure sensor 20 is arranged lies. The frequency v e of the first natural pressure oscillation is then simply calculated from the speed of sound c according to the relationship λ e -v e = c
ve = c/λe = c/(2*L)v e = c / λ e = c / (2 * L)
Für die Frequenz vn der n. Oberschwingung gilt entsprechend, dass die Länge des Messvolumens L ein Vielfaches von λ/2 sein muss: vn = (n-c)/(2- )For the frequency v n of the nth harmonic, the length of the measurement volume L must be a multiple of λ / 2: v n = (nc) / (2-)
Der Drucksensor 20 registriert die erste Druckeigenschwingung nicht, da am Druckknoten keine Druckänderungen auftreten. Ebensowenig werden die 2., 4. und alle anderen geradzahligen Oberschwingungen vom Drucksensor 20 aufgenommen.The pressure sensor 20 does not register the first natural pressure vibration since there are no pressure changes at the pressure node. The second, fourth and all other even harmonics are also not picked up by the pressure sensor 20.
Zur Auswertung der Messung geht man folgendermaßen vor: In das Messvolumen 1, in dem sich die Prüfflüssigkeit befindet, spritzt das Einspritzventil 3 durch eine schnelle Längsbewegung der Ventilnadel 5, durch welche die Einspritzöffnungen 12 geöffnet und wieder verschlossen werden, eine bestimmte Flüssigkeitsmenge ein. Der Drucksensor 20 misst den Druck p(t), der mit einer bestimmen Rate von beispielsweise 100 kHz vom Rechner 28 ausgelesen und gespeichert wird.The evaluation of the measurement is carried out as follows: In the measurement volume 1 in which the test liquid is located, the injection valve 3 injects a certain amount of liquid through a rapid longitudinal movement of the valve needle 5, through which the injection openings 12 are opened and closed again. The pressure sensor 20 measures the pressure p (t), which is read out and stored by the computer 28 at a specific rate of, for example, 100 kHz.
Um den zeitlichen Verlauf der Einspritzmenge dm(t)/dt, also die Einspritzrate r(t) zu bestimmen, benutzt man Gleichung (III). Die im Rechner gespeicherten Messwerte p(t) werden zeitlich differenziert und mit dem Faktor V/c2 multipliziert, was direkt die Einspritzrate r(t) ergibt. Neben der Bestimmung der Schallgeschwindigkeit durch eine separate Messung ist es auch möglich, diese aus den gemessenen Druckmesswerten direkt zu bestimmen. Die im Rechner 28 aufgezeichneten Druckmesswerte sind zum einen verrauscht und zum anderen sind Druckeigenschwingungen des Messvolumens 1 überlagert, was zu weiteren Verfälschungen führt. Aus einer Frequenzanalyse kann aus den Druckmesswerten die Frequenzen der ersten Oberschwingung der Druckeigenschwingungen bestimmt werden, woraus nach der oben angegebenen Beziehung c = vL die Schallgeschwindigkeit c berechnet wird, die in der verwendeten Prüfflüssigkeit bei den vorliegenden Bedingungen herrscht. Obwohl die ungefähre Größe von c natürlich bekannt ist, kommt es doch zu Schwankungen durch veränderte Zusammensetzungen der Prüfflüssigkeit oder geänderte Temperaturen, was andernfalls zu einer Verminderung der Messgenauigkeit führen würde. Durch eine Filterung der Druckmesswerte durch einen Tiefpass kann hochfrequentes Rauschen unterdrückt werden. Wegen der Anordnung des Drucksensors 20 in der Mitte des Messvolumens kann die Grenzfrequenz VQ für den Tiefpass doppelt so groß gewählt werden, da die erste Grundschwingung vom Drucksensor 20 nicht registriert wird. Die geglätteten Druckmesswerte werden anschließend zeitlich differenziert, und nach Multiplikation mit dem Faktor V/c2 ergibt sich bei bekanntem Volumen V die Einspritzrate r(t).Equation (III) is used to determine the time course of the injection quantity dm (t) / dt, that is to say the injection rate r (t). The