EP1560937A1 - Method and device for cooling blowing lances - Google Patents

Method and device for cooling blowing lances

Info

Publication number
EP1560937A1
EP1560937A1 EP03779686A EP03779686A EP1560937A1 EP 1560937 A1 EP1560937 A1 EP 1560937A1 EP 03779686 A EP03779686 A EP 03779686A EP 03779686 A EP03779686 A EP 03779686A EP 1560937 A1 EP1560937 A1 EP 1560937A1
Authority
EP
European Patent Office
Prior art keywords
cooling
lance
cooling medium
jacket
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03779686A
Other languages
German (de)
French (fr)
Other versions
EP1560937B1 (en
Inventor
Arno Luven
Andrzej Sakowicz
Werner Kircher
Revold Adamov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
VAI Fuchs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VAI Fuchs GmbH filed Critical VAI Fuchs GmbH
Publication of EP1560937A1 publication Critical patent/EP1560937A1/en
Application granted granted Critical
Publication of EP1560937B1 publication Critical patent/EP1560937B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C5/462Means for handling, e.g. adjusting, changing, coupling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/168Introducing a fluid jet or current into the charge through a lance
    • F27D2003/169Construction of the lance, e.g. lances for injecting particles

Definitions

  • the invention relates to a method for cooling blowing lances for treating liquid metal melts located in metallurgical vessels, in particular steel, possibly exposed to vacuum in RH vessels, and / or for heating metal melts (optionally under vacuum) by means of a lifting device in the inside of the vessel can be led in and out and has at least one inner guide tube for guiding gases, in particular oxygen, with a head-end lance mouth for inflating the gas onto the molten metal and has a cooling jacket extending over its length for carrying out a cooling medium, which as double-walled jacket tube having an inner and an outer cooling channel is formed with a deflection tube in the region of the head end, the metallurgical vessel being connected to a vacuum pump for lowering the pressure.
  • a lifting device in the inside of the vessel can be led in and out and has at least one inner guide tube for guiding gases, in particular oxygen, with a head-end lance mouth for inflating the gas onto the molten metal and has a cooling jacket extending over its length for carrying
  • the invention further relates to a device for carrying out the aforementioned method, with a metallurgical vessel into which a blowing lance can be inserted and removed by means of a lifting device, which has at least one inner guide tube with a head-end lance mouth and a cooling jacket which consists of a inner cooling duct and an outer cooling duct, which are connected via a deflection tube, and with a pump, by means of which the metallurgical vessel can be evacuated via a vacuum connection.
  • Blow lances of the aforementioned type are known in principle according to the prior art.
  • Water is regularly used as the cooling medium during the inflation of gases or solids onto the molten steel, which is flushed into the lance head in a large volume flow under pressure.
  • extremely high temperatures occur which lead to gradual wear and / or Crack formation on the lance head, due to which the wall thickness of the cooling chambers in the lance head becomes thinner until the walls soften, with the result that breakthroughs can occur.
  • Escaping water then evaporates, exceeds the suction power of the vacuum pump and leads to an explosive overpressure in the recipient.
  • DE 3543 836 C2 has proposed alternating with two in another method in which the blowing lance is immersed in the melt to use blowing lances that can be cooled with both cooling and cooling water.
  • the blowing lances only the blowing lance that is currently in the blowing position and immersed in the melt is cooled with cooling air, while the blowing lance that is just outside the melt is intensively cooled with cooling water.
  • the alternate use of two blowing lances is relatively complex.
  • Immersion tubes a siphon-like closure, which, because the introduction of pressure relief openings (expansion flaps) is not possible, may serve as the only pressure compensation openings.
  • pressure relief openings expansion flaps
  • a water ingress due to a defective oxygen lance in a RH vessel with subsequent expansion can result in an expansion pressure of approx. 14x10 5 Pa.
  • an explosion speed of 2 x 10 7 Pa / s and a pressure relief through the existing dip tubes large quantities of liquid steel would inevitably be thrown into the system environment.
  • the above object is achieved by the method according to claim 1.
  • the first measure is to use a gas as the cooling medium, which drastically reduces the amount of cooling medium released in the event of a lance defect. Calculations carried out show that in oxygen blowing processes under a pressure of 1 to 2x10 4 Pa in a RH vessel, a cooling steam flow of 1000 kg / h and in VCD operation under a pressure of 70 Pa to 4x10 3 Pa, a cooling steam flow of 360 kg / h h are sufficient. This small amount of steam compared to water cooling can be easily extracted from the vacuum pump in the event of a lance break or broken lance, without causing a dangerous one Expansion within the vessel occurs.
  • the ratio of the suction power of the (vacuum) pump to the amount of steam available is approx. 2: 1 to 6: 1, which effectively prevents pressure development with expansion through the immersion tubes.
  • Another measure according to the invention is that the suction power of the pump currently available regulates the flow rate of the gas used as the cooling medium. If the suction power of the pump drops or if it is low or low for other reasons, the cooling gas flow is minimized accordingly in order to create a sufficient ratio of the suction power of the pump to the amount of cooling gas to be extracted in the event of damage.
  • the pump suction power that is currently available additionally regulates the lance feed, the lance feed and the gas supply preferably being stopped immediately when there is a measured difference between the amount of gas supplied for lance cooling and the gas discharged.
  • the first measure serves to prevent further damage to the lance by a sharp increase in temperature when approaching the surface of the bath level.
  • the other measure means that only the amount of gas currently in the cooling jacket of the lance can flow out.
  • Superheated steam in particular steam overheated by 20 ° C. to 50 ° C., is preferably used as the cooling medium.
  • the cooling medium is introduced into the inner cooling channel and discharged via the outer cooling channel during the inflation of oxygen. This ensures that immediately after the greatest heat absorption of the superheated water vapor introduced as the cooling medium in the area of the outer cooling channel, the water vapor is led directly out of the lance. Furthermore, there is the advantage that the oxygen fed in via the inner guide tube is heated due to the amount of water vapor flowing along the inner guide tube and, in this respect, is blown onto the molten steel in the vessel in the already heated state. This results in a lower temperature loss of the liquid steel, a more intensive carbon reaction in the case of decarburization to be carried out by the oxygen blowing, a more intensive aluminum reaction in chemical heating and an improved oxygen efficiency and finally a lower oxygen consumption.
  • the water vapor is fed into the outer cooling duct of the cooling jacket and is discharged via the inner cooling duct after a head-end deflection. If the ambient temperature of the lance is lower compared to the oxygen blowing mode, this water vapor routing in the cooling jacket ensures that the water vapor first heats up the area of the outer cooling channel, so that the cooling of the water vapor and the associated condensate formation in the area of the cooling channels is avoided ,
  • the amount of the cooling medium to be introduced into the cooling jacket in particular water vapor, as a function of that measured on the outer jacket of the lance Temperature and / or the current lance position is regulated.
  • the lance is initially preheated without cooling in start-up mode, preferably by moving the lance into the already heated metallurgical vessel and only then switching on the steam cooling.
  • water vapor it is preferably supplied as a coolant under a pressure of at least 7 ⁇ 10 5 Pa at a temperature of 160 ° C. to 210 ° C.
  • the object is further achieved by the device according to claim 9 which, according to the invention, the flow rate of the cooling medium by means of a control unit for adjusting the flow rate of the gas used as the cooling medium as a function of the current lance position, the available suction power of the vacuum pump and the lance outside wall temperatures regulates, is marked.
  • the lance feed is preferably also set via the control unit.
  • sensors are connected to the blow lance head and on the blow lance jacket at longitudinally different distances, which are connected to the control unit.
  • the flow rate of the cooling medium can be increased or decreased via the control unit according to the measured temperatures.
  • a condensate separator is preferably provided, through which the cooling medium is guided before entering the cooling channel of the blowing lance.
  • the lance mouth is preferably designed as a Laval nozzle.
  • FIG. 1 is a schematic cross-sectional view of a blowing lance
  • Fig. 3 is a cross-sectional view of an RH vessel with the retracted
  • the lance 10 which is known in principle according to the prior art, has an inner guide tube 11 which ends at the head end in a nozzle 20, preferably a Laval nozzle, as a lance mouth 12.
  • a gas in particular oxygen, can be supplied via this guide tube 11.
  • the guide tube 11 is surrounded by a cooling jacket 13 with an outer tubular cooling jacket tube 13a, the interior of which is divided by an inserted deflection tube 14 into an inner cooling channel 15 surrounding the inner guide tube 11 and an outer cooling channel 16.
  • the deflection tube 14 does not reach in the head region of the lance 10 as far as the nozzle 20, so that here a deflection region 17 results as a connection between the inner cooling duct 15 and the outer cooling duct 16.
  • Each of the two cooling channels 15 and 16 is connected at the foot end of the lance to an associated opening 18, which is switched as an inlet or an outlet depending on the desired cooling medium flow direction.
  • the inner surface of the outer cooling jacket tube 13a facing the cooling channel 16 is formed with ribs 19 projecting radially into the cooling channel 16.
  • a cooling gas preferably overheated by 20 ° C. to 50 ° C., is supplied via the cooling channels 15 and 16 of the cooling jacket 13.
  • a cross connection can be provided with regard to the loading of the inner cooling channel 15 or the outer cooling channel 16 for the supply and removal of the water vapor.
  • the cooling steam is supplied via the opening 18 connected to the inner cooling duct 15, so that the water vapor flows long past the inner guide tube 11 to the deflection region 17 of the cooling jacket 13 and from here via the outer cooling duct 16, which is in contact with the reaction chamber of the vessel surrounding the lance via the tubular cooling jacket 13.
  • the outer cooling jacket 13 is exposed to a significantly lower amount of heat. In this case, the water vapor is first blown into the outer cooling channel 16. The water vapor is discharged via the inner cooling duct 15 and its outlet opening 18 on the head side. The same applies in the case of VCD operation.
  • start-up mode i. H. that in the case of a cold lance, the lance 10 is first moved into the vessel 200 without steam cooling in order to preheat the lance. Steam cooling is therefore only activated after the lance has been preheated.
  • the metallurgical vessel 200 with its dip tubes 21 is introduced into the metal melt 29 filled into a pan 23.
  • the treatment vessel 200 can be evacuated via a connecting piece 22 by means of a pump 30.
  • the lance drive 24 is also connected to a control unit 27.
  • An encoder 25 is provided to determine the current lance position.
  • temperature sensors are provided on the lance jacket at different longitudinal axial distances and at the lance mouth, of which only the temperature sensor 26 is shown in FIG. 3. The temperatures measured by this sensor and the other temperature sensors are also transmitted to the control unit 27.
  • the regulating unit 27 regulates the introduced amount of cooling gas via the regulator 28 as a function of the suction power of the pump 30 and the temperatures measured via the existing temperature sensors.
  • Flow measuring devices are not shown in detail, which determine the quantity of cooling steam that has been introduced and the quantity that has been exported, and send a signal to the control unit 27 in the event of any deviations that are an indication of existing leaks. In the event of a leak, the further introduction of cooling gas and the lance feed are stopped or the lance is moved out of the vessel 200.
  • FIG. 4 shows a lance inserted into the vessel 200.
  • the vessel interior temperature Tj is 1500 ° C in a specific application.
  • the temperatures T * -, T 2 , T 3 and T measured here on the lance within the first two minutes are shown in FIG. 8.
  • a temperature rise of up to 1060 ° C is measured on the top of the lance. If steam cooling is switched on after two minutes by letting in steam at a temperature of 160 ° C below 7x10 5 PA, the temperatures Ti and T 2 measured on the lance head drop to 260 and 215 ° C, respectively.
  • the amount of steam conveyed through the cooling channels 15 and 16 is then approx. 179 kg / h.
  • FIG. 5 shows the lance 10 in the oxygen blowing mode. Inside the vessel there is a pressure of 2x10 4 Pa and a temperature Tj of 1800 ° C. Through the guide tube 11 oxygen in an amount of z. B. 1000 N ⁇ fVh inflated. For lance cooling, water vapor is introduced at a pressure of 7x10 5 PA at a temperature of 160 ° C. The corresponding temperature profiles T * ⁇ , T 2 , T 3 , T and the steam outlet temperature are shown in Fig. 9.
  • FIG. 6 shows a lance introduced into the vessel 200 in a VCD process, ie without oxygen supply via the guide tube 11. The pressure set inside the vessel is between 70 Pa and 4x10 3 Pa.
  • the lance is cooled with water vapor (7x10 5 Pa, 160 ° C).
  • the internal vessel temperature Tj is 1200 ° C
  • the amount of steam conveyed through the cooling channels 15 and 16 is 360 kg / h.
  • the course of the temperatures Ti to T 4 and the steam outlet temperature T Da can be seen in FIG. 10.
  • the amount of steam delivered was 360 kg / h.
  • Figure 7 shows the lance in an upper parking position.
  • the vessel 200 is immersed in the metal melt with its immersion nozzles.
  • the measured lance temperatures rise within a short time from 20 ° C. to 160 ° C. or 200 ° C., although the water vapor flow rate let in is 1464 kg / h.
  • the direction of steam flow is preferably reversed with a corresponding valve circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

