EP1532848B1 - Gas discharge lamp - Google Patents

Gas discharge lamp Download PDF

Info

Publication number
EP1532848B1
EP1532848B1 EP03792583A EP03792583A EP1532848B1 EP 1532848 B1 EP1532848 B1 EP 1532848B1 EP 03792583 A EP03792583 A EP 03792583A EP 03792583 A EP03792583 A EP 03792583A EP 1532848 B1 EP1532848 B1 EP 1532848B1
Authority
EP
European Patent Office
Prior art keywords
opening
gas discharge
discharge lamp
plasma
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03792583A
Other languages
German (de)
French (fr)
Other versions
EP1532848A1 (en
Inventor
Dominik Vaudrevange
Klaus Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of EP1532848A1 publication Critical patent/EP1532848A1/en
Application granted granted Critical
Publication of EP1532848B1 publication Critical patent/EP1532848B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode

Definitions

  • the invention relates to a gas discharge lamp for generating extreme ultraviolet and / or soft X-radiation according to the preamble of claim 1.
  • Preferred fields of application are those which require extreme ultraviolet (EUV) radiation or soft X-radiation in the wavelength range of about 1-20 nm, in particular by 13 nm, such as EUV lithography or X-ray microscopy.
  • the gas discharge lamp typically consists of an electrode system with anode and cathode, which is connected to a current pulse generator.
  • the discharge space located between the electrodes is gas-filled at pressures in the range of about 1 Pa to 100 Pa. In the discharge space is created by a pulsed current with currents in the single-digit kilo-ampere range up to max.
  • a hollow cathode plasma which is based on Fig. 1 is shown schematically.
  • the electrode system consists here of anode 1 and cathode 2, respectively
  • the discharge space 6 is located on the symmetrical axis 7 shown in phantom a plasma channel 8 before.
  • the plasma emits the radiation, which is indicated by the arrows.
  • the cathode 2 further has a cavity 9, in which charge carriers, in particular electrons, are produced by suitable means for pre-ionization.
  • the starting electrons are formed in self-breakdown.
  • the self-breakdown can be controlled by a trigger electrode in the space 9, whereby the radiation pulses can be triggered precisely in time.
  • a gas pressure of approximately 1 Pa to 100 Pa is present in the discharge space 6.
  • Gas pressure and geometry of the electrodes are chosen so that the ignition of the plasma takes place on the left branch of the Paschen curve. The ignition then takes place in the region of the long electric field lines which occur in the area of the boreholes 3 and 4, respectively.
  • an ionization of the gas takes place along the field lines in the borehole area.
  • This phase creates the conditions for the formation of a plasma in the hollow cathode, which is why we speak of a hollow cathode plasma.
  • This plasma then leads to a low-resistance channel in the electrode gap.
  • a pulsed current which is generated by the discharge of electrically stored energy in a capacitor bank 10, is sent via this channel. The current leads to the compression and heating of the plasma, so that conditions for the efficient emission of characteristic radiation of the used discharge gas in the EUV range are achieved.
  • working gas discharge lamps are, for example, in the WO 99/29145 A1 and the WO 01/01736 A1 described.
  • the latter document also provides various measures to increase the efficiency of converting the injected electrical energy into radiant energy, including choosing a non-through hole conical blank in the anode. By this geometric configuration of the anode well, the radiation efficiency should be increased.
  • the WO 02/07484 A2 discloses a gas discharge lamp in which on a symmetry axis a pinch plasma is created, which emits the radiation in the relevant spectral range.
  • the publication teaches to perform a preionization in an outdoor area by means of a pulsed sliding discharge, wherein the resulting charge carriers are to reach the discharge area via an axial aperture in one of the electrodes. It is provided here that the pre-ionization region does not optically communicate with the axis of the pinch plasma duct.
  • the invention is based on the technical problem of providing a gas discharge lamp with a plasma emitting in the EUV and / or soft X-ray wavelength range, which has an improved stability of the radiation emission.
  • the above-mentioned technical problem is solved by the provision of a gas discharge lamp in which the continuous electrode opening tapers in the direction of the outer region.
  • the diameter of the electrode opening should be larger on the side facing the discharge space than on the side facing away from the discharge space.
  • the external area is to be understood as that space area in which charge carriers can be generated, which can be transported via the through-opening into the discharge space.
  • the invention is based on the finding that an increase in the stability in the emission of radiation, ie an improved consistency in the emission from pulse to pulse, is achieved by largely decoupling the processes in the gas discharge space and in the outer area.
  • the thus improved dielectric strength of the electrode system also allows an increase in the maximum repetition frequency or the maximum repetition rate.
  • the gas discharge lamp according to the invention can be used either in the self-breakdown mode, or alternatively, additional means for pre-ionization can be provided.
  • additional means for pre-ionization can be provided.
  • the tapered cathode opening may be geometrically different. This will be in the illustrated in the illustrated preferred embodiments Fig. 2 to 7 shown an enlargement of the in Fig. 1 reproduced dashed area shown. The enlarged area is shown in the Fig. 2 to 7 across from Fig. 1 turned 90 ° counterclockwise.
  • an electrode opening that tapers in the direction of the outside area has advantages in the erosion of the electrode surface.
  • pulse energies typically several joules to several tens of J are converted. A significant proportion of this energy is concentrated in the pinch plasma, which leads to a thermal load on the electrodes.
  • the thermal load is caused by the emission of radiation and hot particles, such as ions.
  • the distance of the anode from the cathode is typically only a few Millimeters, and the diameter of the electrode opening on the discharge side is typically between 8 mm and 20 mm.
  • the cathode is designed as a hollow cathode and has the continuous, tapered opening.
  • the cavity of the hollow cathode is connected to the discharge space gaszu organizedd. This allows the ignition of a hollow cathode plasma.
  • the largest possible distance between the electrode surface and the pinch plasma would be advantageous.
  • Typical diameters for the opening of the two electrodes are in the range of a few millimeters up to several 10 millimeters. If, on the other hand, larger openings were selected, it would no longer be possible to produce a pinch plasma which emits in the desired spectral range of the EUV and / or soft X-ray radiation, because as the diameter increases, the achievable plasma temperature becomes smaller.
  • the anode opening should therefore also be chosen as large as possible, so that the decoupled from the anode opening radiation is optically accessible as well as possible from large observation angles to the pinch plasma.
  • the cathode is made in the opening area of a different material than in the other areas of the cathode.
  • the opening area may be made of a low-erosion material such as tungsten, molybdenum, or other low-erosion alloys to thereby realize less burnup and / or erosion.
  • the remaining areas of the cathode can then consist of good thermal conductivity material such as copper.
  • the anode opening has a smaller diameter than the cathode opening.
  • this causes longer electric field lines in that these field lines now extend into the opening, for example up to the step in the cathode opening according to FIG Fig. 4 .
  • This allows a reduction of the gas pressure in the Discharge space, which in turn allows an increase in the repetition frequency of the gas discharge lamp.
  • the increase in the repetition frequency leads to a higher degree of decoupled radiation energy.
  • the use of a tapered cathode opening allows a simpler operation of the gas discharge lamp.
  • the person skilled in the art has to select a total of two diameters, namely the diameter of the cathode opening on the side facing the discharge space, and additionally the diameter on the side of the cathode opening facing the outer space.
  • the person skilled in the art gains a further degree of freedom in the operation of the system, by means of which it is easier for him to select suitable operating parameters.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Incineration Of Waste (AREA)

