EP1533045B1 - Process and device for improved sorting of waste paper and cardboard - Google Patents

Process and device for improved sorting of waste paper and cardboard Download PDF

Info

Publication number
EP1533045B1
EP1533045B1 EP03450252A EP03450252A EP1533045B1 EP 1533045 B1 EP1533045 B1 EP 1533045B1 EP 03450252 A EP03450252 A EP 03450252A EP 03450252 A EP03450252 A EP 03450252A EP 1533045 B1 EP1533045 B1 EP 1533045B1
Authority
EP
European Patent Office
Prior art keywords
camera
objects
wavelength
flow
radiation emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03450252A
Other languages
German (de)
French (fr)
Other versions
EP1533045A1 (en
Inventor
Reinhold Huber
Rainer Eixelberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binder and Co AG
Original Assignee
Binder and Co AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34429662&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1533045(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Binder and Co AG filed Critical Binder and Co AG
Priority to EP03450252A priority Critical patent/EP1533045B1/en
Priority to DE50311157T priority patent/DE50311157D1/en
Priority to AT03450252T priority patent/ATE422172T1/en
Publication of EP1533045A1 publication Critical patent/EP1533045A1/en
Application granted granted Critical
Publication of EP1533045B1 publication Critical patent/EP1533045B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3422Sorting according to other particular properties according to optical properties, e.g. colour using video scanning devices, e.g. TV-cameras

Definitions

  • the invention relates to a method for detecting, detecting and sorting objects of a material flow, from waste paper and old cardboard according to the preamble of claim 1, and to an apparatus for detecting, detecting and sorting objects of a material flow according to the preamble of claim 7.
  • Thermally recyclable waste mixtures are often used for the energetic use of incineration. From the point of view of the sustainable use of valuable raw materials, it makes sense, however, to sort out recyclable materials from the corresponding waste material mixes and to supply them to recycling.
  • the use of recovered paper and cardboard in the paper industry has been known for a long time and is now being intensively pursued.
  • a procedure of this kind is about EP 1 048 363 A2 known.
  • the material stream to be sorted is moved in front of radiation sources and through the detection range of cameras along a rectilinear movement direction, wherein the cameras detect the wavelengths of the radiation emitted by the objects of the material flow and their intensity and serve to control subsequent sorting devices.
  • the wavelength of the radiation reflected by the objects is determined, an assignment of the object to a certain fraction is attempted, and in the event that it can not be unambiguously assigned to a fraction, then the intensity differences of the reflected radiation from different partial areas of the object are determined. If, for example, large differences in intensity of the reflected radiation from different object areas are evident, this indicates printed paper, while slight differences in intensity are more likely to be due to cardboard, since cardboard is generally hardly printed with small letters.
  • EP 1 048 363 A2 Furthermore, the idea is expressed to use a line scan camera, which images only a strip of an object, with a movement of the object a plurality of strips are detected sequentially, so as to obtain information about the entire object.
  • the reflected wavelength of such a stripe is integrally detected, but a differentiation with respect to the reflected wavelengths of different portions of a stripe is not made.
  • Claim 1 relates generically to a method for detecting, detecting and sorting objects of a material stream, in particular wood waste and wood fiber products such as paper and cardboard, in front of radiation sources and through the detection range of at least one camera, which serves to drive subsequent sorting devices, along a rectilinear movement direction is moved, wherein the detection range of the at least one camera stripe-shaped extending transversely to the direction of movement of the objects and the at least one camera detects the wavelengths of the radiation emitted by the objects of the material flow.
  • claim 1 provides that, for a plurality of regions of this strip-shaped section, the intensity of the radiation emitted by an object of the material flow is detected for several wavelengths using spatially resolved spectroscopy and the control of the subsequent sorting devices is performed by comparing the detected wavelength spectra with previously measured wavelength spectra, wherein only selected, discrete wavelength ranges are used to control the subsequent sorting devices.
  • the intensity for different subareas of an object strip is ascertained for the purpose of determining intensity differences, but the entire wavelength spectrum.
  • the control of the subsequent sorting devices is carried out by means of comparison of the detected, location-dependent wavelength spectra with previously measured wavelength spectra.
  • a classification of the object can be carried out.
  • Various materials can be predefined, taught and then assigned to material classes.
  • the movement of the objects in the conveying direction of the sorting belt and the rapid repetition of the measurement the result is a classification-capable image of the object to be recognized. This image is evaluated by algorithms and assigned according to the specifications of the user of a pass or a discharge fraction.
  • exhaust nozzles or suction nozzles are activated in time and place according to the sorting task. After activation of the discharge elements, the object is separated from the rest of the material flow via a separating edge, separating roller or separating belt.
  • a reduction in the amount of data to be evaluated is provided by using only selected, discrete wavelength ranges for driving the subsequent sorting devices.
  • the wavelengths of the radiation emitted by the radiation sources comprise a wavelength range from near infrared to ultraviolet light.
  • the material flow to be sorted additionally comprises plastics so as to make better use of the possibilities of the method according to the invention. Accordingly, according to claim 4 also provided that the material flow is sorted into more than two fractions, which are discharged along different transport directions.
  • the generation of evaluable wavelength spectra can be done in different ways. For example, it is provided according to claim 5 that the wavelength of the radiation emitted by the objects of the material flow is detected as a reflection spectrum. According to claim 6 it is provided that the wavelength of the radiation emitted by the objects of the material flow is detected as a transmission spectrum. The decision on the choice of one of these two methods will have to be made depending on the composition of the material flow.
  • Claim 7 finally provides a device for detecting, detecting and sorting objects of a material flow, from waste paper and old cardboard before, the radiation sources and at least one camera for controlling subsequent sorting devices comprises.
  • the detection range of the at least one camera, through which the flow of material is moved along a rectilinear direction of movement, is formed in a strip-shaped manner transversely to the direction of movement of the objects.
  • the at least one camera is a detector for the wavelengths of the radiation emitted by the objects of the material flow.
  • the at least one camera is a spatially resolving spectrometer which, for several regions of an object, which are each simultaneously within this strip-shaped section, measures the intensity of the Allow this object emitted radiation for several wavelengths.
  • an NIR area camera is used for this purpose.
  • Fig. 1 shows a schematic side view of an embodiment of a sorting plant section for sorting thermo energetically usable objects 7, 8, 9 such as wood waste, wood fiber products (eg waste paper, cardboard, fabric remnants), plastic waste (eg PET bottles, films) and mixed fractions of different quality and texture, at
  • different existing substances such as paper 8, cardboard 9 or plastics 7 are on at least one sorting belt 1 and transported along a direction of movement 2.
  • At least one region of the sorting belt surface is irradiated by at least one radiation source 3.
  • the radiation sources 3 can for this purpose also be provided with reflectors 4.
  • the radiation reflected by the individual objects 7, 8, 9 is detected by a camera 5 and the objects 7, 8, 9 are assigned to a specific material class or fraction 11, 12 on the basis of the determined data, as will be explained in more detail below. Due to this assignment, sorting devices 10, 14, such as suction or blowing nozzles, are activated.
  • sorting devices 10, 14, such as suction or blowing nozzles, are activated.
  • the physical separation of the objects 7, 8, 9 can in this case be supported by apparatus measures such as separating rollers, separating strips or separating edges 13.
  • Fig. 2 shows an alternative embodiment, which unlike the in Fig. 1 embodiment shown allows separation of the mixed material into three fractions. This is achieved, for example, by providing a further conveying device 15, to which approximately all cardboard boxes 9 are lifted by means of a first sorting device 10, 14 and are transported in the direction 16 to a collecting location. By means of a second sorting device 10, 14, the further fractions, such as paper 8 and plastic 7 are subsequently separated.
  • the separation of the different fractions by means of a suitable arrangement of suction and blowing nozzles or other conveyors can be made in many ways, however, are a precise and reliable control of the sorting devices 10, 14 necessary, which in turn requires a rapid and reliable assignment of the objects to the different fractions 11 or 12.
  • the method according to the invention is capable of this.
  • transmissive spectrometer systems are used which essentially comprise an objective 17, an imaging spectrograph 18 and a matrix detector 19 (eg a CCD camera) (see Fig. 4 ).
  • a matrix detector 19 eg a CCD camera
  • the measuring head has to be moved over the object or the object under the measuring head has to be moved in different directions in order to obtain locally differentiated spectral information.
  • spatially resolved spectrometer systems also referred to here as camera 5 or spectrometer 5, are measuring devices which permit simultaneous recording of spectral and local information of an object surface.
  • the detection area 6 of the camera 5 is preferably in the form of a line or strip. This is achieved in a known manner by suitable arrangement of lenses 17, which image the radiation emitted by the object 7, 8, 9 onto the input slot of the spectrograph 18.
  • the length of the imaged strip can vary from a few millimeters to several meters, using either commercially available microscope objectives or conventional camera lenses.
  • the spatial resolution varies accordingly from micrometers for measurements in the millimeter range up to several millimeters for measurements in the meter range.
  • the spectral image is captured by a monochrome CCD camera 19. In this case, in a first dimension, the location information defined by the input slot, ie the position information within a certain strip, imaged and in a second dimension of the wavelength range to be examined.
  • the location-dependent intensities for different wavelengths can thus be represented as a three-dimensional image.
  • Each pixel corresponds to a particular location on the imaged strip of the object 7, 8, 9 and an intensity at a particular wavelength.
  • the spatial axis is placed in the x-direction and the spectral axis in the y-direction of the detector 19.
  • the spatial resolution is then determined by the number of pixels in the x-direction, while the number of wavelength bands is determined by the number of pixels in the y-direction.
  • the matrix detector 19 usually a CCD camera, preferably has a uniform sensitivity over the widest possible wavelength range.
  • CCD cameras 19 having such a characteristic at least in the visible wavelength range are commercially available.
  • NIR near infrared
  • This technology works up to a wavelength of 2500 nm. In these cases, a NIR surface camera is the preferred instrument.
  • an FPA Fluor Plane Array
  • InGaAs and thermoelectric cooling can be used.
  • Converting analog to digital data can be accomplished using conventional 8-bit digitizing PC frame grabber cards, but for more sophisticated sorting tasks, using 12- to 16-bit resolutions is beneficial. Alternatively, a conversion of the analog measurement signal into a digital signal can take place, and sometimes also PC frame grabber cards can be dispensed with.
  • the amount of data collected can sometimes be considerable, depending on the desired spatial and spectral resolution. It will therefore be to optimize the speed of data processing, which can be achieved by appropriate data processing and special evaluation algorithms. However, it proves to be sufficient in practice not to digitize and evaluate the entire spectral information at each pixel of the measured object strip, but to limit itself to selected wavelength ranges. As a result, the scope of the data to be processed can be significantly reduced and the conveying speed of the sorting belt 1 can be increased. If, for example, the number of coordinate points of the matrix detector 19 to be evaluated is reduced by a factor of 10, then a reduction of the data processing times by a factor of 100 usually appears.
  • the light emitted by the surface of the objects 7, 8, 9 is analyzed as a function of location and wavelength, a higher irradiation intensity is generally necessary than in the case of RGB cameras, for example.
  • the required irradiation intensity with the aid of the radiation sources 3 depends in particular on the properties of the camera optics, the camera sensitivity, the spectral resolution, the integration time (ie the measuring time of a strip which depends on the conveying speed of the sorting belt 1), the f-number of the objective 17 and of the spectrograph 18 and the spatial dimensions of the detection area 6 from. It is important to ensure the most uniform possible illumination of the detection area 6. This can be achieved with the help of fiber optic lamps or tungsten halogen lamps with linear parabolic or elliptical reflectors 4 with downstream cylindrical lenses.
  • the illumination by means of the radiation sources 3 should have a stable (and "flat") emission spectrum over the entire wavelength range of the emitted radiation. Since the sensitivity in the blue wavelength range decreases with many commercially available CCD cameras, the illumination by means of the radiation sources 3 can also ensure that the intensity is stronger in the blue wavelength range.
  • Halogen lamps provide a very stable spectrum and have a relatively long lifetime, but have low emission in the blue wavelength range. With the aid of a red filter, however, the emission intensity over the entire wavelength range can be somewhat compensated.
  • Xenon lamps produce a very flat visible spectrum but are more unstable than halogen lamps and also require a high voltage supply.
  • Xenon flash lamps can as well be used. They have a long life and are high power radiation sources, but variations in intensity of 1-2% and spectral instabilities in the flashes can occur.
  • a classification of the measuring object 7, 8, 9 can be carried out.
  • the classifiers are capable of learning, i. Various materials can be predefined, taught in and then assigned to material classes.
  • This image is evaluated by algorithms and accordingly assigned to the user's specifications of a run or a discharge fraction. After the assignment, at the end of the sorting belt 1 time and place correct exhaust nozzles or suction nozzles 10, 14 are activated depending on the sorting task. After activation of the discharge organs, the object is separated by a separating roller, separating belt or separating edge 13 from the other material flow.
  • the method according to the invention thus represents a comparatively simple process solution, in which an individual separation device with radiation source, evaluation unit and discharge or blow-out device need not be provided for each individual separation phase (paper board, plastic paper, plastic 1 plastic 2, etc.) , Instead, sufficient data is collected via spatially resolved spectroscopy to ensure reliable classification. It is also possible to determine 3 unique material properties when irradiated by only one radiation source, after which the individual fractions 11, 12 can be sorted out. So can also about the groupage Appearing foreign substances such as foils, laminated cardboard, composite boards, multi-layer cardboard boxes with metal or plastic films recognized us to be sorted out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Sorting Of Articles (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A waste recycling assembly recovers wood and paper products for use as incinerator fuel. Waste products are transported by a conveyer belt under a halogen lamp where they are registered by a CCD camera coupled through a lens and spectrograph. The camera registers lines transverse to the direction of refuse travel. The camera registered selected wavelengths coinciding with the target products. The target residues are subsequently discharged by the belt into a sorting assembly operating on the basis of the wavelengths detected by the CCD camera. The lamp emits light in the wavelength from infrared to ultra-violet. Residues including plastics are separated into two fractions. Also claimed is a commensurate assembly with a CCD or NIR camera.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Erfassen, Erkennen und Sortieren von Objekten eines Materialstromes, aus Altpapier und Altkarton gemäß dem Oberbegriff von Anspruch 1, sowie eine Vorrichtung zum Erfassen, Erkennen und Sortieren von Objekten eines Materialstromes gemäß dem Oberbegriff von Anspruch 7.The invention relates to a method for detecting, detecting and sorting objects of a material flow, from waste paper and old cardboard according to the preamble of claim 1, and to an apparatus for detecting, detecting and sorting objects of a material flow according to the preamble of claim 7.