The invention relates to a method for cooling blowing lances that, in order to treat liquid metal melts contained in metallurgical vessels, particularly a steel contained in RH vessels and optionally being subjected to a vacuum, and/or in order to heat metal melts (optionally under a vacuum), can be introduced into and withdrawn from the inside of the vessel by means of a lifting device. A blowing lance comprises at least one inner guiding tube, which serves to guide gases, particularly oxygen, and which has a head-end lance mouth for blowing the gas onto the metal melt, and comprises a cooling jacket, which extends over the length of the lance and which serves to lead a cooling medium therethrough. The cooling jacket is provided in the form of a double-walled jacket tube, which has an inner and an outer cooling channel and which is provided with a redirecting tube in the area of the head end. The metallurgical vessel is connected to a vacuum pump in order to lower the pressure. According to the invention, the instantaneously available suction capacity of the pump limits the maximum flow rate of the gas serving as the cooling medium.

Description

Verfahren und Vorrichtung zur Kühlung von BlaslanzenMethod and device for cooling blowing lances
Die Erfindung betrifft ein Verfahren zur Kühlung von Blaslanzen, die zum Behandeln von in metallurgischen Gefäßen befindlichen flüssigen Metallschmelzen, insbesondere von einem, gegebenenfalls im Vakuum ausgesetzten Stahl in RH-Gefäßen und/oder zum Heizen von Metallschmelzen (gegebenenfalls unter Vakuum) mittels einer Hubeinrichtung in das Gefäßinnere hinein- und herausführbar ist und die wenigstens ein inneres Leitrohr zum Führen von Gasen, insbesondere von Sauerstoff, mit einer kopfendigen Lanzenmündung zum Aufblasen des Gases auf die Metallschmelze besitzt und einen sich über ihre Länge erstreckenden Kühlmantel zur Durchführung eines Kühlmedium aufweist, der als doppelwandiges, einen inneren und einen äußeren Kühlkanal aufweisendes Mantelrohr mit einem Umlenkrohr im Bereich des Kopfendes ausgebildet ist, wobei das metallurgische Gefäß zur Druckabsenkung mit einer Vakuum-Pumpe verbunden ist.The invention relates to a method for cooling blowing lances for treating liquid metal melts located in metallurgical vessels, in particular steel, possibly exposed to vacuum in RH vessels, and / or for heating metal melts (optionally under vacuum) by means of a lifting device in the inside of the vessel can be led in and out and has at least one inner guide tube for guiding gases, in particular oxygen, with a head-end lance mouth for inflating the gas onto the molten metal and has a cooling jacket extending over its length for carrying out a cooling medium, which as double-walled jacket tube having an inner and an outer cooling channel is formed with a deflection tube in the region of the head end, the metallurgical vessel being connected to a vacuum pump for lowering the pressure.
Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung des vorgenannten Verfahrens, mit einem metallurgischen Gefäß, in das mittels einer Hubeinrichtung in das Gefäßinnere eine Blaslanze hinein- und herausführbar ist, die wenigstens ein inneres Leitrohr mit einer kopfendigen Lanzenmündung und einen Kühlmantel aufweist, der aus einem inneren Kühlkanal und einem äußeren Kühlkanal besteht, die über ein Umlenkrohr in Verbindung stehen, und mit einer Pumpe, mittels der über einen Vakuumanschluss das metallurgische Gefäß evakuierbar ist.The invention further relates to a device for carrying out the aforementioned method, with a metallurgical vessel into which a blowing lance can be inserted and removed by means of a lifting device, which has at least one inner guide tube with a head-end lance mouth and a cooling jacket which consists of a inner cooling duct and an outer cooling duct, which are connected via a deflection tube, and with a pump, by means of which the metallurgical vessel can be evacuated via a vacuum connection.
Blaslanzen der vorgenannten Art sind prinzipiell nach dem Stand der Technik bekannt. Als Kühlmedium während des Aufblasens von Gasen oder Feststoffen auf die Stahlschmelze wird regelmäßig Wasser verwendet, das in einem großen Volumenstrom unter Druck bis in den Lanzenkopf gespült wird. Insbesondere in dem auf die Stirnseite des Lanzenkopfes strahlenden Brennfleck auf der Badoberfläche treten extrem hohe Temperaturen auf, die zu einem allmählichen Verschleiß und/oder Rissbildung am Lanzenkopf führen, aufgrund dessen die Wandstärke der im Lanzenkopf befindlichen Kühlkammern dünner wird bis die Wände mit der Folge erweichen, dass es zu Durchbrüchen kommen kann. Austretendes Wasser verdampft dann, übersteigt die Saugleistung der Vakuum-Pumpe und führt explosionsartig zu einem Überdruck im Rezipienten.Blow lances of the aforementioned type are known in principle according to the prior art. Water is regularly used as the cooling medium during the inflation of gases or solids onto the molten steel, which is flushed into the lance head in a large volume flow under pressure. Particularly in the focal spot on the bath surface radiating onto the end face of the lance head, extremely high temperatures occur which lead to gradual wear and / or Crack formation on the lance head, due to which the wall thickness of the cooling chambers in the lance head becomes thinner until the walls soften, with the result that breakthroughs can occur. Escaping water then evaporates, exceeds the suction power of the vacuum pump and leads to an explosive overpressure in the recipient.
Um einerseits die Gefahr eines Wasserdurchbruches einer in Betriebsstellung befindlichen Blaslanze zu vermeiden und andererseits die Lanze intensiv zu kühlen, ist bei einem anderen Verfahren, bei dem die Blaslanze in die Schmelze eingetaucht wird, in der DE 3543 836 C2 vorgeschlagen worden, mit zwei im Wechsel zum Einsatz kommenden Blaslanzen zu arbeiten, die sowohl mit Kühlung als auch mit Kühlwasser gekühlt werden können. Von den beiden Blaslanzen wird nur die gerade in Blasstellung befindliche und in die Schmelze eintauchende Blaslanze mit Kühlluft gekühlt, während die sich gerade außerhalb der Schmelze befindende Blaslanze intensiv mit Kühlwasser gekühlt wird. Die abwechselnde Benutzung zweier Blaslanzen ist jedoch relativ aufwendig. Für eine wassergekühlte Blaslanze ist daher in der DE 19948 187 C2 vorgeschlagen worden, dass die von dem im wärmeleitenden Kontakt mit der Wandung des Lanzenkopfes angeordneten Temperaturfühlers erfasste Temperatur über die Wasserkühlung und/oder die Sauerstoffzufuhr und/oder die Zugabe von Zuschlagstoffen und/oder den Abstand des Lanzenkopfes von dem Schmelzbad geregelt wird.In order on the one hand to avoid the risk of water breakthrough of a blowing lance in the operating position and, on the other hand, to intensively cool the lance, DE 3543 836 C2 has proposed alternating with two in another method in which the blowing lance is immersed in the melt to use blowing lances that can be cooled with both cooling and cooling water. Of the two blowing lances, only the blowing lance that is currently in the blowing position and immersed in the melt is cooled with cooling air, while the blowing lance that is just outside the melt is intensively cooled with cooling water. The alternate use of two blowing lances is relatively complex. For a water-cooled blowing lance it has therefore been proposed in DE 19948 187 C2 that the temperature detected by the temperature sensor arranged in heat-conducting contact with the wall of the lance head via the water cooling and / or the oxygen supply and / or the addition of additives and / or the Distance of the lance head from the weld pool is regulated.
