EP1561027B1 - Ventil zum steuern eines fluids - Google Patents

Ventil zum steuern eines fluids Download PDF

Info

Publication number
EP1561027B1
EP1561027B1 EP03773481A EP03773481A EP1561027B1 EP 1561027 B1 EP1561027 B1 EP 1561027B1 EP 03773481 A EP03773481 A EP 03773481A EP 03773481 A EP03773481 A EP 03773481A EP 1561027 B1 EP1561027 B1 EP 1561027B1
Authority
EP
European Patent Office
Prior art keywords
valve
nozzles
valve closing
sealing
closing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03773481A
Other languages
English (en)
French (fr)
Other versions
EP1561027A1 (de
Inventor
Udo Hafner
Waldemar Hans
Frank Brenner
Frank Miller
Guenther Bantleon
Thanh-Hung Nguyen-Schaefer
Christof Vogel
Norbert Krapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10319920A external-priority patent/DE10319920A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP07104186A priority Critical patent/EP1801410B1/de
Publication of EP1561027A1 publication Critical patent/EP1561027A1/de
Application granted granted Critical
Publication of EP1561027B1 publication Critical patent/EP1561027B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0667Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature acting as a valve or having a short valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices

Definitions

  • the invention is based on a valve for controlling a fluid according to the closer defined in the preamble of claim 1. Art.
  • Such a valve is known from practice and can be used, for example, as an injection valve in an internal combustion engine of a motor vehicle or as a gas control valve in a fuel cell.
  • the known valve comprises a valve housing in which a valve closing member is guided axially displaceable, which is in operative connection with an electromagnetic actuator unit.
  • the valve closure member serves to control a fluid flow from an inlet side to an outlet side and cooperates with a valve seat for this purpose.
  • the inflow side the valve is connected to a pressure surrounding the valve closure member.
  • the valve closure member has on its front side a spherical closing body made of a solid material, which cooperates with a conical seat made of a rotating part.
  • the conical seat is followed by a valve plate, which is a so-called spray orifice plate, via which the fuel or the gasoline is sprayed into a combustion chamber of the internal combustion engine.
  • a valve plate which is a so-called spray orifice plate, via which the fuel or the gasoline is sprayed into a combustion chamber of the internal combustion engine.
  • a dead volume which can sometimes counteract a good atomization of the fuel.
  • the dead volume between the sealing seat and the spray perforated disk further leads to poor valve dynamics and undesirable evaporation of the fuel in a suction pipe, in which the valve is usually arranged.
  • large forces are required to open the valve-closing member because there is a large difference between the pressure existing in the pressure area surrounding the valve-closing member and the pressure acting on the end face of the valve-closing member.
  • a sealing collar is usually formed on the end face of the valve closing member which, when the valve closing member is closed, rests on a sealing plate and has a cylindrical bore surrounding the sealing plate.
  • the bore leads to a Totvolumenraum the sealing plate, which is followed by a nozzle, which leads to the downstream side.
  • gases such as hydrogen or methane have lower density compared to liquid fuels. Therefore, in gases often a much larger volume flow is required, so that in particular a gas valve, a large flow area is desirable at the valve seat.
  • the valve lift is limited because of the high dynamics of the valve, with the result that the sealing seat is variable in terms of its diameter substantially. An enlargement of the sealing seat but leads to an increase in the applied opening force or magnetic force, which in turn has an increased power consumption.
  • the diameter of the sealing seat can not be chosen arbitrarily large due to a frequently limited installation space. For these reasons, the volume flows or the mass flows of the flowing gas are often not sufficiently large for the requirements prevailing in gas engines and fuel cell drives.
  • a fuel injection valve for controlling a fluid is already known.
  • the valve is electromagnetically operated by providing an electromagnetic circuit comprising a magnetic coil, a core serving as an inner pole, a movable magnetic circuit member, and an outer magnetic sheath.
  • the movable magnetic circuit component is a magnetic armature, which is pulled against the inner pole upon energization of the magnetic coil, and at the same time a valve closing member which controls a fluid flow from an inlet side to an outlet side.
  • the designed as a flat plate movable magnetic circuit member or valve closure member cooperates with a formed as a flat seat valve seat member, which is made of a plastic or other non-magnetic material together.
  • the valve seat element has one or more nozzle openings which lead to the downstream side and which can be closed by means of the valve closure member.
  • the actual valve seat forms a formed on the valve seat member, projecting in the direction of the valve closing member ring collar.
  • valve according to the invention having the features according to the preamble of claim 1, in which nozzles are formed on the valve plate, leading to the downstream side and which can be closed by means of the valve closure member has, when designed as a liquid valve, in particular as a fuel injection valve, the advantage that there is no dead volume between the valve plate formed, for example, from a spray perforated disk and the sealing seat, which leads to a better atomization of the controlled liquid compared to a valve with a spherical closing body. Without dead volume, there is a uniform drop spectrum throughout the course of the injection.
  • the so-called dynamic flow range can be kept linear when opening and closing the valve closure member, which also proves to be advantageous in terms of the performance of the valve.
  • the effective stroke of the valve closing member is identical by the formation of the valve seat as a flat seat with the actual stroke of the valve closure member. Also, no so-called squeeze film flow occurs on the valve seat formed as a flat seat. Furthermore, a reduced weight of the valve closure member can be achieved by the absence of a spherical closure member made of a solid material, so that lower forces for opening the valve must be applied. This increases the dynamics of the valve.
  • valve plate with a plurality of small-diameter nozzles has the advantage of fine atomization of the controlled liquid.
  • the term fluid is to be understood in the present case in its broadest meaning.
  • the fluid can thus represent both a liquid and a gas.
  • valve according to the invention as a gas valve, it is possible to dispense with a nozzle connected downstream of the valve plate and thus also with a dead volume space arranged downstream of the valve plate.
  • the absence of a dead volume downstream of the sealing plate leads to increased valve dynamics compared to the known gas valve described above.
  • the formation of the nozzles on the sealing plate further has the advantage over a sealing plate with a downstream nozzle that a smaller force for actuating the valve closure member is required.
  • the valve according to the invention can be used in particular as a fuel injection valve in an internal combustion engine of a motor vehicle or for mass flow control of gases such as hydrogen and natural gas, for example in a fuel cell or a gas engine.
  • the nozzles which are preferably arranged along a circular line, are each provided with a rounded inflow edge in an advantageous embodiment of the valve designed as a gas valve for improving the flow behavior of the gas in the nozzle.
  • the nozzles each have a sharp inflow edge and continuously expand in the outflow direction, the wall of the nozzles preferably having a curved longitudinal section.
  • a high shear rate can be achieved in the liquid to be controlled, resulting in a fine atomization of the liquid in the nozzles.
  • the nozzles taper funnel-shaped in each case in the flow direction, wherein the wall of the nozzles can also have a curved longitudinal section in this case.
  • the nozzles may be designed with a smaller diameter than in the control of a gas.
  • the diameter of the nozzles is 90 ⁇ m.
  • the diameter is for example in the range of about 500 microns.
  • the mass flow in the valve is determined by the nozzle areas.
  • the valve can be used according to the invention by simply adjusting the number of nozzles by installing a valve plate with a corresponding number of nozzles as injection valve for different internal combustion engines with a different fuel consumption.
  • SLS spray-orifice plate
  • the nozzles may open into an annular channel, which is arranged on the side facing away from the valve closure member of the valve plate.