Thermisch verwertbare Altstoffgemische werden häufig zur energetischen Nutzung mittels Verbrennen herangezogen. Unter dem Aspekt der nachhaltigen Nutzung von wertvollen Rohstoffen ist es aber sinnvoll, aus entsprechenden Altstoffgemischen Wertstoffe sauber auszusortieren und diese einer Verwendung als Recyclingware zuzuführen. Seit langer Zeit ist die Verwendung von Altpapier und -karton in der Papierindustrie bekannt und wird mittlerweile intensiv durchgeführt.Thermally recyclable waste mixtures are often used for the energetic use of incineration. From the point of view of the sustainable use of valuable raw materials, it makes sense, however, to sort out recyclable materials from the corresponding waste material mixes and to supply them to recycling. The use of recovered paper and cardboard in the paper industry has been known for a long time and is now being intensively pursued.

Bei der Sammlung von Altpapier und -karton werden diese beiden Hauptkomponenten gemischt gesammelt. Jedoch lässt es sich nicht vermeiden, dass auch anderes Material, das nicht unbedingt sofort und einfach als Fremdmaterial zu erkennen ist, in die Sammlung einfließt. Solches Fremdmaterial (z.B. Folien allgemeiner Art oder mit Kunststoff beschichtete Papiere) kann zur Papiererzeugung aber nicht verwendet werden und ist daher vorher meist händisch auszusortieren. Des weiteren ist für die Erzeugung von höher- und hochwertigem Papier die Kartonfraktion der Sammlung nicht geeignet, diese kann nur zur Erzeugung von minderwertigen Papieren bzw. Karton verwendet werden. Um eine sinnvolle Nutzung der gesammelten Papier- und Kartonmenge zu ermöglichen, ist daher auch eine Trennung der Sammelmenge in diese beiden Fraktionen sinnvoll und wirtschaftlich.When collecting waste paper and cardboard, these two main components are mixed. However, it is inevitable that other material, which is not necessarily immediately and easily recognizable as foreign material, flows into the collection. However, such foreign material (eg films of general or plastic-coated papers) can not be used for paper production and therefore has to be sorted out manually by hand. Furthermore, for the production of higher and high quality paper, the cardboard fraction of the collection is not suitable, this can only be used to produce inferior papers or cardboard. In order to allow a meaningful use of the amount of paper and cardboard collected, therefore, a separation of the amount collected in these two fractions makes sense and economically.