Der mit der Wasserkühlung von Blaslanzen verbundene Nachteil, dass es im Falle eines im Bereich des Kühlmantels der Lanze auftretenden Defektes (Bruch oder Riss) und eines damit verbundenen Eintritts von Wasser in den über der heißen Metallschmelze im Gefäß anstehenden Reaktionsraum zu einer schlagartigen und starken Expansion des freigesetzten Wassers als Wasserdampf kommt und einer möglichen Abspaltung von Wasserstoffgas (H2), ist damit jedoch nicht behoben. Insbesondere bei RH-Gefäßen, die nur ein geringes freies Gefäßvolumen besitzen, drohen bei Gefäßinnentemperaturen von bis zum 1800°C große Gefahren. Das durch die Lanze zirkulierende Kühlwasser mit einer Durchflussmenge von 30m3/h bis 50m3/h ist nämlich mit den nach dem Stand der Technik verfügbaren Vakuumpumpen nur zu einem geringen Teil absaugbar, wobei sich unter Zugrundelegung der vorstehend genannten Kühlwassermengen ein Verhältnis der Saugleitung zur im Durchbruchfall vorhandenen Dampfmenge zwischen 1 :20 bis 1 :100 beträgt. Apparativ bedingt bewirken in RH-Gefäßen die beiden in den Flüssigstahl eingetauchtenThe disadvantage associated with the water cooling of blowing lances is that in the event of a defect (break or tear) occurring in the area of the cooling jacket of the lance and an associated entry of water into the reaction space above the hot molten metal in the vessel, there is an abrupt and strong expansion of the released water comes as water vapor and a possible splitting off of hydrogen gas (H 2 ), however, is not eliminated. Especially with RH vessels that only have a small free vessel volume, there are great dangers at internal vessel temperatures of up to 1800 ° C. That through the lance circulating cooling water with a flow rate of 30m 3 / h to 50m 3 / h can only be extracted to a small extent with the vacuum pumps available according to the state of the art, whereby based on the above-mentioned amounts of cooling water there is a ratio of the suction line to the breakthrough amount of steam present is between 1:20 to 1: 100. In RH vessels, the two cause immersion in the molten steel
Tauchrohre einen siphonartigen Verschluss, die, da das Einbringen von Druckentlastungsöffnungen (Expansionsklappen) nicht möglich ist, unter Umständen als einzige Druckausgleichöffnungen dienen. Bei Verkettung unglücklicher Umstände ist bei einem Wassereinbruch durch eine defekte Sauerstofflanze in einem RH-Gefäß mit anschließender Expansion mit einem Expansionsenddruck von ca. 14x105 Pa zu rechnen. Bei einer Explosionsgeschwindigkeit von 2 x 107 Pa/s und einer Druckentlastung durch die vorhandenen Tauchrohre würden zwangsläufig große Flüssigstahlmengen in die Anlagenumgebung geschleudert.Immersion tubes a siphon-like closure, which, because the introduction of pressure relief openings (expansion flaps) is not possible, may serve as the only pressure compensation openings. In the event of a chain of unfortunate circumstances, a water ingress due to a defective oxygen lance in a RH vessel with subsequent expansion can result in an expansion pressure of approx. 14x10 5 Pa. At an explosion speed of 2 x 10 7 Pa / s and a pressure relief through the existing dip tubes, large quantities of liquid steel would inevitably be thrown into the system environment.
Es ist Aufgabe der vorliegenden Erfindung das Verfahren der eingangs genannten Art dahingehend weiter zu entwickeln, dass im Falle einer Kühlmantelleckage der Lanze die vorstehend beschriebenen Nachteile verhindert und demgemäß die Sicherheit des Bedienungspersonals erhöht und die gesamte Anlage geschützt sind. Entsprechendes gilt auch hinsichtlich der weiterzuentwickelnden Vorrichtung.It is an object of the present invention to further develop the method of the type mentioned above in such a way that, in the event of a cooling jacket leakage of the lance, the disadvantages described above are prevented and accordingly the safety of the operating personnel is increased and the entire system is protected. The same applies to the device to be further developed.
Die vorstehende Aufgabe wird durch das Verfahren nach Anspruch 1 gelöst. Die erste Maßnahme besteht darin, als Kühlmedium ein Gas zu verwenden, womit die bei einem Lanzendefekt freiwerdende Menge des Kühlmediums drastisch reduziert wird. Durchgeführte Berechnungen zeigen, dass bei Sauerstoffblasprozessen unter einem Druck von 1 bis 2x104 Pa in einem RH-Gefäß ein Kühldampfdurchfluss von 1000 kg/h und bei einem VCD-Betrieb unter einem Druck von 70 Pa bis 4x103 Pa ein Kühldampfdurchfluss von 360 kg/h ausreichen. Diese im Vergleich zur Wasserkühlung geringe Dampfmenge kann ohne weiteres bei einem Lanzenriss oder Lanzenbruch von der Vakuumpumpe abgesaugt werden ohne dass hierbei eine gefährliche Expansion innerhalb des Gefäßes entsteht. Das Verhältnis der Saugleistung der (Vakuum-) Pumpe zu der vorhandenen Dampfmenge beträgt ca. 2:1 bis 6:1 , womit eine Druckentwicklung mit Expansion durch die Tauchrohre wirksam vermieden wird. Eine weitere erfindungsgemäße Maßnahme besteht darin, dass die momentan zur Verfügung stehende Saugleistung der Pumpe die Durchflussmenge des als Kühlmedium verwendeten Gases regelt. Fällt die Saugleistung der Pumpe ab oder ist sie aus anderen Gründen gering bzw. geringer, so wird der Kühlgasdurchfluss entsprechend minimiert, um ein ausreichendes Verhältnis der Saugleistung der Pumpe zu der im Schadensfall abzusaugenden Kühlgasmenge > 1 zu gestalten.The above object is achieved by the method according to claim 1. The first measure is to use a gas as the cooling medium, which drastically reduces the amount of cooling medium released in the event of a lance defect. Calculations carried out show that in oxygen blowing processes under a pressure of 1 to 2x10 4 Pa in a RH vessel, a cooling steam flow of 1000 kg / h and in VCD operation under a pressure of 70 Pa to 4x10 3 Pa, a cooling steam flow of 360 kg / h h are sufficient. This small amount of steam compared to water cooling can be easily extracted from the vacuum pump in the event of a lance break or broken lance, without causing a dangerous one Expansion within the vessel occurs. The ratio of the suction power of the (vacuum) pump to the amount of steam available is approx. 2: 1 to 6: 1, which effectively prevents pressure development with expansion through the immersion tubes. Another measure according to the invention is that the suction power of the pump currently available regulates the flow rate of the gas used as the cooling medium. If the suction power of the pump drops or if it is low or low for other reasons, the cooling gas flow is minimized accordingly in order to create a sufficient ratio of the suction power of the pump to the amount of cooling gas to be extracted in the event of damage.
Weiterentwicklungen sind in den Ansprüchen 2 bis 8 beschrieben.Further developments are described in claims 2 to 8.
Nach einer Weiterentwicklung dieses Verfahrens regelt die momentan zur Verfügung gestehende Pumpensaugleistung zusätzlich den Lanzenvorschub, wobei vorzugsweise bei einer gemessenen Differenz zwischen der Menge des zur Lanzenkühlung zugeführten und des abgeführten Gases der Lanzenvorschub und die Gaszufuhr unmittelbar gestoppt werden. Die erste Maßnahme dient dazu, eine weitere Schädigung der Lanze durch starke Temperaturerhöhung beim Annähern an die Badspiegeloberfläche zu verhindern. Die andere Maßnahme bewirkt, dass nur die derzeit im Kühlmantel der Lanze befindliche Gasmenge ausströmen kann.According to a further development of this method, the pump suction power that is currently available additionally regulates the lance feed, the lance feed and the gas supply preferably being stopped immediately when there is a measured difference between the amount of gas supplied for lance cooling and the gas discharged. The first measure serves to prevent further damage to the lance by a sharp increase in temperature when approaching the surface of the bath level. The other measure means that only the amount of gas currently in the cooling jacket of the lance can flow out.