measured values p (t) stored in the computer are differentiated over time and multiplied by the factor V / c 2 , which directly gives the injection rate r (t). In addition to determining the speed of sound by means of a separate measurement, it is also possible to determine it directly from the measured pressure measurements. On the one hand, the pressure measurement values recorded in the computer 28 are noisy and on the other hand, natural pressure vibrations of the measurement volume 1 are superimposed, which leads to further falsifications. From a frequency analysis, the frequencies of the first harmonic of the natural pressure oscillations can be determined from the pressure measured values, from which the speed of sound c prevailing in the test liquid used under the present conditions is calculated according to the relationship c = vL given above. Although the approximate size of c is of course known, there are fluctuations due to changes in the composition of the test liquid or changed temperatures, which would otherwise lead to a reduction in the measurement accuracy. By filtering the pressure readings through a low-pass filter, high-frequency noise can be suppressed. Because of the arrangement of the pressure sensor 20 in the middle of the measurement volume, the cut-off frequency V Q for the low-pass filter can be chosen to be twice as large, since the first fundamental oscillation is not registered by the pressure sensor 20. The smoothed pressure measured values are then differentiated in time, and after multiplication by the factor V / c 2 , the injection rate r (t) is obtained for a known volume V.
Die Schallgeschwindigkeit c kann auch in einem separaten Verfahren bestimmt werden. Hierzu wird vom Schallgeber 21 ein Schallimpuls ausgesandt, der von dem als Schallempfänger dienenden Drucksensor 20 oder von einem separaten Schallempfänger 30 nach einer Laufzeit t^ aufgefangen wird. Aus dem Abstand s von Schallgeber 21 und Drucksensor 20 berechnet sich dann nachThe speed of sound c can also be determined in a separate method. For this purpose, a sound pulse is emitted by the sound generator 21, which is collected by the pressure sensor 20 serving as a sound receiver or by a separate sound receiver 30 after a running time t ^. The distance s between the sound generator 21 and the pressure sensor 20 is then calculated
c = s / t-r, die Schallgeschwindigkeit c. Nach der oben gezeigten Gleichung (II) ergibt sich dadurch sofort die eingespritzte Menge Δm.c = s / tr, the speed of sound c. According to equation (II) shown above, this immediately results in the injected quantity Δm.
Figur 3 zeigt den zeitlichen Verlauf von Druck p(t) und dessen Ableitung dp(t)/dt als Funktion der Zeit t in willkürlichen Einheiten U. Der Druck p(t) steigt etwa zum Zeitpunkt t = 1 ms auf ein erstes Niveau an und etwa zum Zeitpunkt t = 2 ms auf ein zweites, deutlich höheres Niveau. Dies entspricht einer Einspritzung von zuerst einer kleineren Menge Prüfflüssigkeit und in einem Abstand von etwa 1 ms einer größeren Menge. Wird ein Einspritzventil gemessen, wie es für direkteinspritzende, selbstzündende Brennkraftmaschinen verwendet wird, entspricht dies einer Kraftstoffeinspritzung, die sich in eine Pilot- oder Voreinspritzung und eine nachfolgende Haupteinspritzung gliedert. Nachdem das vom Drucksensor 20 gemessene Drucksignal p(t) nach der oben geschilderten Methode geglättet worden ist, ergibt die Ableitung dp(t)/dt einen Wert, der proportional zur Einspritzrate r(t) ist. Durch Multiplikation mit dem Faktor V/c2 erhält man daraus schließlich den Absolutwert der Einspritzrate r(t) .FIG. 3 shows the time course of pressure p (t) and its derivation dp (t) / dt as a function