  • the width of the annular channel is preferably chosen so that it is approximately two to three times the diameter of the nozzle.
  • a particularly good efficiency with regard to the flow behavior of the gas in the nozzles can be achieved if the height of the annular channel is designed so that in each case the ratio of the length of the nozzle to its diameter is about 0.7 to 1.
  • a rounding off of the nozzle inflow edge with a radius of curvature of, for example, 0.050 mm can be provided, in particular for a valve designed as a gas valve according to the invention.
  • a preferred embodiment of the valve according to the invention operates according to the so-called pressure equalization principle. This can be achieved by connecting the upstream side to an inner and an outer pressure region, which pressure regions are arranged upstream of the valve seat.
  • the inner pressure region comprises an axial pressure channel of the valve closure member, which exits at the free end side of the valve closure member.
  • the outer pressure area surrounds the valve closure member.
  • valve closure member the front side designed as an annular surface, which may have cooperating with the nozzle sealing surface, with little effort operable, since when it opens in the inner and the outer pressure region substantially the same pressure prevails and the fluid both pressure areas flows in the direction of the nozzles.
  • This has the advantage that a particular electromagnetic actuator unit with low power can be interpreted.
  • such a valve allows high mass flows because the fluid flows into the nozzles from both the inner ducking area and the outer pressure area.
  • the inner pressure region and the outer pressure region may be connected via at least one outflow channel formed in the valve closure member.
  • the outflow channel may be formed as a substantially radially aligned bore of the valve closure member, but it may also be inclined at a certain angle in the flow direction relative to the longitudinal axis of the valve closure member and lead from serving as a supply channel, axial bore to the outside of the valve closure member.
  • the supply channel then also opens into an axial bore of possibly reduced diameter, which represents the inner pressure region or is a part thereof.
  • the stroke of the valve closing member is preferably in the range between 60 .mu.m and 90 .mu.m, wherein in the inner and the outer pressure range, a pressure of for example 3 bar to 4 bar prevail can. If very small drops are to be generated, ie if the so-called Sauter Mean Diameter (SMD) is very small, the pressure can also be between 10 and 20 bar. The required opening force is in this case much smaller than in previously known valves, since a small pressure surface is present.
  • SMD Sauter Mean Diameter
  • the stroke of the valve closing member is preferably about 300 ⁇ m, the gas pressure prevailing in the inner pressure range and the outer pressure range being about 8 bar.
  • the valve plate of the valve according to the invention may be made of different materials, such as steel, PEEK with carbon fibers, a hard plastic or a ceramic, for example after an etching, an erosion or a laser process.
  • the valve according to the invention may comprise at least one sealing element to increase the density in the region of the valve seat.
  • This is expediently arranged on the sealing surface on the end face of the valve closing member and may have one or more sealing lips.
  • the sealing element may consist of different materials.
  • the sealing element is formed, for example, for controlling a liquid either of a metal, for example of hardened steel, or also of an elastomer, which may consist of fluorocarbon rubber or Viton.
  • the sealing element In the control of a gas, it is advantageous to form the sealing element of an elastomer.
  • the sealing element made of an elastomer the impact forces which occur, which in turn leads to a reduced noise development, are also reduced.
  • An embodiment of the sealing element made of a suitable metal may be required, in particular, if an excessively high swelling would be expected with an elastomer.
  • the sealing element may be annular and embedded on the valve closure member at its end face in a corresponding annular groove. It may be provided with two sealing lips, one of which is arranged on the inner edge of the sealing ring and thus assigned to the inner pressure region and the other arranged on the outer edge of the sealing ring and thus associated with the outer pressure region.
  • valve according to the invention may have a base serving as a stop for the valve closure member. This is formed for example on the valve plate.
  • the stopper constitutes a baffle catcher and limits the deformation of, for example, the elastomeric sealing element and thus its wear, and clearly defines the air gap on a magnet armature serving to actuate the valve closure member.
  • the valve closure member itself a guard ring or
  • Impaler to protect the sealing ring forms Impaler to protect the sealing ring forms.
  • aprons for supporting the sealing element may be formed on the valve plate. These skirts, for example, form the edges of the nozzles.
  • FIG. 1 a simplified longitudinal section through a fuel injection valve according to the invention
  • FIG. 2 an enlarged view of the area II in FIG. 1
  • FIG. 3 a partial view of a second embodiment of a fuel injection valve according to the invention
  • FIG. 4 a simplified longitudinal section through a nozzle of a fuel injection valve
  • FIG. 5 an alternative embodiment of a nozzle in a simplified longitudinal section
  • FIG. 6 a schematic section through a gas valve according to the invention with a nozzle plate in a fragmentary perspective view
  • FIG. 7 a top view of the nozzle plate of the gas valve after FIG. 6
  • FIG. 1 a simplified longitudinal section through a fuel injection valve according to the invention
  • FIG. 2 an enlarged view of the area II in FIG. 1
  • FIG. 3 a partial view of a second embodiment of a fuel injection valve according to the invention
  • FIG. 4 a simplified longitudinal section through a nozzle of a fuel injection valve
  • FIG. 5 an alternative embodiment of a nozzle in a simplified longitudinal section
  • FIG. 8 a fragmentary sectional view of an alternative embodiment of a gas valve with a nozzle plate
  • FIG. 9 a simplified longitudinal section through a sealing region of the gas valve after FIG. 8 in an enlarged view
  • FIG. 10 a FIG. 9 corresponding view, but with a modified sealing area.
  • a fuel injection valve 10 is shown for use in an internal combustion engine of a motor vehicle not shown here, which serves to control a fuel flow from an inflow side 11 to a downstream side 12, wherein the fuel exits at the downstream side 12 in atomized form, as indicated by the dotted areas X. indicated in the drawing.
  • the injection valve 10 comprises a multi-part housing 13, in which a magnetic coil 15 is arranged, which engages around a deep-drawn guide sleeve 17.
  • a substantially tubular plug 19 is fixed, which serves to receive a spring acting as a biasing coil spring 21, facing away from the inflow side 11 thereof
  • a magnet armature 14 is applied, which is guided axially displaceably in the guide sleeve 17.
  • the armature 14 is tubular and forms a valve closure member which cooperates with the end face with a flat seat representing valve seat 26.
  • the magnet armature 14 or the valve closing member 14 comprises a first axial bore 16 serving as a supply channel, which is connected to the inflow side 11 of the injection valve 10 and forms an interior of the valve closing member 14.
  • From the first axial bore 16 branch off four distributed over the circumference of the valve closing member 14 radial bores, of which three holes 18 A, 18 B and 18 C are shown in the drawing and which lead to a so-called outer pressure region 20 which borders on the outside of the valve closure member 14 and is bounded by the guide sleeve 17.
  • the first axial bore 16 opens into a second axial bore 22 whose diameter is smaller than the diameter of the first axial bore 16 and which exits at the free end face 24 of the valve closure member 14.
  • the second axial bore 22 of smaller diameter which is an axial Abströmbohrung forms a so-called inner pressure region or is part of the same.
  • the inner pressure region 22 and the outer pressure region 20 are arranged upstream of the valve seat 26 designed as a flat seat, which cooperates with the free end face 24 of the valve closing member 14 and is formed on a nozzle plate 28 serving as a so-called spray perforated disk, which in the guide sleeve 17, for example via a welded connection is fixed.
  • the valve plate 28 is made of steel and flat on the side of the valve closing member 14.
  • nozzle plate 28 for example, ten nozzles or metering bores 30 which are slightly engaged with respect to the longitudinal axis of the injection valve 10 are formed along a circular line, leading to a frusto-conical recess 31 of the valve plate 28.
  • the nozzles 30 in the present case each have a diameter of about 90 microns.