Vorzugsweise wird als Kühlmedium überhitzter Wasserdampf, insbesondere um 20°C bis 50°C überhitzter Wasserdampf verwendet. Für die Kühlung mit Wasserdampf gilt hinsichtlich der zu fördernden Volumenmenge entsprechendes wie für jedes andere nach dem Stand der Technik bekannte Kühlgas, hier insbesondere Stickstoff oder Argon. Aufgrund der geringeren Volumenmenge, die zur Kühlung erforderlich ist, kann auch die Breite der Kühlkanäle minimiert werden.Superheated steam, in particular steam overheated by 20 ° C. to 50 ° C., is preferably used as the cooling medium. For cooling with steam, the same applies to the volume to be conveyed as for any other cooling gas known from the prior art, in particular nitrogen or argon. Due to the smaller volume that is required for cooling, the width of the cooling channels can also be minimized.
Nach einer weiteren Ausgestaltung der Erfindung wird während des Sauerstoffauf- blasens das Kühlmedium in den inneren Kühlkanal eingeleitet und über den äußeren Kühlkanal abgeführt. Hierdurch ist gewährleistet, dass unmittelbar im Anschluss an die größte Wärmeaufnahme des als Kühlmedium eingeleiteten überhitzten Wasserdampfes im Bereich des äußeren Kühlkanals der Wasserdampf unmittelbar aus der Lanze wieder herausgeführt wird. Ferner ergibt sich der Vorteil, dass der über das innere Leitrohr eingespeiste Sauerstoff aufgrund der am inneren Leitrohr entlangstreichenden Wasserdampfmenge aufgeheizt und insoweit in bereits aufgeheiztem Zustand auf die im Gefäß befindliche Stahlschmelze geblasen wird. Damit ergibt sich ein geringerer Temperaturverlust des flüssigen Stahls, eine intensivere Kohlenstoff- Reaktion bei durch das Sauerstoffaufblasen vorzunehmenden Entkohlungen, eine intensivere Aluminium-Reaktion beim chemischen Heizen sowie ein verbesserter Sauerstoff-Wirkungsgrad und schließlich ein geringerer Sauerstoffverbrauch.According to a further embodiment of the invention, the cooling medium is introduced into the inner cooling channel and discharged via the outer cooling channel during the inflation of oxygen. This ensures that immediately after the greatest heat absorption of the superheated water vapor introduced as the cooling medium in the area of the outer cooling channel, the water vapor is led directly out of the lance. Furthermore, there is the advantage that the oxygen fed in via the inner guide tube is heated due to the amount of water vapor flowing along the inner guide tube and, in this respect, is blown onto the molten steel in the vessel in the already heated state. This results in a lower temperature loss of the liquid steel, a more intensive carbon reaction in the case of decarburization to be carried out by the oxygen blowing, a more intensive aluminum reaction in chemical heating and an improved oxygen efficiency and finally a lower oxygen consumption.
Für den Fall, dass die Lanze zwischen den Behandlungsphasen im VCD-Betrieb sich in der oberen Parkstellung befindet, ist weiterhin vorgesehen, dass der Wasserdampf in den äußeren Kühlkanal des Kühlmantels eingespeist und nach kopfendiger Umlenkung über den inneren Kühlkanal abgeführt wird. Sofern dabei die Umgebungstemperatur der Lanze im Vergleich mit dem Sauerstoffblasbetrieb geringer ist, wird durch diese Wasserdampfführung im Kühlmantel sichergestellt, dass der Wasserdampf zunächst den Bereich des äußeren Kühlkanals aufheizt, so dass die Abkühlung des Wasserdampfes und eine damit einhergehende Kondensatbildung im Bereich der Kühlkanäle vermieden wird.In the event that the lance is in the upper park position between the treatment phases in VCD operation, it is furthermore provided that the water vapor is fed into the outer cooling duct of the cooling jacket and is discharged via the inner cooling duct after a head-end deflection. If the ambient temperature of the lance is lower compared to the oxygen blowing mode, this water vapor routing in the cooling jacket ensures that the water vapor first heats up the area of the outer cooling channel, so that the cooling of the water vapor and the associated condensate formation in the area of the cooling channels is avoided ,
Zur Vermeidung einer Überhitzung des Kühlmantels und zur Optimierung der benötigten Kühlmedium-Menge bei den unterschiedlichen Lanzenstellungen und Betriebsbedingungen ist nach einer weiteren Ausgestaltung der Erfindung vorgesehen, dass die Menge des in den Kühlmantel einzuleitenden Kühlmediums, insbesondere Wasserdampfes, in Abhängigkeit der am Außenmantel der Lanze gemessenen Temperatur und/oder der momentanen Lanzenstellung geregelt wird.To avoid overheating of the cooling jacket and to optimize the amount of cooling medium required in the different lance positions and operating conditions, according to a further embodiment of the invention it is provided that the amount of the cooling medium to be introduced into the cooling jacket, in particular water vapor, as a function of that measured on the outer jacket of the lance Temperature and / or the current lance position is regulated.
Um zu vermeiden, dass im Kopfbereich der Lanze eine Kondensatbildung auftritt, wird die Lanze im Anfahrbetrieb zunächst ohne Kühlung vorgewärmt, vorzugsweise indem die Lanze in das bereits aufgeheizte metallurgische Gefäß gefahren wird und erst hiernach die Dampfkühlung eingeschaltet wird. Bei der Verwendung von Wasserdampf wird dieser vorzugsweise unter einem Druck von mindestens 7x105 Pa unter einer Temperatur von 160°C bis 210°C als Kühlmittel zugeführt.To prevent condensation from forming in the head area of the lance, the lance is initially preheated without cooling in start-up mode, preferably by moving the lance into the already heated metallurgical vessel and only then switching on the steam cooling. When using water vapor, it is preferably supplied as a coolant under a pressure of at least 7 × 10 5 Pa at a temperature of 160 ° C. to 210 ° C.
Die Aufgabe wird ferner durch die Vorrichtung nach Anspruch 9 gelöst, die erfindungsgemäß durch eine Regeleinheit zur Einstellung der Durchflussmenge des als Kühlmedium verwendeten Gases in Abhängigkeit der momentanen Lanzenstellung, der zur Verfügung stehenden Saugleistung der Vakuum-Pumpe und der Lanzenau- ßenwandtemperaturen die Durchflussmenge des Kühlmediums regelt, gekennzeichnet ist. Vorzugsweise wird über die Regeleinheit auch der Lanzenvorschub eingestellt.The object is further achieved by the device according to claim 9 which, according to the invention, the flow rate of the cooling medium by means of a control unit for adjusting the flow rate of the gas used as the cooling medium as a function of the current lance position, the available suction power of the vacuum pump and the lance outside wall temperatures regulates, is marked. The lance feed is preferably also set via the control unit.
Um die Temperaturbelastung der Lanze und damit die wesentlichen Verschleißeinflüsse besser erfassen zu können, sind am Blaslanzenkopf und am Blaslanzenmantel in längsaxial unterschiedlichen Abständen Messfühler angeordnet, die mit der Regeleinheit verbunden sind. Entsprechend der gemessenen Temperaturen kann die Durchflussmenge des Kühlmediums über die Regeleinheit vergrößert oder verkleinert werden. Um eine Kondensatbildung in den Kühlkanälen im Bereich des Lanzenkopfes zu vermeiden, ist vorzugsweise ein Kondensatabscheider vorgesehen, durch den das Kühlmedium vor Eintritt in den Kühlkanal der Blaslanze geführt wird.In order to be able to better grasp the temperature load of the lance and thus the essential influences of wear, sensors are connected to the blow lance head and on the blow lance jacket at longitudinally different distances, which are connected to the control unit. The flow rate of the cooling medium can be increased or decreased via the control unit according to the measured temperatures. In order to avoid condensate formation in the cooling channels in the area of the lance head, a condensate separator is preferably provided, through which the cooling medium is guided before entering the cooling channel of the blowing lance.
Eine verbesserte Wärmeabfuhr kann gewährleistet werden, wenn die zum Kühlkanal gerichtete innere Oberfläche des äußeren Kühlmantelrohres radial in den Kühlkanal vorstehende Rippen aufweist.Improved heat dissipation can be ensured if the inner surface of the outer cooling jacket tube facing the cooling channel has ribs projecting radially into the cooling channel.