Abstract

The gas discharge lamp has at least 2 electrodes (1,2) for generation of a radiation emission plasma (8) in a discharge space (6) between them, one of the electrodes provided with an opening (4) leading to an adjacent external region (9) in which charge carriers are generated. The opening allows transport of the charge carriers to the discharge space, the opening tapering in the direction of the external region.

Description

Die Erfindung betrifft eine Gasentladungslampe zur Erzeugung extremer Ultraviolett- und/oder weicher Röntgenstrahlung nach dem Oberbegriff des Anspruchs 1. Bevorzugte Anwendungsgebiete sind solche, die extreme Ultraviolett- (EUV-) Strahlung oder weiche Röntgenstrahlung im Wellenlängenbereich von ca. 1-20 nm benötigen, insbesondere um 13 nm, wie zum Beispiel die EUV-Lithographie oder die Röntgenmikroskopie.The invention relates to a gas discharge lamp for generating extreme ultraviolet and / or soft X-radiation according to the preamble of claim 1. Preferred fields of application are those which require extreme ultraviolet (EUV) radiation or soft X-radiation in the wavelength range of about 1-20 nm, in particular by 13 nm, such as EUV lithography or X-ray microscopy.

Es ist allgemein bekannt, ein dichtes heißes Plasma als strahlungsemittierendes Medium zur Erzeugung von EUV- und/oder weicher Röntgenstrahlung einzusetzen. Die Gasentladungslampe besteht dabei typischerweise aus einem Elektrodensystem mit Anode und Kathode, welches an einen Strompulsgenerator angeschlossen ist. Der zwischen den Elektroden befindliche Entladungsraum ist gasgefüllt bei Drücken im Bereich von ca. 1 Pa bis 100 Pa. Im Entladungsraum entsteht durch einen gepulsten Strom mit Stromstärken im einstelligen Kiloamperebereich bis max. 100 kA und Pulsdauern im Bereich von 10 ns bis einigen 100 ns ein sogenanntes Pinchplasma, welches durch ohmsche Heizung und Kompression durch den Pulsstrom auf Temperaturen von einigen 10 eV und Dichten gebracht wird, bei denen es charakteristische Strahlung des verwendeten Arbeitsgases im interessierenden Spektralbereich emittiert.It is generally known to use a dense hot plasma as a radiation-emitting medium for generating EUV and / or soft X-radiation. The gas discharge lamp typically consists of an electrode system with anode and cathode, which is connected to a current pulse generator. The discharge space located between the electrodes is gas-filled at pressures in the range of about 1 Pa to 100 Pa. In the discharge space is created by a pulsed current with currents in the single-digit kilo-ampere range up to max. 100 kA and pulse durations in the range of 10 ns to several 100 ns a so-called pinch plasma, which is brought by ohmic heating and compression by the pulse current to temperatures of some 10 eV and densities at which it emits characteristic radiation of the working gas used in the spectral region of interest.