  • a sealing ring 36 is arranged in a corresponding recess of the valve closing member 14.
  • the sealing ring 36 is made of fluorocarbon rubber and has a diameter corresponding to the diameter of the circular line along which the nozzles 30 are arranged such that the sealing ring 36 closes the nozzle 30 with the valve closure member 14 closed, in which case only the surface of Nozzle 30 is subjected to external pressure. This area determines the hydraulic closing force of the valve.
  • valve closure member 14 which has approximately a stroke of 60 microns to 90 microns, is guided over the entire length of its lateral surface 33 in the guide sleeve 17.
  • FIG. 3 an alternative embodiment of a fuel injection valve 50 is shown, which largely according to the injection valve FIG. 1 corresponds, but differs from this in that the armature 14 has two tubular or annular guide collars 55 and 56 through which the armature 14 is guided in the guide sleeve 17.
  • the first guide collar 55 is arranged in a region of the lateral surface 33 of the valve closing member 14 remote from the valve plate 28.
  • the second guide collar 56 is formed by an annular collar, which has an end face, which is aligned with the end face 24 of the valve closing member 14.
  • axial bores 57 are formed, which ensure a flow of fuel between the outer pressure region 20 and the nozzle 30 in the valve plate 28.
  • the structure of the valve 50 corresponds to that of the valve FIG. 1 ,
  • FIG. 4 an embodiment of a nozzle 30 is shown, which is a valve plate or a spray perforated disk 28 of a fuel injection valve in the FIGS. 1 to 3 engages through the type shown.
  • the nozzle 30 has a sharp inflow edge 58 and widens in the flow direction, wherein the nozzle 30 has a wall 59, whose longitudinal section is curved. In such a nozzle, a high shear rate of the fuel can be achieved so that there is good atomization.
  • FIG. 5 an alternative embodiment of a nozzle 30 of a spray orifice plate 28 for installation in a fuel injection valve is shown, which has a rounded inflow edge 61 and the funnel-shaped tapered in the flow direction, wherein the nozzle 30 has a wall 62 which has a curved longitudinal section. Furthermore, the nozzle 30 has a sharp discharge edge 63.
  • a gas valve 60 is shown for use in a fuel cell or in a gas engine, which is used for controlling a stream of hydrogen or a CNG (Compressed Natural Gas) stream and in the construction of the valves according to Figure 1 to 3 like.
  • CNG Compressed Natural Gas
  • the gas valve 60 comprises a housing 13, in which a valve closing member 14 is axially displaceably guided in a long guide formed by the housing 13, which is operatively connected to an electromagnetic actuator not shown here and coated with a lubricating varnish.
  • the valve closing member 14 comprises a first axial bore 16 serving as a supply channel, which is connected to an inflow side of the gas valve 60, not shown here. From the first axial bore 16 branch off four distributed over the circumference of the valve closing member 14 radial bores, each forming a radial outflow bore and of which in FIG. 1 three bores 18A, 18B, 18C are shown, which at one to the outside of the valve closure member 14 adjacent, so-called outer pressure range 20 lead. In the axial direction, the first axial bore 16 opens into a second axial bore 22 whose diameter is smaller than the diameter of the first axial bore 16 and which exits at the free end face 24 of the valve closure member 14. The second axial bore 22 of smaller diameter, which is an axial Abströmbohrung forms a so-called inner pressure region or is part of the same.
  • gas flows from the first axial bore 16 via the radial outflow bores 18A, 18B, 18C into the outer pressure region 20 representing a gas chamber and via the axial outflow bore 22 to the free end side 24 of the valve closure member 14.
  • Both the inner pressure region 22 and the outer pressure region 20 are arranged upstream of a valve seat 26, which cooperates with the free end face 24 of the valve closing member 14 and is formed on a nozzle plate 28 serving as a sealing plate or sealing seat disc, which cooperates with the valve closing member 14.
  • the nozzle plate 28 of the gas valve 10 has an effective thickness that is greater than the effective thickness of a nozzle plate intended for liquid applications.
  • nozzle plate 28 In the nozzle plate 28 are as FIG. 7 can be seen along a circular line in the present embodiment, fourteen axially aligned, serving as flow openings nozzles 30 formed, which via an annular groove 32 to lead a downstream side 12 of the gas valve 60 and are provided with a rounded inflow edge.
  • the nozzles 30 are each designed so that the ratio of their length to their diameter is about 0.7. Such a design causes optimum flow behavior of the gas flowing through the nozzles 30. Alternatively, another number of nozzles may be provided.
  • the end face 24 of the valve closing member 14 is formed as an annular surface on which an annular seal 36 made of an elastomeric material is embedded.
  • the ring seal 36 closes in the closed position of the valve closing member 14, the nozzle 32, so that a gas flow from the pressure regions 20 and 22 is blocked to the downstream side 12.
  • FIG. 8 a gas valve 80 is shown, which is essentially after that FIG. 1 equivalent.
  • the gas valve 80 differs from the gas valve FIG. 6 However, by the formation of the valve closing member 14, in that it is not provided with radially aligned Abströmbohrept, but next to the axial outflow bore 22 at an angle relative to the longitudinal axis of the valve closure member 14 aligned Abströmbohrept 42 which lead to the outer pressure region 20, what a Optimized flow behavior of the gas in question causes.
  • the sealing area of the gas valve 80 is in FIG. 9 shown in detail. It is characterized in that the nozzle plate 28 has a possibly annular base 44th has, which serves as a stop for the valve closing member 14 and is arranged in the edge region of the latter.
  • the nozzle plate 28 serving on the nozzle 30 each serving as a sealing lip skirts 46 which engage in the closed valve closure member 14 in the annular elastomeric seal 36 which is embedded in an annular groove of the valve closure member 14.
  • the edges of the elastomeric seal 36 are chamfered and the inflow edges of the nozzles 30 rounded with a radius of curvature of about 0.05 mm.
  • the flow of the gas in question in the gas valve 80 is also FIG. 9 refer to.
  • the gas flows from the inlet side according to an arrow A through the first axial bore 16 of the valve closing member 14 and from there through the outflow channels 42 according to an arrow B in the outer pressure region 20 and the other according to an arrow C through the second axial bore 22, the Part of the inner pressure range is.
  • When opening the valve closing member 14 gas flows from the outer pressure region 20 according to an arrow D and the inner pressure region according to an arrow E to the nozzle 30 and via this according to an arrow F to the downstream side of the gas valve 80.
  • These flow paths correspond substantially to the flow paths of the fuel in the in the FIGS. 1 to 3 illustrated fuel injection valves.
  • FIG. 10 is an alternative embodiment of a sealing region in a gas valve of the FIG. 8 shown type shown.
  • the sealing area after FIG. 10 different depending on the person FIG. 9 in that it comprises a sealing ring 52 which is provided with two sealing lips 54A and 54B, which are arranged at the inner and at the outer edge of the sealing ring 52.
  • the sealing lips 54A and 54B engage with the valve closing member 14 closed to the sealing plate 28, which is formed here without stop base and without aprons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lift Valve (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung geht von einem Ventil zum Steuern eines Fluids gemäß der im Oberbegriff des Patentanspruches 1 näher definierten Art aus.
  • Ein derartiges Ventil ist aus der Praxis bekannt und beispielsweise als- Einspritzventil bei einem Verbrennungsmotor eines Kraftfahrzeuges oder auch als Gassteuerventil bei einer Brennstoffzelle einsetzbar.
  • Das bekannte Ventil umfaßt ein Ventilgehäuse, in dem ein Ventilschließglied axial verschieblich geführt ist, das mit einer elektromagnetischen Betätigungseinheit in Wirkverbindung steht. Das Ventilschließglied dient zur Steuerung eines Fluidstroms von einer Zuströmseite zu einer Abströmseite und wirkt hierzu mit einem Ventilsitz zusammen. Die Zuströmseite des Ventils ist mit einem das Ventilschließglied umgebenden Druckbereich verbunden. Beim Öffnen des Ventilschließglieds erfolgt ein Fluidstrom von diesem Druckbereich durch eine Öffnung einer Ventilplatte in Richtung der Abströmseite des Ventils.