Vorzugsweise wird die Lanzenmündung als Laval-Düse ausgebildet.The lance mouth is preferably designed as a Laval nozzle.
Weitere Vorteile der Erfindung sowie Ausführungsbeispiele sind in den Zeichnungen dargestellt. Es zeigen: Fig. 1 eine schematische Querschnittsansicht einer Blaslanze,Further advantages of the invention and exemplary embodiments are shown in the drawings. Show it: 1 is a schematic cross-sectional view of a blowing lance,
Fig. 2 die Lanze gemäß Fig. 1 in einem Schnitt nach Linie ll-ll in Fig. 1 ,1 in a section along line II-II in Fig. 1,
Fig. 3 eine Querschnittsansicht eines RH-Gefäßes mit eingefahrenerFig. 3 is a cross-sectional view of an RH vessel with the retracted
Lanze einschließlich Steuereinheit in einer schematischen Darstellung,Lance including control unit in a schematic representation,
Fig. 4 bis 7 jeweils Querschnitte von RH-Gefäßen mit unterschiedlichen Lanzenstellungen bzw. in unterschiedlichen Betriebszuständen und4 to 7 each show cross sections of RH vessels with different lance positions or in different operating states and
Fig. 8 bis 11 jeweils Zeit-Temperatur-Diagramme der unter Prozessbedingungen gemäß Fig. 4-7 errechneten Temperaturen.8 to 11 each show time-temperature diagrams of the temperatures calculated under process conditions according to FIGS. 4-7.
Die prinzipiell nach dem Stand der Technik bekannte Lanze 10 besitzt ein inneres Leitrohr 11 , das kopfendig in einer Düse 20, vorzugsweise einer Laval-Düse, als Lanzenmündung 12 endet. Über dieses Leitrohr 11 ist ein Gas, insbesondere Sauerstoff zuführbar. Das Leitrohr 11 ist von einem Kühlmantel 13 mit einem äußeren rohrförmigen Kühlmantelrohr 13a umgeben, dessen Innenraum durch ein eingesetztes Umlenkrohr 14 in einen das innere Leitrohr 11 umschließenden inneren Kühlkanal 15 und in einen äußeren Kühlkanal 16 unterteilt ist. Das Umlenkrohr 14 reicht im Kopfbereich der Lanze 10 nicht bis an die Düse 20 heran, so dass sich hier ein Umlenkbereich 17 als Verbindung zwischen dem inneren Kühlkanal 15 und dem äußeren Kühlkanal 16 ergibt. Jeder der beiden Kühlkanäle 15 und 16 ist an dem Fußende der Lanze an eine zugeordnete Öffnung 18 angeschlossen, die je nach gewünschter Kühlmediumflussrichtung als Einlass oder Auslass geschaltet wird.The lance 10, which is known in principle according to the prior art, has an inner guide tube 11 which ends at the head end in a nozzle 20, preferably a Laval nozzle, as a lance mouth 12. A gas, in particular oxygen, can be supplied via this guide tube 11. The guide tube 11 is surrounded by a cooling jacket 13 with an outer tubular cooling jacket tube 13a, the interior of which is divided by an inserted deflection tube 14 into an inner cooling channel 15 surrounding the inner guide tube 11 and an outer cooling channel 16. The deflection tube 14 does not reach in the head region of the lance 10 as far as the nozzle 20, so that here a deflection region 17 results as a connection between the inner cooling duct 15 and the outer cooling duct 16. Each of the two cooling channels 15 and 16 is connected at the foot end of the lance to an associated opening 18, which is switched as an inlet or an outlet depending on the desired cooling medium flow direction.
Wie in Figur 2 dargestellt, wird zur Verbesserung der Wärmeübertragung auf das den Kühlmantel durchströmende Kühlmedium die zum Kühlkanal 16 gerichtete innere Oberfläche des äußere Kühlmantelrohres 13a mit radial in den Kühlkanal 16 vorstehenden Rippen 19 ausgebildet. Zur Kühlung der Lanze in deren möglichen Betriebszuständen, auf die später noch eingegangen wird, wird über die Kühlkanäle 15 und 16 des Kühlmantels 13 ein Kühlgas, vorzugsweise um 20°C bis 50°C überhitzter Wasserdampf zugeführt.As shown in FIG. 2, in order to improve the heat transfer to the cooling medium flowing through the cooling jacket, the inner surface of the outer cooling jacket tube 13a facing the cooling channel 16 is formed with ribs 19 projecting radially into the cooling channel 16. To cool the lance in its possible operating states, which will be discussed later, a cooling gas, preferably overheated by 20 ° C. to 50 ° C., is supplied via the cooling channels 15 and 16 of the cooling jacket 13.
Zur Vermeidung von Kondensatbildungen in den Kühlkanälen des Kühlmantels der Lanze kann eine Kreuzschaltung hinsichtlich der Beaufschlagung des inneren Kühlkanals 15 bzw. des äußeren Kühlkanals 16 für die Zufuhr und Abfuhr des Wasserdampfes vorgesehen sein. So erfolgt beispielsweise bei höchster Lanzen-Wärmebelastung im Sauerstoffblasbetrieb die Zufuhr des Kühldampfes über die mit dem inneren Kühlkanal 15 verbundene Öffnung 18, so dass der Wasserdampf längst des inneren Leitrohres 11 bis zum Umlenkbereich 17 des Kühlmantels 13 strömt und von hier aus über den äußeren Kühlkanal 16, der über den rohrförmigen Kühlmantel 13 in Kontakt mit dem die Lanze umgebenden Reaktionsraum des Gefäßes steht, abgeführt wird. Befindet sich dagegen die Lanze zwischen den Behandlungsphasen einzelner Chargen in der oberen Parkstellung, so ist damit eine wesentlich geringere Wärmeeinwirkung auf den äußeren Kühlmantel 13 gegeben. In diesem Fall wird der Wasserdampf zunächst in den äußeren Kühlkanal 16 eingeblasen. Der Wasserdampf wird über den inneren Kühlkanal 15 und dessen kopfseitige Auslassöffnung 18 abgeführt. Entsprechendes gilt auch im Falle eines VCD-Betriebes.In order to avoid the formation of condensate in the cooling channels of the cooling jacket of the lance, a cross connection can be provided with regard to the loading of the inner cooling channel 15 or the outer cooling channel 16 for the supply and removal of the water vapor. For example, with the highest lance heat load in the oxygen blowing mode, the cooling steam is supplied via the opening 18 connected to the inner cooling duct 15, so that the water vapor flows long past the inner guide tube 11 to the deflection region 17 of the cooling jacket 13 and from here via the outer cooling duct 16, which is in contact with the reaction chamber of the vessel surrounding the lance via the tubular cooling jacket 13. If, on the other hand, the lance is in the upper parking position between the treatment phases of individual batches, the outer cooling jacket 13 is exposed to a significantly lower amount of heat. In this case, the water vapor is first blown into the outer cooling channel 16. The water vapor is discharged via the inner cooling duct 15 and its outlet opening 18 on the head side. The same applies in the case of VCD operation.
Das gleiche gilt im Anfahrbetrieb, d. h. dass bei einer kalten Lanze, die Lanze 10 zunächst ohne Dampfkühlung in das Gefäß 200 hineingefahren wird, um die Lanze vorzuwärmen. Die Dampfkühlung wird somit erst nach Vorwärmung der Lanze aufgeschaltet.The same applies in start-up mode, i. H. that in the case of a cold lance, the lance 10 is first moved into the vessel 200 without steam cooling in order to preheat the lance. Steam cooling is therefore only activated after the lance has been preheated.