Um das strahlungsemittierende Plasma bereitzustellen ist es erforderlich, Ladungsträger in den Entladungsraum zwischen Anode und Kathode einzubringen oder aber dort zu erzeugen. Hierzu sind geeignete Mittel zur Vorionisierung eines Gases erforderlich, so zum Beispiel ein Oberflächengleitfunkentrigger, ein hochdielektrischer Trigger ein ferroelektrischer Trigger oder ein Glimmentladungstrigger.In order to provide the radiation-emitting plasma, it is necessary to introduce charge carriers into the discharge space between anode and cathode or else to generate them there. For this purpose, suitable means are required for the pre-ionization of a gas, such as a Oberflächengleitfunkentrigger, a high-dielectric trigger a ferroelectric trigger or a glow discharge trigger.

Weiterhin ist bekannt, Ladungsträger über ein Hohlkathodenplasma bereitzustellen, was anhand von Fig. 1 schematisch dargestellt ist. Das Elektrodensystem besteht hier aus Anode 1 und Kathode 2 mit jeweils gegenüberliegenden Öffnungen 3 bzw. 4 und einem dazwischen befindlichen elektrischen Isolator 5. Im Entladungsraum 6 liegt auf der gestrichtelt dargestellten Symmetrieachse 7 ein Plasmakanal 8 vor. Das Plasma emittiert die Strahlung, was durch die Pfeile angedeutet wird. Die Kathode 2 weist ferner einen Hohlraum 9 auf, in dem Ladungsträger wie insbesondere Elektronen durch geeignete Mittel zur Vorionisierung erzeugt werden.Furthermore, it is known to provide charge carriers via a hollow cathode plasma, which is based on Fig. 1 is shown schematically. The electrode system consists here of anode 1 and cathode 2, respectively In the discharge space 6 is located on the symmetrical axis 7 shown in phantom a plasma channel 8 before. The plasma emits the radiation, which is indicated by the arrows. The cathode 2 further has a cavity 9, in which charge carriers, in particular electrons, are produced by suitable means for pre-ionization.

Alternativ zur aktiven Bereitstellung von Startelektronen durch Mittel zur Vorionisierung kann auch ein Betrieb vorgesehen sein, bei dem die Startelektronen im Selbstdurchbruch entstehen. Der Selbstdurchbruch kann hierbei durch eine Triggerlektrode im Raum 9 gesteuert werden, wodurch die Strahlungspulse zeitlich präzise ausgelöst werden können. Hierbei liegt im Entladungsraum 6 ein Gasdruck von ca. 1 Pa bis 100 Pa vor. Gasdruck und Geometrie der Elektroden sind so gewählt, dass die Zündung des Plasmas auf dem linken Ast der Paschenkurve erfolgt. Die Zündung erfolgt danach im Bereich der langen elektrischen Feldlinien, die im Bereich der Bohrlöcher 3 bzw. 4 auftreten. Zur Bereitstellung des strahlungsemittierenden Plasmas erfolgt zunächst eine Ionisierung des Gases entlang der Feldlinien im Bohrlochbereich. Diese Phase schafft die Bedingungen zur Ausbildung eines Plasmas in der Hohlkathode, weshalb von einem Hohlkathodenplasma gesprochen wird. Dieses Plasma führt dann zu einem niederohmigen Kanal im Elektrodenzwischenraum. Über diesen Kanal wird ein gepulster Strom geschickt, der durch die Entladung elektrisch gespeicherter Energie in einer Kondensatorbank 10 generiert wird. Der Strom führt zur Kompression und Aufheizung des Plasmas, so dass Bedingungen für die effiziente Emission charakteristischer Strahlung des genutzten Entladegases im EUV-Bereich erreicht werden.As an alternative to the active provision of starting electrons by means for preionization, it is also possible to provide an operation in which the starting electrons are formed in self-breakdown. The self-breakdown can be controlled by a trigger electrode in the space 9, whereby the radiation pulses can be triggered precisely in time. Here, a gas pressure of approximately 1 Pa to 100 Pa is present in the discharge space 6. Gas pressure and geometry of the electrodes are chosen so that the ignition of the plasma takes place on the left branch of the Paschen curve. The ignition then takes place in the region of the long electric field lines which occur in the area of the boreholes 3 and 4, respectively. To provide the radiation-emitting plasma, an ionization of the gas takes place along the field lines in the borehole area. This phase creates the conditions for the formation of a plasma in the hollow cathode, which is why we speak of a hollow cathode plasma. This plasma then leads to a low-resistance channel in the electrode gap. A pulsed current, which is generated by the discharge of electrically stored energy in a capacitor bank 10, is sent via this channel. The current leads to the compression and heating of the plasma, so that conditions for the efficient emission of characteristic radiation of the used discharge gas in the EUV range are achieved.