Verfahren, die aus dem Sammelgut der Papiersammlung die Papier- von der Kartonfraktion trennen, sind bereits bekannt und beruhen im wesentlichen auf optoelektronischen Systemen, die mittels Farb- und/oder Strukturerkennung (unter Verwendung von sichtbarem Licht) diese beiden Fraktionen trennen. Dies geschieht dadurch, dass die einzelnen Teile des gemischten Materialstromes einschichtig auf einem Sortierband aufgelegt werden, diese durch Strahlungsquellen (vorzugsweise Lichtquellen) bestrahlt und die reflektierte Strahlung von Auswerteeinheiten aufgenommen und mit Referenzwerten verglichen werden, die ihrerseits diese Stücke dann der jeweiligen Fraktion zuordnen, worauf diese dann durch Aufnehmer erfasst oder durch Druckluftblas- oder Saugdüsen einem vorbestimmten Ablageplatz zugeführt werden.Methods which separate the paper from the cardboard fraction from the collection of the paper collection are already known and are based essentially on optoelectronic systems which separate these two fractions by means of color and / or structure recognition (using visible light). This is done by the individual parts of the mixed material flow are placed in a single layer on a sorting belt, irradiated by radiation sources (preferably light sources) and the reflected radiation is received by evaluation and compared with reference values, which then assign these pieces of the respective fraction, whereupon These are then detected by transducers or supplied by Druckluftblas- or suction nozzles to a predetermined storage space.

Ein Verfahren dieser Art ist etwa aus EP 1 048 363 A2 bekannt. Hierbei wird der zu sortierende Materialstrom vor Strahlungsquellen und durch den Erfassungsbereich von Kameras entlang einer geradlinigen Bewegungsrichtung bewegt, wobei die Kameras die Wellenlängen der von den Objekten des Materialstromes emittierten Strahlung sowie deren Intensität detektieren und zur Ansteuerung von nachfolgenden Sortiereinrichtungen dienen. Dabei wird vorgeschlagen, dass zuerst die Wellenlänge der von den Objekten reflektierten Strahlung ermittelt wird, eine Zuordnung des Objekts zu einer bestimmten Fraktion versucht wird, und im Fall, dass es keiner Fraktion eindeutig zugeordnet werden kann, anschließend die Intensitätsunterschiede der reflektierten Strahlung von unterschiedlichen Teilbereichen des Objektes ermittelt werden. Zeigen sich dabei etwa große Intensitätsunterschiede der reflektierten Strahlung von unterschiedlichen Objektbereichen, so deutet dies auf bedrucktes Papier hin, während geringe Intensitätsunterschiede eher auf Kartonagen schließen lassen, da Karton im allgemeinen kaum mit kleiner Schrift bedruckt ist.A procedure of this kind is about EP 1 048 363 A2 known. In this case, the material stream to be sorted is moved in front of radiation sources and through the detection range of cameras along a rectilinear movement direction, wherein the cameras detect the wavelengths of the radiation emitted by the objects of the material flow and their intensity and serve to control subsequent sorting devices. It is proposed that first the wavelength of the radiation reflected by the objects is determined, an assignment of the object to a certain fraction is attempted, and in the event that it can not be unambiguously assigned to a fraction, then the intensity differences of the reflected radiation from different partial areas of the object are determined. If, for example, large differences in intensity of the reflected radiation from different object areas are evident, this indicates printed paper, while slight differences in intensity are more likely to be due to cardboard, since cardboard is generally hardly printed with small letters.

In EP 1 048 363 A2 wird des weiteren die Idee geäußert, eine Zeilenkamera einzusetzen, die lediglich einen Streifen eines Objekts abbildet, wobei bei einer Bewegung des Objekts mehrere Streifen nacheinander erfasst werden, um so Aufschluss über das gesamte Objekt zu erhalten. Insbesondere wird die reflektierte Wellenlänge eines solchen Streifens integral erfasst, eine Differenzierung hinsichtlich der reflektierten Wellenlängen unterschiedlicher Bereiche eines Streifens jedoch nicht vorgenommen.In EP 1 048 363 A2 Furthermore, the idea is expressed to use a line scan camera, which images only a strip of an object, with a movement of the object a plurality of strips are detected sequentially, so as to obtain information about the entire object. In particular, the reflected wavelength of such a stripe is integrally detected, but a differentiation with respect to the reflected wavelengths of different portions of a stripe is not made.

Dass bei einer solchen Betrachtung etwa bunt bedruckte oder reinweiße Kartonagen der Papierfraktion zugeordnet und offensichtlich falsch ausgeschieden werden, mindert den Sortiererfolg und damit die Güte der sortierten Fraktionen. Auch können eventuell im Sammelgut aufscheinende Fremdstoffe (Folien, kaschierte Kartonagen, Verbundkartons, mehrschichtige Kartonagen mit Metall- oder Kunststofffolien) nicht erkannt und aussortiert werden.The fact that in such a view, for example, colorfully printed or pure white cardboard boxes are assigned to the paper fraction and obviously wrongly eliminated, reduces the sorting success and thus the quality of the sorted fractions. In addition, any foreign matter (foils, laminated cardboard boxes, composite cartons, multilayer cartons with metal or plastic foils) that may appear in the groupage can not be identified and sorted out.

Durch geändertes Konsumverhalten und Rationalisierung bei der Sammlung ist des weiteren eine wesentliche Zunahme von Störstoffen zu beobachten. Eine wirtschaftliche Aufbereitung der Sammelware unter Berücksichtigung der erforderlichen Endgüte der einzelnen sortierten Fraktionen wird daher immer schwieriger. So sind zur Zeit durch die Unzulänglichkeit der verfügbaren System komplexe Prozesslösungen erforderlich, etwa der Einsatz mehrerer Kameras.Due to changed consumer behavior and rationalization in the collection, a further substantial increase of contaminants can be observed. An economic processing of the collected goods, taking into account the required final quality of the individual sorted fractions is therefore increasingly difficult. For example, the inadequacy of the available systems requires complex process solutions, such as the use of multiple cameras.

Es ist daher Ziel der Erfindung, die Komplexität herkömmlicher Prozesslösungen zu vermeiden, um so etwa nicht für jede einzelne Trennphase (Papier-Karton, Kunststoff-Papier, Kunststoff 1-Kunststoff 2 etc.) eine eigene Trenneinrichtung mit Strahlungsquelle, Auswerteeinheit und Austrags- oder Ausblaseinrichtung vorsehen zu müssen. Des weiteren ist es Ziel der Erfindung, Erkenn- und Auswerteverfahren zu schaffen, die es ermöglichen, bei Bestrahlung durch nur eine Strahlungsquelle eindeutige Materialeigenschaften festzustellen, nach denen die einzelnen Fraktionen aussortiert werden können.It is therefore an object of the invention to avoid the complexity of conventional process solutions, so as not for each separation phase (paper board, plastic paper, plastic 1 plastic 2, etc.) its own separation device with radiation source, evaluation and discharge or To provide blowout device. Furthermore, it is the object of the invention to provide recognition and evaluation methods, which, when irradiated by only one radiation source, make it possible to establish definite material properties according to which the individual fractions can be sorted out.

