EP1519638A1 - Method for operating a low pressure discharge lamp - Google Patents
Method for operating a low pressure discharge lamp Download PDFInfo
- Publication number
- EP1519638A1 EP1519638A1 EP04019957A EP04019957A EP1519638A1 EP 1519638 A1 EP1519638 A1 EP 1519638A1 EP 04019957 A EP04019957 A EP 04019957A EP 04019957 A EP04019957 A EP 04019957A EP 1519638 A1 EP1519638 A1 EP 1519638A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lamp
- voltage drop
- switching means
- low
- pressure discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/295—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
Definitions
- the invention relates to a method for operating at least one low-pressure discharge lamp according to the preamble of claim 1.
- the published patent application WO 00/72640 A1 describes a circuit arrangement and a method for operating a low-pressure discharge lamp by means of a half-bridge inverter , wherein the lamp electrodes of the at least low-pressure discharge lamp during a heating phase before igniting the gas discharge in the at least one low-pressure discharge lamp by means of a transformer whose primary-side current is clocked by means of a controllable switching means, with a Heating current to be applied and the change in electrical resistance at least one lamp electrode is monitored to it to the operating device to detect the connected type of low-pressure discharge lamp.
- the change of the electrical resistance of the lamp electrode is by means of an ohmic Resistive monitors arranged on the secondary side of the transformer is.
- the inventive method for operating at least one low-pressure discharge lamp by means of an inverter wherein the lamp electrodes of at least Low-pressure discharge lamp during a heating phase before igniting the Gas discharge in the at least one low-pressure discharge lamp by means of a Transformers whose primary-side current by means of a controllable switching means is clocked, be acted upon by a heating current and the change of the electrical Resistance of at least one lamp electrode is monitored draws
- the controllable switching means synchronous to a first inverter switching means is switched and the change of the electric Resistance of the at least one lamp electrode by means of a resistance element, which is arranged on the primary side of the transformer determined is achieved by the voltage drop across the resistor element at least two different times during the heating phase is evaluated.
- the inventive method is used to detect the lamp type during the preheat phase of the lamp electrodes, the current through the primary winding of the transformer and not the heating current on the secondary side of the Transformers evaluated. This allows for measurement arrangements in the secondary circuits of the transformer are dispensed with and the monitoring device be simplified accordingly.
- the inventive method can be and the circuit arrangement according to the invention advantageous for the operation of several low-pressure discharge lamps, since the multi-lamp operation requires no additional measuring devices.
- the growth of the electrical Resistance of the lamp electrodes with increasing heating is independent from the number of low-pressure discharge lamps operated in the load circuit, according to the invention solely by means of a resistance element on the primary side of the Transformers detected by the voltage drop across the resistive element evaluated at least two different times during the heating phase becomes.
- the voltage drop across the resistor element at a first evaluated in a time window in the range of 10 ms to 50 ms after the beginning of the heating phase is arranged to the cold resistance of the Reliable evaluation of lamp electrodes.
- the voltage drop across the resistive element at a second time evaluated which is arranged at the end of the heating phase to the heat resistance to be able to reliably evaluate the lamp electrodes. From the comparison These two readings can be used to determine if the lamp electrodes are at the beginning the heating phase were cold or whether a replacement resistor was connected instead of the lamp was. The lamp type can already be determined from the second measured value alone become.
- the preferred embodiment of the invention is a Lamp type detection performed only when the absolute amount of the difference the two aforementioned measured values exceeds a predetermined size.
- a spare resistor is connected to the operating device or the Lamp electrodes at the beginning of the heating phase since the last lamp operation were not sufficiently cooled.
- the evaluation of the voltage drop across the resistor element is in an advantageous Way performed by means of a low-pass filter.
- the low pass filter averages the voltage drop across the resistive element over a time interval long in Comparison to the switching cycle of the controllable switching means and of the inverter, but short compared to the duration of the heating phase of the lamp electrodes.
- the duration the heating phase before igniting the gas discharge in the lamp is preferably constant and is about 600 ms, while a switching clock of the controllable switching means claimed in the heating phase about 10 ⁇ s.
- the energy stored in the primary winding of the transformer becomes more advantageous Way during the off period of the controllable switching means using a second inverter switching means dissipated to a voltage overload prevent the controllable switching means.
- the stored in the primary winding Energy is preferably fed back into the DC link capacitor, which as DC power source for the inverter is used to power it for lamp operation to be able to use.
- the circuit arrangement shown in FIG. 1 is an electronic one Ballast for operating a low-pressure discharge lamp, in particular a fluorescent lamp.
- This circuit arrangement has two field effect transistors T1. T2 on, after Type of half-bridge inverter are arranged. Both field effect transistors get their control signal from a microcontroller MC.
- T2 Parallel to the DC voltage input of the half-bridge inverter T1, T2 is an intermediate circuit capacitor C1 arranged with a comparatively large capacity.
- the DC link capacitor C1 serves as a DC voltage source for the half-bridge inverter.
- a DC voltage of about 400th Volt provided from the mains AC voltage by means of a mains voltage rectifier (not shown) and a boost converter (not shown) generated becomes.
- the DC link capacitor C1 is parallel to the voltage output of the Hochsetzstellers arranged.
- Parallel to the ignition capacitor C2 are the discharge path of the fluorescent lamp LP and the coupling capacitor C3 is switched, which during steady-state operation of the lamp State of the half-bridge inverter to half the supply voltage of the half-bridge inverter is charged.
- the lamp electrodes E1, E2 of the fluorescent lamp LP are as electrode coils with two electrical Trained connections. Parallel to the electrode coil E1, E2 is respectively a secondary winding S1, S2 of a transformer connected to the inductive Heating the electrode coils E1, E2 is used.
- the primary winding P1 of this transformer is in series with the switching path of another field effect transistor T3, its control electrode also from the microcontroller MC with control signals is applied, and a measuring resistor R1 connected.
- the series connection from the components P1, T3 and R1 is connected to the output M of the half-bridge inverter connected.
- a first terminal of the primary winding P1 is connected to the Output or center tap M of the half-bridge inverter and with the lamp choke L1, while the second terminal of the primary winding P1 with the field effect transistor T3 and in DC forward direction via a diode D 1st with the high potential terminal (+) of the DC link capacitor C1 connected is.
- a first terminal of the measuring resistor R1 is connected to the ground potential (-), while the second terminal of the measuring resistor with the Field effect transistor T3 and a low-pass filter R2, C4 with the voltage input A of the microcontroller MC is connected.
- the load circuit L1, C2, LP By means of half the supply voltage of the half-bridge inverter charged Coupling capacitor C3 and the alternating switching transistors T1, T2 of the half-bridge inverter, the load circuit L1, C2, LP in a known manner subjected to a high-frequency alternating voltage whose frequency the switching clock of the transistors T1, T2 is determined and in the range of about 50 KHz up to 150 KHz.
- the transistor T3 is switched on and off by the microcontroller MC in synchronism with the transistor T1.
- the input voltage at terminal A of the Microcontroller MC is converted to digital by means of an analog-to-digital converter Signal converted and evaluated in the microcontroller MC.
- the heating phase of the electrode coils E1, E2 before igniting the gas discharge in the fluorescent lamp LP takes about 600 ms.
- the microcontroller MC detects the voltage drop across the capacitor C4 of the low-pass filter to two different Times during the heating phase off.
- the first detection of the voltage drop on the capacitor C4 through the microcontroller MC is about 30 ms after the start of the heating phase and the second detection at the end of the heating phase, that is, carried out about 600 ms after the start of the heating phase.
- a predetermined threshold exceeds, for example, 0.1 V, the detected at the end of the heating phase Voltage value for detecting the lamp type of the fluorescent lamp LP with a compared in the microcontroller MC stored reference value. If the threshold is not exceeded, there is no evaluation of the voltage drop on Capacitor C4 or on the measuring resistor R1.
- the time course of the voltage drop on the measuring resistor R1 and the capacitor C4 of the low-pass filter is with the time course of the electrical resistance of the electrode coils E1, E2 correlated during the heating phase.
- the heat resistance of the electrode coils E1, E2, that is, their resistance at the end of the heating phase is different for different Types of fluorescent lamps. Therefore, the heat resistance of the electrode coils can be used for Lampentyperkennung.