Wie im einzelnen Figur 3 entnommen werden kann, wird das metallurgische Gefäß 200 mit seinen Tauchrohren 21 in die in eine Pfanne 23 eingefüllte Metallschmelze 29 eingeführt. Das Behandlungsgefäß 200 ist über einen Anschlussstutzen 22 mittels einer Pumpe 30 evakuierbar. Ebenso wie die Pumpe 30 ist auch der Lanzenantrieb 24 mit einer Regeleinheit 27 verbunden. Zur Feststellung der momentanen Lanzenstellung ist ein Encoder 25 vorgesehen. Ebenso sind am Lanzenmantel in unterschiedlichen längsaxialen Abständen sowie an der Lanzenmündung Temperaturfühler vorgesehen, von denen in Fig. 3 lediglich der Temperaturfühler 26 eingezeichnet ist. Die von diesem Fühler sowie den anderen Temperaturfühlern gemessenen Temperaturen werden ebenfalls der Regeleinheit 27 übermittelt. Die Regeleinheit 27 regelt in Abhängigkeit der Saugleistung der Pumpe 30 sowie der über die vorhandenen Temperaturfühler gemessenen Temperaturen über den Regler 28 die eingeführte Kühlgasmenge. Nicht im einzelnen dargestellt sind Durchflussmessgeräte, welche die eingeführte sowie die ausgeführte Kühldampfmenge feststellen und bei etwaigen Abweichungen, die Indiz für vorhandene Leckagen sind, ein Signal an die Regeleinheit 27 senden. Im Leckagefall wird die weitere Kühlgaseinleitung sowie der Lanzenvorschub gestoppt bzw. das Herausfahren der Lanze aus dem Gefäß 200 eingeleitet.As can be seen in detail in FIG. 3, the metallurgical vessel 200 with its dip tubes 21 is introduced into the metal melt 29 filled into a pan 23. The treatment vessel 200 can be evacuated via a connecting piece 22 by means of a pump 30. Like the pump 30, the lance drive 24 is also connected to a control unit 27. An encoder 25 is provided to determine the current lance position. Likewise, temperature sensors are provided on the lance jacket at different longitudinal axial distances and at the lance mouth, of which only the temperature sensor 26 is shown in FIG. 3. The temperatures measured by this sensor and the other temperature sensors are also transmitted to the control unit 27. The regulating unit 27 regulates the introduced amount of cooling gas via the regulator 28 as a function of the suction power of the pump 30 and the temperatures measured via the existing temperature sensors. Flow measuring devices are not shown in detail, which determine the quantity of cooling steam that has been introduced and the quantity that has been exported, and send a signal to the control unit 27 in the event of any deviations that are an indication of existing leaks. In the event of a leak, the further introduction of cooling gas and the lance feed are stopped or the lance is moved out of the vessel 200.
Figur 4 zeigt eine in das Gefäß 200 hineingeführte Lanze. Im dargestellten Zustand herrscht im Gefäßinneren Normaldruck, d. h. die Pumpe 30 ist nicht in Betrieb. Weder das Leitrohr 11 noch die Kühlkanäle 15 und 16 sind zu Beginn mit Gas beaufschlagt. Unter diesen Voraussetzungen beträgt in einem konkreten Anwendungsfall die Gefäßinnenraumtemperatur Tj 1500°C. Die hierbei innerhalb der ersten zwei Minuten an der Lanze gemessenen Temperaturen T*-, T2, T3 und T sind Fig. 8 zu entnehmen. Im konkreten Anwendungsfall wird an der Kopfseite der Lanze ein Temperaturanstieg bis 1060°C gemessen. Wird nach zwei Minuten die Dampfkühlung durch Einlassen von Wasserdampf mit einer Temperatur von 160°C unter 7x105 PA aufgeschaltet, sinken die an dem Lanzenkopf gemessenen Temperaturen T-i und T2 auf 260 bzw. 215°C ab. Die durch die Kühlkanäle 15 und 16 geförderte Dampfmenge beträgt dann ca.179 kg/h.FIG. 4 shows a lance inserted into the vessel 200. In the state shown there is normal pressure inside the vessel, ie the pump 30 is not in operation. Neither the guide tube 11 nor the cooling channels 15 and 16 are initially supplied with gas. Under these conditions, the vessel interior temperature Tj is 1500 ° C in a specific application. The temperatures T * -, T 2 , T 3 and T measured here on the lance within the first two minutes are shown in FIG. 8. In the specific application, a temperature rise of up to 1060 ° C is measured on the top of the lance. If steam cooling is switched on after two minutes by letting in steam at a temperature of 160 ° C below 7x10 5 PA, the temperatures Ti and T 2 measured on the lance head drop to 260 and 215 ° C, respectively. The amount of steam conveyed through the cooling channels 15 and 16 is then approx. 179 kg / h.
Figur 5 zeigt die Lanze 10 im Sauerstoffblasbetrieb. Im Gefäßinneren liegt ein Druck von 2x104 Pa und eine Temperatur Tj von 1800°C an. Durch das Leitrohr 11 wird Sauerstoff in einer Menge von z. B. 1000 NπfVh aufgeblasen. Zur Lanzenkühlung wird Wasserdampf unter einem Druck von 7x105 PA mit einer Temperatur von 160°C eingeführt. Die entsprechenden Temperaturverläufe T*ι, T2, T3, T und die Dampfaustrittstemperatur sind Fig. 9 zu entnehmen. Figur 6 zeigt eine in das Gefäß 200 eingeführte Lanze in einem VCD-Prozess, d. h. ohne Sauerstoffzufuhr über das Leitrohr 11. Der eingestellte Druck im Inneren des Gefäßes liegt zwischen 70 Pa und 4x103 Pa. Die Lanze wird mit Wasserdampf (7x105 Pa, 160°C) gekühlt. Die Gefäßinnentemperatur Tj beträgt 1200°C, die durch die Kühlkanäle 15 und 16 geförderte Dampfmenge 360 kg/h. Der Verlauf der Temperaturen Ti bis T4 sowie der Dampfaustrittstemperatur TDa ist Fig. 10 zu entnehmen. Die geförderte Dampfmenge betrug 360 kg/h.Figure 5 shows the lance 10 in the oxygen blowing mode. Inside the vessel there is a pressure of 2x10 4 Pa and a temperature Tj of 1800 ° C. Through the guide tube 11 oxygen in an amount of z. B. 1000 NπfVh inflated. For lance cooling, water vapor is introduced at a pressure of 7x10 5 PA at a temperature of 160 ° C. The corresponding temperature profiles T * ι, T 2 , T 3 , T and the steam outlet temperature are shown in Fig. 9. FIG. 6 shows a lance introduced into the vessel 200 in a VCD process, ie without oxygen supply via the guide tube 11. The pressure set inside the vessel is between 70 Pa and 4x10 3 Pa. The lance is cooled with water vapor (7x10 5 Pa, 160 ° C). The internal vessel temperature Tj is 1200 ° C, the amount of steam conveyed through the cooling channels 15 and 16 is 360 kg / h. The course of the temperatures Ti to T 4 and the steam outlet temperature T Da can be seen in FIG. 10. The amount of steam delivered was 360 kg / h.
Figur 7 zeigt die Lanze in einer oberen Parkposition. Das Gefäß 200 ist mit seinen Tauchstutzen in die Metallschmelze eingetaucht. Wie Fig. 11 zu entnehmen ist, steigen die gemessenen Lanzentemperaturen binnen kurzer Zeit von 20°C auf 160°C bzw. 200°C, obwohl die eingelassenen Wasserdampfdurchflussmenge 1464 kg/h beträgt.Figure 7 shows the lance in an upper parking position. The vessel 200 is immersed in the metal melt with its immersion nozzles. As can be seen in FIG. 11, the measured lance temperatures rise within a short time from 20 ° C. to 160 ° C. or 200 ° C., although the water vapor flow rate let in is 1464 kg / h.
Die jeweils vorstehend beschriebenen und untersuchten Betriebssituationen zeigen, dass bei einem Sauerstoffblasprozess, der unter einem Druck von 0,5 x104 bis 2 x 104 PA betrieben wird, ein Kühldampfdurchfluss von 1000 kg/h und bei einem VCD- Betrieb unter einem Vakuum von 70 Pa bis 4x103 Pa, ein Kühldampfdurchfluss von 360 kg/h einzusetzen ist. Im Vergleich zur Wasserkühlung liegen deutlich geringere Dampfmengen an, die ohne weiteres bei einem Lanzenriss oder Lanzenbruch von der Vakuumpumpe gefahrlos abgesaugt werden können, d. h. ohne dass hierbei eine gefährliche Expansion innerhalb des Gefäßes 200 entsteht.The operating situations described above and investigated in each case show that at a oxygen blowing, which is operated under a pressure of 0.5 x10 4 to 2 x 10 4 Pa, h a cooling steam flow rate of 1000 kg / and at a VCD operating under a vacuum of 70 Pa to 4x10 3 Pa, a cooling steam flow of 360 kg / h is to be used. Compared to water cooling, there are significantly smaller amounts of steam which can be easily sucked off safely by the vacuum pump in the event of a lance break or broken lance, ie without dangerous expansion occurring within the vessel 200.
Eine Differenzmessung der eingelassenen Dampfmengen und der austretenden Dampfmengen, insbesondere betreffend Durchfluss und Druckmessungen in den Zu- und Abführungsleitungen zeigen unmittelbar entstandene Lanzenleckagen an. Vorzugsweise wird zur Vermeidung einer Kondensatbildung bei einer Lanzenstellung in der oberen Position die Dampfdurchflussrichtung mit einer entsprechenden Ventilschaltung umgekehrt. A measurement of the difference between the amount of steam admitted and the amount of steam escaping, in particular with regard to the flow and pressure measurements in the supply and discharge lines, shows immediately occurring lance leakages. To prevent condensation from forming when the lance is in the upper position, the direction of steam flow is preferably reversed with a corresponding valve circuit.