Diese Ziele werden durch die kennzeichnenden Merkmale von Anspruch 1 erreicht. Anspruch 1 bezieht sich gattungsgemäß auf ein Verfahren zum Erfassen, Erkennen und Sortieren von Objekten eines Materialstromes, insbesondere Holzabfälle und Holzfaserprodukte wie Papier und Kartonagen, der vor Strahlungsquellen und durch den Erfassungsbereich von mindestens einer Kamera, die zur Ansteuerung von nachfolgenden Sortiereinrichtungen dient, entlang einer geradlinigen Bewegungsrichtung bewegt wird, wobei sich der Erfassungsbereich der mindestens einen Kamera streifenförmig quer zur Bewegungsrichtung der Objekte erstreckt und die mindestens eine Kamera die Wellenlängen der von den Objekten des Materialstromes emittierten Strahlung detektiert. Erfindungsgemäß sieht Anspruch 1 vor, dass für mehrere Bereiche dieses streifenförmigen Abschnittes die Intensität der von einem Objekt des Materialstromes emittierten Strahlung für mehrere Wellenlängen mithilfe ortsauflösender Spektroskopie detektiert wird und die Ansteuerung der nachfolgenden Sortiereinrichtungen mittels Vergleiches der detektierten Wellenlängenspektren mit zuvor gemessenen Wellenlängenspektren vorgenommen wird, wobei lediglich ausgewählte, diskrete Wellenlängenbereiche zur Ansteuerung der nachfolgenden Sortiereinrichtungen herangezogen werden. Im Unterschied zu bekannten Verfahren wird somit nicht lediglich die Intensität für unterschiedliche Teilbereiche eines Objektstreifens zwecks Ermittlung von Intensitätsdifferenzen erhoben, sondern das gesamte Wellenlängenspektrum. Durch den Einsatz ortsauflösendr Spektroskopie, wird eine größere Datenvielfalt geschaffen, die letztendlich eine genauere Zuordnung zu unterschiedlichen Objektfraktionen ermöglicht, aber auch eine größere Vielfalt des zu trennenden Materialstromes zulässt.These objects are achieved by the characterizing features of claim 1. Claim 1 relates generically to a method for detecting, detecting and sorting objects of a material stream, in particular wood waste and wood fiber products such as paper and cardboard, in front of radiation sources and through the detection range of at least one camera, which serves to drive subsequent sorting devices, along a rectilinear movement direction is moved, wherein the detection range of the at least one camera stripe-shaped extending transversely to the direction of movement of the objects and the at least one camera detects the wavelengths of the radiation emitted by the objects of the material flow. According to the invention, claim 1 provides that, for a plurality of regions of this strip-shaped section, the intensity of the radiation emitted by an object of the material flow is detected for several wavelengths using spatially resolved spectroscopy and the control of the subsequent sorting devices is performed by comparing the detected wavelength spectra with previously measured wavelength spectra, wherein only selected, discrete wavelength ranges are used to control the subsequent sorting devices. In contrast to known methods, therefore, not only the intensity for different subareas of an object strip is ascertained for the purpose of determining intensity differences, but the entire wavelength spectrum. Through the use of spatially resolved spectroscopy, a larger variety of data is created, which ultimately allows a more accurate assignment to different object fractions, but also allows a greater diversity of the material flow to be separated.

Erfindungsgemäss ist vorgesehen, dass die Ansteuerung der nachfolgenden Sortiereinrichtungen mittels Vergleiches der detektierten, ortsabhängigen Wellenlängenspektren mit zuvor gemessenen Wellenlängenspektren vorgenommen wird. Anhand dieser Vergleiche der erhobenen ortsabhängigen, spektralen Reflektionsintensitäten des vermessenen Objekts mit bereits zuvor erhobenen Produktproben kann eine Klassifizierung des Objektes durchgeführt werden. Dabei können verschiedenste Materialien vordefiniert, angelernt und anschließend Materialklassen zugeordnet werden. Anhand der klassifizierten Messstreifen, der Fortbewegung der Objekte in Förderrichtung des Sortierbandes und der raschen Wiederholung der Messung ergibt sich so ein klassifikationsfähiges Bild des zu erkennenden Objektes. Dieses Bild wird über Algorithmen ausgewertet und entsprechend den Vorgaben des Benutzers einer Durchlauf- oder aber einer Austragsfraktion zugeordnet. Nach der Zuordnung werden am Ende des Sortierbandes zeit- und ortsrichtig Ausblasdüsen bzw. Saugdüsen je nach Sortieraufgabe aktiviert. Nach einer Aktivierung der Austragsorgane wird das Objekt über eine Trennkante, Trennrolle oder ein Trennband vom übrigen Materialstrom getrennt.According to the invention, it is provided that the control of the subsequent sorting devices is carried out by means of comparison of the detected, location-dependent wavelength spectra with previously measured wavelength spectra. On the basis of these comparisons of the ascertained location-dependent, spectral reflection intensities of the measured object with previously ascertained product samples, a classification of the object can be carried out. Various materials can be predefined, taught and then assigned to material classes. On the basis of the classified measuring strips, the movement of the objects in the conveying direction of the sorting belt and the rapid repetition of the measurement, the result is a classification-capable image of the object to be recognized. This image is evaluated by algorithms and assigned according to the specifications of the user of a pass or a discharge fraction. After the assignment, at the end of the sorting belt, exhaust nozzles or suction nozzles are activated in time and place according to the sorting task. After activation of the discharge elements, the object is separated from the rest of the material flow via a separating edge, separating roller or separating belt.

Erfindungsgemäss ist eine Reduzierung der auszuwertenden Datenmenge vorgesehen, indem lediglich ausgewählte, diskrete Wellenlängenbereiche zur Ansteuerung der nachfolgenden Sortiereinrichtungen herangezogen werden.According to the invention, a reduction in the amount of data to be evaluated is provided by using only selected, discrete wavelength ranges for driving the subsequent sorting devices.

Des weiteren erweist es sich oft als notwendig, zur Generierung von Reflektionsspektren, die für eine weitere Klassifizierung besonders vorteilhaft sind, die Objekte mit elektromagnetischer Strahlung in bestimmten Wellenlängenbereichen zu bestrahlen. Gemäß Anspruch 4 ist daher vorgesehen, dass die Wellenlängen der von den Strahlungsquellen emittierten Strahlung einen Wellenlängenbereich von nahem Infrarot bis ultraviolettem Licht umfassen.Furthermore, it often proves necessary to irradiate the objects with electromagnetic radiation in certain wavelength ranges to generate reflection spectra, which are particularly advantageous for further classification. It is therefore provided according to claim 4 that the wavelengths of the radiation emitted by the radiation sources comprise a wavelength range from near infrared to ultraviolet light.

Aufgrund einer ortsauflösenden Spektroskopie gemäß Anspruch 1 und der so geschaffenen, größeren Datenvielfalt kann letztendlich auch die Sortierung einer größeren Vielfalt des zu trennenden Materialstromes bewältigt werden. Gemäß Anspruch 3 ist daher vorgesehen, dass der zu sortierende Materialstrom zusätzlich Kunststoffe umfasst, um so die Möglichkeiten des erfindungsgemäßen Verfahrens besser auszunutzen. Dem entsprechend ist gemäß Anspruch 4 auch vorgesehen, dass der Materialstrom in mehr als zwei Fraktionen sortiert wird, die entlang unterschiedlicher Transportrichtungen ausgetragen werden.Due to a spatially resolving spectroscopy according to claim 1 and the thus created, greater data diversity ultimately the sorting of a greater variety of material to be separated flow can be handled. According to claim 3, it is therefore provided that the material flow to be sorted additionally comprises plastics so as to make better use of the possibilities of the method according to the invention. Accordingly, according to claim 4 also provided that the material flow is sorted into more than two fractions, which are discharged along different transport directions.

Die Generierung auswertefähiger Wellenlängenspektren kann auf unterschiedliche Art erfolgen. So ist etwa gemäß Anspruch 5 vorgesehen, dass die Wellenlänge der von den Objekten des Materialstromes emittierten Strahlung als Reflexionsspektrum detektiert wird. Gemäß Anspruch 6 ist vorgesehen, dass die Wellenlänge der von den Objekten des Materialstromes emittierten Strahlung als Transmissionsspektrum detektiert wird. Die Entscheidung über die Wahl einer dieser beiden Methoden wird je nach Zusammensetzung des Materialstromes zu treffen sein.The generation of evaluable wavelength spectra can be done in different ways. For example, it is provided according to claim 5 that the wavelength of the radiation emitted by the objects of the material flow is detected as a reflection spectrum. According to claim 6 it is provided that the wavelength of the radiation emitted by the objects of the material flow is detected as a transmission spectrum. The decision on the choice of one of these two methods will have to be made depending on the composition of the material flow.

Anspruch 7 sieht schließlich eine Vorrichtung zum Erfassen, Erkennen und Sortieren von Objekten eines Materialstromes, aus Altpapier und Altkarton vor, die Strahlungsquellen sowie mindestens eine Kamera zur Ansteuerung von nachfolgenden Sortiereinrichtungen umfasst. Der Erfassungsbereich der mindestens einen Kamera, durch den der Materialstrom entlang einer geradlinigen Bewegungsrichtung bewegt wird, ist dabei streifenförmig quer zur Bewegungsrichtung der Objekte ausgebildet. Bei der mindestens einen Kamera handelt es sich um einen Detektor für die Wellenlängen der von den Objekten des Materialstromes emittierten Strahlung sind. Gemäß der kennzeichnenden Merkmale von Anspruch 7 ist bei Vorrichtungen dieser Art vorgesehen, dass es sich bei der mindestens einen Kamera um einen ortsauflösenden Spektrometer handelt, der für mehrere Bereiche eines Objekts, die jeweils gleichzeitig innerhalb dieses streifenförmigen Abschnittes liegen, die Messung der Intensität der von diesem Objekt emittierten Strahlung für mehrere Wellenlängen erlauben. Gemäß Anspruch 8 wird hierzu eine NIR-Flächenkamera verwendet.Claim 7 finally provides a device for detecting, detecting and sorting objects of a material flow, from waste paper and old cardboard before, the radiation sources and at least one camera for controlling subsequent sorting devices comprises. The detection range of the at least one camera, through which the flow of material is moved along a rectilinear direction of movement, is formed in a strip-shaped manner transversely to the direction of movement of the objects. The at least one camera is a detector for the wavelengths of the radiation emitted by the objects of the material flow. According to the characterizing features of claim 7, it is provided in devices of this kind that the at least one camera is a spatially resolving spectrometer which, for several regions of an object, which are each simultaneously within this strip-shaped section, measures the intensity of the Allow this object emitted radiation for several wavelengths. According to claim 8, an NIR area camera is used for this purpose.