  • Bei einem als Kraftstoffeinspritzventil einer Brennkraftmaschine ausgebildeten Ventil hat das Ventilschließglied an seiner Stirnseite einen kugelförmigen, aus einem Vollmaterial hergestellten Schließkörper, der mit einem aus einem Drehteil hergestellten Kegelsitz zusammenwirkt. Dem Kegelsitz ist eine Ventilplatte nachgeordnet, die eine sogenannte Spritzlochscheibe darstellt, über die der Kraftstoff bzw. das Benzin in einen Brennraum der Brennkraftmaschine eingesprüht wird. Zwischen dem Ventilsitz und der Spritzlochscheibe liegt hierbei ein Totvolumen vor, das bisweilen einer guten Zerstäubung des Kraftstoffes entgegenwirken kann. Das Totvolumen zwischen dem Dichtsitz und der Spritzlochscheibe führt des weiteren zu einer schlechten Ventildynamik und einer ungewünschten Verdampfung des Kraftstoffes in einem Saugrohr, in dem das Ventil in der Regel angeordnet ist. Ferner sind zum Öffnen des Ventilschließglieds große Kräfte erforderlich, da eine große Differenz zwischen dem Druck, der in dem das Ventilschließglied umgebenden Druckbereich herrscht, und dem an der Stirnseite des Ventilschließglieds angreifenden Druck vorliegt.
  • Bei einem als Gasventil ausgebildeten Ventil ist an der Stirnseite des Ventilschließglieds üblicherweise ein Dichtbund ausgebildet, der bei geschlossenem Ventilschließglied auf eine Dichtplatte aufsetzt und eine zylindrische Bohrung der Dichtplatte umgibt. Die Bohrung führt zu einem Totvolumenraum der Dichtplatte, dem eine Düse nachgeordnet ist, die zu der Abströmseite führt. Wie auch bei dem Benzineinspritzventil herrscht bei geschlossenem Ventilschließglied zwischen dem das Ventilschließglied umgebenden Druckbereich und dem an die Stirnseite des Ventilschließglieds grenzenden Ventilraum eine große Druckdifferenz, so daß die zum Öffnen des Ventilschließglieds erforderliche Magnetkraft groß ausgelegt sein muß.
  • Ferner haben Gase, wie Wasserstoff oder Methan, im Vergleich zu flüssigen Kraftstoffen eine geringere Dichte. Daher ist bei Gasen häufig ein wesentlich größerer Volumenstrom erforderlich, so daß insbesondere bei einem Gasventil eine große Durchstromfläche am Ventildichtsitz wünschenswert ist. Hierbei ist zu beachten, daß der Ventilhub wegen der hohen Dynamik des Ventils begrenzt ist, was zur Folge hat, daß der Dichtsitz im wesentlichen hinsichtlich seines Durchmessers veränderbar ist. Eine Vergrößerung des Dichtsitzes führt aber zu einer Erhöhung der aufzubringenden Öffnungskraft bzw. Magnetkraft, was wiederum einen erhöhten Stromverbrauch zur Folge hat. Ferner kann der Durchmesser des Dichtsitzes aufgrund eines häufig beschränkten Bauraums nicht beliebig groß gewählt werden. Die Volumenströme bzw. die Massenströme des strömenden Gases sind aus diesen Gründen häufig nicht hinreichend groß für die bei Gasmotoren und Brennstoffzellenantrieben herrschenden Anforderungen.
  • Aus der WO 88/04727 A ist bereits ein Brennstoffeinspritzventil zum Steuern eines Fluids bekannt. Das Ventil wird elektromagnetisch betrieben, indem ein elektromagnetischer Kreis umfassend eine Magnetspule, einen als Innenpol dienenden Kern, ein bewegliches Magnetkreisbauteil und einen äußeren Magnetmantel vorgesehen ist. Das bewegliche Magnetkreisbauteil ist ein Magnetanker, der bei Erregung der Magnetspule gegen den Innenpol gezogen wird, und zugleich ein Ventilschließglied, das einen Fluidstrom von einer Zuströmseite zu einer Abströmseite steuert. Das als ebene Platte ausgeführte bewegliche Magnetkreisbauteil bzw. Ventilschließglied wirkt mit einem als Flachsitz ausgebildeten Ventilsitzelement, das aus einem Kunststoff oder einem anderen nichtmagnetischen Material gefertigt ist, zusammen. Das Ventilsitzelement weist eine oder mehrere Düsenöffnungen auf, die zu der Abströmseite führen und die mittels des Ventilschließglieds verschließbar sind. Den eigentlichen Ventilsitz bildet ein an dem Ventilsitzelement ausgeformter, in Richtung zum Ventilschließglied abstehender Ringkragen.
  • Vorteile der Erfindung
  • Das Ventil gemäß der Erfindung mit den Merkmalen nach dem Oberbegriff des Patentanspruches 1, bei dem an der Ventilplatte Düsen ausgebildet sind, die zu der Abströmseite führen und die mittels des Ventilschließglieds verschließbar sind, hat bei Auslegung als Flüssigkeitsventil, insbesondere als Kraftstoffeinspritzventil, den Vorteil, daß zwischen der beispielsweise aus einer Spritzlochscheibe gebildeten Ventilplatte und dem Dichtsitz kein Totvolumen vorliegt, was gegenüber einem Ventil mit einem kugelförmigen Schließkörper zu einer besseren Zerstäubung der gesteuerten Flüssigkeit führt. Ohne Totvolumen liegt ein gleichmäßiges Tropfenspektrum während des gesamten Einspritzverlaufs vor.
  • Auch kann der sogenannte Dynamic Flow Range beim Öffnen und beim Schließen des Ventilschließglieds linear gehalten werden, was sich hinsichtlich der Leistung des Ventils ebenfalls als vorteilhaft erweist.
  • Ferner ist der effektive Hub des Ventilschließglieds durch die Ausbildung des Ventilsitzes als Flachsitz identisch mit dem tatsächlichen Hub des Ventilschließglieds. Auch tritt keine sogenannte Quetschfilmströmung an dem als Flachsitz ausgebildeten Ventilsitz auf. Des weiteren kann durch das Fehlen eines aus einem Vollmaterial hergestellten, kugelförmigen Schließkörpers ein geringeres Gewicht des Ventilschließglieds erreicht werden, so daß geringere Kräfte zum Öffnen des Ventils aufgebracht werden müssen. Damit erhöht sich die Dynamik des Ventils.
  • Die Ausbildung der Ventilplatte mit mehreren Düsen geringen Durchmessers hat den Vorteil einer feinen Zerstäubung der gesteuerten Flüssigkeit.
  • Der Begriff Fluid ist im vorliegenden Fall in seiner weitesten Bedeutung zu verstehen. Das Fluid kann mithin sowohl eine Flüssigkeit als auch ein Gas darstellen.
  • Bei einer Ausbildung des Ventils nach der Erfindung als Gasventil kann auf eine der Ventilplatte nachgeschaltete Düse und damit auch auf einen stromab der Ventilplatte angeordneten Totvolumenraum verzichtet werden. Das Fehlen eines Totvolumens stromab der Dichtplatte führt gegenüber dem oben beschriebenen, bekannten Gasventil zu einer erhöhten Ventildynamik. Die Ausbildung der Düsen an der Dichtplatte hat des weiteren gegenüber einer Dichtplatte mit einer nachgeschalteten Düse den Vorteil, daß eine geringere Kraft zur Betätigung des Ventilschließglieds erforderlich ist.
  • Das Ventil nach der Erfindung ist insbesondere als Kraftstoff-Einspritzventil bei einer Brennkraftmaschine eines Kraftfahrzeuges oder auch zur Massenstromregelung von Gasen wie Wasserstoff und Erdgas beispielsweise bei einer Brennstoffzelle oder auch einem Gasmotor einsetzbar.
  • Die Düsen, die bevorzugt entlang einer Kreislinie angeordnet sind, sind bei einer vorteilhaften, als Gasventil ausgelegten Ausführungsform des Ventils zur Verbesserung des Strömungsverhaltens des Gases in der Düse jeweils mit einer abgerundeten Einströmkante versehen.
  • Bei einem als Kraftstoffeinspritzventil ausgelegten Ventil ist es vorteilhaft, wenn die Düsen jeweils eine scharfe Einströmkante haben und sich in Abströmrichtung kontinuierlich aufweiten, wobei die Wandung der Düsen vorzugsweise einen gewölbten Längsschnitt hat. Insbesondere mit einer derartigen Formgebung läßt sich eine große Schergeschwindigkeit bei der zu steuernden Flüssigkeit erreichen, was zu einer feinen Zerstäubung der Flüssigkeit in den Düsen führt.
  • Alternativ ist es bei einem Flüssigkeitsventil auch denkbar, daß sich die Düsen jeweils in Strömungsrichtung trichterförmig verjüngen, wobei die Wandung der Düsen auch in diesem Falle einen gewölbten Längsschnitt haben kann.
  • Bei der Auslegung des Ventils als Kraftstoffeinspritzventil können die Düsen mit einem geringeren Durchmesser ausgelegt sein als bei der Steuerung eines Gases. Bei der Steuerung von Benzin liegt der Durchmesser der Düsen beispielsweise bei 90 µm. Bei der Steuerung eines Gases liegt der Durchmesser beispielsweise im Bereich von etwa 500 µm. Grundsätzlich wird der Massenstrom in dem Ventil durch die Düsenflächen bestimmt. So kann das Ventil nach der Erfindung durch einfaches Anpassen der Düsenanzahl mittels Einbau einer Ventilplatte mit entsprechender Düsenzahl als Einspritzventil für unterschiedliche Brennkraftmaschinen mit einem unterschiedlichen Kraftstoffbedarf eingesetzt werden. Es ist also bei einem neuen Anwendungsfall nur erforderlich, die als Spritzlochscheibe (SLS) ausgelegte Ventilplatte entsprechend zu modifizieren.
  • Um bei einem Gasventil das aufgrund des Druckstoßes bei der Betätigung des Ventilschließglieds entstehende Geräusch zu reduzieren, können hier die Düsen in einen Ringkanal münden, der an der dem Ventilschließglied abgewandten Seite der Ventilplatte angeordnet ist. Die Breite des Ringkanals ist vorzugsweise so gewählt, daß sie etwa das Zwei- bis Dreifache des Düsendurchmessers beträgt.
  • Ein besonders guter Wirkungsgrad hinsichtlich des Strömungsverhaltens des Gases in den Düsen kann erreicht werden, wenn die Höhe des Ringkanals so ausgelegt ist, daß jeweils das Verhältnis der Länge der Düse zu ihrem Durchmesser etwa 0,7 bis 1 beträgt.
  • Um die Strömungsablösung an der Düseneinströmkante zu reduzieren, kann insbesondere bei einem als Gasventil ausgelegten Ventil nach der Erfindung eine Abrundung der Düseneinströmkante mit einem Krümmungsradius von beispielsweise 0,050 mm vorgesehen sein.