- Figures 2 to 4 show the time course of the voltage drop at the of primary-side current of the transformer P1, S1, S2 flowed through resistor R1 after averaging by the low-pass filter R2, C4 for three different operating states the circuit arrangement according to the preferred embodiment of Invention.
- the illustrated in Figure 2 time course of the voltage drop across the capacitor C4 corresponds to the operation of the circuit arrangement with a fluorescent lamp LP, whose electrode filaments E1, E2 were cold at the beginning of the heating phase, that is, Room temperature had.
- the voltage drop across the capacitor C4 therefore initially increases on, reaches a maximum of 0.48 V after approx. 30 ms and then steadily increases to assume a minimum of 0.22 V at the end of the heating phase after 600 ms.
- the maximum is with the cold resistance of the electrode coils E1, E2 and the Minimum at the end of the heating phase is with the heat resistance of the electrode coils E1, E2 correlates.
- the electrical resistance of tungsten existing Electrode coils E1, E2 is temperature-dependent, that is, it increases with increasing Temperature too.
- FIG. 3 shows the time profile of the voltage drop across the capacitor C4 for the same circuit arrangement and the same fluorescent lamp LP. Indeed were the electrode coils E1, E2 at the beginning of the heating phase, due to the last one Lamp operation, not yet completely cooled. Therefore has the illustrated in Figure 3 Voltage curve at about 30 ms a less pronounced maximum of only 0.27 V and the minimum of the curve is also at the end of the heating phase reached, but only 0.20 V.
- the illustrated in Figure 4 time course of the voltage drop across the capacitor C4 corresponds to the operation of the above circuit arrangement with an ohmic Replacement resistor instead of the electrode filaments E1 and E2 of the fluorescent lamp LP.
- the voltage drop across the capacitor C4 is apart from the rise during the first approximately 30 ms of the heating phase, regardless of the time and is approx. 0.22 V.
- the microcontroller MC detects the voltage drop across the capacitor C4 first time about 30 ms after the beginning of the heating phase and the second time about 600 ms after the beginning of the heating phase. If the absolute amount of the difference between the two Voltage values exceeds a predetermined threshold of, for example, 0.1 V, the voltage value at the end of the heating phase is in the microcontroller MC stored reference value compared and used for lamp type detection. This case is given only in the voltage curve shown in Figure 2. In the other two cases, that is, in those shown in Figures 3 and 4 Voltage curves is no evaluation with respect to the type of lamp type carried out. In these two cases are used for the operation of the circuit or the electronic control gear from the last lamp operation in Microcontroller MC uses stored data.
- a predetermined threshold for example, 0.1 V
- the Fluorescent lamp LP During dimming operation of the Fluorescent lamp LP are their electrode coils E1, E2 by means of the Transformers P1, S1, S2 and the transistor T3 supplied with a heating current, which flows in addition to the discharge current through the electrode coils E1, E2.
- the heating current or the heating power is dependent on the brightness of the Fluorescent lamp set. At low brightness, that is, with strong dimming the fluorescent lamp LP is set a high heat output.
- the heating power is changed by changing the pulse width of the transistor T3, in particular by changing the duty cycle of the transistor T3 is set.
- the transistor T3 becomes synchronous turned on to the transistor T1.
- the duty cycle of the transistor T3 is at maximum heating power 100% of the turn-on of the transistor T1. At lesser Heating power, the duty cycle of the transistor T3 is shorter than the duty cycle of the transistor T1.
- FIG. 5 shows a further circuit arrangement which is used the method according to the invention is particularly well suited.
- This circuit arrangement is largely identical to the circuit arrangement shown in FIG. Therefore, in the figures 1 and 5 identical components bear the same reference numerals.
- the circuit arrangement shown in FIG. 5 has two additional diodes D2, D3, each in series with a secondary winding S1 or S2 and an electrode coil E1 or E2 are connected.
- the arrangement of the diodes D2, D3 and the Winding sense of the transformer windings P1, S1, S2 is matched to one another, that the transformer, P1, S1, S2 with the diodes D2, D3 and the transistor T3 form a forward converter.
- the current is induced by the primary winding P1 in the secondary windings S1, S2 a heating current for the electrode coils E1, E2.
- the diodes D2, D3 poled in the reverse direction, so that while no heating current can flow.
- the energy stored in the primary winding P 1 is during the conducting phase of the transistor T2 via the diode D1 to the capacitor C 1 discharged.
- the invention is not limited to the embodiment described in more detail above. Rather than the voltage drop across resistor R1 during the preheat phase to evaluate the electrodes E1, E2 only at the beginning and at the end of the preheating phase, can by means of the microcontroller MC and the entire time course This voltage drop can be evaluated or only the maximum of the voltage drop at resistor R1 with the final value of this voltage drop at the end of Preheat phase are compared to a detection of the lamp type of low-pressure discharge lamp or fluorescent lamp LP.
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe
gemäß des Oberbegriffs des Patentanspruchs 1.The invention relates to a method for operating at least one low-pressure discharge lamp
according to the preamble of
Die Offenlegungsschrift WO 00/72640 A1 beschreibt eine Schaltungsanordnung und ein Verfahren zum Betreiben einer Niederdruckentladungslampe mittels eines Halbbrückenwechselrichters , wobei die Lampenelektroden der mindestens Niederdruckentladungslampe während einer Heizphase vor dem Zünden der Gasentladung in der mindestens einen Niederdruckentladungslampe mittels eines Transformators, dessen primärseitiger Strom mittels eines steuerbaren Schaltmittels getaktet wird, mit einem Heizstrom beaufschlagt werden und die Änderung des elektrischen Widerstands mindestens einer Lampenelektrode überwacht wird, um daran den an das Betriebsgerät angeschlossenen Typ der Niederdruckentladungslampe zu erkennen. Die Änderung des elektrischen Widerstands der Lampenelektrode wird mittels eines ohmschen Widerstandes überwacht, der auf der Sekundärseite des Transformators angeordnet ist.The published patent application WO 00/72640 A1 describes a circuit arrangement and a method for operating a low-pressure discharge lamp by means of a half-bridge inverter , wherein the lamp electrodes of the at least low-pressure discharge lamp during a heating phase before igniting the gas discharge in the at least one low-pressure discharge lamp by means of a transformer whose primary-side current is clocked by means of a controllable switching means, with a Heating current to be applied and the change in electrical resistance at least one lamp electrode is monitored to it to the operating device to detect the connected type of low-pressure discharge lamp. The change of the electrical resistance of the lamp electrode is by means of an ohmic Resistive monitors arranged on the secondary side of the transformer is.
Es ist die Aufgabe der Erfindung, ein vereinfachtes Verfahren zum Erkennen des an das Betriebsgerät angeschlossenen Typs der Niederdruckentladungslampe bereitzustellen.It is the object of the invention to provide a simplified method for detecting the To provide the operating device connected type of low-pressure discharge lamp.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1
gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den abhängigen
Patentansprüchen beschrieben. This object is achieved by the features of
Das erfindungsgemäße Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe mittels eines Wechselrichters, wobei die Lampenelektroden der mindestens Niederdruckentladungslampe während einer Heizphase vor dem Zünden der Gasentladung in der mindestens einen Niederdruckentladungslampe mittels eines Transformators, dessen primärseitiger Strom mittels eines steuerbaren Schaltmittels getaktet wird, mit einem Heizstrom beaufschlagt werden und die Änderung des elektrischen Widerstands mindestens einer Lampenelektrode überwacht wird, zeichnet sich erfindungsgemäß dadurch aus, dass das steuerbare Schaltmittel synchron zu einem ersten Wechselrichterschaltmittel geschaltet wird und die Änderung des elektrischen Widerstands der mindestens einen Lampenelektrode mittels eines Widerstandselementes, das auf der Primärseite des Transformators angeordnet ist, bestimmt wird, indem der Spannungsabfall über dem Widerstandselement an mindestens zwei unterschiedlichen Zeitpunkten während der Heizphase ausgewertet wird.The inventive method for operating at least one low-pressure discharge lamp by means of an inverter, wherein the lamp electrodes of at least Low-pressure discharge lamp during a heating phase before igniting the Gas discharge in the at least one low-pressure discharge lamp by means of a Transformers whose primary-side current by means of a controllable switching means is clocked, be acted upon by a heating current and the change of the electrical Resistance of at least one lamp electrode is monitored draws According to the invention characterized in that the controllable switching means synchronous to a first inverter switching means is switched and the change of the electric Resistance of the at least one lamp electrode by means of a resistance element, which is arranged on the primary side of the transformer determined is achieved by the voltage drop across the resistor element at least two different times during the heating phase is evaluated.