Die Erfindung wird im folgenden anhand der beiliegenden Figuren näher erläutert. Es zeigen

  • Fig. 1 eine schematische Seitenansicht einer Ausführungsform eines Sortieranlagenabschnittes zur Durchführung des erfindungsgemäßen Verfahrens,
  • Fig. 2 eine schematische Seitenansicht einer weiteren Ausführungsform eines Sortieranlagenabschnittes zur Durchführung des erfindungsgemäßen Verfahrens,
  • Fig. 3 eine perspektivische Darstellung der Anordnung von Strahlungsquellen, Kamera und Sortierband, und
  • Fig. 4 eine schematische Darstellung eines für das erfindungsgemäße Verfahren geeigneten Spektrographen.
The invention will be explained in more detail below with reference to the accompanying figures. Show it
  • Fig. 1 a schematic side view of an embodiment of a sorting plant section for carrying out the method according to the invention,
  • Fig. 2 a schematic side view of another embodiment of a sorting plant section for carrying out the method according to the invention,
  • Fig. 3 a perspective view of the arrangement of radiation sources, camera and sorting belt, and
  • Fig. 4 a schematic representation of a suitable spectrograph for the inventive method.

Fig. 1 zeigt eine schematische Seitenansicht einer Ausführungsform eines Sortieranlagenabschnittes zum Sortieren von thermoenergetisch verwertbaren Objekten 7, 8, 9 wie Holzabfälle, Holzfaserprodukte (z.B. Altpapier, Karton, Stoffreste), Kunststoffabfälle (z.B. PET-Flaschen, Folien) sowie von Mischfraktionen unterschiedlicher Qualität und Beschaffenheit, bei dem z.B. verschiedene Altstoffe, wie etwa Papier 8, Karton 9 oder Kunststoffe 7 auf mindestens einem Sortierband 1 liegen und entlang einer Bewegungsrichtung 2 transportiert werden. Zumindest ein Bereich der Sortierbandfläche wird durch mindestens eine Strahlungsquelle 3 bestrahlt. Die Strahlungsquellen 3 können hierzu auch mit Reflektoren 4 versehen sein. Die von den einzelnen Objekten 7, 8, 9 reflektierte Strahlung wird von einer Kamera 5 erfasst und die Objekte 7, 8, 9 aufgrund der ermittelten Daten einer bestimmten Materialklasse bzw. Fraktion 11, 12 zugeordnet, wie noch näher ausgeführt werden wird. Aufgrund dieser Zuordnung werden Sortiereinrichtungen 10, 14 wie etwa Saug- oder Blasdüsen angesteuert. Die physische Trennung der Objekte 7, 8, 9 kann hierbei durch apparative Maßnahmen wie Trennrollen, Trennbänder oder auch Trennkanten 13 unterstützt werden. Fig. 1 shows a schematic side view of an embodiment of a sorting plant section for sorting thermo energetically usable objects 7, 8, 9 such as wood waste, wood fiber products (eg waste paper, cardboard, fabric remnants), plastic waste (eg PET bottles, films) and mixed fractions of different quality and texture, at For example, different existing substances, such as paper 8, cardboard 9 or plastics 7 are on at least one sorting belt 1 and transported along a direction of movement 2. At least one region of the sorting belt surface is irradiated by at least one radiation source 3. The radiation sources 3 can for this purpose also be provided with reflectors 4. The radiation reflected by the individual objects 7, 8, 9 is detected by a camera 5 and the objects 7, 8, 9 are assigned to a specific material class or fraction 11, 12 on the basis of the determined data, as will be explained in more detail below. Due to this assignment, sorting devices 10, 14, such as suction or blowing nozzles, are activated. The physical separation of the objects 7, 8, 9 can in this case be supported by apparatus measures such as separating rollers, separating strips or separating edges 13.

Fig. 2 zeigt eine alternative Ausführungsform, die im Unterschied zu der in Fig. 1 gezeigten Ausführungsform eine Trennung des Mischgutes in drei Fraktionen ermöglicht. Dies wird etwa dadurch erreicht, dass eine weitere Fördereinrichtung 15 vorgesehen ist, auf die mittels einer ersten Sortiereinrichtung 10, 14 etwa alle Kartonagen 9 gehoben werden und in Richtung 16 zu einem Sammelort transportiert werden. Mithilfe einer zweiten Sortiereinrichtung 10, 14 werden in weiterer Folge die weiteren Fraktionen wie etwa Papier 8 und Kunststoff 7 getrennt. Die Trennung der unterschiedlichen Fraktionen mithilfe einer geeigneten Anordnung von Saug- und Blasdüsen bzw. weiteren Fördereinrichtungen kann in vielfältiger Weise vorgenommen werden, allerdings sind eine genaue und zuverlässige Ansteuerung der Sortiereinrichtungen 10, 14 notwendig, was wiederum eine rasche und zuverlässige Zuordnung der Objekte zu den unterschiedlichen Fraktionen 11 oder 12 bedingt. Das erfindungsgemäße Verfahren ist hierzu in der Lage. Fig. 2 shows an alternative embodiment, which unlike the in Fig. 1 embodiment shown allows separation of the mixed material into three fractions. This is achieved, for example, by providing a further conveying device 15, to which approximately all cardboard boxes 9 are lifted by means of a first sorting device 10, 14 and are transported in the direction 16 to a collecting location. By means of a second sorting device 10, 14, the further fractions, such as paper 8 and plastic 7 are subsequently separated. The separation of the different fractions by means of a suitable arrangement of suction and blowing nozzles or other conveyors can be made in many ways, however, are a precise and reliable control of the sorting devices 10, 14 necessary, which in turn requires a rapid and reliable assignment of the objects to the different fractions 11 or 12. The method according to the invention is capable of this.

Es sieht dabei den Einsatz ortsauflösender Spektrometersysteme vor. Hierbei werden transmissive Spektrometersysteme eingesetzt, die im wesentlichen aus einem Objektiv 17, einem bildgebenden Spektrograph 18 und einem Matrixdedektor 19 (z.B. eine CCD-Kamera) bestehen (siehe Fig. 4). Beim Einsatz herkömmlicher, nicht-ortsauflösender Spektrometer muss der Messkopf über dem Objekt verfahren werden oder das Objekt unter dem Messkopf in verschiedene Richtungen bewegt werden, um dennoch örtlich differenzierte Spektralinformation zu erhalten. Im Gegensatz hierzu handelt es sich bei ortsauflösenden Spektrometersystemen, hier auch als Kamera 5 oder Spektrometer 5 bezeichnet, um Messgeräte, die eine gleichzeitige Aufnahme von spektraler und örtlicher Information einer Objektoberfläche erlaubt.It envisages the use of spatially resolved spectrometer systems. In this case, transmissive spectrometer systems are used which essentially comprise an objective 17, an imaging spectrograph 18 and a matrix detector 19 (eg a CCD camera) (see Fig. 4 ). When using conventional, non-spatially resolved spectrometers, the measuring head has to be moved over the object or the object under the measuring head has to be moved in different directions in order to obtain locally differentiated spectral information. In contrast, spatially resolved spectrometer systems, also referred to here as camera 5 or spectrometer 5, are measuring devices which permit simultaneous recording of spectral and local information of an object surface.