of time t in arbitrary units U. The pressure p (t) rises to a first level approximately at time t = 1 ms and at a time t = 2 ms to a second, significantly higher level. This corresponds to an injection of a smaller amount of test liquid first and a larger amount at a distance of approximately 1 ms. If an injection valve is measured, as is used for direct-injection, self-igniting internal combustion engines, this corresponds to a fuel injection, which is divided into a pilot or pre-injection and a subsequent main injection. After the pressure signal p (t) measured by the pressure sensor 20 has been smoothed according to the method described above, the derivative dp (t) / dt gives a value which is proportional to the injection rate r (t). Multiplying by the factor V / c 2 finally gives the absolute value of the injection rate r (t).
Das Messverfahren zusammen mit dem beschriebenen Messaufbau ermöglicht es also, den Druckverlauf zu messen und die Schallgeschwindigkeit c bei den aktuellen Prüfbedingungen zu bestimmen, woraus sich die Einspritzmenge und die Einspritzrate bestimmen lässt. Wird die Schallgeschwindigkeit c aus der Frequenz der Eigenschwingungen berechnet, so können sämtliche notwendigen Größen aus dem Druckverlauf bestimmt werden, was Fehler durch zusätzliche Bauteile ausschließt. Durch die Anordnung des Drucksensors 20 genau zwischen den beiden Grundflächen 102, 202 kann die Grenzfrequenz V des Tiefpassfilters auf die doppelte Frequenz der Grundschwingung ve angehoben werden, ohne dass eine qualitative Beeinträchtigung durch das Filtern zu erwarten ist. Aufwendige Kalibrierverfahren, bei denen in einem separaten Messverfahren die Schallgeschwindigkeit bestimmt wird, können somit entfallen.The measurement method together with the measurement setup described thus makes it possible to measure the pressure curve and to determine the speed of sound c under the current test conditions, from which the injection quantity and the injection rate can be determined. If the speed of sound c is calculated from the frequency of the natural vibrations, all the necessary quantities can be determined from the pressure curve, which excludes errors due to additional components. By arranging the pressure sensor 20 exactly between the two base areas 102, 202, the cut-off frequency V of the low-pass filter can be raised to twice the frequency of the fundamental oscillation v e without a qualitative impairment due to the filtering being expected. costly Calibration procedures in which the speed of sound is determined in a separate measurement procedure can thus be omitted.
Die Prüfflüssigkeit kann Kraftstoff sein oder eine andere Flüssigkeit, deren Eigenschaften dem Stoff nahekommen, der im normalen Gebrauch des Einspritzventils verwendet wird. Das Messvolumens 1 muss nicht zylinderförmig ausgebildet sein, sondern statt eines Zylinders kann auch ein quaderför- miges Messvolumen 1 oder eine andere geeignete Form vorgesehen sein, beispielsweise eine Kugel. Der Drucksensor 20 wird auch hier in einem Druckknoten der ersten Druckeigenschwingung des Mess-volumens 1 angeordnet, um die Grenzfrequenz für die Filterung möglichst hoch ansetzen zu können. The test liquid can be fuel or another liquid, the properties of which approximate the substance used in normal use of the injector. The measuring volume 1 does not have to be cylindrical, but instead of a cylinder, a cuboid measuring volume 1 or another suitable shape can be provided, for example a sphere. The pressure sensor 20 is also arranged here in a pressure node of the first natural pressure vibration of the measurement volume 1 in order to be able to set the cutoff frequency as high as possible for the filtering.