Entsprechend des erfindungsgemäßen Verfahrens wird zur Erkennung des Lampentyps während der Vorheizphase der Lampenelektroden der Strom durch die Primärwicklung des Transformators und nicht der Heizstrom auf der Sekundärseite des Transformators ausgewertet. Dadurch kann auf Messanordnungen in den Sekundärkreisen des Transformators verzichtet werden und die Überwachungsvorrichtung entsprechend vereinfacht werden. Außerdem lassen sich das erfindungsgemäße Verfahren und die erfindungsgemäße Schaltungsanordnung vorteilhaft für den Betrieb von mehreren Niederdruckentladungslampen verwenden, da der Mehrlampenbetrieb keine zusätzlichen Messvorrichtungen erfordert. Das Anwachsen des elektrischen Widerstandes der Lampenelektroden mit zunehmender Aufheizung wird, unabhängig von der Anzahl der im Lastkreis betriebenen Niederdruckentladungslampen, erfindungsgemäß allein mittels eines Widerstandselementes auf der Primärseite des Transformators detektiert, indem der Spannungsabfall über dem Widerstandselement an mindestens zwei unterschiedlichen Zeitpunkten während der Heizphase ausgewertet wird.According to the inventive method is used to detect the lamp type during the preheat phase of the lamp electrodes, the current through the primary winding of the transformer and not the heating current on the secondary side of the Transformers evaluated. This allows for measurement arrangements in the secondary circuits of the transformer are dispensed with and the monitoring device be simplified accordingly. In addition, the inventive method can be and the circuit arrangement according to the invention advantageous for the operation of several low-pressure discharge lamps, since the multi-lamp operation requires no additional measuring devices. The growth of the electrical Resistance of the lamp electrodes with increasing heating is independent from the number of low-pressure discharge lamps operated in the load circuit, according to the invention solely by means of a resistance element on the primary side of the Transformers detected by the voltage drop across the resistive element evaluated at least two different times during the heating phase becomes.
Vorzugsweise wird der Spannungsabfall über dem Widerstandselement an einem ersten Zeitpunkt ausgewertet, der in einem Zeitfenster im Bereich von 10 ms bis 50 ms nach dem Beginn der Heizphase angeordnet ist, um den Kaltwiderstand der Lampenelektroden zuverlässig auswerten zu können. Zusätzlich wird vorteilhafterweise der Spannungsabfall über dem Widerstandselement an einem zweiten Zeitpunkt ausgewertet, der am Ende der Heizphase angeordnet ist, um den Warmwiderstand der Lampenelektroden zuverlässig auswerten zu können. Aus dem Vergleich dieser beiden Messwerte kann ermittelt werden, ob die Lampenelektroden zu Beginn der Heizphase kalt waren oder ob anstelle der Lampe ein Ersatzwiderstand angeschlossen war. Aus dem zweiten Messwert allein kann bereits der Lampentyp ermittelt werden. Gemäß der bevorzugten Ausführungsform der Erfindung wird eine Lampentyperkennung nur dann durchgeführt, wenn der Absolutbetrag der Differenz der beiden vorgenannten Messwerte eine vorgegebene Größe überschreitet. Im anderen Fall wird davon ausgegangen, dass entweder anstelle einer Niederdruckentladungslampe ein Ersatzwiderstand an das Betriebsgerät angeschlossen ist oder die Lampenelektroden zu Beginn der Heizphase seit dem letzten Lampenbetrieb noch nicht ausreichend abgekühlt waren.Preferably, the voltage drop across the resistor element at a first evaluated in a time window in the range of 10 ms to 50 ms after the beginning of the heating phase is arranged to the cold resistance of the Reliable evaluation of lamp electrodes. In addition, advantageously the voltage drop across the resistive element at a second time evaluated, which is arranged at the end of the heating phase to the heat resistance to be able to reliably evaluate the lamp electrodes. From the comparison These two readings can be used to determine if the lamp electrodes are at the beginning the heating phase were cold or whether a replacement resistor was connected instead of the lamp was. The lamp type can already be determined from the second measured value alone become. According to the preferred embodiment of the invention is a Lamp type detection performed only when the absolute amount of the difference the two aforementioned measured values exceeds a predetermined size. In the other Case is assumed that either instead of a low-pressure discharge lamp a spare resistor is connected to the operating device or the Lamp electrodes at the beginning of the heating phase since the last lamp operation were not sufficiently cooled.
Die Auswertung des Spannungsabfalls über dem Widerstandselement wird in vorteilhafter Weise mittels eines Tiefpassfilters durchgeführt. Das Tiefpassfilter mittelt den Spannungsabfall an dem Widerstandselement über ein Zeitintervall, das lang im Vergleich zum Schalttakt des steuerbaren Schaltmittels sowie des Wechselrichters, aber kurz im Vergleich zur Dauer der Heizphase der Lampenelektroden ist. Die Dauer der Heizphase vor dem Zünden der Gasentladung in der Lampe ist vorzugsweise konstant und beträgt ca. 600 ms, während ein Schalttakt des steuerbaren Schaltmittels in der Heizphase ungefähr 10 µs beansprucht.The evaluation of the voltage drop across the resistor element is in an advantageous Way performed by means of a low-pass filter. The low pass filter averages the voltage drop across the resistive element over a time interval long in Comparison to the switching cycle of the controllable switching means and of the inverter, but short compared to the duration of the heating phase of the lamp electrodes. The duration the heating phase before igniting the gas discharge in the lamp is preferably constant and is about 600 ms, while a switching clock of the controllable switching means claimed in the heating phase about 10 μs.
Die in der Primärwicklung des Transformators gespeicherte Energie wird in vorteilhafter Weise während der Ausschaltdauer des steuerbaren Schaltmittels mit Hilfe eines zweiten Wechselrichterschaltmittels abgeführt, um eine Spannungsüberlastung des steuerbaren Schaltmittel zu verhindern. Die in der Primärwicklung gespeicherte Energie wird vorzugsweise in den Zwischenkreiskondensator zurückgespeist, der als Gleichspannungsquelle für den Wechselrichter dient, um sie für den Lampenbetrieb nutzen zu können. The energy stored in the primary winding of the transformer becomes more advantageous Way during the off period of the controllable switching means using a second inverter switching means dissipated to a voltage overload prevent the controllable switching means. The stored in the primary winding Energy is preferably fed back into the DC link capacitor, which as DC power source for the inverter is used to power it for lamp operation to be able to use.
Nachstehend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Es zeigen:
Figur 1- Eine schematische Darstellung einer ersten Schaltungsanordnung zur Durchführung des erfindungsgemäßen Verfahrens
- Figur 2
- Den zeitlichen Verlauf des Spannungsabfalls an dem vom primärseitigen Strom des Transformators durchflossenen Widerstand nach Mittelung durch das Tiefpassfilter für einen ersten Betriebszustand
- Figur 3
- Den zeitlichen Verlauf des Spannungsabfalls an dem vom primärseitigen Strom des Transformators durchflossenen Widerstand nach Mittelung durch das Tiefpassfilter für einen zweiten Betriebszustand
- Figur 4
- Den zeitlichen Verlauf des Spannungsabfalls an dem vom primärseitigen Strom des Transformators durchflossenen Widerstand nach Mittelung durch das Tiefpassfilter für einen dritten Betriebszustand
- Figur 5
- Eine schematische Darstellung einer zweiten Schaltungsanordnung zur Durchführung des erfindungsgemäßen Verfahrens
- FIG. 1
- A schematic representation of a first circuit arrangement for carrying out the method according to the invention
- FIG. 2
- The time profile of the voltage drop across the resistor through which the primary current of the transformer passes after averaging by the low-pass filter for a first operating state
- FIG. 3
- The time profile of the voltage drop across the resistance flowing through the primary side current of the transformer after averaging by the low-pass filter for a second operating state
- FIG. 4
- The time profile of the voltage drop across the resistor through which the primary current of the transformer passes after averaging by the low-pass filter for a third operating state
- FIG. 5
- A schematic representation of a second circuit arrangement for carrying out the method according to the invention
Bei der in Figur 1 abgebildeten Schaltungsanordnung handelt es sich um ein elektronisches Vorschaltgerät zum Betrieb einer Niederdruckentladungslampe, insbesondere einer Leuchtstofflampe.The circuit arrangement shown in FIG. 1 is an electronic one Ballast for operating a low-pressure discharge lamp, in particular a fluorescent lamp.