Der Erfassungsbereich 6 der Kamera 5 ist vorzugsweise zeilen- bzw. streifenförmig. Dies wird in bekannter Weise durch geeignete Anordnung von Objektiven 17 erreicht, die die vom Objekt 7, 8, 9 emittierte Strahlung auf den Eingangsschlitz des Spektrographen 18 abbilden. Die Länge des abgebildeten Streifens kann hierbei von wenigen Millimetern bis zu mehreren Metern variieren, indem entweder kommerziell erhältliche Mikroskopobjektive oder übliche Kameraobjektive verwendet werden. Die räumliche Auflösung variiert entsprechend von Mikrometern bei Messungen im Millimeterbereich bis zu mehreren Millimetern bei Messungen im Meterbereich. Typischerweise wird das spektrale Bild von einer monochromen CCD-Kamera 19 aufgenommen. Hierbei wird in einer ersten Dimension die durch den Eingangsschlitz definierte Ortsinformation, also die Positionsinformation innerhalb eines bestimmten Streifens, abgebildet und in einer zweiten Dimension der zu untersuchende Wellenlängenbereich. Die ortsabhängigen Intensitäten für unterschiedliche Wellenlängen können somit als dreidimensionales Bild dargestellt werden. Jeder Bildpunkt entspricht einem bestimmten Ort auf dem abgebildeten Streifen des Objekts 7, 8, 9 und einer Intensität bei einer bestimmten Wellenlänge. Üblicherweise wird die räumliche Achse in x-Richtung und die spektrale Achse in y-Richtung des Detektors 19 gelegt. Die örtliche Auflösung wird dann durch die Anzahl der Bildpunkte in x-Richtung bestimmt, während die Anzahl der Wellenlängenbanden durch die Anzahl der Bildpunkte in y-Richtung bestimmt wird. Darüber hinaus bleibt die Notwendigkeit bestehen, das Messobjekt relativ zum streifenförmigen Erfassungsbereich zu bewegen, um eine Fläche aufzunehmen. Im Gegensatz zu konventionellen Spektrometern muss das Messobjekt aber nur in einer Richtung bewegt werden.The detection area 6 of the camera 5 is preferably in the form of a line or strip. This is achieved in a known manner by suitable arrangement of lenses 17, which image the radiation emitted by the object 7, 8, 9 onto the input slot of the spectrograph 18. The length of the imaged strip can vary from a few millimeters to several meters, using either commercially available microscope objectives or conventional camera lenses. The spatial resolution varies accordingly from micrometers for measurements in the millimeter range up to several millimeters for measurements in the meter range. Typically, the spectral image is captured by a monochrome CCD camera 19. In this case, in a first dimension, the location information defined by the input slot, ie the position information within a certain strip, imaged and in a second dimension of the wavelength range to be examined. The location-dependent intensities for different wavelengths can thus be represented as a three-dimensional image. Each pixel corresponds to a particular location on the imaged strip of the object 7, 8, 9 and an intensity at a particular wavelength. Usually, the spatial axis is placed in the x-direction and the spectral axis in the y-direction of the detector 19. The spatial resolution is then determined by the number of pixels in the x-direction, while the number of wavelength bands is determined by the number of pixels in the y-direction. In addition, there remains a need to move the measurement object relative to the strip-shaped detection area to accommodate a surface. In contrast to conventional spectrometers, however, the measurement object only has to be moved in one direction.

Der Matrixdetektor 19, in der Regel eine CCD-Kamera, weist bevorzugt eine gleichmäßige Empfindlichkeit über einen möglichst breiten Wellenlängenbereich auf. CCD-Kameras 19 mit einer solchen Charakteristik zumindest im sichtbaren Wellenlängenbereich sind kommerziell erhältlich. Darüber hinaus existieren auch spezialisierte CCD-Kameras, die gute Messcharakteristik vom ultravioletten und blauen Wellenlängenbereich bis zum nahen Infrarot aufweisen. Für die Bestimmung von chemischen Zusammensetzung von Materialgemischen wird ebenso ortsauflösende Spektroskopie verwendet, jedoch im nahen infrarot (NIR) Bereich. Diese Technologie arbeitet bis zu einer Wellenlänge von 2500 nm. Als Messwertaufnehmer wird in diesen Fällen bevorzugt eine NIR-Flächenkamera verwendet. Beispielsweise kann ein FPA (Focal Plane Array)-Detektor auf InGaAs-Basis und thermoelektrischer Kühlung eingesetzt werden.The matrix detector 19, usually a CCD camera, preferably has a uniform sensitivity over the widest possible wavelength range. CCD cameras 19 having such a characteristic at least in the visible wavelength range are commercially available. In addition, there are also specialized CCD cameras that have good measuring characteristics from the ultraviolet and blue wavelengths to the near infrared. For the determination of chemical composition of material mixtures also spatially resolved spectroscopy is used, but in the near infrared (NIR) range. This technology works up to a wavelength of 2500 nm. In these cases, a NIR surface camera is the preferred instrument. For example, an FPA (Focal Plane Array) detector based on InGaAs and thermoelectric cooling can be used.

Es ist aufgrund der unterschiedlichen Messcharakteristika von kommerziell erhältlichen CCD-Kameras 19 daher mitunter angezeigt, mehrere Spektrometer 5 zu verwenden, um den gesamten Wellenlängenbereich vom nahen Infrarot bis mitunter in den UV-Bereich abzudecken, da unterschiedliche Materialien zur Generierung auswertefähiger Spektren mitunter in unterschiedlichen Wellenlängenbereichen untersucht werden müssen. In diesem Fall können aber Materialströme sortiert werden, die aus vielfältigen Fraktionen zusammengesetzt sind. Als Alternative zu CCD-Kameras sind auch CMOS-, CID- oder "Diode array"-Kameras denkbar, wenngleich zumindest derzeit erhältliche Systeme dieser Art noch deutlich geringere Empfindlichkeiten als herkömmliche CCD-Kameras aufweisen.It is therefore sometimes because of the different measuring characteristics of commercially available CCD cameras 19 indicated to use multiple spectrometers 5 to cover the entire wavelength range from near infrared to sometimes in the UV range, since different materials for generating evaluable spectra must sometimes be examined in different wavelength ranges. In this case, however, material flows can be sorted, which are composed of diverse fractions. As an alternative to CCD cameras and CMOS, CID or "diode array" cameras are conceivable, although at least currently available systems of this kind have significantly lower sensitivity than conventional CCD cameras.

Die Umwandlung von Analog- in Digitaldaten kann mithilfe von herkömmlichen PC-Frame-Grabber-Karten mit 8-bit-Digitalisierung vorgenommen werden, wobei es sich aber bei anspruchsvolleren Sortieraufgaben als vorteilhaft erweist, Auflösungen von 12 bis 16 bit zu verwenden. Alternativ dazu kann auch eine Umwandlung des Analog-Messsignals in ein digitales Signal erfolgen, wobei mitunter auf PC-Frame-Grabber-Karten auch verzichtet werden kann.Converting analog to digital data can be accomplished using conventional 8-bit digitizing PC frame grabber cards, but for more sophisticated sorting tasks, using 12- to 16-bit resolutions is beneficial. Alternatively, a conversion of the analog measurement signal into a digital signal can take place, and sometimes also PC frame grabber cards can be dispensed with.

Die erhobene Datenmenge kann je nach gewünschter örtlicher und spektraler Auflösung mitunter beträchtlich sein. Es wird daher die Geschwindigkeit der Datenverarbeitung zu optimieren sein, was durch entsprechende Datenaufbereitung sowie spezielle Auswertealgorithmen erreicht werden kann. Es erweist sich jedoch in der Praxis als ausreichend, nicht die gesamte spektrale Information an jedem Bildpunkt des vermessenen Objektstreifens zu digitalisieren und auszuwerten, sondern sich auf ausgewählte Wellenlängenbereiche zu beschränken. Dadurch kann der Umfang der zu verarbeitenden Daten erheblich reduziert werden und die Fördergeschwindigkeit des Sortierbandes 1 gesteigert werden. Wird etwa die Anzahl der auszuwertenden Koordinatenpunkte des Matrixdetektors 19 um den Faktor 10 reduziert, so zeigt sich in der Regel eine Reduktion der Datenverarbeitungszeiten um den Faktor 100.The amount of data collected can sometimes be considerable, depending on the desired spatial and spectral resolution. It will therefore be to optimize the speed of data processing, which can be achieved by appropriate data processing and special evaluation algorithms. However, it proves to be sufficient in practice not to digitize and evaluate the entire spectral information at each pixel of the measured object strip, but to limit itself to selected wavelength ranges. As a result, the scope of the data to be processed can be significantly reduced and the conveying speed of the sorting belt 1 can be increased. If, for example, the number of coordinate points of the matrix detector 19 to be evaluated is reduced by a factor of 10, then a reduction of the data processing times by a factor of 100 usually appears.