Claims

Ansprüche Expectations
1. Verfahren zur Messung der Einspritzrate eines Einspritzventils für Flüssigkeiten, vorzugsweise für flüssigen Kraftstoff, bei dem das Einspritzventil (3) die Flüssigkeit in ein flüssigkeitsgefülltes Messvolumen (1) einspritzt, wobei das Messvolumen (1) allseitig abgeschlossen ist und im Messvolumen (1) ein Drucksensor (20) angeordnet ist, gekennzeichnet durch folgende Verfahrensschritte:1. Method for measuring the injection rate of an injection valve for liquids, preferably for liquid fuel, in which the injection valve (3) injects the liquid into a liquid-filled measuring volume (1), the measuring volume (1) being closed on all sides and in the measuring volume (1) a pressure sensor (20) is arranged, characterized by the following method steps:
- Einspritzung von Flüssigkeit durch das Einspritzventil (3) in das Messvolumen (1) ,- injection of liquid through the injection valve (3) into the measuring volume (1),
- Messung des Drucks (p(t)) im Messvolumen (1) mittels des Drucksensors (20) während der Einspritzung und Aufzeichnung dieser Messwerte,- Measuring the pressure (p (t)) in the measuring volume (1) by means of the pressure sensor (20) during the injection and recording these measured values,
- Bestimmung der Schallgeschwindigkeit (c) im Messvolumen (1) ,- Determination of the speed of sound (c) in the measuring volume (1),
Bestimmung der eingespritzten Prüfflüssigkeits-Menge (m(t) ; Δm) aus den Druckmesswerten (p(t)) und der Schallgeschwindigkeit (c) .Determination of the amount of test liquid injected (m (t); Δm) from the pressure measurements (p (t)) and the speed of sound (c).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Druckmesswerte (p(t)) während der Einspritzung von einem elektronischen Rechner (28) aufgezeichnet werden.2. The method according to claim 1, characterized in that the pressure measured values (p (t)) are recorded during the injection by an electronic computer (28).
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schallgeschwindigkeit (c) mittels eines separaten Messverfahrens bestimmt wird. 3. The method according to claim 1, characterized in that the speed of sound (c) is determined by means of a separate measuring method.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Schallgeschwindigkeit aus der Laufzeit eines von einem Schallgeber (21) zu einem Schallempfänger (20; 30) laufenden Schallsignals berechnet wird.4. The method according to claim 3, characterized in that the speed of sound is calculated from the running time of a sound signal running from a sound generator (21) to a sound receiver (20; 30).
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schallgeschwindigkeit (c) aus den Eigenfrequenzen (vn) des Messvolumens (1) bestimmt wird.5. The method according to claim 1, characterized in that the speed of sound (c) is determined from the natural frequencies (v n ) of the measurement volume (1).
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Eigenfrequenzen (vn) durch eine Frequenzanalyse der Druckmesswerte (p(t)) bestimmt werden.6. The method according to claim 5, characterized in that the natural frequencies (v n ) are determined by a frequency analysis of the pressure measurement values (p (t)).
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Druckmesswerte (p(t)) mit einem Tiefpassfilter gefiltert werden.7. The method according to claim 6, characterized in that the pressure measured values (p (t)) are filtered with a low-pass filter.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass aus dem Verlauf der Druckmesswerte (p(t)) durch zeitliche Differentiation eine der Einspritzrate (r(t)) proportionale Größe berechnet wird.8. The method according to claim 7, characterized in that a variable proportional to the injection rate (r (t)) is calculated from the course of the pressure measurement values (p (t)) by temporal differentiation.