  • Eine bevorzugte Ausführungsform des Ventils nach der Erfindung arbeitet nach dem sogenannten Druckausgleichsprinzip. Dies kann dadurch erreicht werden, daß die Zuströmseite stromab mit einem inneren und einem äußeren Druckbereich verbunden ist, welche Druckbereiche stromauf des Ventilsitzes angeordnet sind. Der innere Druckbereich umfaßt einen axialen Druckkanal des Ventilschließglieds, der an der freien Stirnseite des Ventilschließglieds austritt. Der äußere Druckbereich umgibt das Ventilschließglied.
  • Bei einem derartigen Ventil ist das Ventilschließglied, das stirnseitig eine als Ringfläche ausgebildete, die mit den Düsen zusammenwirkende Dichtfläche aufweisen kann, mit geringem Kraftaufwand betätigbar, da bei dessen Öffnen in dem inneren und dem äußeren Druckbereich im wesentlichen der gleiche Druck herrscht und das Fluid aus beiden Druckbereichen in Richtung der Düsen strömt. Dies hat den Vorteil, daß eine insbesondere elektromagnetische Betätigungseinheit mit geringer Leistung auslegbar ist. Auch läßt ein derartiges Ventil hohe Massenströme zu, da das Fluid sowohl von dem inneren Duckbereich als auch von dem äußeren Druckbereich aus in die Düsen einströmt.
  • Der innere Druckbereich und der äußere Druckbereich können über mindestens einen in dem Ventilschließglied ausgebildeten Abströmkanal verbunden sein. Der Abströmkanal kann als im wesentlichen radial ausgerichtete Bohrung des Ventilschließglieds ausgebildet sein, er kann aber auch mit einem bestimmten Anstellwinkel in Strömungsrichtung gegenüber der Längsachse des Ventilschließglieds geneigt sein und von einer als Zufuhrkanal dienenden, axialen Bohrung an die Außenseite des Ventilschließglieds führen. Der Zufuhrkanal mündet dann auch in eine axiale Bohrung gegebenenfalls verminderten Durchmessers, die den inneren Druckbereich darstellt bzw. ein Teil dessen ist.
  • Bei einem als Flüssigkeitsventil, beispielsweise als Kraftstoffeinspritzventil, ausgelegten Ventil liegt der Hub des Ventilschließglieds vorzugsweise im Bereich zwischen 60 µm und 90 µm, wobei in dem inneren und dem äußeren Druckbereich ein Druck von beispielsweise 3 bar bis 4 bar herrschen kann. Wenn sehr kleine Tropfen erzeugt werden sollen, d. h. wenn der sogenannte Sauter Mean Diameter (SMD) sehr klein ist, kann der Druck auch zwischen 10 und 20 bar liegen. Die erforderliche Öffnungskraft ist hierbei wesentlich kleiner als bei bisher bekannten Ventilen, da eine kleine Druckfläche vorliegt.
  • Bei einem als Gasventil ausgelegten Ventil beträgt der Hub des Ventilschließglieds vorzugsweise etwa 300 µm, wobei der in dem inneren Druckbereich und dem äußeren Druckbereich herrschende Gasdruck bei etwa 8 bar liegt.
  • Die Ventilplatte bzw. Spritzlochplatte des Ventils nach der Erfindung kann aus unterschiedlichen Materialien, wie beispielsweise Stahl, PEEK mit Kohlefasern, einem Hartkunststoff oder einer Keramik, hergestellt sein, und zwar beispielsweise nach einem Ätz-, einem Erodier- oder einem Laserverfahren.
  • Das Ventil nach der Erfindung kann zur Dichtigkeitserhöhung im Bereich des Ventilsitzes mindestens ein Dichtelement umfassen. Dieses ist zweckmäßig an der Dichtfläche an der Stirnseite des Ventilschließglieds angeordnet und kann eine oder auch mehrere Dichtlippen aufweisen. Das Dichtelement kann aus unterschiedlichen Materialien bestehen. So ist das Dichtelement beispielsweise zur Steuerung einer Flüssigkeit entweder aus einem Metall, beispielsweise aus gehärtetem Stahl, oder auch aus einem Elastomer gebildet, das aus Fluorkohlenstoff-Kautschuk oder Viton bestehen kann.
  • Bei der Steuerung eines Gases ist es vorteilhaft, das Dichtelement aus einem Elastomer zu bilden. Bei einer Ausbildung des Dichtelements aus einem Elastomer verringern sich des weiteren die auftretenden Prallkräfte, was wiederum zu einer verringerten Geräuschentwicklung führt. Eine Ausbildung des Dichtelements aus einem geeigneten Metall kann insbesondere erforderlich sein, wenn bei einem Elastomer eine zu starke Quellung zu erwarten wäre.
  • Das Dichtelement kann ringförmig ausgebildet und an dem Ventilschließglied an dessen Stirnseite in einer korrespondierenden Ringnut eingebettet sein. Es kann mit zwei Dichtlippen versehen sein, von denen eine am inneren Rand des Dichtrings angeordnet und damit dem inneren Druckbereich zugeordnet und die andere am äußeren Rand des Dichtrings angeordnet und damit dem äußeren Druckbereich zugeordnet ist.
  • Denkbar ist es auch, für jede der Düsen eine kreisförmige Elastomerdichtscheibe vorzusehen.
  • Des weiteren kann das Ventil nach der Erfindung einen als Anschlag für das Ventilschließglied dienenden Sockel aufweisen. Dieser ist beispielsweise an der Ventilplatte ausgebildet. Der Anschlag stellt einen Prallabfänger dar und begrenzt die Verformung des beispielsweise elastomeren Dichtelements und damit dessen Verschleiß und definiert den Luftspalt an einem zur Betätigung des Ventilschließglieds dienenden Magnetanker eindeutig. Bei einem in einer Nut eingebetteten Dichtring mit Dichtlippen ist es denkbar, daß das Ventilschließglied selbst einen Schutzring bzw.
  • Prallabfänger zur Schonung des Dichtrings bildet.
  • Um in der Schließstellung des Ventilschließglieds eine hohe Dichtigkeit zu gewährleisten, können an der Ventilplatte auch Schürzen zur Auflage des Dichtelements ausgebildet sein. Diese Schürzen bilden beispielsweise die Ränder der Düsen.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes nach der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.
  • Zeichnung
  • Fünf Ausführungsbeispiele eines Ventils nach der Erfindung sind in der Zeichnung schematisch vereinfacht dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen
    Figur 1 einen vereinfachten Längsschnitt durch ein Kraftstoffeinspritzventil gemäß der Erfindung;
    Figur 2 eine vergrößerte Darstellung des Bereichs II in Figur 1;
    Figur 3 eine ausschnittsweise Darstellung einer zweiten Ausführungsform eines erfindungsgemäßen Kraftstoffeinspritzventils;
    Figur 4 einen vereinfachten Längsschnitt durch eine Düse eines Kraftstoffeinspritzventils;
    Figur 5 eine alternative Ausführung einer Düse in einem vereinfachten Längsschnitt;
    Figur 6 einen schematischen Schnitt durch ein Gasventil gemäß der Erfindung mit einer Düsenplatte in einer ausschnittsweisen, perspektivischen Darstellung;
    Figur 7 eine Aufsicht auf die Düsenplatte des Gasventils nach Figur 6;
    Figur 8 eine ausschnittsweise geschnittene Ansicht einer alternative Ausführungsform eines Gasventils mit einer Düsenplatte;
    Figur 9 einen vereinfachten Längsschnitt durch einen Dichtbereich des Gasventils nach Figur 8 in einer vergrößerten Darstellung; und
    Figur 10 eine Figur 9 entsprechende Ansicht, jedoch mit einem veränderten Dichtbereich.
  • Beschreibung der Ausführungsbeispiele
  • In den Figuren 1 und 2 ist ein Kraftstoffeinspritzventil 10 zum Einsatz bei einer Brennkraftmaschine eines hier nicht näher dargestellten Kraftfahrzeuges dargestellt, das zur Steuerung eines Kraftstoffstroms von einer Zuströmseite 11 zu einer Abströmseite 12 dient, wobei der Kraftstoff an der Abströmseite 12 in zerstäubter Form austritt, wie anhand der punktierten Bereiche X in der Zeichnung angedeutet ist.
  • Das Einspritzventil 10 umfaßt ein mehrteiliges Gehäuse 13, in welchem eine Magnetspule 15 angeordnet ist, die eine tiefgezogene Führungshülse 17 umgreift. In der Führungshülse 17 ist ein im wesentlichen rohrförmiger Stopfen 19 fixiert, der zur Aufnahme einer als Vorspannfeder wirkenden Spiralfeder 21 dient, an deren der Zuströmseite 11 abgewandten Seite ein Magnetanker 14 anliegt, der in der Führungshülse 17 axial verschiebbar geführt ist.
  • Der Magnetanker 14 ist rohrförmig ausgebildet und bildet ein Ventilschließglied, das stirnseitig mit einem einen Flachsitz darstellenden Ventilsitz 26 zusammenwirkt.
  • Des weiteren umfaßt der Magnetanker 14 bzw. das Ventilschließglied 14 eine als Zufuhrkanal dienende erste Axialbohrung 16, die mit der Zuströmseite 11 des Einspritzventils 10 verbunden ist und einen Innenraum des Ventilschließglieds 14 bildet. Von der ersten Axialbohrung 16 zweigen vier über den Umfang des Ventilschließglieds 14 verteilte Radialbohrungen ab, von denen in der Zeichnung drei Bohrungen 18A, 18B und 18C dargestellt sind und die zu einem sogenannten äußeren Druckbereich 20 führen, der an die Außenseite des Ventilschließglieds 14 grenzt und von der Führungshülse 17 begrenzt ist. In axialer Richtung mündet die erste Axialbohrung 16 in eine zweite Axialbohrung 22, deren Durchmesser geringer als der Durchmesser der ersten Axialbohrung 16 ist und die an der freien Stirnseite 24 des Ventilschließglieds 14 austritt. Die zweite Axialbohrung 22 geringeren Durchmessers, die eine axiale Abströmbohrung darstellt, bildet einen sogenannten inneren Druckbereich bzw. ist Teil desselben.
  • Beim Öffnen des Ventilschließglieds 14 strömt Kraftstoff aus der ersten Axialbohrung 16 über die vier radialen Abströmbohrungen in den äußeren Druckbereich 20 und über die axiale Abströmbohrung 22 an die freie Stirnseite 24 des Ventilschließglieds 14.
  • Der innere Druckbereich 22 und der äußere Druckbereich 20 sind stromauf des als Flachsitz ausgebildeten Ventilsitzes 26 angeordnet, der mit der freien Stirnseite 24 des Ventilschließglieds 14 zusammenwirkt und an einer als sogenannte Spritzlochscheibe dienenden Düsenplatte 28 ausgebildet ist, die in der Führungshülse 17 beispielsweise über eine Schweißverbindung fixiert ist. Die Ventilplatte 28 ist aus Stahl gefertigt und auf der Seite des Ventilschließglieds 14 eben.