Da bei dem erfindungsgemäßen Verfahren das von der Oberfläche der Objekte 7, 8, 9 emittierte Licht in Abhängigkeit von Ort und Wellenlänge analysiert wird, ist in der Regel eine höhere Bestrahlungsintensität als etwa bei RGB-Kameras notwendig. Die erforderliche Bestrahlungsintensität mithilfe der Strahlungsquellen 3 hängt insbesondere von den Eigenschaften der Kameraoptik, der Kameraempfindlichkeit, der spektralen Auflösung, der Integrationszeit (also der Messzeit eines Streifens, die von der Fördergeschwindigkeit des Sortierbandes 1 abhängt), von der f-Zahl des Objektivs 17 sowie des Spektrographen 18 und den räumlichen Abmessungen des Erfassungsbereiches 6 ab. Es ist dabei auf eine möglichst gleichmäßige Ausleuchtung des Erfassungsbereiches 6 zu achten. Das kann etwa mithilfe von Faseroptik-Lampen oder Tungsten-Halogen-Lampen mit linearen parabolischen oder elliptischen Reflektoren 4 mit nachgeordneten Zylinderlinsen erreicht werden.Since, in the method according to the invention, the light emitted by the surface of the objects 7, 8, 9 is analyzed as a function of location and wavelength, a higher irradiation intensity is generally necessary than in the case of RGB cameras, for example. The required irradiation intensity with the aid of the radiation sources 3 depends in particular on the properties of the camera optics, the camera sensitivity, the spectral resolution, the integration time (ie the measuring time of a strip which depends on the conveying speed of the sorting belt 1), the f-number of the objective 17 and of the spectrograph 18 and the spatial dimensions of the detection area 6 from. It is important to ensure the most uniform possible illumination of the detection area 6. This can be achieved with the help of fiber optic lamps or tungsten halogen lamps with linear parabolic or elliptical reflectors 4 with downstream cylindrical lenses.

Die Beleuchtung mithilfe der Strahlungsquellen 3 sollte dabei ein möglichst stabiles und über den gesamten Wellenlängenbereich der emittierten Strahlung gleichmäßiges ("flaches") Emissionsspektrum aufweisen. Da bei vielen kommerziell erhältlichen CCD-Kameras die Empfindlichkeit im blauen Wellenlängenbereich abnimmt, kann bei der Beleuchtung mithilfe der Strahlungsquellen 3 auch sicher gestellt werden, dass die Intensität im blauen Wellenlängenbereich stärker ist. Halogenlampen liefern etwa ein sehr stabiles Spektrum und weisen eine verhältnismäßig große Lebenszeit auf, verfügen aber über schwache Emission im blauen Wellenlängenbereich. Mithilfe eines Rotfilters kann die Emissionsintensität über den gesamten Wellenlängenbereich aber etwas ausgeglichen werden. Xenon-Lampen produzieren ein sehr flaches Spektrum im sichtbaren Bereich, das aber instabiler als jenes von HalogenLampen ist und erfordern außerdem eine Hochspannungsversorgung. Xenon-Blitzlichtlampen können ebenso eingesetzt werden. Sie verfügen über ein große Lebensdauer und stellen Hochleistungs-Strahlungsquellen dar, wobei aber Variationen in der Intensität von 1-2% sowie spektrale Instabilitäten in den Blitzen auftreten können.The illumination by means of the radiation sources 3 should have a stable (and "flat") emission spectrum over the entire wavelength range of the emitted radiation. Since the sensitivity in the blue wavelength range decreases with many commercially available CCD cameras, the illumination by means of the radiation sources 3 can also ensure that the intensity is stronger in the blue wavelength range. Halogen lamps provide a very stable spectrum and have a relatively long lifetime, but have low emission in the blue wavelength range. With the aid of a red filter, however, the emission intensity over the entire wavelength range can be somewhat compensated. Xenon lamps produce a very flat visible spectrum but are more unstable than halogen lamps and also require a high voltage supply. Xenon flash lamps can as well be used. They have a long life and are high power radiation sources, but variations in intensity of 1-2% and spectral instabilities in the flashes can occur.

Anhand von Vergleichen der erhaltenen spektral aufgeteilten Reflektionsintensitäten des Objektes 7, 8, 9 mit bereits eingelernten Produktproben kann eine Klassifizierung des Messobjektes 7, 8, 9 durchgeführt werden. Die Klassifikatoren sind lernfähig, d.h. es können verschiedenste Materialien vordefiniert, angelernt und anschließend Materialklassen zugeordnet werden. Anhand der klassifizierten Streifen, der Fortbewegung der Objekte 7, 8, 9 in Förderrichtung 2 des Sortierbandes 1 und der raschen Wiederholung der Messung ergibt sich so ein klassifiziertes Bild des zu erkennenden Objektes 7, 8, 9. Dieses Bild wird über Algorithmen ausgewertet und entsprechend den Vorgaben des Benutzers einer Durchlauf- oder aber einer Austragsfraktion zugeordnet. Nach der Zuordnung werden am Ende des Sortierbandes 1 zeit- und ortsrichtig Ausblasdüsen bzw. Saugdüsen 10, 14 je nach Sortieraufgabe aktiviert. Nach einer Aktivierung der Austragsorgane wird das Objekt über eine Trennrolle, Trennband oder Trennkante 13 vom anderen Materialstrom getrennt.On the basis of comparisons of the spectrally divided reflection intensities of the object 7, 8, 9 obtained with product samples already taught, a classification of the measuring object 7, 8, 9 can be carried out. The classifiers are capable of learning, i. Various materials can be predefined, taught in and then assigned to material classes. On the basis of the classified strips, the movement of the objects 7, 8, 9 in the conveying direction 2 of the sorting belt 1 and the rapid repetition of the measurement results in a classified image of the object to be recognized 7, 8, 9. This image is evaluated by algorithms and accordingly assigned to the user's specifications of a run or a discharge fraction. After the assignment, at the end of the sorting belt 1 time and place correct exhaust nozzles or suction nozzles 10, 14 are activated depending on the sorting task. After activation of the discharge organs, the object is separated by a separating roller, separating belt or separating edge 13 from the other material flow.

Das erfindungsgemäße Verfahren stellt somit eine vergleichsweise einfache Prozesslösung dar, bei der nicht für jede einzelne Trennphase (Papier-Karton, Kunststoff-Papier, Kunststoff 1-Kunststoff 2 etc.) eine eigene Trenneinrichtung mit Strahlungsquelle, Auswerteeinheit und Austrags- oder Ausblaseinrichtung vorgesehen sein muss. Stattdessen wird über ortsaufgelöste Spektroskopie ausreichend Datenmaterial erhoben, um eine zuverlässige Klassifizierung vornehmen zu können. Dabei ist es auch möglich, bei Bestrahlung durch nur eine Strahlungsquelle 3 eindeutige Materialeigenschaften festzustellen, nach denen die einzelnen Fraktionen 11, 12 aussortiert werden können. So können etwa auch im Sammelgut aufscheinende Fremdstoffe wie z.B. Folien, kaschierte Kartonagen, Verbundkartons, mehrschichtige Kartonagen mit Metall- oder Kunststofffolien erkannt uns aussortiert werden.The method according to the invention thus represents a comparatively simple process solution, in which an individual separation device with radiation source, evaluation unit and discharge or blow-out device need not be provided for each individual separation phase (paper board, plastic paper, plastic 1 plastic 2, etc.) , Instead, sufficient data is collected via spatially resolved spectroscopy to ensure reliable classification. It is also possible to determine 3 unique material properties when irradiated by only one radiation source, after which the individual fractions 11, 12 can be sorted out. So can also about the groupage Appearing foreign substances such as foils, laminated cardboard, composite boards, multi-layer cardboard boxes with metal or plastic films recognized us to be sorted out.