Diese Schaltungsanordnung weist zwei Feldeffekttransistoren T1. T2 auf, die nach Art eines Halbbrückenwechselrichters angeordnet sind. Beide Feldeffekttransistoren erhalten ihr Steuersignal von einem Mikrocontroller MC. Parallel zum Gleichspannungseingang des Halbbrückenwechselrichters T1, T2 ist ein Zwischenkreiskondensator C1 mit einer vergleichsweise großen Kapazität angeordnet. Der Zwischenkreiskondensator C1 dient als Gleichspannungsquelle für den Halbbrückenwechselrichter. An dem Zwischenkreiskondensator C1 wird eine Gleichspannung von ungefähr 400 Volt bereitgestellt, die aus der Netzwechselspannung mittels eines Netzspannungsgleichrichters (nicht abgebildet) und eines Hochsetzstellers (nicht abgebildet) erzeugt wird. Der Zwischenkreiskondensator C1 ist parallel zu dem Spannungsausgang des Hochsetzstellers angeordnet. An den Ausgang M des Halbbrückenwechselrichters ist ein als Serienresonanzkreis ausgebildeter Lastkreis angeschlossen, der im wesentlichen aus der Lampendrossel L1 und dem Zündkondensator C2 besteht. Parallel zu dem Zündkondensator C2 sind die Entladungsstrecke der Leuchtstofflampe LP und der Koppelkondensator C3 geschaltet, der während des Lampenbetriebs im eingeschwungenen Zustand des Halbbrückenwechselrichters auf die halbe Versorgungsspannung des Halbbrückenwechselrichters aufgeladen ist. Die Lampenelektroden E1, E2 der Leuchtstofflampe LP sind als Elektrodenwendeln mit jeweils zwei elektrischen Anschlüssen ausgebildet. Parallel zu den Elektrodenwendel E1, E2 ist jeweils eine Sekundärwicklung S1, S2 eines Transformators geschaltet, der zum induktiven Heizen der Elektrodenwendeln E1, E2 dient. Die Primärwicklung P1 dieses Transformators ist in Serie zu der Schaltstrecke eines weiteren Feldeffekttransistors T3, dessen Steuerelektrode ebenfalls von dem Mikrocontroller MC mit Steuersignalen beaufschlagt wird, und eines Messwiderstandes R1 geschaltet. Die Serienschaltung aus den Bauteilen P1, T3 und R1 ist an den Ausgang M des Halbbrückenwechselrichters angeschlossen. Ein erster Anschluss der Primärwicklung P1 ist mit dem Ausgang bzw. Mittenabgriff M des Halbbrückenwechselrichters und mit der Lampendrossel L1 verbunden, während der zweite Anschluss der Primärwicklung P1 mit dem Feldeffekttransistor T3 und in Gleichstromvorwärtsrichtung über eine Diode D 1 mit dem hohen Potential liegenden Anschluss (+) des Zwischenkreiskondensators C1 verbunden ist. Ein erster Anschluss des Messwiderstands R1 ist mit dem Massepotential (-) verbunden, während der zweite Anschluss des Messwiderstands mit dem Feldeffekttransistor T3 und über ein Tiefpassfilter R2, C4 mit dem Spannungseingang A des Mikrocontrollers MC verbunden ist.This circuit arrangement has two field effect transistors T1. T2 on, after Type of half-bridge inverter are arranged. Both field effect transistors get their control signal from a microcontroller MC. Parallel to the DC voltage input of the half-bridge inverter T1, T2 is an intermediate circuit capacitor C1 arranged with a comparatively large capacity. The DC link capacitor C1 serves as a DC voltage source for the half-bridge inverter. At the DC link capacitor C1, a DC voltage of about 400th Volt provided from the mains AC voltage by means of a mains voltage rectifier (not shown) and a boost converter (not shown) generated becomes. The DC link capacitor C1 is parallel to the voltage output of the Hochsetzstellers arranged. At the output M of the half-bridge inverter is connected as a series resonant circuit load circuit connected, the substantially consists of the lamp inductor L1 and the ignition capacitor C2. Parallel to the ignition capacitor C2 are the discharge path of the fluorescent lamp LP and the coupling capacitor C3 is switched, which during steady-state operation of the lamp State of the half-bridge inverter to half the supply voltage of the half-bridge inverter is charged. The lamp electrodes E1, E2 of the fluorescent lamp LP are as electrode coils with two electrical Trained connections. Parallel to the electrode coil E1, E2 is respectively a secondary winding S1, S2 of a transformer connected to the inductive Heating the electrode coils E1, E2 is used. The primary winding P1 of this transformer is in series with the switching path of another field effect transistor T3, its control electrode also from the microcontroller MC with control signals is applied, and a measuring resistor R1 connected. The series connection from the components P1, T3 and R1 is connected to the output M of the half-bridge inverter connected. A first terminal of the primary winding P1 is connected to the Output or center tap M of the half-bridge inverter and with the lamp choke L1, while the second terminal of the primary winding P1 with the field effect transistor T3 and in DC forward direction via a diode D 1st with the high potential terminal (+) of the DC link capacitor C1 connected is. A first terminal of the measuring resistor R1 is connected to the ground potential (-), while the second terminal of the measuring resistor with the Field effect transistor T3 and a low-pass filter R2, C4 with the voltage input A of the microcontroller MC is connected.
Mittels des auf halber Versorgungsspannung des Halbbrückenwechselrichters aufgeladenen Koppelkondensators C3 und der alternierend schaltenden Transistoren T1, T2 des Halbbrückenwechselrichters wird der Lastkreis L1, C2, LP in bekannter Weise mit einer hochfrequenten Wechselspannung beaufschlagt, deren Frequenz durch den Schalttakt der Transistoren T1, T2 bestimmt ist und im Bereich von ca. 50 KHz bis ca. 150 KHz liegt. Vor dem Zünden der Gasentladung in der Leuchtstofflampe LP werden deren Lampenelektroden E1, E2 mittels des Transformators P1, S1, S2 induktiv mit einem Heizstrom beaufschlagt. Zu diesem Zweck wird der Transistor T3 von dem Mikrocontroller MC synchron mit dem Transistor T1 ein- und ausgeschaltet. Während der Einschaltdauer der Transistoren T1, T3 fließt daher durch die Primärwicklung P1 und den Messwiderstand R1 ein Strom. Während der Ausschaltdauer der Transistoren T1, T3 ist der Stromfluss durch den Messwiderstand R1 unterbrochen. Die im Magnetfeld der Primärwicklung P1 gespeicherte Energie wird während der Ausschaltdauer der Transistoren T1, T3 und der Einschaltdauer des Transistors T2 über die Diode D1 dem Zwischenkreiskondensator C1 zugeführt. Aufgrund der alternierend schaltenden Transistoren T1, T2 und des synchron zum Transistor T1 schaltenden Transistors T3 fließt durch die Primärwicklung P1 ein hochfrequenter Strom, der in den Sekundärwicklungen S1, S2 entsprechende Heizströme für die Elektrodenwendeln E1, E2 induziert. Mit Hilfe des Tiefpassfilters R2, C4 wird der Spannungsabfall an dem Messwiderstand R1 über ein Zeitintervall von mehreren Schalttakten des Transistors T3 gemittelt und dem Spannungseingang A des Mikrocontrollers MC zugeführt. Die Eingangsspannung am Anschluss A des Mikrocontrollers MC wird mittels eines Analog-Digital-Wandlers in ein digitales Signal konvertiert und im Mikrocontroller MC ausgewertet.By means of half the supply voltage of the half-bridge inverter charged Coupling capacitor C3 and the alternating switching transistors T1, T2 of the half-bridge inverter, the load circuit L1, C2, LP in a known manner subjected to a high-frequency alternating voltage whose frequency the switching clock of the transistors T1, T2 is determined and in the range of about 50 KHz up to 150 KHz. Before igniting the gas discharge in the fluorescent lamp LP whose lamp electrodes E1, E2 by means of the transformer P1, S1, S2 inductively charged with a heating current. For this purpose, the transistor T3 is switched on and off by the microcontroller MC in synchronism with the transistor T1. During the turn-on of the transistors T1, T3 therefore flows through the Primary winding P1 and the measuring resistor R1 a current. During the off period of the transistors T1, T3, the current flow through the measuring resistor R1 is interrupted. The energy stored in the magnetic field of the primary winding P1 becomes during the turn-off of the transistors T1, T3 and the duty cycle of the Transmitted transistor T2 via the diode D1 to the DC link capacitor C1. Due to the alternating switching transistors T1, T2 and the synchronous to Transistor T1 switching transistor T3 flows through the primary winding P1 high-frequency current, in the secondary windings S1, S2 corresponding heating currents for the electrode coils E1, E2 induced. With the help of the low-pass filter R2, C4, the voltage drop across the sensing resistor R1 over a time interval of averaged a plurality of switching cycles of the transistor T3 and the voltage input A. supplied to the microcontroller MC. The input voltage at terminal A of the Microcontroller MC is converted to digital by means of an analog-to-digital converter Signal converted and evaluated in the microcontroller MC.