  • In der Düsenplatte 28 sind entlang einer Kreislinie beispielsweise zehn gegenüber der Längsachse des Einspritzventils 10 leicht angestellte Düsen bzw. Zumeßbohrungen 30 ausgebildet, die zu einer kegelstumpfförmigen Ausnehmung 31 der Ventilplatte 28 führen. Die Düsen 30 haben vorliegend jeweils einen Durchmesser von etwa 90 µm.
  • An der Stirnseite 24 des Ventilschließglieds 14 ist ein Dichtring 36 in einer korrespondierenden Ausnehmung des Ventilschließglieds 14 angeordnet. Der Dichtring 36 ist aus Fluorkohlenstoff-Kautschuk gefertigt und hat einen Durchmesser, der mit dem Durchmesser der Kreislinie korrespondiert, entlang der die Düsen 30 derart angeordnet sind, daß der Dichtring 36 die Düsen 30 bei geschlossenem Ventilschließglied 14 verschließt, wobei dann nur die Fläche der Düsen 30 mit Außendruck beaufschlagt ist. Diese Fläche bestimmt die hydraulische Schließkraft des Ventils.
  • Das Ventilschließglied 14, das etwa einen Hub von 60 µm bis 90 µm hat, ist über die gesamte Länge seiner Mantelfläche 33 in der Führungshülse 17 geführt.
  • In Figur 3 ist eine alternative Ausführungsform eines Kraftstoffeinspritzventils 50 dargestellt, das weitgehend dem Einspritzventil nach Figur 1 entspricht, sich von diesem aber dadurch unterscheidet, daß der Magnetanker 14 zwei rohr- bzw. ringförmige Führungsbünde 55 und 56 aufweist, über die der Magnetanker 14 in der Führungshülse 17 geführt ist. Der erste Führungsbund 55 ist in einem der Ventilplatte 28 entfernten Bereich der Mantelfläche 33 des Ventilschließglieds 14 angeordnet. Der zweite Führungsbund 56 ist von einem Ringbund gebildet, der eine Stirnseite aufweist, die mit der Stirnfläche 24 des Ventilschließglieds 14 fluchtet. In dem Ringbund 56 sind axiale Bohrungen 57 ausgebildet, die einen Kraftstoffstrom zwischen dem äußeren Druckbereich 20 und den Düsen 30 in der Ventilplatte 28 gewährleisten. Im übrigen entspricht der Aufbau des Ventils 50 demjenigen des Ventils nach Figur 1.
  • In Figur 4 ist eine Ausbildung einer Düse 30 dargestellt, die eine Ventilplatte bzw. eine Spritzlochscheibe 28 eines Kraftstoffeinspritzventils der in den Figuren 1 bis 3 dargestellten Art durchgreift. Die Düse 30 hat eine scharfe Einströmkante 58 und weitet sich in Strömungsrichtung auf, wobei die Düse 30 eine Wandung 59 hat, deren Längsschnitt gewölbt ist. Bei einer derartigen Düse kann eine große Schergeschwindigkeit des Kraftstoffes erreicht werden, so daß ein gute Zerstäubung vorliegt.
  • In Figur 5 ist eine alternative Ausführungsform einer Düse 30 einer Spritzlochscheibe 28 zum Einbau in eine Kraftstoffeinspritzventil dargestellt, die eine abgerundete Einströmkante 61 aufweist und die sich in Strömungsrichtung trichterförmig verjüngt, wobei die Düse 30 eine Wandung 62 hat, die einen gewölbten Längsschnitt aufweist. Ferner hat die Düse 30 eine scharfe Ausströmkante 63.
  • In Figur 6 ist ein Gasventil 60 zum Einsatz bei einer Brennstoffzelle oder bei einem Gasmotor dargestellt, das zur Regelung eines Wasserstoffstroms bzw. eines CNG (Compressed Natural Gases)-Stroms dient und im Aufbau den Ventilen gemäß Figur 1 bis 3 gleicht. Aus Gründen der Übersichtlichkeit werden daher für funktionsgleiche Bauteile die bisherigen Bezugszeichen verwendet.
  • Das Gasventil 60 umfaßt ein Gehäuse 13, in welchem ein Ventilschließglied 14 in einer langen, von dem Gehäuse 13 gebildeten Führung axial verschieblich geführt ist, das mit einer hier nicht näher dargestellten elektromagnetischen Betätigungseinheit in Wirkverbindung steht und mit einem Gleitlack beschichtet ist.
  • Das Ventilschließglied 14 umfaßt eine als Zufuhrkanal dienende, erste Axialbohrung 16, die mit einer hier nicht dargestellten Zuströmseite des Gasventils 60 verbunden ist. Von der ersten Axialbohrung 16 zweigen vier über den Umfang des Ventilschließglieds 14 verteilte Radialbohrungen ab, die jeweils eine radiale Abströmbohrung bilden und von denen in Figur 1 drei Bohrungen 18A, 18B, 18C dargestellt sind, welche zu einem an die Außenseite des Ventilschließglieds 14 grenzenden, sogenannten äußeren Druckbereich 20 führen. In axialer Richtung mündet die erste Axialbohrung 16 in eine zweite Axialbohrung 22, deren Durchmesser geringer als der Durchmesser der ersten Axialbohrung 16 ist und die an der freien Stirnseite 24 des Ventilschließglieds 14 austritt. Die zweite Axialbohrung 22 geringeren Durchmessers, die eine axiale Abströmbohrung darstellt, bildet einen sogenannten inneren Druckbereich bzw. ist Teil desselben.
  • Beim Betrieb des Gasventils 10 strömt Gas aus der ersten Axialbohrung 16 über die radialen Abströmbohrungen 18A, 18B, 18C in den einen Gasraum darstellenden, äußeren Druckbereich 20 und über die axiale Abströmbohrung 22 an die freie Stirnseite 24 des Ventilschließglieds 14.
  • Sowohl der innere Druckbereich 22 als auch der äußere Druckbereich 20 sind stromauf eines Ventilsitzes 26 angeordnet, der mit der freien Stirnseite 24 des Ventilschließglieds 14 zusammenwirkt und an einer als Dichtplatte bzw. Dichtsitzscheibe dienenden Düsenplatte 28 ausgebildet ist, die mit dem Ventilschließglied 14 zusammenwirkt. Die Düsenplatte 28 des für Gasanwendungen vorgesehenen Ventils 10 hat eine wirksame Dicke, die größer ist als die wirksame Dicke einer Düsenplatte, die für Flüssigkeitsanwendungen vorgesehen ist.
  • In der Düsenplatte 28 sind, wie Figur 7 zu entnehmen ist, entlang einer Kreislinie im vorliegenden Ausführungsbeispiel vierzehn axial ausgerichtete, als Durchströmöffnungen dienende Düsen 30 ausgebildet, die über eine Ringnut 32 zu einer Abströmseite 12 des Gasventils 60 führen und mit einer abgerundeten Einströmkante versehen sind. Die Düsen 30 sind jeweils so ausgelegt, daß das Verhältnis ihrer Länge zu ihrem Durchmesser etwa 0,7 beträgt. Eine derartige Auslegung bewirkt ein optimales Strömungsverhalten des durch die Düsen 30 strömenden Gases. Alternativ kann auch eine andere Zahl an Düsen vorgesehen sein.
  • Die Stirnseite 24 des Ventilschließglieds 14 ist als Ringfläche ausgebildet, an der eine aus einem elastomeren Werkstoff gefertigte Ringdichtung 36 eingebettet ist. Die Ringdichtung 36 schließt in Schließstellung des Ventilschließglieds 14 die Düsen 32 ab, so daß ein Gasstrom von den Druckbereichen 20 und 22 zu der Abströmseite 12 gesperrt ist.
  • In Figur 8 ist ein Gasventil 80 dargestellt, das im wesentlichen demjenigen nach Figur 1 entspricht. Das Gasventil 80 unterscheidet sich von dem Gasventil nach Figur 6 jedoch durch die Ausbildung des Ventilschließglieds 14, und zwar dadurch, daß es nicht mit radial ausgerichteten Abströmbohrungen versehen ist, sondern neben der axialen Abströmbohrung 22 winklig gegenüber der Längsachse des Ventilschließglieds 14 ausgerichtete Abströmbohrungen 42 aufweist, die zu dem äußeren Druckbereich 20 führen, was ein optimiertes Strömungsverhalten des betreffenden Gases bewirkt.
  • Der Dichtbereich des Gasventils 80 ist in Figur 9 detailliert dargestellt. Er zeichnet sich dadurch aus, daß die Düsenplatte 28 einen gegebenenfalls ringförmigen Sockel 44 aufweist, der als Anschlag für das Ventilschließglied 14 dient und im Randbereich des letzteren angeordnet ist.
  • Des weiteren weist die Düsenplatte 28 an den Düsen 30 jeweils als Dichtlippe dienende Schürzen 46 auf, die bei geschlossenem Ventilschließglied 14 in die ringförmige Elastomerdichtung 36 eingreifen, die in einer Ringnut des Ventilschließglieds 14 eingebettet ist. Zur Optimierung der Strömungsbedingungen sind die Kanten der Elastomerdichtung 36 angeschrägt und die Einströmkanten der Düsen 30 mit einem Krümmungsradius von etwa 0,05 mm abgerundet.
  • Die Strömung des betreffenden Gases in dem Gasventil 80 ist ebenfalls Figur 9 zu entnehmen. Das Gas strömt von der Zuströmseite gemäß einem Pfeil A durch die erste Axialbohrung 16 des Ventilschließglieds 14 und von dort zum einen durch die Abströmkanäle 42 gemäß einem Pfeil B in den äußeren Druckbereich 20 und zum anderen gemäß einem Pfeil C durch die zweite Axialbohrung 22, die Teil des inneren Druckbereichs ist. Beim Öffnen des Ventilschließglieds 14 strömt Gas aus dem äußeren Druckbereich 20 gemäß einem Pfeil D und aus dem inneren Druckbereich gemäß einem Pfeil E zu den Düsen 30 und über diese gemäß einem Pfeil F zu der Abströmseite des Gasventils 80. Diese Strömungswege entsprechen im wesentlichen den Strömungswegen des Kraftstoffs bei den in den Figuren 1 bis 3 dargestellten Kraftstoffeinspritzventilen.
  • In Figur 10 ist eine alternative Ausführungsform eines Dichtbereichs bei einem Gasventil der in Figur 8 dargestellten Art gezeigt. Der Dichtbereich nach Figur 10 unterscheidet sich von demjenigen nach Figur 9 dadurch, daß er einen Dichtring 52 aufweist, der mit zwei Dichtlippen 54A und 54B versehen ist, die am inneren bzw. am äußeren Rand des Dichtrings 52 angeordnet sind. Die Dichtlippen 54A und 54B greifen bei geschlossenem Ventilschließglied 14 an der Dichtplatte 28 an, die hier ohne Anschlagsockel sowie ohne Schürzen ausgebildet ist.