Claims

Patentansprüche claims
Verfahren zur Kühlung von Blaslanzen, die zum Behandeln von in metallurgischen Gefäßen befindlichen flüssigen Metallschmelzen, insbesondere von einem gegebenenfalls in einem Vakuum ausgesetzten Stahl in RH-Gefäßen und/oder zum Heizen von Metallschmelzen, gegebenenfalls unter Vakuum, mittels einer Hubeinrichtung in das Gefäßinnere hinein- und herausführbar sind und die wenigstens ein inneres Leitrohr zum Führen von Gasen oder Feststoffen, insbesondere von Sauerstoff, mit einer kopfendigen Lanzenmündung zum Aufblasen des Gases auf die Metallschmelze besitzen und einen sich über ihre Länge erstreckenden Kühlmantel zur Durchführung eines Kühlmediums aufweisen, der als doppelwandiges, einen inneren und einen äußeren Kühlkanal aufweisenden Mantelrohr mit einem Umlenkrohr im Bereich des Kopfendes ausgebildet ist, wobei das metallurgische Gefäß zur Druckabsenkung mit einer Pumpe verbunden ist, dadurch gekennzeichnet, dass die momentan zur Verfügung stehende Saugleistung der Pumpe den maximalen Durchfluss des als Kühlmedium verwendeten Gases begrenztProcess for cooling blowing lances which are used to treat liquid metal melts in metallurgical vessels, in particular steel which may be exposed to a vacuum in RH vessels and / or to heat metal melts, optionally under vacuum, by means of a lifting device into the interior of the vessel. and can be led out and which have at least one inner guide tube for guiding gases or solids, in particular oxygen, with a head-end lance mouth for inflating the gas onto the molten metal and have a cooling jacket extending over their length for carrying out a cooling medium which is designed as a double-walled, an inner and an outer cooling duct jacket tube is formed with a deflecting tube in the region of the head end, the metallurgical vessel for reducing the pressure being connected to a pump, characterized in that the suction power currently available d he pump limits the maximum flow of the gas used as the cooling medium
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die momentan zur Verfügung stehende Pumpsaugleistung die maximal zulässige Kühlgasdurch- flussmenge, mittels Durchflussmessungen begrenzt und bei Überschreitung abschaltet.A method according to claim 1, characterized in that the currently available pump suction power limits the maximum permissible cooling gas flow rate by means of flow measurements and switches off when exceeded.
Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als Kühlmedium vorzugsweise überhitzter Wasserdampf, um 20°C bis 50°C überhitzt, verwendet wird.Method according to one of claims 1 or 2, characterized in that superheated steam, overheated by 20 ° C to 50 ° C, is used as the cooling medium.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass während des Sauerstoffblasens das Kühlmedium in den inneren Kühlkanal eingeführt und über den äußeren Kühlkanal abgeführt wird. Method according to one of claims 1 to 3, characterized in that the cooling medium is introduced into the inner cooling channel and discharged via the outer cooling channel during the oxygen blowing.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in der zwischen den Behandlungsphasen eingestellten oberen Parkstellung der Blaslanze sowie beim VCD-Betrieb das Kühlmedium in den äußeren Kühlkanal eingespeist und über den inneren Kühlkanal abgeführt wird.5. The method according to any one of claims 1 to 4, characterized in that in the upper parking position of the blowing lance set between the treatment phases and during VCD operation, the cooling medium is fed into the outer cooling duct and is discharged via the inner cooling duct.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Durchflussmenge des Kühlmediums in Abhängigkeit der am Außenmantel der Lanze gemessenen Temperatur und/oder der momentanen Lanzenstellung geregelt wird.6. The method according to any one of claims 1 to 5, characterized in that the flow rate of the cooling medium is controlled depending on the temperature measured on the outer jacket of the lance and / or the current lance position.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Lanze im Anfahrbetrieb zunächst ohne Kühlung vorgewärmt wird, vorzugsweise in dem die Lanze in das bereits aufgeheizte metallurgische Gefäß gefahren wird und erst hiernach die Dampfkühlung eingeschaltet wird.7. The method according to any one of claims 1 to 6, characterized in that the lance is initially preheated in the start-up mode without cooling, preferably by moving the lance into the already heated metallurgical vessel and only then switching on the steam cooling.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Wasserdampf unter einem Druck von mindestens 7x105 Pa unter einer Temperatur von 160°C bis 210°C als Kühlmittel zugeführt wird.8. The method according to any one of claims 1 to 7, characterized in that the water vapor is supplied as a coolant under a pressure of at least 7x10 5 Pa at a temperature of 160 ° C to 210 ° C.
9. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, mit einem metallurgischen Gefäß (200), in das mittels einer Hubeinrichtung (24) in das Gefäßinnere eine Blaslanze (10) hinein- und herausführbar ist, die wenigstens ein inneres Leitrohr (11 ) mit einer kopfendigen Lanzenmündung (12) und einem Kühlmantel (13) aufweist, der aus einem inneren Kühlkanal (15) und einem äußeren Kühlkanal (16) besteht, die über ein Umlenkrohr (14) in Verbindung stehen, und mit einer Pumpe (30) mittels der über einen Vaku- umanschluss (22) das metallurgische Gefäß (200) evakuierbar ist, gekennzeichnet durch eine Regeleinheit (27) zur Einstellung der Durchflussmenge des als Kühlmedium verwendeten Gases, wobei die Regeleinheit (27) in Abhängigkeit der momentanen Lanzenstellung, der Saugleistung der Vakuum- Pumpe und der gemessenen Lanzenaußenwandtemperaturen die Durchflussmenge des Kühlmediums regelt. 9. Device for performing the method according to one of claims 1 to 8, with a metallurgical vessel (200) into which a blowing lance (10) can be inserted and removed by means of a lifting device (24) into the interior of the vessel, said at least one inner guide tube (11) with a head-end lance mouth (12) and a cooling jacket (13), which consists of an inner cooling channel (15) and an outer cooling channel (16), which are connected via a deflection tube (14), and with a pump (30) by means of which the metallurgical vessel (200) can be evacuated via a vacuum connection (22), characterized by a control unit (27) for setting the flow rate of the gas used as cooling medium, the control unit (27) depending on the current lance position , the suction power of the vacuum pump and the measured lance outer wall temperatures regulate the flow rate of the cooling medium.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass Temperaturmessfühler am Blaslanzenkopf und am Blaslanzenmantel in längsaxialem Abstand angeordnet und mit der Regeleinheit (27) verbunden sind.10. The device according to claim 9, characterized in that temperature sensors are arranged on the blow lance head and on the blow lance jacket at a longitudinal axial distance and are connected to the control unit (27).
11. Vorrichtung nach einem der Ansprüche 9 oder 10, gekennzeichnet durch einen Kondensatabscheider, den das Kühlmedium vor Eintritt in den Kühlkanal (15, 16) durchläuft.11. The device according to one of claims 9 or 10, characterized by a condensate separator through which the cooling medium passes before entering the cooling channel (15, 16).
12. Vorrichtung nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass die zum Kühlkanal (16) gerichtete innere Oberfläche des äußeren Kühlmantelrohres (13a) radial in den Kühlkanal (16) vorstehende Rippen (19) aufweist.12. Device according to one of claims 9 to 11, characterized in that the inner surface of the outer cooling jacket tube (13a) facing the cooling channel (16) has ribs (19) projecting radially into the cooling channel (16).
13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Lanzenmündung als Laval-Düse (20) ausgebildet ist. 13. Device according to one of claims 9 to 12, characterized in that the lance mouth is designed as a Laval nozzle (20).
EP03779686A 2002-11-16 2003-11-12 Method and device for cooling blowing lances Expired - Lifetime EP1560937B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10253463 2002-11-16
DE10253463A DE10253463A1 (en) 2002-11-16 2002-11-16 Method and device for cooling blowing lances
PCT/DE2003/003741 WO2004046391A1 (en) 2002-11-16 2003-11-12 Method and device for cooling blowing lances