Die Heizphase der Elektrodenwendeln E1, E2 vor dem Zünden der Gasentladung in der Leuchtstofflampe LP dauert ungefähr 600 ms. Der Mikrocontroller MC detektiert den Spannungsabfall an dem Kondensator C4 des Tiefpassfilters zu zwei unterschiedlichen Zeitpunkten während der Heizphase aus. Die erste Detektion des Spannungsabfalls an dem Kondensator C4 durch den Mikrocontroller MC wird ca. 30 ms nach dem Beginn der Heizphase und die zweite Detektion am Ende der Heizphase, das heißt, ca. 600 ms nach dem Beginn der Heizphase durchgeführt. Wenn der Absolutbetrag der Differenz der beiden Spannungswerte einen vorgegebenen Schwellenwert von beispielsweise 0,1 V übertrifft, wird der am Ende der Heizphase detektierte Spannungswert zur Erkennung des Lampentyps der Leuchtstofflampe LP mit einem im Mikrocontroller MC gespeicherten Referenzwert verglichen. Falls der Schwellenwert nicht überschritten wird, erfolgt keine Auswertung des Spannungsabfalls am Kondensator C4 bzw. am Messwiderstand R1. Der zeitliche Verlauf des Spannungsabfalls am Messwiderstand R1 bzw. am Kondensator C4 des Tiefpassfilters ist mit dem zeitlichen Verlauf des elektrischen Widerstands der Elektrodenwendeln E1, E2 während der Heizphase korreliert. Der Warmwiderstand der Elektrodenwendeln E1, E2, das heißt, ihr Widerstand am Ende der Heizphase ist unterschiedlich für verschiedene Typen von Leuchtstofflampen. Daher kann der Warmwiderstand der Elektrodenwendeln zur Lampentyperkennung genutzt werden.The heating phase of the electrode coils E1, E2 before igniting the gas discharge in the fluorescent lamp LP takes about 600 ms. The microcontroller MC detects the voltage drop across the capacitor C4 of the low-pass filter to two different Times during the heating phase off. The first detection of the voltage drop on the capacitor C4 through the microcontroller MC is about 30 ms after the start of the heating phase and the second detection at the end of the heating phase, that is, carried out about 600 ms after the start of the heating phase. If the absolute amount the difference of the two voltage values a predetermined threshold exceeds, for example, 0.1 V, the detected at the end of the heating phase Voltage value for detecting the lamp type of the fluorescent lamp LP with a compared in the microcontroller MC stored reference value. If the threshold is not exceeded, there is no evaluation of the voltage drop on Capacitor C4 or on the measuring resistor R1. The time course of the voltage drop on the measuring resistor R1 and the capacitor C4 of the low-pass filter is with the time course of the electrical resistance of the electrode coils E1, E2 correlated during the heating phase. The heat resistance of the electrode coils E1, E2, that is, their resistance at the end of the heating phase is different for different Types of fluorescent lamps. Therefore, the heat resistance of the electrode coils can be used for Lampentyperkennung.
Die Figuren 2 bis 4 zeigen den zeitlichen Verlauf des Spannungsabfalls an dem vom primärseitigen Strom des Transformators P1, S1, S2 durchflossenen Widerstand R1 nach Mittelung durch das Tiefpassfilter R2, C4 für drei unterschiedliche Betriebszustände der Schaltungsanordnung gemäß des bevorzugten Ausführungsbeispiels der Erfindung.Figures 2 to 4 show the time course of the voltage drop at the of primary-side current of the transformer P1, S1, S2 flowed through resistor R1 after averaging by the low-pass filter R2, C4 for three different operating states the circuit arrangement according to the preferred embodiment of Invention.
Der in Figur 2 dargestellte zeitliche Verlauf des Spannungsabfalls am Kondensator C4 entspricht dem Betrieb der Schaltungsanordnung mit einer Leuchtstofflampe LP, deren Elektrodenwendeln E1, E2 zu Beginn der Heizphase kalt waren, das heißt, Raumtemperatur hatten. Der Spannungsabfall am Kondensator C4 wächst daher zunächst an, erreicht nach ca. 30 ms ein Maximum von 0,48 V und nimmt danach stetig ab, um am Ende der Heizphase nach 600 ms ein Minimum von 0.22 V anzunehmen. Das Maximum ist mit dem Kaltwiderstand der Elektrodenwendeln E1, E2 und das Minimum am Ende der Heizphase ist mit dem Warmwiderstand der Elektrodenwendeln E1, E2 korreliert. Der elektrische Widerstand der aus Wolfram bestehenden Elektrodenwendeln E1, E2 ist temperaturabhängig, das heißt, er nimmt mit steigender Temperatur zu.The illustrated in Figure 2 time course of the voltage drop across the capacitor C4 corresponds to the operation of the circuit arrangement with a fluorescent lamp LP, whose electrode filaments E1, E2 were cold at the beginning of the heating phase, that is, Room temperature had. The voltage drop across the capacitor C4 therefore initially increases on, reaches a maximum of 0.48 V after approx. 30 ms and then steadily increases to assume a minimum of 0.22 V at the end of the heating phase after 600 ms. The maximum is with the cold resistance of the electrode coils E1, E2 and the Minimum at the end of the heating phase is with the heat resistance of the electrode coils E1, E2 correlates. The electrical resistance of tungsten existing Electrode coils E1, E2 is temperature-dependent, that is, it increases with increasing Temperature too.
Die Figur 3 zeigt den zeitlichen Verlauf des Spannungsabfalls an dem Kondensator C4 für dieselbe Schaltungsanordnung und dieselbe Leuchtstofflampe LP. Allerdings waren die Elektrodenwendeln E1, E2 zu Beginn der Heizphase, aufgrund des letzte Lampenbetriebs, noch nicht vollständig abgekühlt. Daher besitzt der in Figur 3 dargestellte Spannungsverlauf bei ca. 30 ms ein weniger stark ausgeprägtes Maximum von nur 0,27 V und das Minimum der Kurve wird ebenfalls am Ende der Heizphase erreicht, beträgt aber nur 0,20 V. FIG. 3 shows the time profile of the voltage drop across the capacitor C4 for the same circuit arrangement and the same fluorescent lamp LP. Indeed were the electrode coils E1, E2 at the beginning of the heating phase, due to the last one Lamp operation, not yet completely cooled. Therefore has the illustrated in Figure 3 Voltage curve at about 30 ms a less pronounced maximum of only 0.27 V and the minimum of the curve is also at the end of the heating phase reached, but only 0.20 V.
Der in Figur 4 dargestellte zeitliche Verlauf des Spannungsabfalls am Kondensator C4 entspricht dem Betrieb der obigen Schaltungsanordnung mit einem ohmschen Ersatzwiderstand anstelle der Elektrodenwendeln E1 bzw. E2 der Leuchtstofflampe LP. Der Spannungsabfall an dem Kondensator C4 ist, abgesehen von dem Anstieg während der ersten ca. 30 ms der Heizphase, unabhängig von der Zeit und beträgt ca. 0,22 V.The illustrated in Figure 4 time course of the voltage drop across the capacitor C4 corresponds to the operation of the above circuit arrangement with an ohmic Replacement resistor instead of the electrode filaments E1 and E2 of the fluorescent lamp LP. The voltage drop across the capacitor C4 is apart from the rise during the first approximately 30 ms of the heating phase, regardless of the time and is approx. 0.22 V.