Nach diesem Funktionsprinzip arbeitende Gasentladungslampen werden zum Beispiel in der WO 99/29145 A1 und der WO 01/01736 A1 beschrieben. Die letztgenannte Druckschrift sieht zudem diverse Maßnahmen vor, um die Effizienz bei der Umwandlung der eingespeisten elektrischen Energie in Strahlungsenergie zu erhöhen, dazu gehört auch die Wahl einer nicht durchgehenden Öffnung konischen Zuschnitts in der Anode. Durch diese geometrische Ausgestaltung der Anodenvertiefung soll die Strahlungsausbeute erhöht werden.According to this operating principle working gas discharge lamps are, for example, in the WO 99/29145 A1 and the WO 01/01736 A1 described. The latter document also provides various measures to increase the efficiency of converting the injected electrical energy into radiant energy, including choosing a non-through hole conical blank in the anode. By this geometric configuration of the anode well, the radiation efficiency should be increased.

Die WO 02/07484 A2 offenbart eine Gasentladungslampe, bei der auf einer Symmetrieachse ein Pinchplasma geschaffen wird, welches die Strahlung im relevanten Spektralbereich emittiert. Die Druckschrift lehrt, in einem Außenbereich mittels einer gepulsten Gleitentladung eine Vorionisierung vorzunehmen, wobei die entstandenen Ladungsträger über eine axiale Apertur in einer der Elektroden in den Entladungsbereich gelangen sollen. Hierbei ist vorgesehen, dass der Vorionisierungsbereich nicht mit der Achse des Pinchplasmakanals optisch kommuniziert.The WO 02/07484 A2 discloses a gas discharge lamp in which on a symmetry axis a pinch plasma is created, which emits the radiation in the relevant spectral range. The publication teaches to perform a preionization in an outdoor area by means of a pulsed sliding discharge, wherein the resulting charge carriers are to reach the discharge area via an axial aperture in one of the electrodes. It is provided here that the pre-ionization region does not optically communicate with the axis of the pinch plasma duct.

Der Erfindung liegt das technische Problem zugrunde eine Gasentladungslampe mit einem im EUV- und/oder weichen Röntgenwellenlängenbereich emittierenden Plasma bereitzustellen, die eine verbesserte Stabilität der Strahlungsemission aufweist.The invention is based on the technical problem of providing a gas discharge lamp with a plasma emitting in the EUV and / or soft X-ray wavelength range, which has an improved stability of the radiation emission.

Die Lösung dieses technischen Problems erfolgt durch die Merkmale des unabhängigen Anspruchs 1. Vorteilhafte Weiterbildungen werden durch die abhängigen Ansprüche angegeben.The solution of this technical problem is achieved by the features of independent claim 1. Advantageous further developments are indicated by the dependent claims.

Erfindungsgemäß wurde erkannt, dass das oben genannte technische Problem durch die Bereitstellung einer Gasentladungslampe gelöst wird, bei der sich die durchgehende Elektrodenöffnung in Richtung des Außenbereichs verjüngt. Mit anderen Worten soll der Durchmesser der Elektrodenöffnung auf der dem Entladungsraum zugewandten Seite größer sein als auf der dem Entladungsraum abgewandten Seite.According to the invention, it has been recognized that the above-mentioned technical problem is solved by the provision of a gas discharge lamp in which the continuous electrode opening tapers in the direction of the outer region. In other words, the diameter of the electrode opening should be larger on the side facing the discharge space than on the side facing away from the discharge space.

Als Außenbereich ist derjenige Raumbereich zu verstehen, in welchem Ladungsträger erzeugbar sind, welche über die durchgehende Öffnung in den Entladungsraum transportierbar sind.The external area is to be understood as that space area in which charge carriers can be generated, which can be transported via the through-opening into the discharge space.

Der Erfindung liegt die Erkenntnis zugrunde, dass eine Steigerung der Stabilität bei der Strahlungsemission, d. h. eine verbesserte Konstanz bei der Emission von Puls zu Puls, dadurch erreicht wird, dass die Vorgänge im Gasentladungsraum und im Außenbereich weitestgehend entkoppelt werden. Die Vorionisierungsvorgänge im Außenbereich mit der Erzeugung von Ladungsträgern beeinflussen nämlich den Entladungsvorgang im Zwischenraum und führen zu einer Destabilisierung der Strahlungsemission.The invention is based on the finding that an increase in the stability in the emission of radiation, ie an improved consistency in the emission from pulse to pulse, is achieved by largely decoupling the processes in the gas discharge space and in the outer area. The Vorionisierungsvorgänge outdoor with the generation of charge carriers namely that influence the discharge process in the space and lead to a destabilization of the radiation emission.

Es wurde gefunden, dass der Nachteil eines Entladungsaufbaus im Entladungsraum zwischen Anode und Kathode vor Erreichen der angestrebten Haltespannung, d. h. der so genannte Selbstdurchbruch, dadurch gemindert werden kann, dass weniger Ladungsträger vom Außenbereich, zum Beispiel von der Hohlkathode, in den Elektrodenzwischenraum übertragen werden. Hierzu dient die durchgehende Öffnung in der Elektrode, sei es die Anode oder die Kathode, die sich in Richtung des Außenbereichs verjüngt.It has been found that the disadvantage of a discharge structure in the discharge space between anode and cathode before reaching the desired holding voltage, d. H. the so-called self-breakdown, can be reduced by the fact that fewer charge carriers from the outside, for example, from the hollow cathode, are transferred into the electrode gap. This is achieved by the through opening in the electrode, be it the anode or the cathode, which tapers in the direction of the outside area.