Claims (11)

  1. Ventil zum Steuern eines Fluids, insbesondere mit elektromagnetischer Betätigung, umfassend ein Ventilschließglied (14), das einen Fluidstrom von einer Zuströmseite (11) zu einer Abströmseite (12) steuert und mit einem als Flachsitz ausgebildeten Ventilsitz (26) zusammenwirkt, der an einer Ventilplatte (28) ausgebildet ist, wobei an der Ventilplatte (28) Düsen (30) ausgebildet sind, die zu der Abströmseite (12) führen und die mittels des Ventilschließglieds (14) verschließbar sind,
    dadurch gekennzeichnet,
    dass in dem Ventilschließglied (14) mindestens eine radiale Abströmbohrung (18A, B, C) und eine Axialbohrung (22) die an freien Stirnseite (24) des Ventilschließglieds 14 austritt, vorgesehen sind, und an dem Ventilschließglied (14) stirnseitig mindestens ein Dichtelement (36, 52), in dem eine Axialbohrung vorgesehen ist, die zusammen mit des Axialbohrung (22) des Ventilschließglieds (14) eine Durchgangsöffnung bildet, angeordnet ist, wobei das Dichtelement (36, 52) eine als Ringfläche ausgebildete Dichtfläche aufweist, die mit den ebenfalls ringförmig angeordneten Düsen (30) zusammenwirkt.
  2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß die Düsen (30) entlang einer Kreislinie angeordnet sind.
  3. Ventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Düsen (30) mit einer abgerundeten Einströmkante (61) oder mit einer scharfen Einströmkante (58) versehen sind.
  4. Ventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Düsen (30) eine scharfe Einströmkante (58) haben und sich in Abströmrichtung aufweiten, wobei die Wandung (59) der Düsen (30) einen gewölbten Längsschnitt hat.
  5. Ventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Düsen (30) in einen Ringkanal (32) münden, der an der dem Ventilschließglied (14) abgewandten Seite der Ventilplatte (28) angeordnet ist.
  6. Ventil nach Anspruch 5, dadurch gekennzeichnet, daß der Ringkanal (32) mit einer Breite versehen ist, die etwa das zwei- bis dreifache des Düsendurchmessers beträgt.
  7. Ventil nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Zuströmseite stromab mit einem inneren (22) und einem äußeren (20) Druckbereich verbunden ist, welche Druckbereiche (20, 22) stromauf des Ventilsitzes (26) angeordnet sind, wobei der innere Druckbereich (22) einen axialen Druckkanal des Ventilschließglieds (14) umfasst, der an der freien Stirnseite (24) des Ventilschließglieds (14) austritt, und der äußere Druckbereich (20) das Ventilschließglied (14) umgibt.
  8. Ventil nach Anspruch 7,
    dadurch gekennzeichnet,
    dass der innere Druckbereich (22) über mindestens einen, vorzugsweise über vier in dem Ventilschließglied (14) ausgebildete Abströmkanäle (18A, 18B, 18C; 42) mit dem äußeren Druckbereich (20) verbunden ist.
  9. Ventil nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Dichtelement (52) mindestens eine Dichtlippe (54, 55) aufweist.
  10. Ventil nach einem der Ansprüche 1 bis 9,
    gekennzeichnet durch einen als Anschlag für den Ventilschließkörper (14) dienenden Sockel (44).
  11. Ventil nach Anspruch 1,
    dadurch gekennzeichnet,
    dass an der Dichtplatte (28) Schürzen (46) zum Eingriff in das Dichtelement (36) ausgebildet sind.
EP03773481A 2002-10-26 2003-10-02 Ventil zum steuern eines fluids Expired - Lifetime EP1561027B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07104186A EP1801410B1 (de) 2002-10-26 2003-10-02 Ventil zum Steuern eines Fluids

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10249963 2002-10-26
DE10249963 2002-10-26
DE10319920A DE10319920A1 (de) 2002-10-26 2003-05-05 Ventil zum Steuern eines Fluids
DE10319920 2003-05-05
PCT/DE2003/003275 WO2004040125A1 (de) 2002-10-26 2003-10-02 Ventil zum steuern eines fluids

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07104186A Division EP1801410B1 (de) 2002-10-26 2003-10-02 Ventil zum Steuern eines Fluids

Publications (2)

Publication Number Publication Date
EP1561027A1 EP1561027A1 (de) 2005-08-10
EP1561027B1 true EP1561027B1 (de) 2008-03-26

Family

ID=32231861

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03773481A Expired - Lifetime EP1561027B1 (de) 2002-10-26 2003-10-02 Ventil zum steuern eines fluids

Country Status (3)

Country Link
EP (1) EP1561027B1 (de)
DE (1) DE50309492D1 (de)
WO (1) WO2004040125A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346307B2 (en) 2016-08-31 2022-05-31 Vitesco Technologies GmbH Fluid injector and needle for a fluid injector

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816342A1 (de) * 2006-02-03 2007-08-08 Siemens Aktiengesellschaft Ventilanordung für ein Einspritzventil und Einspritzventil
EP2187043A1 (de) * 2008-11-14 2010-05-19 Delphi Technologies Holding S.à.r.l. Einspritzdüse
DE102012204565A1 (de) * 2012-03-22 2013-09-26 Robert Bosch Gmbh Proportionalventil mit verbessertem Dichtsitz
DE102013204152A1 (de) * 2013-03-11 2014-09-11 Robert Bosch Gmbh Ventil zum Steuern eines Fluids mit erhöhter Dichtheit
WO2015138425A2 (en) 2014-03-10 2015-09-17 G.W. Lisk Company, Inc. Injector valve
US10364758B2 (en) 2016-12-20 2019-07-30 Continental Powertrain, USA, LLC High pressure gas phase injector
DE102017210362A1 (de) * 2017-06-21 2018-12-27 Robert Bosch Gmbh Proportionalventil zum Steuern eines gasförmigen Mediums

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523915A1 (de) * 1995-06-30 1997-01-02 Bosch Gmbh Robert Mikroventil und Verfahren zur Herstellung eines Mikroventils

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8630686D0 (en) * 1986-12-23 1987-02-04 Lucas Ind Plc Fuel injector
DE3943005A1 (de) * 1988-12-28 1990-07-05 Hitachi Ltd Elektromagnetische einspritzventilvorrichtung
US6766969B2 (en) * 2000-09-13 2004-07-27 Delphi Technologies, Inc. Integral valve seat and director for fuel injector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523915A1 (de) * 1995-06-30 1997-01-02 Bosch Gmbh Robert Mikroventil und Verfahren zur Herstellung eines Mikroventils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346307B2 (en) 2016-08-31 2022-05-31 Vitesco Technologies GmbH Fluid injector and needle for a fluid injector

Also Published As

Publication number Publication date
EP1561027A1 (de) 2005-08-10
WO2004040125A1 (de) 2004-05-13
DE50309492D1 (de) 2008-05-08

Similar Documents

Publication Publication Date Title
EP1801410B1 (de) Ventil zum Steuern eines Fluids
DE602005000662T2 (de) Einspritzventil einer Brennkraftmaschine
EP1579137B1 (de) Ventil zum steuern eines fluids
EP2171255B1 (de) Drossel an einer ventilnadel eines kraftstoffeinspritzventils für brennkraftmaschinen
EP0976013B1 (de) Druckregelventil
DE69918902T2 (de) Brennstoffinjektor
WO2019016398A1 (de) Injektor zum einspritzen von kraftstoff
DE10214096B4 (de) Kraftstoffeinspritzvorrichtung
EP2470771B1 (de) Kraftstoffeinspritzventil
EP1561027B1 (de) Ventil zum steuern eines fluids
EP1126160B1 (de) Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
DE10100390A1 (de) Einspritzventil
EP1574701A1 (de) Common-Rail Injektor
DE102008002153A1 (de) Kraftstoff-Injektor
EP1073836B1 (de) Düseneinheit zur dosierung von flüssigkeiten oder gasen
EP1558865B1 (de) Gasventil
EP2630361B1 (de) Kraftstoffinjektor
DE102006050033A1 (de) Injektor, insbesondere Common-Rail-Injektor
DE102013212142A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor sowie Kraftstoffinjektor
DE102014220104B3 (de) Kraftstoffeinspritzventil
DE102004048604A1 (de) Ventil für insbesondere gasförmige Medien
DE10059009A1 (de) Brennstoffeinspritzanlage
DE102007018005A1 (de) Injektor
DE102013211658A1 (de) Kraftstoff-Einspritzinjektor
WO2001057394A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060209

17Q First examination report despatched

Effective date: 20060209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50309492

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161025

Year of fee payment: 14

Ref country code: GB

Payment date: 20161025

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171002

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221215

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50309492

Country of ref document: DE