EP1532848B1 - Gas discharge lamp - Google Patents
Gas discharge lamp Download PDFInfo
- Publication number
- EP1532848B1 EP1532848B1 EP03792583A EP03792583A EP1532848B1 EP 1532848 B1 EP1532848 B1 EP 1532848B1 EP 03792583 A EP03792583 A EP 03792583A EP 03792583 A EP03792583 A EP 03792583A EP 1532848 B1 EP1532848 B1 EP 1532848B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- opening
- gas discharge
- discharge lamp
- plasma
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims abstract description 17
- 239000002800 charge carrier Substances 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 5
- 230000003595 spectral effect Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000003963 x-ray microscopy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/84—Lamps with discharge constricted by high pressure
- H01J61/86—Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/003—Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/073—Main electrodes for high-pressure discharge lamps
- H01J61/0732—Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/073—Main electrodes for high-pressure discharge lamps
- H01J61/0735—Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
Definitions
- the invention relates to a gas discharge lamp for generating extreme ultraviolet and / or soft X-radiation according to the preamble of claim 1.
- Preferred fields of application are those which require extreme ultraviolet (EUV) radiation or soft X-radiation in the wavelength range of about 1-20 nm, in particular by 13 nm, such as EUV lithography or X-ray microscopy.
- the gas discharge lamp typically consists of an electrode system with anode and cathode, which is connected to a current pulse generator.
- the discharge space located between the electrodes is gas-filled at pressures in the range of about 1 Pa to 100 Pa. In the discharge space is created by a pulsed current with currents in the single-digit kilo-ampere range up to max.
- a hollow cathode plasma which is based on Fig. 1 is shown schematically.
- the electrode system consists here of anode 1 and cathode 2, respectively
- the discharge space 6 is located on the symmetrical axis 7 shown in phantom a plasma channel 8 before.
- the plasma emits the radiation, which is indicated by the arrows.
- the cathode 2 further has a cavity 9, in which charge carriers, in particular electrons, are produced by suitable means for pre-ionization.
- the starting electrons are formed in self-breakdown.
- the self-breakdown can be controlled by a trigger electrode in the space 9, whereby the radiation pulses can be triggered precisely in time.
- a gas pressure of approximately 1 Pa to 100 Pa is present in the discharge space 6.
- Gas pressure and geometry of the electrodes are chosen so that the ignition of the plasma takes place on the left branch of the Paschen curve. The ignition then takes place in the region of the long electric field lines which occur in the area of the boreholes 3 and 4, respectively.
- an ionization of the gas takes place along the field lines in the borehole area.
- This phase creates the conditions for the formation of a plasma in the hollow cathode, which is why we speak of a hollow cathode plasma.
- This plasma then leads to a low-resistance channel in the electrode gap.
- a pulsed current which is generated by the discharge of electrically stored energy in a capacitor bank 10, is sent via this channel. The current leads to the compression and heating of the plasma, so that conditions for the efficient emission of characteristic radiation of the used discharge gas in the EUV range are achieved.
- working gas discharge lamps are, for example, in the WO 99/29145 A1 and the WO 01/01736 A1 described.
- the latter document also provides various measures to increase the efficiency of converting the injected electrical energy into radiant energy, including choosing a non-through hole conical blank in the anode. By this geometric configuration of the anode well, the radiation efficiency should be increased.
- the WO 02/07484 A2 discloses a gas discharge lamp in which on a symmetry axis a pinch plasma is created, which emits the radiation in the relevant spectral range.
- the publication teaches to perform a preionization in an outdoor area by means of a pulsed sliding discharge, wherein the resulting charge carriers are to reach the discharge area via an axial aperture in one of the electrodes. It is provided here that the pre-ionization region does not optically communicate with the axis of the pinch plasma duct.
- the invention is based on the technical problem of providing a gas discharge lamp with a plasma emitting in the EUV and / or soft X-ray wavelength range, which has an improved stability of the radiation emission.
- the above-mentioned technical problem is solved by the provision of a gas discharge lamp in which the continuous electrode opening tapers in the direction of the outer region.
- the diameter of the electrode opening should be larger on the side facing the discharge space than on the side facing away from the discharge space.
- the external area is to be understood as that space area in which charge carriers can be generated, which can be transported via the through-opening into the discharge space.
- the invention is based on the finding that an increase in the stability in the emission of radiation, ie an improved consistency in the emission from pulse to pulse, is achieved by largely decoupling the processes in the gas discharge space and in the outer area.