9. Vorrichtung zur Messung der Einspritzrate (r(t)) eines Einspritzventils (3) für Flüssigkeiten mit einem Messvolumen (1) , das allseitig abgeschlossen ist und mit einer Prüfflüssigkeit gefüllt ist, einer Öffnung (10) in der Wandung (2) des Messvolumes (1) zur Aufnahme eines Einspritzventils (3) , so dass das Einspritzventil (3) in Einbaulage mit wenigstens einer Einspritzöffnung (12) in das Messvolumen (1) hineinragt, und einem Drucksensor (20), der im Messvolumen (1) angeordnet ist, dadurch gekennzeichnet, dass der Drucksensor (20) im Druckknoten der ersten Druckeigenschwingung des Messvolumens (1) angeordnet ist. 9. Device for measuring the injection rate (r (t)) of an injection valve (3) for liquids with a measuring volume (1), which is closed on all sides and is filled with a test liquid, an opening (10) in the wall (2) of the Measuring volume (1) for receiving an injection valve (3) so that the injection valve (3) projects into the measuring volume (1) with at least one injection opening (12) in the installed position, and a pressure sensor (20) arranged in the measuring volume (1) , characterized in that the pressure sensor (20) is arranged in the pressure node of the first natural pressure oscillation of the measuring volume (1).
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das Messvolumen (1) zylinderförmig ausgebildet ist.10. The device according to claim 9, characterized in that the measuring volume (1) is cylindrical.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Drucksensor (20) in der Radialebene angeordnet ist, die mittig zwischen den beiden Grundflächen (102; 202) des Zylinders liegt.11. The device according to claim 10, characterized in that the pressure sensor (20) is arranged in the radial plane which lies centrally between the two base surfaces (102; 202) of the cylinder.
12. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass ein elektronischer Rechner (28) die Messwerte des Drucksensors (20) erfasst und speichert.12. The device according to claim 9, characterized in that an electronic computer (28) records and stores the measured values of the pressure sensor (20).
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass auf dem elektronischen Rechner (28) ein Programm läuft, das aus den aufgezeichneten Druckmesswerten (p(t)) die Eigenfrequenzen des Messvolumens (V) berechnet.13. The apparatus according to claim 12, characterized in that a program runs on the electronic computer (28) which calculates the natural frequencies of the measurement volume (V) from the recorded pressure measurement values (p (t)).
14. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass im Messvolumen (V) ein Schallgeber (21) und ein separater Schallempfänger (30) angeordnet sind. 14. The apparatus according to claim 9, characterized in that a sound generator (21) and a separate sound receiver (30) are arranged in the measuring volume (V).
EP03809686A 2002-10-25 2003-06-04 Method and device for measuring the injection rate of an injection valve for liquids Expired - Lifetime EP1561029B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10249754A DE10249754A1 (en) 2002-10-25 2002-10-25 Method and device for measuring the injection rate of a liquid injection valve
DE10249754 2002-10-25
PCT/DE2003/001852 WO2004040129A1 (en) 2002-10-25 2003-06-04 Method and device for measuring the injection rate of an injection valve for liquids

Publications (3)

Publication Number Publication Date
EP1561029A1 true EP1561029A1 (en) 2005-08-10
EP1561029B1 EP1561029B1 (en) 2006-08-23
EP1561029B2 EP1561029B2 (en) 2011-07-06

Family

ID=32087191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03809686A Expired - Lifetime EP1561029B2 (en) 2002-10-25 2003-06-04 Method and device for measuring the injection rate of an injection valve for liquids

Country Status (6)

Country Link
US (1) US7171847B2 (en)
EP (1) EP1561029B2 (en)
JP (1) JP4130823B2 (en)
AT (1) ATE337484T1 (en)
DE (2) DE10249754A1 (en)
WO (1) WO2004040129A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049002A1 (en) * 2004-10-06 2006-04-13 Robert Bosch Gmbh Method for measuring the tightness of an injection valve for liquids
ATE482379T1 (en) * 2005-07-20 2010-10-15 Aea Srl MEASURING DEVICE FOR MEASURING THE QUANTITY OF FLUID INJECTED BY AN INJECTOR
DE102005040768B4 (en) * 2005-08-24 2007-05-10 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method and device for injection rate and / or injection mass determination
DE102005056153A1 (en) * 2005-11-23 2007-05-24 Robert Bosch Gmbh Method for measuring injection quantity and injection rate of injection valve for liquids, involves measurement of pressure in measuring volume by means of pressure sensor during injection and recording these measuring value
JP5103600B2 (en) * 2007-07-09 2012-12-19 国立大学法人群馬大学 Measuring method of instantaneous flow rate of gaseous fuel injector
DE102007032745A1 (en) 2007-07-13 2009-01-15 Robert Bosch Gmbh Device for determining the total pressure in a gas measuring stream of a combustion engine comprises a pressure measuring unit or a removal site arranged within a back-up channel through which flows a medium at high speed
GB0713678D0 (en) * 2007-07-13 2007-08-22 Delphi Tech Inc Apparatus and methods for testing a fuel injector nozzle
DE102008040628A1 (en) 2008-07-23 2010-01-28 Robert Bosch Gmbh Fluid i.e. fuel, quantity measuring method for engine of vehicle, involves determining injected fluid quantity from sound velocity of fluid found in chamber and from pressure drop that is measured in chamber during injection of fluid
US7950267B2 (en) * 2008-07-30 2011-05-31 Bi-Phase Technologies, Llc Liquid propane gas injector testing system and methods
IT1392001B1 (en) * 2008-11-27 2012-02-09 Aea Srl METHOD FOR MEASURING THE INSTANTANEOUS FLOW OF AN INJECTOR FOR GASEOUS FUELS
EP2295788A1 (en) * 2009-08-06 2011-03-16 Continental Automotive GmbH Method and arrangement for determining a mass flow of an injection process of an injection valve
JP5418259B2 (en) * 2010-02-02 2014-02-19 株式会社デンソー Injection quantity measuring device
DE102010002898A1 (en) * 2010-03-16 2011-09-22 Robert Bosch Gmbh Method and device for evaluating an injection device
JP5790999B2 (en) * 2011-03-08 2015-10-07 株式会社リコー Cooling device and image forming apparatus
DE102011007611B4 (en) 2011-04-18 2022-01-27 Robert Bosch Gmbh Device and method for determining at least one spray quantity and/or one spray rate of a liquid sprayed with a valve
FR2995640B1 (en) * 2012-09-19 2015-03-20 Efs Sa DEVICE FOR MEASURING A QUANTITY OF FLUID INJECTED BY AN INJECTOR
JP5918683B2 (en) * 2012-10-16 2016-05-18 株式会社小野測器 Injection measuring device
JP5956912B2 (en) * 2012-11-08 2016-07-27 株式会社小野測器 Injection measuring device and bulk modulus measuring device
JP5956915B2 (en) * 2012-11-15 2016-07-27 株式会社小野測器 Injection measuring device and bulk modulus measuring device
JP6163013B2 (en) * 2013-05-15 2017-07-12 株式会社小野測器 Injection measuring device
JP6163012B2 (en) * 2013-05-15 2017-07-12 株式会社小野測器 Injection measuring device
CN104295425B (en) * 2014-06-05 2017-04-12 河南科技大学 Oil injection law measuring system and method
DE102014211498B4 (en) 2014-06-16 2018-03-01 Ford Global Technologies, Llc Improvement of temporal flow rate measurement of unsteady injection processes of weakly compressible media
DE102014212392A1 (en) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Method and device for characterizing an injector
JP6335070B2 (en) * 2014-08-26 2018-05-30 株式会社小野測器 Injection measurement device and injection measurement method
JP6344851B2 (en) * 2014-08-26 2018-06-20 株式会社小野測器 Injection measuring device
JP6306983B2 (en) * 2014-08-26 2018-04-04 株式会社小野測器 Injection measurement device and injection measurement method
DE102014225858A1 (en) * 2014-12-15 2016-06-16 Robert Bosch Gmbh Method for calibrating a micromechanical sensor element and a system for calibrating a micromechanical sensor element
DE102015209398A1 (en) 2015-05-22 2016-11-24 Robert Bosch Gmbh Apparatus for measuring the injection rate, method for producing such a device and measuring method
JP6497283B2 (en) 2015-09-11 2019-04-10 株式会社デンソー Data analysis device
WO2017062848A1 (en) 2015-10-07 2017-04-13 Cummins Inc. Systems and methods for estimating fuel type and fuel properties using sonic speed
WO2018057087A2 (en) * 2016-09-21 2018-03-29 Bai Yufeng Shower/safety shower/fire sprinkler testing device
EP3456953B1 (en) * 2017-09-13 2021-07-14 Vitesco Technologies GmbH Apparatus and method for testing a fuel injector nozzle
CN109083790B (en) * 2018-09-28 2023-07-18 西安交通大学 System and method for measuring oil injection rate based on Zeuch piezomagnetic method
CN109386420B (en) * 2018-10-15 2021-02-02 哈尔滨工程大学 Method for measuring multi-time fuel injection rule
KR20200144246A (en) * 2019-06-18 2020-12-29 현대자동차주식회사 Method and system for compensating fuel injection amount
CN111946519A (en) * 2020-08-07 2020-11-17 哈尔滨工程大学 Oil injection rule testing device based on ringing method sound velocity correction

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118425A1 (en) 1981-05-09 1982-12-09 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR DETECTING THE AMOUNT OF FUEL SUPPLIED TO THE COMBUSTION SPACES OF A DIESEL ENGINE
US4856321A (en) * 1983-07-29 1989-08-15 Panametrics, Inc. Apparatus and methods for measuring fluid flow parameters
DE3916418A1 (en) 1989-05-19 1990-11-22 Daimler Benz Ag DEVICE FOR DETERMINING THE PERIOD OF THE FUEL LEAVING FROM A FUEL INJECTION NOZZLE OF AN AIR-COMPRESSING INJECTION COMBUSTION ENGINE
US5753806A (en) * 1996-10-30 1998-05-19 Southwest Research Institute Apparatus and method for determining the distribution and flow rate characteristics of an injection nozzle
GB9930120D0 (en) * 1999-12-21 2000-02-09 Assembly Technology & Test Lim Monitoring equipment for monitoring the performance of an engine fuel injector valve
GB0009165D0 (en) * 2000-04-14 2000-05-31 Assembly Technology & Test Lim Monitoring equipment
DE10107032A1 (en) 2001-02-15 2002-08-29 Bosch Gmbh Robert Method, computer program and device for measuring the injection quantity of injection nozzles, in particular for motor vehicles
US7080550B1 (en) * 2003-08-13 2006-07-25 Cummins Inc. Rate tube measurement system
US7197918B2 (en) * 2003-08-14 2007-04-03 International Engine Intellectual Property Company, Llc Apparatus and method for evaluating fuel injectors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004040129A1 *

Also Published As

Publication number Publication date
US7171847B2 (en) 2007-02-06
JP2006504038A (en) 2006-02-02
DE10249754A1 (en) 2004-05-06
EP1561029B2 (en) 2011-07-06
US20060156801A1 (en) 2006-07-20
EP1561029B1 (en) 2006-08-23
ATE337484T1 (en) 2006-09-15
WO2004040129A1 (en) 2004-05-13
DE50304788D1 (en) 2006-10-05
JP4130823B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
EP1561029B1 (en) Method and device for measuring the injection rate of an injection valve for liquids
EP1064457B1 (en) Method for determining the injection time in a direct injection internal combustion engine
DE102012102559B4 (en) Device for estimating a fuel condition
EP1644707B1 (en) Device for measuring time-resolved volumetric throughflow processes
US20060259227A1 (en) Method for determining the injection duration in an internal combustion engine
EP1954938B2 (en) Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids
DE10301264B4 (en) Method and device for determining the temperature of the fuel in a storage injection system
EP1368620B1 (en) Method, computer program and device for measuring the amount injected by an injection system
Arcoumanis et al. Analysis of consecutive fuel injection rate signals obtained by the Zeuch and Bosch methods
DE102006042098B3 (en) Method for determining a correction of a partial injection quantity of an internal combustion engine
DE102013224706A1 (en) Method for calculating the injection rate profile
DE102008040628A1 (en) Fluid i.e. fuel, quantity measuring method for engine of vehicle, involves determining injected fluid quantity from sound velocity of fluid found in chamber and from pressure drop that is measured in chamber during injection of fluid
DE102015208416B3 (en) Determination method for determining an absolute value of an injected fuel mass
DE60318195T2 (en) DIESEL ENGINE WITH A DEVICE FOR CONTROLLING THE STREAM OF INJECTION-MOLDED FUEL
DE102014225530A1 (en) Method for operating a fuel injector
WO2009083475A1 (en) Method for detecting a periodically pulsing operating parameter
DE3806129C2 (en)
Gabitov et al. Hardware and software complex and a device for setting optimal parameters of the unit injector operation in diesel engines
DE102015204684A1 (en) Method for operating a fuel injector
DE60019365T2 (en) Device for determining the fuel injection timing for a diesel internal combustion engine
WO2008083791A1 (en) Measuring device and measuring method for an injector
Yamaguchi et al. Development of highly precise injection-rate detector applicable to piezoelectric injectors having the function of ultra multi-stage injection
DE102004049002A1 (en) Method for measuring the tightness of an injection valve for liquids
DE102015219333B3 (en) Method for detecting a useful signal
DE102015203341A1 (en) Method for operating an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060823

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50304788

Country of ref document: DE

Date of ref document: 20061005

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: IAV GMBH INGENIEURSGESELLSCHAFT AUTO UND VERKEHR

Effective date: 20070523

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20070630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061124

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060823

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070224

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20110706

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50304788

Country of ref document: DE

Effective date: 20110706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130620

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 337484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140604

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140604

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210823

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103