Publications (2)

Publication Number Publication Date
EP1560937A1 true EP1560937A1 (en) 2005-08-10
EP1560937B1 EP1560937B1 (en) 2006-03-08

Family

ID=32240102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03779686A Expired - Lifetime EP1560937B1 (en) 2002-11-16 2003-11-12 Method and device for cooling blowing lances

Country Status (10)

Country Link
EP (1) EP1560937B1 (en)
KR (1) KR101024824B1 (en)
CN (1) CN1320131C (en)
AT (1) ATE319862T1 (en)
AU (1) AU2003287860A1 (en)
BR (1) BR0316215B1 (en)
DE (2) DE10253463A1 (en)
RU (1) RU2333254C2 (en)
WO (1) WO2004046391A1 (en)
ZA (1) ZA200503850B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052851A (en) * 2010-12-04 2011-05-11 金川集团有限公司 Novel oxygen lance cooling method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034007A1 (en) * 2006-07-22 2008-02-07 Messer Group Gmbh Method and device for introducing a medium into a thermal treatment room
DE102008032523A1 (en) * 2008-07-10 2010-01-14 Sms Siemag Aktiengesellschaft Holder for an injector and method for its operation
AT508664B1 (en) * 2010-01-13 2011-03-15 Siemens Vai Metals Tech Gmbh PARTIAL GAS COOLED OXYGEN BLASTER
WO2012154714A1 (en) 2011-05-11 2012-11-15 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
US9644246B2 (en) 2011-05-11 2017-05-09 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
BRPI1102243B1 (en) 2011-05-20 2018-04-17 Magnesita Refratários S/A REFRIGERATED BOOM FOR INJECTION IN METALLURGICAL VASES
RU2503890C1 (en) * 2012-06-04 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) Cooling exhaust protective ventilation device
KR101450651B1 (en) * 2013-11-27 2014-10-15 우진 일렉트로나이트(주) Continuous Temperature Sensor and RH apparatus including it
CN107779545A (en) * 2017-10-25 2018-03-09 江阴市弘诺机械设备制造有限公司 A kind of electric furnace arrangement for producing steel wall lance
KR20200110119A (en) 2019-03-13 2020-09-23 심상룡 Lance Cooling Apparatus for Automatic temperature measurement in steel manufacturing process
CN115989325A (en) * 2020-09-08 2023-04-18 西门子股份公司 Laval nozzle and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3543836A1 (en) * 1985-12-12 1987-06-19 Clemens Karl Heinz Twin blowing lance installation for metallurgical treatments, with integral measuring lance installation
GB9023716D0 (en) * 1990-10-31 1990-12-12 Whellock John G Metallurgical apparatus and methods
US5377960A (en) * 1993-03-01 1995-01-03 Berry Metal Company Oxygen/carbon blowing lance assembly
KR100270113B1 (en) * 1996-10-08 2000-10-16 이구택 The low carbon steel making device
DE19755876C2 (en) * 1997-12-04 2000-02-24 Mannesmann Ag Blow lance for treating metallic melts and method for blowing in gases
EP0947587A1 (en) * 1998-03-09 1999-10-06 Volkwin Köster Blow lance and process for its cooling
DE19948187C2 (en) * 1999-10-06 2001-08-09 Thyssenkrupp Stahl Ag Process for the metallurgical treatment of a molten steel in a converter with oxygen blown onto the molten steel and oxygen blowing lance
CN2432219Y (en) * 2000-06-09 2001-05-30 北京科技大学 Multifunctional multiple blowing single nozzle refining furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004046391A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052851A (en) * 2010-12-04 2011-05-11 金川集团有限公司 Novel oxygen lance cooling method

Also Published As

Publication number Publication date
BR0316215B1 (en) 2011-11-16
WO2004046391A1 (en) 2004-06-03
BR0316215A (en) 2005-09-27
ZA200503850B (en) 2006-11-29
CN1320131C (en) 2007-06-06
RU2333254C2 (en) 2008-09-10
RU2005118555A (en) 2006-01-20
CN1708591A (en) 2005-12-14
DE50302627D1 (en) 2006-05-04
EP1560937B1 (en) 2006-03-08
DE10253463A1 (en) 2004-06-03
AU2003287860A1 (en) 2004-06-15
ATE319862T1 (en) 2006-03-15
KR20050059336A (en) 2005-06-17
KR101024824B1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
EP1560937B1 (en) Method and device for cooling blowing lances
EP0761345B1 (en) Hot chamber die casting machine
EP0524368A1 (en) Automatic apparatus for monitoring and control of a vacuum thermal treatment furnace
DE10156495C1 (en) Device for cooling reactor pressure vessel of boiling water reactor comprises differential pressure measuring tube with sides arranged outside of pressure vessel
KR20160133544A (en) Heat exchanger, reactor arrangement comprising said heat exchanger, and method for temperature control of a reactor
WO2019120967A1 (en) Temperature-controlled centrifuge
EP0761347A1 (en) Process for operating an inductor and inductor for carrying out this process
DE2726078C3 (en) Method and device for removing slag or the like. of molten metal
DE2629488A1 (en) APPARATUS FOR CONTINUOUS VULCANIZATION OF LONG EXTENDED PRODUCTS TO BE VULCANIZED
EP1140391B1 (en) Method and device for controlling and/or maintaining the temperature of a melt, preferably of a steel melt during continuous casting
EP2354259B1 (en) Vacuum circulation gas removal assembly with ignitor
EP3305390A1 (en) Water-bath evaporator and technical installation
WO1999046412A1 (en) Blasting lance with a gas/liquid mixing chamber and a method for the expansion cooling thereof
DE4427844C1 (en) Cooling arrangement for a deep shaft sludge oxidn. reactor
DE19603317A1 (en) Method for operating an inductor and inductor for carrying out the method
DE19508784C2 (en) Process for cleaning a deep well reactor and deep well reactor with electronic control
DE3130972A1 (en) "METHOD FOR PREHEATING AND HEATING EMPTY AOD CONVERTERS"
DE2228462A1 (en) DEVICE AND METHOD FOR MANUFACTURING LOW-CARBON, HIGH-CHROME-ALLOY STEELS
DE102021000636A1 (en) Device for degassing molten metal
DE1205572B (en) Vacuum annealing tower with an annealing and a cooling section for continuous heat treatment of endless metal strips
DE2824667C2 (en) Steam-heated heat exchanger, especially for controlling the heat transfer on the condensate side
AT245176B (en) Method and apparatus for casting molten metal in a vacuum
DE2456761A1 (en) DEVICE FOR TRANSPORTING SLAG IN A CONTINUOUSLY OPERATING PROCESSING PLANT
DE10252276C1 (en) Metallurgical melting apparatus used as an electric furnace comprises a refractory ceramic lining through which extends a nozzle arrangement for introducing a fluid into a molten metal
DE19815274A1 (en) Coolant line for the wall or roof cooling elements of an electric arc furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060308

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060308

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060308

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060308

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060308

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50302627

Country of ref document: DE

Date of ref document: 20060504

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060608

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060619

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060531

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060808

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060308

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061112

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060909

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060308

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101015

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20101111

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101111

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20111104

Year of fee payment: 9

Ref country code: SE

Payment date: 20111117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121214

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 319862

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121112

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121112

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121112

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 510

Country of ref document: SK

Effective date: 20121112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121112

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20151118

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50302627

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130