- the thus improved dielectric strength of the electrode system also allows an increase in the maximum repetition frequency or the maximum repetition rate.
- the gas discharge lamp according to the invention can be used either in the self-breakdown mode, or alternatively, additional means for pre-ionization can be provided.
- additional means for pre-ionization can be provided.
- the tapered cathode opening may be geometrically different. This will be in the illustrated in the illustrated preferred embodiments Fig. 2 to 7 shown an enlargement of the in Fig. 1 reproduced dashed area shown. The enlarged area is shown in the Fig. 2 to 7 across from Fig. 1 turned 90 ° counterclockwise.
- an electrode opening that tapers in the direction of the outside area has advantages in the erosion of the electrode surface.
- pulse energies typically several joules to several tens of J are converted. A significant proportion of this energy is concentrated in the pinch plasma, which leads to a thermal load on the electrodes.
- the thermal load is caused by the emission of radiation and hot particles, such as ions.
- the distance of the anode from the cathode is typically only a few Millimeters, and the diameter of the electrode opening on the discharge side is typically between 8 mm and 20 mm.
- the cathode is designed as a hollow cathode and has the continuous, tapered opening.
- the cavity of the hollow cathode is connected to the discharge space gaszu organizedd. This allows the ignition of a hollow cathode plasma.
- the largest possible distance between the electrode surface and the pinch plasma would be advantageous.
- Typical diameters for the opening of the two electrodes are in the range of a few millimeters up to several 10 millimeters. If, on the other hand, larger openings were selected, it would no longer be possible to produce a pinch plasma which emits in the desired spectral range of the EUV and / or soft X-ray radiation, because as the diameter increases, the achievable plasma temperature becomes smaller.
- the anode opening should therefore also be chosen as large as possible, so that the decoupled from the anode opening radiation is optically accessible as well as possible from large observation angles to the pinch plasma.
- the cathode is made in the opening area of a different material than in the other areas of the cathode.
- the opening area may be made of a low-erosion material such as tungsten, molybdenum, or other low-erosion alloys to thereby realize less burnup and / or erosion.
- the remaining areas of the cathode can then consist of good thermal conductivity material such as copper.
- the anode opening has a smaller diameter than the cathode opening.
- this causes longer electric field lines in that these field lines now extend into the opening, for example up to the step in the cathode opening according to FIG Fig. 4 .
- This allows a reduction of the gas pressure in the Discharge space, which in turn allows an increase in the repetition frequency of the gas discharge lamp.
- the increase in the repetition frequency leads to a higher degree of decoupled radiation energy.
- the use of a tapered cathode opening allows a simpler operation of the gas discharge lamp.
- the person skilled in the art has to select a total of two diameters, namely the diameter of the cathode opening on the side facing the discharge space, and additionally the diameter on the side of the cathode opening facing the outer space.
- the person skilled in the art gains a further degree of freedom in the operation of the system, by means of which it is easier for him to select suitable operating parameters.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- X-Ray Techniques (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Glass Compositions (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Incineration Of Waste (AREA)
Abstract
Description
Die Erfindung betrifft eine Gasentladungslampe zur Erzeugung extremer Ultraviolett- und/oder weicher Röntgenstrahlung nach dem Oberbegriff des Anspruchs 1. Bevorzugte Anwendungsgebiete sind solche, die extreme Ultraviolett- (EUV-) Strahlung oder weiche Röntgenstrahlung im Wellenlängenbereich von ca. 1-20 nm benötigen, insbesondere um 13 nm, wie zum Beispiel die EUV-Lithographie oder die Röntgenmikroskopie.The invention relates to a gas discharge lamp for generating extreme ultraviolet and / or soft X-radiation according to the preamble of
Es ist allgemein bekannt, ein dichtes heißes Plasma als strahlungsemittierendes Medium zur Erzeugung von EUV- und/oder weicher Röntgenstrahlung einzusetzen. Die Gasentladungslampe besteht dabei typischerweise aus einem Elektrodensystem mit Anode und Kathode, welches an einen Strompulsgenerator angeschlossen ist. Der zwischen den Elektroden befindliche Entladungsraum ist gasgefüllt bei Drücken im Bereich von ca. 1 Pa bis 100 Pa. Im Entladungsraum entsteht durch einen gepulsten Strom mit Stromstärken im einstelligen Kiloamperebereich bis max. 100 kA und Pulsdauern im Bereich von 10 ns bis einigen 100 ns ein sogenanntes Pinchplasma, welches durch ohmsche Heizung und Kompression durch den Pulsstrom auf Temperaturen von einigen 10 eV und Dichten gebracht wird, bei denen es charakteristische Strahlung des verwendeten Arbeitsgases im interessierenden Spektralbereich emittiert.It is generally known to use a dense hot plasma as a radiation-emitting medium for generating EUV and / or soft X-radiation. The gas discharge lamp typically consists of an electrode system with anode and cathode, which is connected to a current pulse generator. The discharge space located between the electrodes is gas-filled at pressures in the range of about 1 Pa to 100 Pa. In the discharge space is created by a pulsed current with currents in the single-digit kilo-ampere range up to max. 100 kA and pulse durations in the range of 10 ns to several 100 ns a so-called pinch plasma, which is brought by ohmic heating and compression by the pulse current to temperatures of some 10 eV and densities at which it emits characteristic radiation of the working gas used in the spectral region of interest.
Um das strahlungsemittierende Plasma bereitzustellen ist es erforderlich, Ladungsträger in den Entladungsraum zwischen Anode und Kathode einzubringen oder aber dort zu erzeugen. Hierzu sind geeignete Mittel zur Vorionisierung eines Gases erforderlich, so zum Beispiel ein Oberflächengleitfunkentrigger, ein hochdielektrischer Trigger ein ferroelektrischer Trigger oder ein Glimmentladungstrigger.In order to provide the radiation-emitting plasma, it is necessary to introduce charge carriers into the discharge space between anode and cathode or else to generate them there. For this purpose, suitable means are required for the pre-ionization of a gas, such as a Oberflächengleitfunkentrigger, a high-dielectric trigger a ferroelectric trigger or a glow discharge trigger.
Weiterhin ist bekannt, Ladungsträger über ein Hohlkathodenplasma bereitzustellen, was anhand von
Alternativ zur aktiven Bereitstellung von Startelektronen durch Mittel zur Vorionisierung kann auch ein Betrieb vorgesehen sein, bei dem die Startelektronen im Selbstdurchbruch entstehen. Der Selbstdurchbruch kann hierbei durch eine Triggerlektrode im Raum 9 gesteuert werden, wodurch die Strahlungspulse zeitlich präzise ausgelöst werden können. Hierbei liegt im Entladungsraum 6 ein Gasdruck von ca. 1 Pa bis 100 Pa vor. Gasdruck und Geometrie der Elektroden sind so gewählt, dass die Zündung des Plasmas auf dem linken Ast der Paschenkurve erfolgt. Die Zündung erfolgt danach im Bereich der langen elektrischen Feldlinien, die im Bereich der Bohrlöcher 3 bzw. 4 auftreten. Zur Bereitstellung des strahlungsemittierenden Plasmas erfolgt zunächst eine Ionisierung des Gases entlang der Feldlinien im Bohrlochbereich. Diese Phase schafft die Bedingungen zur Ausbildung eines Plasmas in der Hohlkathode, weshalb von einem Hohlkathodenplasma gesprochen wird. Dieses Plasma führt dann zu einem niederohmigen Kanal im Elektrodenzwischenraum. Über diesen Kanal wird ein gepulster Strom geschickt, der durch die Entladung elektrisch gespeicherter Energie in einer Kondensatorbank 10 generiert wird. Der Strom führt zur Kompression und Aufheizung des Plasmas, so dass Bedingungen für die effiziente Emission charakteristischer Strahlung des genutzten Entladegases im EUV-Bereich erreicht werden.As an alternative to the active provision of starting electrons by means for preionization, it is also possible to provide an operation in which the starting electrons are formed in self-breakdown. The self-breakdown can be controlled by a trigger electrode in the
Nach diesem Funktionsprinzip arbeitende Gasentladungslampen werden zum Beispiel in der
Die
Der Erfindung liegt das technische Problem zugrunde eine Gasentladungslampe mit einem im EUV- und/oder weichen Röntgenwellenlängenbereich emittierenden Plasma bereitzustellen, die eine verbesserte Stabilität der Strahlungsemission aufweist.The invention is based on the technical problem of providing a gas discharge lamp with a plasma emitting in the EUV and / or soft X-ray wavelength range, which has an improved stability of the radiation emission.
Die Lösung dieses technischen Problems erfolgt durch die Merkmale des unabhängigen Anspruchs 1. Vorteilhafte Weiterbildungen werden durch die abhängigen Ansprüche angegeben.The solution of this technical problem is achieved by the features of
Erfindungsgemäß wurde erkannt, dass das oben genannte technische Problem durch die Bereitstellung einer Gasentladungslampe gelöst wird, bei der sich die durchgehende Elektrodenöffnung in Richtung des Außenbereichs verjüngt. Mit anderen Worten soll der Durchmesser der Elektrodenöffnung auf der dem Entladungsraum zugewandten Seite größer sein als auf der dem Entladungsraum abgewandten Seite.According to the invention, it has been recognized that the above-mentioned technical problem is solved by the provision of a gas discharge lamp in which the continuous electrode opening tapers in the direction of the outer region. In other words, the diameter of the electrode opening should be larger on the side facing the discharge space than on the side facing away from the discharge space.
Als Außenbereich ist derjenige Raumbereich zu verstehen, in welchem Ladungsträger erzeugbar sind, welche über die durchgehende Öffnung in den Entladungsraum transportierbar sind.The external area is to be understood as that space area in which charge carriers can be generated, which can be transported via the through-opening into the discharge space.
Der Erfindung liegt die Erkenntnis zugrunde, dass eine Steigerung der Stabilität bei der Strahlungsemission, d. h. eine verbesserte Konstanz bei der Emission von Puls zu Puls, dadurch erreicht wird, dass die Vorgänge im Gasentladungsraum und im Außenbereich weitestgehend entkoppelt werden. Die Vorionisierungsvorgänge im Außenbereich mit der Erzeugung von Ladungsträgern beeinflussen nämlich den Entladungsvorgang im Zwischenraum und führen zu einer Destabilisierung der Strahlungsemission.The invention is based on the finding that an increase in the stability in the emission of radiation, ie an improved consistency in the emission from pulse to pulse, is achieved by largely decoupling the processes in the gas discharge space and in the outer area. The Vorionisierungsvorgänge outdoor with the generation of charge carriers namely that influence the discharge process in the space and lead to a destabilization of the radiation emission.
Es wurde gefunden, dass der Nachteil eines Entladungsaufbaus im Entladungsraum zwischen Anode und Kathode vor Erreichen der angestrebten Haltespannung, d. h. der so genannte Selbstdurchbruch, dadurch gemindert werden kann, dass weniger Ladungsträger vom Außenbereich, zum Beispiel von der Hohlkathode, in den Elektrodenzwischenraum übertragen werden. Hierzu dient die durchgehende Öffnung in der Elektrode, sei es die Anode oder die Kathode, die sich in Richtung des Außenbereichs verjüngt.It has been found that the disadvantage of a discharge structure in the discharge space between anode and cathode before reaching the desired holding voltage, d. H. the so-called self-breakdown, can be reduced by the fact that fewer charge carriers from the outside, for example, from the hollow cathode, are transferred into the electrode gap. This is achieved by the through opening in the electrode, be it the anode or the cathode, which tapers in the direction of the outside area.
Die auf diese Weise verbesserte Spannungsfestigkeit des Elektrodensystems erlaubt ferner eine Erhöhung der maximalen Wiederholfrequenz bzw. der maximalen Wiederholrate.The thus improved dielectric strength of the electrode system also allows an increase in the maximum repetition frequency or the maximum repetition rate.
Die crfindungsgemäßen Gasentladungslampe kann entweder im Selbstdurchbruchbetrieb genutzt werden, oder es können alternativ zusätzliche Mittel zur Vorionisierung vorgesehen sein. Durch eine derartige Zündvorrichtung kann erreicht werden, dass die Strahlungsimpulse zeitlich präzise ausgelöst werden, falls es die Anwendung erfordert.The gas discharge lamp according to the invention can be used either in the self-breakdown mode, or alternatively, additional means for pre-ionization can be provided. By such an ignition device can be achieved that the radiation pulses are triggered precisely in time, if required by the application.