Die auf diese Weise verbesserte Spannungsfestigkeit des Elektrodensystems erlaubt ferner eine Erhöhung der maximalen Wiederholfrequenz bzw. der maximalen Wiederholrate.The thus improved dielectric strength of the electrode system also allows an increase in the maximum repetition frequency or the maximum repetition rate.

Die crfindungsgemäßen Gasentladungslampe kann entweder im Selbstdurchbruchbetrieb genutzt werden, oder es können alternativ zusätzliche Mittel zur Vorionisierung vorgesehen sein. Durch eine derartige Zündvorrichtung kann erreicht werden, dass die Strahlungsimpulse zeitlich präzise ausgelöst werden, falls es die Anwendung erfordert.The gas discharge lamp according to the invention can be used either in the self-breakdown mode, or alternatively, additional means for pre-ionization can be provided. By such an ignition device can be achieved that the radiation pulses are triggered precisely in time, if required by the application.

Die sich verjüngende Kathodenöffnung kann geometrisch unterschiedlich beschaffen sein. Dies wird in den in den dargestellten bevorzugten Ausführungsbeispielen Fig. 2 bis 7 gezeigt, die eine Vergrößerung des in Fig. 1 dargestellten gestrichelten Bereichs wiedergeben. Der vergrößert dargestellte Bereich ist in den Fig. 2 bis 7 gegenüber Fig. 1 um 90° im Gegenuhrzeigersinn gedreht.The tapered cathode opening may be geometrically different. This will be in the illustrated in the illustrated preferred embodiments Fig. 2 to 7 shown an enlargement of the in Fig. 1 reproduced dashed area shown. The enlarged area is shown in the Fig. 2 to 7 across from Fig. 1 turned 90 ° counterclockwise.

Möglich sind kontinuierliche oder stufenförmige Übergänge in der Öffnung gemäß Fig. 2 und 4 bis 7, und auch die Bereitstellung einer Öffnung mit einer Einschnürung, vgl. Fig. 3, d. h. einer Verkleinerung des Durchmessers, welcher eine Vergrößerung des Durchmessers folgt.Possible are continuous or stepped transitions in the opening according to Fig. 2 and 4 to 7 , and also the provision of an opening with a constriction, cf. Fig. 3 , ie a reduction of the diameter, which follows an increase of the diameter.

Weiterhin zeigt eine sich in Richtung des Außenbereichs verjüngende Elektrodenöffnung Vorteile bei der Erosion der Elektrodenoberfläche. Bei der Erzeugung eines Pinchplasmas werden nämlich Pulsenergien von typischerweise einigen Joule bis mehreren 10 J umgesetzt. Ein wesentlicher Anteil dieser Energie wird im Pinchplasma konzentriert, was zu einer thermischen Belastung der Elektroden führt. Die thermische Belastung entsteht hierbei durch die Emission von Strahlung und von heißen Teilchen, wie zum Beispiel Ionen. Zur Veranschaulichung dieses Sachverhalts sei angemerkt, dass der Abstand der Anode von der Kathode typischerweise nur einige Millimeter beträgt, und der Durchmesser der Elektrodenöffnung auf der Entladungsseite typischerweise zwischen 8 mm und 20 mm.Furthermore, an electrode opening that tapers in the direction of the outside area has advantages in the erosion of the electrode surface. In fact, when generating a pinch plasma, pulse energies of typically several joules to several tens of J are converted. A significant proportion of this energy is concentrated in the pinch plasma, which leads to a thermal load on the electrodes. The thermal load is caused by the emission of radiation and hot particles, such as ions. To illustrate this, it should be noted that the distance of the anode from the cathode is typically only a few Millimeters, and the diameter of the electrode opening on the discharge side is typically between 8 mm and 20 mm.

Vorzugsweise ist die Kathode als Hohlkathode ausgeführt und weist die durchgehende, sich verjüngende Öffnung auf. In diesem Fall ist der Hohlraum der Hohlkathode mit dem Entladungsraum gaszuleitend verbunden. Dies ermöglicht die Zündung eines Hohlkathodenplasmas.Preferably, the cathode is designed as a hollow cathode and has the continuous, tapered opening. In this case, the cavity of the hollow cathode is connected to the discharge space gaszuleitend. This allows the ignition of a hollow cathode plasma.