Claims (8)

  1. A method for detecting, recognizing and sorting objects (8, 9) of a flow of material which is made of waste paper (8) and waste cardboard (9) and which is moved along a straight direction of movement (2) in front of radiation sources (3) and through the detection area (6) of at least one camera (5) which are used for triggering subsequent sorting devices (10, 14), with the detection area (6) of the at least one camera (5) extending in the form of strips transversally to the direction of movement (2) of the objects (8, 9) and the at least one camera (5) detecting the wavelengths of the radiation emitted from the objects (8, 9) of the flow of material, characterized in that with the help of imaging spectroscopy the intensity of the radiation emitted from this object (8, 9) is detected for several wavelengths, and the triggering of the subsequent sorting devices (10, 14) is made by means of comparison of the detected wavelength spectra with previously measured wavelength spectra, with only selected discrete wavelength ranges being used for triggering the subsequent sorting devices (10, 14).
  2. A method according to claim 1, characterized in that the wavelengths of the radiation emitted by the radiation sources (3) comprise a wavelength range of near infrared up to ultraviolet light.
  3. A method according to claim 1 or 2, characterized in that the flow of materials additionally comprises plastic materials (7).
  4. A method according to claim 3, characterized in that the flow of material is sorted into more than two fractions which are removed along different directions of transport.
  5. A method according to one of the claims 1 to 4, characterized in that the wavelength of the radiation emitted from the objects (7, 8, 9) of the flow of material is detected as a reflection spectrum.
  6. A method according to one of the claims 1 to 4, characterized in that the wavelength of the radiation emitted from the objects (7, 8, 9) is detected as a transmission spectrum.
  7. An apparatus for detecting, recognizing and sorting objects (8, 9) of a flow of material made of waste paper (8) and waste cardboard (9), comprising radiation sources (3) and at least one camera (5) for triggering subsequent sorting devices (10, 14), with the detection area (6) of the at least one camera (5), through which the flow of material is moved along a straight direction of movement (2), being arranged in the form of strips transversally to the direction of movement (2) of the objects (8, 9) and the at least one camera (5) are detectors for the wavelength of the radiation emitted from the objects (8, 9) of the flow of material, characterized in that the at least one camera (5) is an imaging spectrometer which allows the measurement of the intensity of the radiation emitted from said object (8, 9) for several wavelengths for several areas of said object (8, 9) which each lie simultaneously within said strip-like section (6).
  8. An apparatus according to claim 7, characterized in that the at least one camera (5) is an NIR area camera.
EP03450252A 2003-11-18 2003-11-18 Process and device for improved sorting of waste paper and cardboard Revoked EP1533045B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03450252A EP1533045B1 (en) 2003-11-18 2003-11-18 Process and device for improved sorting of waste paper and cardboard
DE50311157T DE50311157D1 (en) 2003-11-18 2003-11-18 Method and device for optimized sorting of waste paper and old cardboard
AT03450252T ATE422172T1 (en) 2003-11-18 2003-11-18 METHOD AND DEVICE FOR OPTIMIZED SORTING OF WASTE PAPER AND WASTE CARTON

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03450252A EP1533045B1 (en) 2003-11-18 2003-11-18 Process and device for improved sorting of waste paper and cardboard

Publications (2)

Publication Number Publication Date
EP1533045A1 EP1533045A1 (en) 2005-05-25
EP1533045B1 true EP1533045B1 (en) 2009-02-04

Family

ID=34429662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03450252A Revoked EP1533045B1 (en) 2003-11-18 2003-11-18 Process and device for improved sorting of waste paper and cardboard

Country Status (3)

Country Link
EP (1) EP1533045B1 (en)
AT (1) ATE422172T1 (en)
DE (1) DE50311157D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015178A1 (en) 2014-10-28 2016-05-04 Münchner Akten+Daten Vernichtung GmbH Method and device for moisture-dependent control of waste paper sorting assemblies

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982955B1 (en) 2011-11-22 2015-03-13 Kweo En METHOD AND SYSTEM FOR IDENTIFYING AND SORTING RECYCLING WOOD MATERIAL
CN102601063B (en) * 2012-02-29 2013-11-13 浙江工业大学 Automatic identifying and grading method for bamboo chips
GB2528979A (en) * 2014-08-08 2016-02-10 Kilkenny Mechanical Handling Systems Ltd A method and system for recycling wood
FR3048369B1 (en) * 2016-03-01 2018-03-02 Pellenc Selective Technologies MACHINE AND METHOD FOR INSPECTING FLOWING OBJECTS
IT201700054728A1 (en) * 2017-05-19 2018-11-19 Pal S R L MACHINE AND SEPARATION PROCEDURE FOR SEPARATING WOOD-BASED MATERIALS FROM OTHER MATERIALS
CN110523654B (en) * 2019-07-22 2021-06-22 徐州利华环保科技有限公司 Environment-friendly type automobile accessory inner packaging paper-plastic waste paper classification recycling device and working method thereof
CN114669493A (en) * 2022-02-10 2022-06-28 南京搏力科技有限公司 Automatic waste paper quality detection device and detection method based on artificial intelligence

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744525B2 (en) * 1997-11-25 2004-06-01 Spectra Systems Corporation Optically-based system for processing banknotes based on security feature emissions
US6646218B1 (en) * 1999-03-29 2003-11-11 Key Technology, Inc. Multi-band spectral sorting system for light-weight articles
AT3418U1 (en) 1999-04-30 2000-03-27 Waagner Biro Binder Aktiengese METHOD AND DEVICE FOR SORTING WASTE PAPER
US7227148B2 (en) * 1999-06-08 2007-06-05 Japan Tobacco Inc. Apparatus for detecting impurities in material and detecting method therefor
ES2274238T3 (en) * 2002-01-16 2007-05-16 Titech Visionsort As METHOD AND APPLIANCE FOR THE IDENTIFICATION AND CLASSIFICATION OF OBJECTS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015178A1 (en) 2014-10-28 2016-05-04 Münchner Akten+Daten Vernichtung GmbH Method and device for moisture-dependent control of waste paper sorting assemblies

Also Published As

Publication number Publication date
ATE422172T1 (en) 2009-02-15
DE50311157D1 (en) 2009-03-19
EP1533045A1 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
DE102010024784B4 (en) Multi-sensor arrangement for optical inspection and sorting of bulk materials
EP1105715B1 (en) Method and device for detecting and differentiating between contaminations and accepts as well as between different colors in solid particles
EP0696236B1 (en) Process and device for sorting materials
EP2643103B1 (en) Process and device for sorting separate grains of bulk material
DE60308655T2 (en) METHOD AND DEVICE FOR IDENTIFYING AND SORTING OBJECTS
DE4129754C2 (en) Process for the recovery of pure plastic fractions
EP1902308B1 (en) Device for inspecting a surface
DE60032136T2 (en) MATERIAL INSPECTION
DE19751862C2 (en) Method and device for identifying and sorting belt-conveyed objects
EP2290355B1 (en) Device and method for inspecting labelled containers
DE69731651T2 (en) SORTING DEVICE
DE60217985T2 (en) Apparatus and method for the automatic inspection of objects that mainly flatten in a single-ply flow
DE60213133T2 (en) DEVICE AND METHOD FOR DETECTING OVERLAPS
EP0497397A1 (en) Method of qualitative analysis of plastics particles
DE102008028120B4 (en) Method and device for sorting textiles
AT15295U1 (en) Sorting out mineral-containing objects or plastic objects
EP1048363A2 (en) Method and apparatus for sorting waste paper
EP1533045B1 (en) Process and device for improved sorting of waste paper and cardboard
EP2110187B1 (en) Method for identifying, classifying and sorting objects and materials and a recognition system for carrying out this method
EP2144052A1 (en) Method and device for detecting and classifying defects
DE10149505A1 (en) Method and device for selecting plastics and other materials with regard to color and composition
DE19816881B4 (en) Method and device for detecting and distinguishing between contaminations and acceptances as well as between different colors in solid particles
DE102016117262A1 (en) Apparatus and method for telecentric inspection of an object
WO2021228940A1 (en) Method and device for sorting plastic objects
DE19955135C2 (en) Device for determining the type of material for plastic films as part of a recycling system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051125

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080306

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PROCESS AND DEVICE FOR IMPROVED SORTING OF WASTE PAPER AND CARDBOARD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50311157

Country of ref document: DE

Date of ref document: 20090319

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090504

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LLA INSTRUMENTS GMBH

Effective date: 20091012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: TITECH GMBH

Effective date: 20091030

Opponent name: LLA INSTRUMENTS GMBH

Effective date: 20091012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090504

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

BERE Be: lapsed

Owner name: BINDER & CO. A.G.

Effective date: 20091130

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091118

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090505

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: LLA INSTRUMENTS GMBH

Effective date: 20091012

Opponent name: TITECH GMBH

Effective date: 20091030

R26 Opposition filed (corrected)

Opponent name: LLA INSTRUMENTS GMBH

Effective date: 20091012

Opponent name: TOMRA SORTING GMBH

Effective date: 20091030

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BINDER + CO AG

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: LLA INSTRUMENTS GMBH

Effective date: 20091012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20171128

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180131

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 50311157

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 50311157

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20180611

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 422172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180611