Die sich verjüngende Kathodenöffnung kann geometrisch unterschiedlich beschaffen sein. Dies wird in den in den dargestellten bevorzugten Ausführungsbeispielen
Möglich sind kontinuierliche oder stufenförmige Übergänge in der Öffnung gemäß
Weiterhin zeigt eine sich in Richtung des Außenbereichs verjüngende Elektrodenöffnung Vorteile bei der Erosion der Elektrodenoberfläche. Bei der Erzeugung eines Pinchplasmas werden nämlich Pulsenergien von typischerweise einigen Joule bis mehreren 10 J umgesetzt. Ein wesentlicher Anteil dieser Energie wird im Pinchplasma konzentriert, was zu einer thermischen Belastung der Elektroden führt. Die thermische Belastung entsteht hierbei durch die Emission von Strahlung und von heißen Teilchen, wie zum Beispiel Ionen. Zur Veranschaulichung dieses Sachverhalts sei angemerkt, dass der Abstand der Anode von der Kathode typischerweise nur einige Millimeter beträgt, und der Durchmesser der Elektrodenöffnung auf der Entladungsseite typischerweise zwischen 8 mm und 20 mm.Furthermore, an electrode opening that tapers in the direction of the outside area has advantages in the erosion of the electrode surface. In fact, when generating a pinch plasma, pulse energies of typically several joules to several tens of J are converted. A significant proportion of this energy is concentrated in the pinch plasma, which leads to a thermal load on the electrodes. The thermal load is caused by the emission of radiation and hot particles, such as ions. To illustrate this, it should be noted that the distance of the anode from the cathode is typically only a few Millimeters, and the diameter of the electrode opening on the discharge side is typically between 8 mm and 20 mm.
Vorzugsweise ist die Kathode als Hohlkathode ausgeführt und weist die durchgehende, sich verjüngende Öffnung auf. In diesem Fall ist der Hohlraum der Hohlkathode mit dem Entladungsraum gaszuleitend verbunden. Dies ermöglicht die Zündung eines Hohlkathodenplasmas.Preferably, the cathode is designed as a hollow cathode and has the continuous, tapered opening. In this case, the cavity of the hollow cathode is connected to the discharge space gaszuleitend. This allows the ignition of a hollow cathode plasma.
Zur Minderung der thermischen Belastung wäre ein möglichst großer Abstand der Elektrodenoberfläche zum Pinchplasma vorteilhaft. Typische Durchmesser für die Öffnung der beiden Elektroden liegen im Bereich einiger Millimeter bis zu einigen 10 Millimetern. Würden demgegenüber größere Öffnungen gewählt, so könnte zunehmend kein Pinchplasma mehr erzeugt werden, welches im angestrebten Spektralbereich der EUV- und/oder weichen Röntgenstrahlung emittiert, denn mit zunehmender Vergrößerung des Durchmessers wird die erreichbare Plasmatemperatur kleiner. Die Anodenöffnung sollte zudem auch deshalb möglichst groß gewählt werden, damit die aus der Anodenöffnung ausgekoppelte Strahlung auch aus großen Beobachtungswinkeln zum Pinchplasma optisch möglichst gut zugänglich ist.To reduce the thermal load, the largest possible distance between the electrode surface and the pinch plasma would be advantageous. Typical diameters for the opening of the two electrodes are in the range of a few millimeters up to several 10 millimeters. If, on the other hand, larger openings were selected, it would no longer be possible to produce a pinch plasma which emits in the desired spectral range of the EUV and / or soft X-ray radiation, because as the diameter increases, the achievable plasma temperature becomes smaller. The anode opening should therefore also be chosen as large as possible, so that the decoupled from the anode opening radiation is optically accessible as well as possible from large observation angles to the pinch plasma.
Es hat sich experimentell als zweckmäßig erwiesen, den Durchmesser der Kathodenöffnung so zu-wählen, dass er sich bis zum Außenbereich um etwa ein Faktor 2 verjüngt.It has proved experimentally expedient to choose the diameter of the cathode opening so that it tapers to the outside by about a factor of 2.
Es kann ferner vorgesehen sein, dass die Kathode im Öffnungsbereich aus einem anderen Material gefertigt ist als in den anderen Bereichen der Kathode. So kann der Öffnungsbereich zum Beispiel aus einem niedererosiven Material wie Wolfram, Molybdän oder anderen niedererosiven Legierungen bestehen, um dadurch einen geringeren Abbrand bzw. eine geringe Erosion zu realisieren. Die restlichen Bereiche der Kathode können dann aus gut wärmeleitfähigem Material wie beispielsweise Kupfer bestehen.It can also be provided that the cathode is made in the opening area of a different material than in the other areas of the cathode. For example, the opening area may be made of a low-erosion material such as tungsten, molybdenum, or other low-erosion alloys to thereby realize less burnup and / or erosion. The remaining areas of the cathode can then consist of good thermal conductivity material such as copper.
In einem weiteren Aspekt der Erfindung ist vorgesehen, dass auf der dem Entladungsraum zugewandten Seite die Anodenöffnung einen kleineren Durchmesser aufweist als die Kathodenöffnung. Bei einer auf dem linken Ast der Paschenkurve betriebenen Gasentladung bedingt dies nämlich längere elektrische Feldlinien dadurch, dass diese Feldlinien nun in die Öffnung hineinreichen, zum Beispiel bis zur Stufe in der Kathodenöffnung gemäß
In einem weiteren Aspekt der Erfindung erlaubt der Einsatz einer sich verjüngenden Kathodenöffnung eine einfachere Betriebsweise der Gasentladungslampe. Bei einer sich verjüngenden Kathodenöffnung hat der Fachmann insgesamt zwei Durchmesser auszuwählen, nämlich den Durchmesser der Kathodenöffnung auf der dem Entladungsraum zugewandten Seite, und zusätzlich den Durchmesser auf der dem Außenraum zugewandten Seite der Kathodenöffnung. Je nach Wahl der beiden Durchmesser gewinnt der Fachmann beim Betrieb der Anlage einen weiteren Freiheitsgrad, durch den es ihm leichter fällt, geeignete Betriebsparameter zu wählen.In a further aspect of the invention, the use of a tapered cathode opening allows a simpler operation of the gas discharge lamp. In the case of a tapered cathode opening, the person skilled in the art has to select a total of two diameters, namely the diameter of the cathode opening on the side facing the discharge space, and additionally the diameter on the side of the cathode opening facing the outer space. Depending on the choice of the two diameters, the person skilled in the art gains a further degree of freedom in the operation of the system, by means of which it is easier for him to select suitable operating parameters.
Je nach den Erfordernissen der jeweiligen Applikation kann es nämlich durchaus vorkommen, dass ein höherer Betriebsdruck erforderlich ist. Bei einer Kathodenöffnung, welche sich vom Entladungsraum beginnend in Richtung des Außenraumes verkleinert, kommt es in vielen Fällen zu einem höheren Betriebsdruck, so dass der Fachmann in diesem Fall die Maximierung der EUV-Ausbeute bei vorgegebener Pulsenergie besser vornehmen kann.Depending on the requirements of the particular application, it may well happen that a higher operating pressure is required. In the case of a cathode opening, which decreases from the discharge space starting in the direction of the outer space, in many cases a higher operating pressure occurs, so that in this case the person skilled in the art can better maximize the EUV yield for a given pulse energy.
Bei anderen experimentellen Situationen kann jedoch genau das Gegenteil erforderlich sein, d.h. es kann erforderlich sein den Betriebsdruck zu senken. Zur Erläuterung sei angeführt, dass die maximal erreichbare Wiederholrate typischerweise mit der Zeit skaliert, mit der die Ladungsträger des Plasmas rekombinieren. In Experimenten hat sich gezeigt, dass die Vergrößerung des Kathodendurchmessers die Wahl eines niederigeren Betriebsdrucks erlaubt, und dies ermöglicht eine höhere Wiederholrate. Insgesamt wird somit je nach anwendungsspezifischen Erfordernissen eine leichtere Einstellung der Betriebsparameter möglich sein.In other experimental situations, however, just the opposite may be required, i. It may be necessary to lower the operating pressure. For explanation, it should be noted that the maximum achievable repetition rate typically scales with the time with which the charge carriers of the plasma recombine. In experiments it has been shown that increasing the cathode diameter allows the choice of a lower operating pressure and this allows a higher repetition rate. Overall, therefore, depending on application-specific requirements, easier adjustment of the operating parameters will be possible.
Claims (5)
- A gas discharge lamp for the wavelength range of extreme ultraviolet radiation and/or soft X-radiation, with at least two electrodes (1, 2) for generating a radiation-emitting plasma (8) in a discharge space (6) present between them, wherein one of the electrodes (1, 2) has a through opening (4) to an adjoining outer region (9), in which outer region (9) charge carriers can be generated either through ignition of a hollow-cathode plasma or by pre-ionization means before the plasma is generated, which charge carriers can then be transported into the discharge space (6) via the opening (4),
characterized in that
the electrode opening (4) narrows in a direction towards the outer region (9). - A gas discharge lamp as claimed in claim 1,
characterized in that
the electrode in the region of the opening is manufactured from a material that is less prone to being eroded by thermal loading than the material of the remaining electrodes. - A gas discharge lamp as claimed in claim 1 or 2,
characterized in that
an electrode opening with a continuous or stepwise taper is provided. - A gas discharge lamp as claimed in claims 1 to 3,
characterized in that
a constriction is present inside the electrode opening. - A gas discharge lamp as claimed in claims 1 to 4,
characterized in that
the cathode is provided with the narrowing through opening.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10238096 | 2002-08-21 | ||
DE10238096A DE10238096B3 (en) | 2002-08-21 | 2002-08-21 | Gas discharge lamp for extreme UV lithography or X-ray microscopy has tapered electrode opening for transport of charge carriers from external region to discharge space |
PCT/IB2003/003657 WO2004019662A1 (en) | 2002-08-21 | 2003-08-11 | Gas discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1532848A1 EP1532848A1 (en) | 2005-05-25 |
EP1532848B1 true EP1532848B1 (en) | 2009-10-21 |
Family
ID=30469797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03792583A Expired - Lifetime EP1532848B1 (en) | 2002-08-21 | 2003-08-11 | Gas discharge lamp |
Country Status (9)
Country | Link |
---|---|
US (1) | US7323701B2 (en) |
EP (1) | EP1532848B1 (en) |
JP (1) | JP4563807B2 (en) |
KR (1) | KR100991995B1 (en) |
AT (1) | ATE446666T1 (en) |
AU (1) | AU2003255933A1 (en) |
DE (1) | DE10238096B3 (en) |
TW (1) | TWI339402B (en) |
WO (1) | WO2004019662A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6770895B2 (en) | 2002-11-21 | 2004-08-03 | Asml Holding N.V. | Method and apparatus for isolating light source gas from main chamber gas in a lithography tool |
DE10256663B3 (en) * | 2002-12-04 | 2005-10-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Gas discharge lamp for EUV radiation |
US6919573B2 (en) | 2003-03-20 | 2005-07-19 | Asml Holding N.V | Method and apparatus for recycling gases used in a lithography tool |
DE10359464A1 (en) * | 2003-12-17 | 2005-07-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and device for generating in particular EUV radiation and / or soft X-radiation |
DE102005025624B4 (en) | 2005-06-01 | 2010-03-18 | Xtreme Technologies Gmbh | Arrangement for generating intense short-wave radiation based on a gas discharge plasma |
EP1883281B1 (en) * | 2006-07-28 | 2012-09-05 | Sage Innovations, Inc. | A method for generating a pulsed flux of energetic particles, and a particle source operating accordingly |
US8227771B2 (en) * | 2007-07-23 | 2012-07-24 | Asml Netherlands B.V. | Debris prevention system and lithographic apparatus |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3688946T2 (en) * | 1985-04-30 | 1994-01-13 | Nippon Telegraph & Telephone | X-ray source. |
DE3927089C1 (en) * | 1989-08-17 | 1991-04-25 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De | |
US5504795A (en) * | 1995-02-06 | 1996-04-02 | Plex Corporation | Plasma X-ray source |
JP2701775B2 (en) * | 1995-03-17 | 1998-01-21 | 日本電気株式会社 | Plasma processing equipment |
US6232613B1 (en) * | 1997-03-11 | 2001-05-15 | University Of Central Florida | Debris blocker/collector and emission enhancer for discharge sources |
US6016027A (en) * | 1997-05-19 | 2000-01-18 | The Board Of Trustees Of The University Of Illinois | Microdischarge lamp |
DE19753696A1 (en) * | 1997-12-03 | 1999-06-17 | Fraunhofer Ges Forschung | Device and method for generating extreme ultraviolet radiation and soft X-rays from a gas discharge |
US6700326B1 (en) * | 1999-06-14 | 2004-03-02 | Osram Sylvania Inc. | Edge sealing electrode for discharge lamp |
DE19962160C2 (en) * | 1999-06-29 | 2003-11-13 | Fraunhofer Ges Forschung | Devices for generating extreme ultraviolet and soft X-rays from a gas discharge |
TWI246872B (en) * | 1999-12-17 | 2006-01-01 | Asml Netherlands Bv | Radiation source for use in lithographic projection apparatus |
TW503669B (en) * | 2000-07-04 | 2002-09-21 | Lambda Physik Ag | Method of producing short-wave radiation from a gas-discharge plasma and device for implementing it |
RU2206186C2 (en) * | 2000-07-04 | 2003-06-10 | Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований | Method and device for producing short-wave radiation from gas-discharge plasma |
DE10139677A1 (en) * | 2001-04-06 | 2002-10-17 | Fraunhofer Ges Forschung | Method and device for generating extremely ultraviolet radiation and soft X-rays |
DE10151080C1 (en) * | 2001-10-10 | 2002-12-05 | Xtreme Tech Gmbh | Device for producing extreme ultraviolet radiation used in the semiconductor industry comprises a discharge chamber surrounded by electrode housings through which an operating gas flows under a predetermined pressure |
DE10256663B3 (en) * | 2002-12-04 | 2005-10-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Gas discharge lamp for EUV radiation |
DE102005041567B4 (en) * | 2005-08-30 | 2009-03-05 | Xtreme Technologies Gmbh | EUV radiation source with high radiation power based on a gas discharge |
-
2002
- 2002-08-21 DE DE10238096A patent/DE10238096B3/en not_active Expired - Fee Related
-
2003
- 2003-08-11 AT AT03792583T patent/ATE446666T1/en not_active IP Right Cessation
- 2003-08-11 WO PCT/IB2003/003657 patent/WO2004019662A1/en active Application Filing
- 2003-08-11 KR KR1020057002732A patent/KR100991995B1/en not_active IP Right Cessation
- 2003-08-11 US US10/525,136 patent/US7323701B2/en not_active Expired - Fee Related
- 2003-08-11 EP EP03792583A patent/EP1532848B1/en not_active Expired - Lifetime
- 2003-08-11 AU AU2003255933A patent/AU2003255933A1/en not_active Abandoned
- 2003-08-11 JP JP2004530462A patent/JP4563807B2/en not_active Expired - Fee Related
- 2003-08-18 TW TW092122619A patent/TWI339402B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100991995B1 (en) | 2010-11-04 |
KR20050058347A (en) | 2005-06-16 |
EP1532848A1 (en) | 2005-05-25 |
US20060113498A1 (en) | 2006-06-01 |
US7323701B2 (en) | 2008-01-29 |
WO2004019662A1 (en) | 2004-03-04 |
JP2005536844A (en) | 2005-12-02 |
AU2003255933A1 (en) | 2004-03-11 |
JP4563807B2 (en) | 2010-10-13 |
TW200419614A (en) | 2004-10-01 |
DE10238096B3 (en) | 2004-02-19 |
ATE446666T1 (en) | 2009-11-15 |
TWI339402B (en) | 2011-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10151080C1 (en) | Device for producing extreme ultraviolet radiation used in the semiconductor industry comprises a discharge chamber surrounded by electrode housings through which an operating gas flows under a predetermined pressure | |
EP0140005B1 (en) | Apparatus for producing a plasma source having a higher radiation insensity in the x-ray range | |
DE4113241C2 (en) | Pulsed gas discharge laser | |
DE102005025624B4 (en) | Arrangement for generating intense short-wave radiation based on a gas discharge plasma | |
DE69830664T2 (en) | DEVICE FOR EMITTING A LOADED PARTICLE BEAM | |
EP1248499B1 (en) | Method and apparatus for production of extreme ultraviolet radiation | |
EP1036488B1 (en) | Method and device for producing extreme ultraviolet and soft x-rays from a gaseous discharge | |
DE69307026T2 (en) | High voltage plasma switch with crossed fields | |
EP1197127B1 (en) | Device for producing an extreme ultraviolet and soft x radiation from a gaseous discharge | |
DE1298175B (en) | Switching spark gap with low self-inductance | |
DE3833604A1 (en) | Pulsed particle source on the basis of rapidly repolarisable ferroelectrics | |
DE10256663B3 (en) | Gas discharge lamp for EUV radiation | |
EP1532848B1 (en) | Gas discharge lamp | |
DE10310623B4 (en) | Method and apparatus for generating a plasma by electrical discharge in a discharge space | |
DE69013720T2 (en) | Vacuum switch. | |
EP1654914B1 (en) | Extreme uv and soft x ray generator | |
DE1186953B (en) | Supply cathode | |
DE3642749C2 (en) | ||
EP1168895B9 (en) | Pulse device with a system for radiation generation and method for radiation generation | |
DE3926956C2 (en) | ||
DE102013001940B4 (en) | Device and method for generating EUV and / or soft X-rays | |
DE2824775A1 (en) | PROCEDURE FOR INTERRUPTING DC CURRENT AND ARRANGEMENT FOR PERFORMING THE PROCEDURE | |
AT256268B (en) | Arrangement for nozzle-free production of a plasma jet | |
DE1589974C3 (en) | Hot cathode arrangement for generating a high intensity electron beam for electron beam processing devices | |
DE1589006B1 (en) | Electrode system for generating an electron beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050321 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20070709 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BERGMANN, KLAUS Inventor name: VAUDREVANGE, DOMINIK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100222 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100201 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100121 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 |
|
26N | No opposition filed |
Effective date: 20100722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100122 |
|
BERE | Be: lapsed |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100422 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100811 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091021 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120831 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120913 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130811 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130902 |