Zur Minderung der thermischen Belastung wäre ein möglichst großer Abstand der Elektrodenoberfläche zum Pinchplasma vorteilhaft. Typische Durchmesser für die Öffnung der beiden Elektroden liegen im Bereich einiger Millimeter bis zu einigen 10 Millimetern. Würden demgegenüber größere Öffnungen gewählt, so könnte zunehmend kein Pinchplasma mehr erzeugt werden, welches im angestrebten Spektralbereich der EUV- und/oder weichen Röntgenstrahlung emittiert, denn mit zunehmender Vergrößerung des Durchmessers wird die erreichbare Plasmatemperatur kleiner. Die Anodenöffnung sollte zudem auch deshalb möglichst groß gewählt werden, damit die aus der Anodenöffnung ausgekoppelte Strahlung auch aus großen Beobachtungswinkeln zum Pinchplasma optisch möglichst gut zugänglich ist.To reduce the thermal load, the largest possible distance between the electrode surface and the pinch plasma would be advantageous. Typical diameters for the opening of the two electrodes are in the range of a few millimeters up to several 10 millimeters. If, on the other hand, larger openings were selected, it would no longer be possible to produce a pinch plasma which emits in the desired spectral range of the EUV and / or soft X-ray radiation, because as the diameter increases, the achievable plasma temperature becomes smaller. The anode opening should therefore also be chosen as large as possible, so that the decoupled from the anode opening radiation is optically accessible as well as possible from large observation angles to the pinch plasma.

Es hat sich experimentell als zweckmäßig erwiesen, den Durchmesser der Kathodenöffnung so zu-wählen, dass er sich bis zum Außenbereich um etwa ein Faktor 2 verjüngt.It has proved experimentally expedient to choose the diameter of the cathode opening so that it tapers to the outside by about a factor of 2.

Es kann ferner vorgesehen sein, dass die Kathode im Öffnungsbereich aus einem anderen Material gefertigt ist als in den anderen Bereichen der Kathode. So kann der Öffnungsbereich zum Beispiel aus einem niedererosiven Material wie Wolfram, Molybdän oder anderen niedererosiven Legierungen bestehen, um dadurch einen geringeren Abbrand bzw. eine geringe Erosion zu realisieren. Die restlichen Bereiche der Kathode können dann aus gut wärmeleitfähigem Material wie beispielsweise Kupfer bestehen.It can also be provided that the cathode is made in the opening area of a different material than in the other areas of the cathode. For example, the opening area may be made of a low-erosion material such as tungsten, molybdenum, or other low-erosion alloys to thereby realize less burnup and / or erosion. The remaining areas of the cathode can then consist of good thermal conductivity material such as copper.

In einem weiteren Aspekt der Erfindung ist vorgesehen, dass auf der dem Entladungsraum zugewandten Seite die Anodenöffnung einen kleineren Durchmesser aufweist als die Kathodenöffnung. Bei einer auf dem linken Ast der Paschenkurve betriebenen Gasentladung bedingt dies nämlich längere elektrische Feldlinien dadurch, dass diese Feldlinien nun in die Öffnung hineinreichen, zum Beispiel bis zur Stufe in der Kathodenöffnung gemäß Fig. 4. Dies erlaubt eine Senkung des Gasdrucks im Entladungsraum, was wiederum eine Steigerung der Wiederholfrequenz der Gasentladungslampe ermöglicht. Die Steigerung der Wiederholfrequenz führt zu einem höheren Maß an auskoppelbarer Strahlungsenergie.In a further aspect of the invention, it is provided that, on the side facing the discharge space, the anode opening has a smaller diameter than the cathode opening. In the case of a gas discharge operated on the left branch of the Paschen curve, this causes longer electric field lines in that these field lines now extend into the opening, for example up to the step in the cathode opening according to FIG Fig. 4 , This allows a reduction of the gas pressure in the Discharge space, which in turn allows an increase in the repetition frequency of the gas discharge lamp. The increase in the repetition frequency leads to a higher degree of decoupled radiation energy.

In einem weiteren Aspekt der Erfindung erlaubt der Einsatz einer sich verjüngenden Kathodenöffnung eine einfachere Betriebsweise der Gasentladungslampe. Bei einer sich verjüngenden Kathodenöffnung hat der Fachmann insgesamt zwei Durchmesser auszuwählen, nämlich den Durchmesser der Kathodenöffnung auf der dem Entladungsraum zugewandten Seite, und zusätzlich den Durchmesser auf der dem Außenraum zugewandten Seite der Kathodenöffnung. Je nach Wahl der beiden Durchmesser gewinnt der Fachmann beim Betrieb der Anlage einen weiteren Freiheitsgrad, durch den es ihm leichter fällt, geeignete Betriebsparameter zu wählen.In a further aspect of the invention, the use of a tapered cathode opening allows a simpler operation of the gas discharge lamp. In the case of a tapered cathode opening, the person skilled in the art has to select a total of two diameters, namely the diameter of the cathode opening on the side facing the discharge space, and additionally the diameter on the side of the cathode opening facing the outer space. Depending on the choice of the two diameters, the person skilled in the art gains a further degree of freedom in the operation of the system, by means of which it is easier for him to select suitable operating parameters.

Je nach den Erfordernissen der jeweiligen Applikation kann es nämlich durchaus vorkommen, dass ein höherer Betriebsdruck erforderlich ist. Bei einer Kathodenöffnung, welche sich vom Entladungsraum beginnend in Richtung des Außenraumes verkleinert, kommt es in vielen Fällen zu einem höheren Betriebsdruck, so dass der Fachmann in diesem Fall die Maximierung der EUV-Ausbeute bei vorgegebener Pulsenergie besser vornehmen kann.Depending on the requirements of the particular application, it may well happen that a higher operating pressure is required. In the case of a cathode opening, which decreases from the discharge space starting in the direction of the outer space, in many cases a higher operating pressure occurs, so that in this case the person skilled in the art can better maximize the EUV yield for a given pulse energy.

Bei anderen experimentellen Situationen kann jedoch genau das Gegenteil erforderlich sein, d.h. es kann erforderlich sein den Betriebsdruck zu senken. Zur Erläuterung sei angeführt, dass die maximal erreichbare Wiederholrate typischerweise mit der Zeit skaliert, mit der die Ladungsträger des Plasmas rekombinieren. In Experimenten hat sich gezeigt, dass die Vergrößerung des Kathodendurchmessers die Wahl eines niederigeren Betriebsdrucks erlaubt, und dies ermöglicht eine höhere Wiederholrate. Insgesamt wird somit je nach anwendungsspezifischen Erfordernissen eine leichtere Einstellung der Betriebsparameter möglich sein.In other experimental situations, however, just the opposite may be required, i. It may be necessary to lower the operating pressure. For explanation, it should be noted that the maximum achievable repetition rate typically scales with the time with which the charge carriers of the plasma recombine. In experiments it has been shown that increasing the cathode diameter allows the choice of a lower operating pressure and this allows a higher repetition rate. Overall, therefore, depending on application-specific requirements, easier adjustment of the operating parameters will be possible.

Claims (5)

  1. A gas discharge lamp for the wavelength range of extreme ultraviolet radiation and/or soft X-radiation, with at least two electrodes (1, 2) for generating a radiation-emitting plasma (8) in a discharge space (6) present between them, wherein one of the electrodes (1, 2) has a through opening (4) to an adjoining outer region (9), in which outer region (9) charge carriers can be generated either through ignition of a hollow-cathode plasma or by pre-ionization means before the plasma is generated, which charge carriers can then be transported into the discharge space (6) via the opening (4),
    characterized in that
    the electrode opening (4) narrows in a direction towards the outer region (9).
  2. A gas discharge lamp as claimed in claim 1,
    characterized in that
    the electrode in the region of the opening is manufactured from a material that is less prone to being eroded by thermal loading than the material of the remaining electrodes.
  3. A gas discharge lamp as claimed in claim 1 or 2,
    characterized in that
    an electrode opening with a continuous or stepwise taper is provided.
  4. A gas discharge lamp as claimed in claims 1 to 3,
    characterized in that
    a constriction is present inside the electrode opening.
  5. A gas discharge lamp as claimed in claims 1 to 4,
    characterized in that
    the cathode is provided with the narrowing through opening.
EP03792583A 2002-08-21 2003-08-11 Gas discharge lamp Expired - Lifetime EP1532848B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10238096 2002-08-21
DE10238096A DE10238096B3 (en) 2002-08-21 2002-08-21 Gas discharge lamp for extreme UV lithography or X-ray microscopy has tapered electrode opening for transport of charge carriers from external region to discharge space
PCT/IB2003/003657 WO2004019662A1 (en) 2002-08-21 2003-08-11 Gas discharge lamp

Publications (2)

Publication Number Publication Date
EP1532848A1 EP1532848A1 (en) 2005-05-25
EP1532848B1 true EP1532848B1 (en) 2009-10-21

Family

ID=30469797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03792583A Expired - Lifetime EP1532848B1 (en) 2002-08-21 2003-08-11 Gas discharge lamp

Country Status (9)

Country Link
US (1) US7323701B2 (en)
EP (1) EP1532848B1 (en)
JP (1) JP4563807B2 (en)
KR (1) KR100991995B1 (en)
AT (1) ATE446666T1 (en)
AU (1) AU2003255933A1 (en)
DE (1) DE10238096B3 (en)
TW (1) TWI339402B (en)
WO (1) WO2004019662A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770895B2 (en) 2002-11-21 2004-08-03 Asml Holding N.V. Method and apparatus for isolating light source gas from main chamber gas in a lithography tool
DE10256663B3 (en) * 2002-12-04 2005-10-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gas discharge lamp for EUV radiation
US6919573B2 (en) 2003-03-20 2005-07-19 Asml Holding N.V Method and apparatus for recycling gases used in a lithography tool
DE10359464A1 (en) * 2003-12-17 2005-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for generating in particular EUV radiation and / or soft X-radiation
DE102005025624B4 (en) 2005-06-01 2010-03-18 Xtreme Technologies Gmbh Arrangement for generating intense short-wave radiation based on a gas discharge plasma
EP1883281B1 (en) * 2006-07-28 2012-09-05 Sage Innovations, Inc. A method for generating a pulsed flux of energetic particles, and a particle source operating accordingly
US8227771B2 (en) * 2007-07-23 2012-07-24 Asml Netherlands B.V. Debris prevention system and lithographic apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3688946T2 (en) * 1985-04-30 1994-01-13 Nippon Telegraph & Telephone X-ray source.
DE3927089C1 (en) * 1989-08-17 1991-04-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
US5504795A (en) * 1995-02-06 1996-04-02 Plex Corporation Plasma X-ray source
JP2701775B2 (en) * 1995-03-17 1998-01-21 日本電気株式会社 Plasma processing equipment
US6232613B1 (en) * 1997-03-11 2001-05-15 University Of Central Florida Debris blocker/collector and emission enhancer for discharge sources
US6016027A (en) * 1997-05-19 2000-01-18 The Board Of Trustees Of The University Of Illinois Microdischarge lamp
DE19753696A1 (en) * 1997-12-03 1999-06-17 Fraunhofer Ges Forschung Device and method for generating extreme ultraviolet radiation and soft X-rays from a gas discharge
US6700326B1 (en) * 1999-06-14 2004-03-02 Osram Sylvania Inc. Edge sealing electrode for discharge lamp
DE19962160C2 (en) * 1999-06-29 2003-11-13 Fraunhofer Ges Forschung Devices for generating extreme ultraviolet and soft X-rays from a gas discharge
TWI246872B (en) * 1999-12-17 2006-01-01 Asml Netherlands Bv Radiation source for use in lithographic projection apparatus
TW503669B (en) * 2000-07-04 2002-09-21 Lambda Physik Ag Method of producing short-wave radiation from a gas-discharge plasma and device for implementing it
RU2206186C2 (en) * 2000-07-04 2003-06-10 Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований Method and device for producing short-wave radiation from gas-discharge plasma
DE10139677A1 (en) * 2001-04-06 2002-10-17 Fraunhofer Ges Forschung Method and device for generating extremely ultraviolet radiation and soft X-rays
DE10151080C1 (en) * 2001-10-10 2002-12-05 Xtreme Tech Gmbh Device for producing extreme ultraviolet radiation used in the semiconductor industry comprises a discharge chamber surrounded by electrode housings through which an operating gas flows under a predetermined pressure
DE10256663B3 (en) * 2002-12-04 2005-10-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gas discharge lamp for EUV radiation
DE102005041567B4 (en) * 2005-08-30 2009-03-05 Xtreme Technologies Gmbh EUV radiation source with high radiation power based on a gas discharge

Also Published As

Publication number Publication date
KR100991995B1 (en) 2010-11-04
KR20050058347A (en) 2005-06-16
EP1532848A1 (en) 2005-05-25
US20060113498A1 (en) 2006-06-01
US7323701B2 (en) 2008-01-29
WO2004019662A1 (en) 2004-03-04
JP2005536844A (en) 2005-12-02
AU2003255933A1 (en) 2004-03-11
JP4563807B2 (en) 2010-10-13
TW200419614A (en) 2004-10-01
DE10238096B3 (en) 2004-02-19
ATE446666T1 (en) 2009-11-15
TWI339402B (en) 2011-03-21

Similar Documents

Publication Publication Date Title
DE10151080C1 (en) Device for producing extreme ultraviolet radiation used in the semiconductor industry comprises a discharge chamber surrounded by electrode housings through which an operating gas flows under a predetermined pressure
EP0140005B1 (en) Apparatus for producing a plasma source having a higher radiation insensity in the x-ray range
DE4113241C2 (en) Pulsed gas discharge laser
DE102005025624B4 (en) Arrangement for generating intense short-wave radiation based on a gas discharge plasma
DE69830664T2 (en) DEVICE FOR EMITTING A LOADED PARTICLE BEAM
EP1248499B1 (en) Method and apparatus for production of extreme ultraviolet radiation
EP1036488B1 (en) Method and device for producing extreme ultraviolet and soft x-rays from a gaseous discharge
DE69307026T2 (en) High voltage plasma switch with crossed fields
EP1197127B1 (en) Device for producing an extreme ultraviolet and soft x radiation from a gaseous discharge
DE1298175B (en) Switching spark gap with low self-inductance
DE3833604A1 (en) Pulsed particle source on the basis of rapidly repolarisable ferroelectrics
DE10256663B3 (en) Gas discharge lamp for EUV radiation
EP1532848B1 (en) Gas discharge lamp
DE10310623B4 (en) Method and apparatus for generating a plasma by electrical discharge in a discharge space
DE69013720T2 (en) Vacuum switch.
EP1654914B1 (en) Extreme uv and soft x ray generator
DE1186953B (en) Supply cathode
DE3642749C2 (en)
EP1168895B9 (en) Pulse device with a system for radiation generation and method for radiation generation
DE3926956C2 (en)
DE102013001940B4 (en) Device and method for generating EUV and / or soft X-rays
DE2824775A1 (en) PROCEDURE FOR INTERRUPTING DC CURRENT AND ARRANGEMENT FOR PERFORMING THE PROCEDURE
AT256268B (en) Arrangement for nozzle-free production of a plasma jet
DE1589974C3 (en) Hot cathode arrangement for generating a high intensity electron beam for electron beam processing devices
DE1589006B1 (en) Electrode system for generating an electron beam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070709

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERGMANN, KLAUS

Inventor name: VAUDREVANGE, DOMINIK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100201

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

26N No opposition filed

Effective date: 20100722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100122

BERE Be: lapsed

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100422

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100811

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120831

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120913

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130811

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902