Der Mikrocontroller MC detektiert den Spannungsabfall an dem Kondensator C4 das erste Mal ca. 30 ms nach dem Beginn der Heizphase und das zweite Mal ca. 600 ms nach dem Beginn der Heizphase. Falls der Absolutbetrag der Differenz der beiden Spannungswerte einen vorgegebenen Schwellenwert von beispielsweise 0,1 V überschreitet, wird der Spannungswert am Ende der Heizphase mit einem im Mikrocontroller MC gespeicherten Referenzwert verglichen und zur Lampentyperkennung genutzt. Dieser Fall ist nur bei dem in Figur 2 dargestellten Spannungsverlauf gegeben. In den anderen beiden Fällen, das heißt, bei den in den Figuren 3 und 4 dargestellten Spannungsverläufen wird keine Auswertung bezüglich der Lampentyperkennung durchgeführt. In diesen beiden Fällen werden für den Betrieb der Schaltungsanordnung bzw. des elektronischen Betriebsgerätes die vom letzten Lampenbetrieb im Mikrocontroller MC gespeicherten Daten verwendet.The microcontroller MC detects the voltage drop across the capacitor C4 first time about 30 ms after the beginning of the heating phase and the second time about 600 ms after the beginning of the heating phase. If the absolute amount of the difference between the two Voltage values exceeds a predetermined threshold of, for example, 0.1 V, the voltage value at the end of the heating phase is in the microcontroller MC stored reference value compared and used for lamp type detection. This case is given only in the voltage curve shown in Figure 2. In the other two cases, that is, in those shown in Figures 3 and 4 Voltage curves is no evaluation with respect to the type of lamp type carried out. In these two cases are used for the operation of the circuit or the electronic control gear from the last lamp operation in Microcontroller MC uses stored data.
Nach Beendigung der Vorheizphase der Elektrodenwendeln E1, E2 wird an dem Kondensator C2 mittels der Methode der Resonanzüberhöhung die erforderliche Zündspannung zum Zünden der Gasentladung in der Leuchtstofflampe LP bereitgestellt, indem die Schaltfrequenz des Halbbrückenwechselrichters T1, T2 verringert wird, so dass sie nahe der Resonanzfrequenz des Serienresonanzkreises L1, C2 liegt. Nach der Zündung der Gasentladung in der Leuchtstofflampe kann durch Variieren der Schaltfrequenz des Halbbrückenwechselrichters T1, T2 eine Helligkeitsregelung der Leuchtstofflampe LP durchgeführt werden. Während des Dimmbetriebs der Leuchtstofflampe LP werden ihre Elektrodenwendeln E1, E2 mittels des Transformators P1, S1, S2 und des Transistors T3 mit einem Heizstrom beaufschlagt, der zusätzlich zu dem Entladungsstrom durch die Elektrodenwendeln E1, E2 fließt. Der Heizstrom bzw. die Heizleistung wird in Abhängigkeit von der Helligkeit der Leuchtstofflampe eingestellt. Bei geringer Helligkeit, das heißt, bei starker Dimmung der Leuchtstofflampe LP wird eine hohe Heizleistung eingestellt. Die Heizleistung wird durch Verändern der Pulsweite des Transistors T3, insbesondere durch Verändern der Einschaltdauer des Transistors T3 eingestellt. Der Transistor T3 wird synchron zum Transistor T1 eingeschaltet. Die Einschaltdauer des Transistors T3 beträgt bei maximaler Heizleistung 100 % der Einschaltdauer des Transistors T1. Bei geringerer Heizleistung ist die Einschaltdauer des Transistors T3 kürzer als die Einschaltdauer des Transistors T1.After completion of the preheating phase of the electrode coils E1, E2 is at the Capacitor C2 by means of the method of resonance peaking the required Ignition voltage is provided for igniting the gas discharge in the fluorescent lamp LP, by reducing the switching frequency of the half-bridge inverter T1, T2 is so that it is close to the resonance frequency of the series resonant circuit L1, C2. After the ignition of the gas discharge in the fluorescent lamp can vary by the switching frequency of the half-bridge inverter T1, T2, a brightness control the fluorescent lamp LP are performed. During dimming operation of the Fluorescent lamp LP are their electrode coils E1, E2 by means of the Transformers P1, S1, S2 and the transistor T3 supplied with a heating current, which flows in addition to the discharge current through the electrode coils E1, E2. The heating current or the heating power is dependent on the brightness of the Fluorescent lamp set. At low brightness, that is, with strong dimming the fluorescent lamp LP is set a high heat output. The heating power is changed by changing the pulse width of the transistor T3, in particular by changing the duty cycle of the transistor T3 is set. The transistor T3 becomes synchronous turned on to the transistor T1. The duty cycle of the transistor T3 is at maximum heating power 100% of the turn-on of the transistor T1. At lesser Heating power, the duty cycle of the transistor T3 is shorter than the duty cycle of the transistor T1.
In der Figur 5 ist eine weitere Schaltungsanordnung abgebildet, die zur Anwendung
des erfindungsgemäßen Verfahrens besonders gut geeignet ist. Diese Schaltungsanordnung
ist weitgehend identisch mit der in Figur 1 dargestellten Schaltungsanordnung.
Daher tragen in den Figuren 1 und 5 identische Bauteile auch dieselben Bezugszeichen.
Im Unterschied zu der in der Figur 1 abgebildeten Schaltungsanordnung
weist die in Figur 5 dargestellte Schaltungsanordnung zwei zusätzliche Dioden
D2, D3, die jeweils in Serie zu einer Sekundärwicklung S1 bzw. S2 und einer Elektrodenwendel
E1 bzw. E2 geschaltet sind. Die Anordnung der Dioden D2, D3 und des
Wicklungssinns der Transformatorwicklungen P1, S1, S2 ist derart aufeinander abgestimmt,
dass der Transformator, P1, S1, S2 mit den Dioden D2, D3 und dem Transistor
T3 einen Durchflusswandler bilden. Während der Leitphase des Transistors T3
induziert der Strom durch die Primärwicklung P1 in den Sekundärwicklungen S1, S2
einen Heizstrom für die Elektrodenwendeln E1, E2. Während der Sperrphase des
Transistors T3 sind die Dioden D2, D3 in Sperrrichtung gepolt, so dass währenddessen
kein Heizstrom fließen kann. Die in der Primärwicklung P 1 gespeicherte Energie
wird während der Leitphase des Transistors T2 über die Diode D1 an den Kondensator
C 1 abgeführt.FIG. 5 shows a further circuit arrangement which is used
the method according to the invention is particularly well suited. This circuit arrangement
is largely identical to the circuit arrangement shown in FIG.
Therefore, in the figures 1 and 5 identical components bear the same reference numerals.
In contrast to the circuit arrangement shown in FIG
For example, the circuit arrangement shown in FIG. 5 has two additional diodes
D2, D3, each in series with a secondary winding S1 or S2 and an electrode coil
E1 or E2 are connected. The arrangement of the diodes D2, D3 and the
Winding sense of the transformer windings P1, S1, S2 is matched to one another,
that the transformer, P1, S1, S2 with the diodes D2, D3 and the transistor
T3 form a forward converter. During the conducting phase of the transistor T3
the current is induced by the primary winding P1 in the secondary windings S1, S2
a heating current for the electrode coils E1, E2. During the blocking phase of the
Transistor T3, the diodes D2, D3 poled in the reverse direction, so that while
no heating current can flow. The energy stored in the primary winding
Die Erfindung beschränkt sich nicht auf das oben näher beschriebene Ausführungsbeispiel. Anstatt den Spannungsabfall über den Widerstand R1 während der Vorheizphase der Elektroden E1, E2 nur zu Beginn und am Ende der Vorheizphase auszuwerten, kann mittels des Mikrocontrollers MC auch der gesamte zeitliche Verlauf dieses Spannungsabfalls ausgewertet werden oder nur das Maximum des Spannungsabfalls am Widerstand R1 mit dem Endwert dieses Spannungsabfall am Ende der Vorheizphase verglichen werden, um eine Erkennung des Lampentyps der Niederdruckentladungslampe bzw. Leuchtstofflampe LP zu ermöglichen.The invention is not limited to the embodiment described in more detail above. Rather than the voltage drop across resistor R1 during the preheat phase to evaluate the electrodes E1, E2 only at the beginning and at the end of the preheating phase, can by means of the microcontroller MC and the entire time course This voltage drop can be evaluated or only the maximum of the voltage drop at resistor R1 with the final value of this voltage drop at the end of Preheat phase are compared to a detection of the lamp type of low-pressure discharge lamp or fluorescent lamp LP.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10345610 | 2003-09-29 | ||
DE10345610A DE10345610A1 (en) | 2003-09-29 | 2003-09-29 | Method for operating at least one low-pressure discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1519638A1 true EP1519638A1 (en) | 2005-03-30 |
EP1519638B1 EP1519638B1 (en) | 2007-04-04 |
Family
ID=34178028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04019957A Expired - Lifetime EP1519638B1 (en) | 2003-09-29 | 2004-08-23 | Method for operating a low pressure discharge lamp |
Country Status (7)
Country | Link |
---|---|
US (1) | US6972531B2 (en) |
EP (1) | EP1519638B1 (en) |
JP (1) | JP4652002B2 (en) |
CN (1) | CN100566496C (en) |
AT (1) | ATE358964T1 (en) |
CA (1) | CA2482665A1 (en) |
DE (2) | DE10345610A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007036514A1 (en) * | 2005-09-28 | 2007-04-05 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Method for setting an electronic ballast |
EP1860925A1 (en) * | 2006-05-26 | 2007-11-28 | TridonicAtco GmbH & Co. KG | Electronic lamp cut-in unit with heater switch |
EP2003937A1 (en) * | 2007-06-14 | 2008-12-17 | Gigno Technology Co., Ltd. | Driving method and control method of hot cathode fluorescent lamp, and estimation method of temperature of filament in hot cathode fluorescent lamp |
WO2009046891A1 (en) * | 2007-10-02 | 2009-04-16 | Tridonicatco Gmbh & Co. Kg | Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast |
DE102008012452A1 (en) * | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Circuit for heating and monitoring the heating coils of at least one operated with an electronic ballast gas discharge lamp on spiral breakage |
DE102008012453A1 (en) | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Method for checking that at least two gas discharge lamps to be operated with an electronic ballast are of the same type |
DE102008012454A1 (en) | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Method for determining operational parameters of gas discharge lamp operated with electronic ballast, involves determining cold resistance and hot resistance of helices at two different times during preheating phase |
DE102008022198A1 (en) | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Type recognition of a gas discharge lamp to be operated with an electronic ballast |
WO2010121964A1 (en) | 2009-04-24 | 2010-10-28 | Osram Gesellschaft mit beschränkter Haftung | Lamp-coupler-unit for electrodeless high intensity discharge (ehid) lamps with a data memory and communication and an impedance-controlled feedthrough and electrodeless high intensity discharge system with such lamp-coupler-unit |
WO2010150151A3 (en) * | 2009-06-24 | 2011-03-24 | Koninklijke Philips Electronics N.V. | Electronic ballast for a fluorescent lamp |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004025774A1 (en) * | 2004-05-26 | 2005-12-22 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Ballast for discharge lamp with continuous operation control circuit |
DE102004055976A1 (en) * | 2004-11-19 | 2006-05-24 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit arrangement for operating a high-pressure discharge lamp |
JP3881997B2 (en) * | 2005-01-31 | 2007-02-14 | Tdk株式会社 | Discharge lamp driving device |
DE102005013564A1 (en) * | 2005-03-23 | 2006-09-28 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit arrangement and method for operating at least one lamp |
JP4318659B2 (en) * | 2005-03-28 | 2009-08-26 | Tdk株式会社 | Discharge lamp driving device |
DE102005030115A1 (en) * | 2005-06-28 | 2007-01-18 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit arrangement and method for operating at least one LED and at least one electric lamp |
DE202005013754U1 (en) * | 2005-08-31 | 2005-11-17 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electronic control gear for operating discharge lamp, has measuring device to measure parameter that correlates to increased electrode temperature, and control device to react to temperature by adjustment of operating parameter of gear |
DE102005052525A1 (en) * | 2005-11-03 | 2007-05-10 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Control circuit for a switchable heating transformer of an electronic ballast and corresponding method |
DE102006010996A1 (en) * | 2006-03-09 | 2007-09-13 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electronic ballast and method of operating an electric lamp |
US7969100B2 (en) * | 2007-05-17 | 2011-06-28 | Liberty Hardware Manufacturing Corp. | Bulb type detector for dimmer circuit and inventive resistance and short circuit detection |
US7728525B2 (en) * | 2007-07-27 | 2010-06-01 | Osram Sylvania Inc. | Relamping circuit for battery powered ballast |
US7626344B2 (en) * | 2007-08-03 | 2009-12-01 | Osram Sylvania Inc. | Programmed ballast with resonant inverter and method for discharge lamps |
US7446488B1 (en) | 2007-08-29 | 2008-11-04 | Osram Sylvania | Metal halide lamp ballast controlled by remote enable switched bias supply |
DE102008019158B3 (en) * | 2008-04-17 | 2009-11-05 | Vossloh-Schwabe Deutschland Gmbh | Coding element e.g. adapter plug, for fluorescent lamp of lighting device, has electrical component accommodated in or at insulator body and connected with contact pins to signalize ballast with electrical characteristics |
KR20110007225A (en) * | 2008-04-25 | 2011-01-21 | 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 | Method and circuit arrangement for operating at least one discharge lamp |
JP2010009791A (en) * | 2008-06-24 | 2010-01-14 | Panasonic Electric Works Co Ltd | Discharge lamp lighting device and lighting fixture |
WO2009158334A2 (en) * | 2008-06-26 | 2009-12-30 | Osram Sylvania, Inc. | Ballast with lamp-diagnostic filament heating, and method therefor |
US7880391B2 (en) * | 2008-06-30 | 2011-02-01 | Osram Sylvania, Inc. | False failure prevention circuit in emergency ballast |
US8232727B1 (en) | 2009-03-05 | 2012-07-31 | Universal Lighting Technologies, Inc. | Ballast circuit for a gas-discharge lamp having a filament drive circuit with monostable control |
ATE523948T1 (en) * | 2009-04-07 | 2011-09-15 | Osram Gmbh | CONVERSION DEVICE AND CORRESPONDING CONVERSION METHOD |
DE102009019625B4 (en) * | 2009-04-30 | 2014-05-15 | Osram Gmbh | A method of determining a type of gas discharge lamp and electronic ballast for operating at least two different types of gas discharge lamps |
EP2478748B1 (en) | 2009-09-18 | 2014-11-12 | Koninklijke Philips N.V. | Electronic ballast with dimming circuit |
US20130187562A1 (en) * | 2010-09-28 | 2013-07-25 | Koninklijke Philips Electronics N.V. | Device and method for automatically detecting installed lamp type |
JP6391997B2 (en) * | 2014-06-06 | 2018-09-19 | 株式会社オーク製作所 | Discharge lamp provided with transmitter and light source device thereof |
BR112019020016B8 (en) * | 2017-11-27 | 2024-01-02 | Zasso Group Ag | Weed Deactivation Device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0707438A2 (en) * | 1994-10-13 | 1996-04-17 | Tridonic Bauelemente GmbH | Ballast for at least one discharge lamp |
WO2000072640A1 (en) * | 1999-05-25 | 2000-11-30 | Tridonic Bauelemente Gmbh | Electronic ballast for at least one low-pressure discharge lamp |
WO2000072642A1 (en) * | 1999-05-25 | 2000-11-30 | Tridonic Bauelemente Gmbh | Electronic ballast for at least one low-pressure discharge lamp |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06275386A (en) * | 1993-03-18 | 1994-09-30 | Yokogawa Electric Corp | Fluorescent tube lighting system |
JP2001210490A (en) * | 2000-01-26 | 2001-08-03 | Matsushita Electric Works Ltd | Discharge lamp lighting device |
US6359387B1 (en) * | 2000-08-31 | 2002-03-19 | Philips Electronics North America Corporation | Gas-discharge lamp type recognition based on built-in lamp electrical properties |
WO2003034794A1 (en) * | 2001-10-18 | 2003-04-24 | Koninklijke Philips Electronics N.V. | Short-circuit ballast protection |
US20050067973A1 (en) * | 2001-11-23 | 2005-03-31 | Marcel Beij | Device for heating electrodes of a discharge lamp |
DE10200053A1 (en) * | 2002-01-02 | 2003-07-17 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Operating device for discharge lamps with preheating device |
-
2003
- 2003-09-29 DE DE10345610A patent/DE10345610A1/en not_active Withdrawn
-
2004
- 2004-08-23 EP EP04019957A patent/EP1519638B1/en not_active Expired - Lifetime
- 2004-08-23 DE DE502004003377T patent/DE502004003377D1/en not_active Expired - Lifetime
- 2004-08-23 AT AT04019957T patent/ATE358964T1/en not_active IP Right Cessation
- 2004-09-21 US US10/944,849 patent/US6972531B2/en not_active Expired - Lifetime
- 2004-09-28 CA CA002482665A patent/CA2482665A1/en not_active Abandoned
- 2004-09-28 JP JP2004281243A patent/JP4652002B2/en not_active Expired - Fee Related
- 2004-09-29 CN CNB2004100820986A patent/CN100566496C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0707438A2 (en) * | 1994-10-13 | 1996-04-17 | Tridonic Bauelemente GmbH | Ballast for at least one discharge lamp |
WO2000072640A1 (en) * | 1999-05-25 | 2000-11-30 | Tridonic Bauelemente Gmbh | Electronic ballast for at least one low-pressure discharge lamp |
WO2000072642A1 (en) * | 1999-05-25 | 2000-11-30 | Tridonic Bauelemente Gmbh | Electronic ballast for at least one low-pressure discharge lamp |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007036514A1 (en) * | 2005-09-28 | 2007-04-05 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Method for setting an electronic ballast |
AU2006296603B2 (en) * | 2005-09-28 | 2011-06-30 | Osram Ag | Method for setting an electronic ballast |
US7898190B2 (en) | 2005-09-28 | 2011-03-01 | Osram Gesellschaft Mit Beschraenkter Haftung | Method for setting an electronic ballast |
EP1860925A1 (en) * | 2006-05-26 | 2007-11-28 | TridonicAtco GmbH & Co. KG | Electronic lamp cut-in unit with heater switch |
EP2003937A1 (en) * | 2007-06-14 | 2008-12-17 | Gigno Technology Co., Ltd. | Driving method and control method of hot cathode fluorescent lamp, and estimation method of temperature of filament in hot cathode fluorescent lamp |
WO2009046891A1 (en) * | 2007-10-02 | 2009-04-16 | Tridonicatco Gmbh & Co. Kg | Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast |
WO2009109325A1 (en) * | 2008-03-04 | 2009-09-11 | Tridonicatco Gmbh & Co. Kg | Type recognition of a gas discharge lamp to be operated with an electronic ballast |
DE102008022198A1 (en) | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Type recognition of a gas discharge lamp to be operated with an electronic ballast |
DE102008012454A1 (en) | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Method for determining operational parameters of gas discharge lamp operated with electronic ballast, involves determining cold resistance and hot resistance of helices at two different times during preheating phase |
WO2009109326A1 (en) * | 2008-03-04 | 2009-09-11 | Tridonicatco Gmbh & Co. Kg | Circuit for heating and monitoring the hot coils of at least one gas discharge lamp operated by an evg and lighting system |
DE102008012453A1 (en) | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Method for checking that at least two gas discharge lamps to be operated with an electronic ballast are of the same type |
CN102027809A (en) * | 2008-03-04 | 2011-04-20 | 三多尼克两合股份有限公司 | Lighting system and method for testing whether at least two gas discharge lamps to be operated by an evg are the same type |
DE102008012452A1 (en) * | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Circuit for heating and monitoring the heating coils of at least one operated with an electronic ballast gas discharge lamp on spiral breakage |
EP2355626A2 (en) | 2008-03-04 | 2011-08-10 | Tridonic GmbH & Co KG | Lighting system and method for testing whether at least two gas discharge lamps to be operated with a ballast are of the same type |
CN102027809B (en) * | 2008-03-04 | 2014-10-01 | 三多尼克两合股份有限公司 | Lighting system and method for testing whether at least two gas discharge lamps to be operated by an evg are the same type |
AT517953B1 (en) * | 2008-03-04 | 2017-06-15 | Tridonic Gmbh & Co Kg | LIGHTING SYSTEM AND METHOD FOR CHECKING WHETHER AT LEAST TWO GAS DISCHARGE LAMPS TO BE OPERATED WITH AN ECG ARE OF THE SAME TYPE |
AT517953A5 (en) * | 2008-03-04 | 2017-06-15 | Tridonic Gmbh & Co Kg | LIGHTING SYSTEM AND METHOD FOR CHECKING WHETHER AT LEAST TWO GAS DISCHARGE LAMPS TO BE OPERATED WITH AN ECG ARE OF THE SAME TYPE |
WO2010121964A1 (en) | 2009-04-24 | 2010-10-28 | Osram Gesellschaft mit beschränkter Haftung | Lamp-coupler-unit for electrodeless high intensity discharge (ehid) lamps with a data memory and communication and an impedance-controlled feedthrough and electrodeless high intensity discharge system with such lamp-coupler-unit |
WO2010150151A3 (en) * | 2009-06-24 | 2011-03-24 | Koninklijke Philips Electronics N.V. | Electronic ballast for a fluorescent lamp |
Also Published As
Publication number | Publication date |
---|---|
JP2005108841A (en) | 2005-04-21 |
EP1519638B1 (en) | 2007-04-04 |
JP4652002B2 (en) | 2011-03-16 |
US20050067980A1 (en) | 2005-03-31 |
DE502004003377D1 (en) | 2007-05-16 |
CN100566496C (en) | 2009-12-02 |
ATE358964T1 (en) | 2007-04-15 |
CN1638593A (en) | 2005-07-13 |
DE10345610A1 (en) | 2005-05-12 |
US6972531B2 (en) | 2005-12-06 |
CA2482665A1 (en) | 2005-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1519638B1 (en) | Method for operating a low pressure discharge lamp | |
EP1103165B1 (en) | Electronic ballast for at least one low-pressure discharge lamp | |
EP0707438B1 (en) | Ballast for at least one discharge lamp | |
DE3903520C2 (en) | ||
WO1999034647A1 (en) | Method and device for detecting the rectification effect occurring in a gas-discharge lamp | |
DE19612170A1 (en) | Circuit arrangement for operating electric lamps and operating methods for electric lamps | |
DE4406083A1 (en) | Circuit arrangement for operating at least one low-pressure discharge lamp | |
EP0677981A1 (en) | Ballast for discharge lamps with lamp change detecting means | |
EP1103166B1 (en) | Electronic ballast for at least one low-pressure discharge lamp | |
EP0471332A1 (en) | Circuit assembly for operating a fluorescent lamp | |
AT517946B1 (en) | PROCESS, OPERATING DEVICE AND LIGHTING SYSTEM | |
DE3338464C2 (en) | Circuit arrangement for operating at least one fluorescent lamp with adjustable brightness on a self-oscillating inverter | |
WO2003024162A1 (en) | Method and device for operating a fluorescent tube in an energy saving manner | |
EP1492393B1 (en) | Ballast for fluorescent lamp and method to detect eol | |
EP2274960B1 (en) | Method and circuit arrangement for operating at least one discharge lamp | |
EP1040733B1 (en) | Electronic lamp ballast | |
EP2796012B1 (en) | Method, operating device and lighting system with integrated lamp rectifier effect detection | |
EP1048190B1 (en) | Electronic lamp ballast | |
EP1860925B1 (en) | Electronic lamp cut-in unit with heater switch | |
DE19501695B4 (en) | Ballast for at least one gas discharge lamp with preheatable lamp filaments | |
EP0843505A1 (en) | Electronic ballast for at least one discharge lamp | |
AT505376B1 (en) | CONTROL UNIT FOR LAMP-OPERATING DEVICES | |
EP1040732B1 (en) | Method for detecting a lamp change and electronic lamp ballast for operating gas-discharge lamps using such a method for detecting a lamp change | |
EP1081988A2 (en) | Circuit for operating at least one discharge lamp | |
EP2529599A2 (en) | Operating device for gas discharge lamps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050422 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
R17C | First examination report despatched (corrected) |
Effective date: 20051125 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502004003377 Country of ref document: DE Date of ref document: 20070516 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070715 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070904 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
26N | No opposition filed |
Effective date: 20080107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071005 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20101109 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20110809 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110824 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004003377 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE Effective date: 20111213 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004003377 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE Effective date: 20130205 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120823 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004003377 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE Effective date: 20130823 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140821 Year of fee payment: 11 Ref country code: GB Payment date: 20140820 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20140820 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150823 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170822 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004003377 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |