EP1518353A2 - Adaptive steuerung eines netzelementes - Google Patents

Adaptive steuerung eines netzelementes

Info

Publication number
EP1518353A2
EP1518353A2 EP03761480A EP03761480A EP1518353A2 EP 1518353 A2 EP1518353 A2 EP 1518353A2 EP 03761480 A EP03761480 A EP 03761480A EP 03761480 A EP03761480 A EP 03761480A EP 1518353 A2 EP1518353 A2 EP 1518353A2
Authority
EP
European Patent Office
Prior art keywords
network
rules
ncs
network element
behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03761480A
Other languages
English (en)
French (fr)
Inventor
Joachim Charzinski
Karl Schrodi
Christian Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP02014001A external-priority patent/EP1376928A1/de
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03761480A priority Critical patent/EP1518353A2/de
Publication of EP1518353A2 publication Critical patent/EP1518353A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/63Routing a service request depending on the request content or context
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]

Definitions

  • the subject matter of the application relates to a method for adaptively controlling a network element in a communication network and a method for coupling a plurality of network elements.
  • the PDP is only used for static configuration, it is no longer involved in normal network operation. From then on, the nodes work independently of the network control, but cannot react autonomously. If, on the other hand, incoming connection requests have to be processed (eg RSVP Resource Reservation Protocol), the PDP is the central component of network operation.
  • the rules in the PDP database are created by an administrator, • if necessary, automatically checked for consistency and prioritized by the PDP in the event of conflicts according to predefined schemes.
  • the invention is based on the problem of a method for controlling a network element of a communication network to indicate that with changing operating conditions, such as. B. load change, line break, node failure, responded with a fast autonomous forwarding of data packets.
  • a network element in an autonomous communication network is controlled via rules of conduct.
  • the network element is assigned a control instance, Network Control Server (NCS) ⁇ , which generates these rules and configures the network element with it.
  • NCS Network Control Server
  • the network works without the permanent intervention of the NCS.
  • the NCS only supplies the network elements accordingly if new, adapted rules are required due to sustainable, long-term changes to the network situation.
  • the invention has the following properties:
  • the network works in a packet-oriented and connectionless manner.
  • the network has network elements that operate autonomously using rules. - With the help of these rules, the network elements can forward packets according to specified criteria (eg quality of service), in particular also via several sensible possible routes (eg for uniform Load distribution) autonomously in normal operation. In addition, they react very quickly autonomously to network failures (e.g. line break, node failure).
  • specified criteria eg quality of service
  • several sensible possible routes eg for uniform Load distribution
  • network failures e.g. line break, node failure
  • the rules of behavior are formed and maintained in a control instance (NCS) individually assigned to a network element.
  • NCS control instance
  • NCS individually assigned control entity
  • FIG. 1 shows a schematic representation of the network elements according to the invention in the communication network
  • Fig. 2 is a schematic representation of the network and control hierarchy
  • Fig. 3 input and output variables of the adaptive network control.
  • autonomous network The network elements acting autonomously according to the invention in a network (hereinafter referred to as autonomous network) work under the guidance of an adaptive control but without their permanent intervention.
  • the elements of the autonomous network are: on the one hand, the network nodes that autonomously transmit / forward the traffic (router), which are differentiated into edge nodes (edge router) and core nodes (core router), - on the other hand, the resource control entities (RCA), which are arranged on the edge of the network.
  • router the network nodes that autonomously transmit / forward the traffic
  • core router core nodes
  • RCA resource control entities
  • the RCAs are assigned to the edge nodes. Your task is to accept resource requests (e.g. connection setup / cleardown) at an assigned input or output edge node (e.g. from a separate service control (not shown here) (see Fig. 1, ⁇ )) and to allow them to be admissible and feasible check to accept or reject them.
  • the RCA provides the corresponding edge node with parameters (see FIG. 1, ®) which enable it to set the use and usage monitoring of the resources and to configure the rules for handling the data packets associated with the corresponding traffic flow (eg marking, Policing, scheduling).
  • the RCAs work autonomously based on rules of conduct. These rules of conduct describe their control task and contain the parameters to be passed on to the Edge Router during operation explicitly or implicitly (e.g. as a calculation rule).
  • An RCA can be responsible for: »One edge router each
  • the elements (router, RCA) of the autonomous network work according to rules of conduct. These can be given by the NCS to the network elements or otherwise, e.g. via the network management.
  • the NCS can therefore be responsible for:
  • the transmission infrastructure is primarily responsible for the transmission of the data and may include mechanisms for a very fast equivalent circuit in the event of a fault (e.g. line break etc.), e.g. for SDH or similar approaches in the area of optical networks. This is a control task that is performed independently by the transmission infrastructure in the millisecond range.
  • the autonomous IP network described above autonomously processes resource requests, a control task in Cooperation with a service control, distributes the traffic in the network and reacts quickly and independently to errors. Only those errors are processed that could not already be eliminated on the transmission level.
  • the adaptive network control (regulation) according to the invention has no real-time requirements. It monitors the network and generates new rules if there are significant deviations from the target operation.
  • the time horizon is hours or more.
  • the network management serves to set the basic configuration in the direction of the network. As a rule, it is only active at very large intervals, e.g. when expanding the network.
  • NCS NCS
  • NCS can be responsible for:
  • these rules are quasi-static, so they only depend on the network topology and the static properties of the network.
  • the NCS can provide the basic information, e.g. from
  • Network management and / or obtained from the network element (s) itself may include: network topology, Line bandwidths, properties of the network element (s), (preferred) routes, traffic matrices, traffic classes, etc.
  • the rules are set in such a way that the network can ensure the properties described above in autonomous operation.
  • the NCS is basically not part of regular operations.
  • the rules are also adaptively changed, adapted or generated depending on the network state. It should be noted that the rules are adjusted on a larger time scale (e.g. 15 minutes or 2
  • the NCS selects rules from a set of predetermined rules according to the network situation. • The NCS also adjusts the predetermined rules according to the network situation.
  • Information from the network is e.g. Statistics about traffic and queues, error messages from the network, current route guidance, etc. impending permanent unbalanced loads (e.g. due to extensive failures or permanent changes in user behavior and traffic matrices) are corrected.
  • NCS Degree of information and intelligence of the, NCS graduated embodiments are possible for the NCS, which differ in the dimensions of information level and intelligence.
  • the more information (sources) available to the NCS the more optimized rules it can generate. This is closely linked to the necessary and possible intelligence of the NCS, which can range from simple logic, optimization procedures and dimensioning procedures to expert systems or neural networks. With increasing information, the need for intelligence of the NCS increases.
  • Possible sources of information include the network elements themselves (e.g. statistical information, network load, routes), network management (e.g. topology, error events), administrator inputs, static and dynamic basic data (e.g. traffic matrices).
  • network elements themselves (e.g. statistical information, network load, routes), network management (e.g. topology, error events), administrator inputs, static and dynamic basic data (e.g. traffic matrices).
  • NCS adaptive network control
  • NCSs responsible for a (sub) network are linked to each other using a suitable protocol and exchange information to compare the rules. Then, as described above, they create adapted rules and thus supply the network elements of their (sub) network.
  • Each network node receives an individual set of parameters / all network nodes receive the same parameters.
  • the parameters also include the selection of an algorithm if several algorithms can be used to handle the task.
  • the NCS can be centrally located in the network / there are one or more backup devices / there are several equal coordination devices that work with With the help of a special coordination protocol, their rule specifications are mapped / different areas of the network or network elements are controlled locally by various NCSs that communicate via a special communication protocol.
  • the rules are changed depending on an observed quality of service. • The rules are changed depending on the queue lengths observed in the network nodes.
  • the NCS is used to additionally specify the parameters in devices for connection acceptance control at the network edge.
  • the NCS communicates with other network control servers in the networks of other network operators.
  • the NCS generates current tariff information from the existing status information (and possibly other parameters supplied by network management), which it forwards to the transport control (RCAs).
  • Network elements and NCS can originate from the NCS or from the network elements.
  • the NCS actively supplies the network elements with new rules and / or parameters as soon as they are available.
  • the network elements can call up the current rules / parameters if required. Both forms of communication can be used in a network, the second being particularly suitable for the automatic configuration of new network elements (e.g. when starting up or restarting) and / or for configuring the communication parameters for the first form of communication.
  • the NCS takes into account the order in which the new rules / parameters are imported into the network elements. Since not all network elements absolutely new rules / parameters at the same time such an intelligent coupling of creation and distribution of the rules / parameters can help to avoid transient states of overload or instability.

Abstract

Die vorliegende Erfindung beschreibt die autonome, adaptive Steuerung eines Netzelementes in einem paketorientierten und verbindungslosen Kommunikationsnetz. Zudem wird die Kopplung mehrerer Netzelemente adressiert.

Description

Beschreibung
Adaptive Steuerung eines Netzelementes
Der Anineldungsgegenstand betrifft ein Verfahren zur adaptiven Steuerung eines Netzelementes in einem Kommunikationsnetz und ein Verfahren zur Koppelung mehrerer Netzelemente.
Es gibt das Konzept, Netzknoten mit von einem Administrator vorgegebenen und in einer Datenbank abgelegten Regeln zu konfigurieren. Dieses ,policy based networkingΛ der IETF (Internet Engineering Task Force) dient zum einen dazu, quasi-statische Konfigurationsinformation in die Netzknoten zu laden. Zum anderen können damit auch Konfigurationen, die in Abhängigkeit von konkreten Verbindungswünschen eingestellt werden müssen, zum Anforderungszeitpunkt an die Knoten gegeben werden. Dazu wird eine dem Netz übergeordnete Komponente, der , Policy Decision Point λ PDP eingeführt, der die vorgegebenen Regeln aus der Datenbank lesen und die für die gegebene Situation geeignete Regel heraussuchen kann. In der Folge lädt er eine entsprechende
Konfigurationsinformation in das Netzelement PEP (für: , Policy Enforcment Point )-
Wird der PDP nur zur statischen Konfiguration eingesetzt, ist er im Normalbetrieb des Netzes nicht mehr involviert. Die Knoten arbeiten ab dem Zeitpunkt unabhängig von der Netzsteuerung, können allerdings nicht autonom reagieren. Sind dagegen eingehende Verbindungswünsche zu bearbeiten (e.g. RSVP Resource Reservation Protocol) , so ist der PDP die zentrale Komponente des Netzbetriebs. Die Regeln in der Datenbank des PDP werden von einem Administrator erzeugt, ggf. automatisch auf Konsistenz geprüft und vom PDP bei Konflikten entsprechend vorgegebener Schemata priorisiert.
Der Erfindung liegt das Problem zugrunde, ein Verfahren zur Steuerung eines Netzelementes eines Kommunikationsnetzes anzugeben, das bei sich ändernden Betriebsbedingungen, wie z. B. Lastveränderung, Leitungsbruch, Knotenausfall, mit einer schnellen autonomen Weiterleitung von Datenpaketen reagiert.
Das Problem wird durch einen Gegenstand mit den Merkmalen des des Anspruchs 1 gelöst.
Erfindungsgemäß wird ein Netzelement in einem autonomen Kommunikationsnetz über Verhaltensregeln gesteuert. Dazu wird dem Netzelement eine Steuer-Instanz , Network Control Server (NCS) λ zugeordnet, welche diese Regeln erzeugt und das Netzelemente damit konfiguriert. Durch diesen Ansatz arbeitet das Netz ohne den dauernden Eingriff des NCS. Erst wenn auf Grund nachhaltiger, längerfristiger Änderungen der Netzsituation neue, angepaßte Regeln benötigt werden, versorgt der NCS das Netzelemente entsprechend neu.
Ausgehend von der Erkenntnis, wonach der Betrieb eines Netzes um so höhere Kosten verursacht, je mehr administrativer Aufwand zu leisten ist, ist der erfindungsgemäße Ansatz von autonom arbeitenden Netzelementen von Vorne herein von Vorteil. Die hier beschriebene Methode, die Regeln automatisch zu erzeugen, minimieren die Betreiberkosten bei gleichzeitiger Erhöhung der Verfügbarkeit. Durch die Kopplung von NCSn mehrerer Netzelemente können auch (Teil-) Netze übergreifend betrieben werden und die vom Benutzer geforderten Qualitätseigenschaften Ende-zu-Ende mit minimalem Administrationsaufwand darstellen.
Die Erfindung weist folgende Eigenschaften auf:
Das Netz arbeitet paketorientiert und erbindungslos. Das Netz weist Netzelemente auf, die unter Verwendung von Regeln autonom arbeiten. - Unter zu Hilfenahme dieser Regeln können die Netzelemente das Weiterleiten von Paketen gemäß vorgegebener Kriterien (z.B. Dienstqualität) insbesondere auch über mehrere sinnvolle mögliche Wege (z.B. zur gleichmäßigen Lastverteilung) im Normalbetrieb autonom leisten. Darüber hinaus reagieren sie sehr schnell autonom auf Ausfälle im Netz (z.B. Leitungsbruch, Knotenausfall) .
In einer besonderen Ausgestaltung der Erfindung werden die Verhaltensregeln in einer einem Netzelement individuell zugeordneten Steuer-Instanz (NCS) gebildet und vorgehalten. Dabei generiert in einem eine Vielzahl von Netzelementen umfassenden Kommunikationsnetz eines, meherere oder alle Netzelemente jeweils für sich Verhaltensregeln, aus denen es nach Maßgabe der Betriebsbedingungen autonom/selbsttätig auswählt.
Eine Ausgestaltung, bei der ein Netzelement eine individuell zugeordnete Steuer-Instanz (NCS) aufweist, fügt sich in das Konzept einer nicht-hierarchischen Netzarchitektur ein, bei der das jeweilige Netzelement über die volle Funktionalität verfügt. Ein Netzelement weist dabei also die Funktionalität der Steuer-Instanz (NCS) auf, vergleichbar der in dem , Netzelement vorgehaltenen link-state Informationen betreffend die Verfügbarkeit der angeschlossenen Verbindungsleitungen.
Vorteilhafte Weiterbildungen des Anmeldungsgegenstandes sind in den Unteransprüchen angegeben.
Die Erfindung wird im folgenden als Ausführungsbeispiel in einem zum Verständnis erforderlichen Umfang anhand von
Figuren näher erläutert. Dabei zeigen:
Fig 1 eine schematische Darstellung der erfindungsgemäßen Netzelemente in dem Kommunikationsnetz,
Fig 2 eine schematische Darstellung der Netz- und Steuerungshierarchie und
Fig 3 Eingangs- und Ausgangsgrößen der adaptiven Netzsteuerung .
In den Figuren bezeichnen gleiche Bezeichnungen gleiche Elemente. Die hier dargestellte Erfindung beschreibt die adaptiven Steuerung. Zudem wird die Kopplung von mehreren Netzen adressiert.
Die erfindungsgemäß autonom agierenden Netzelemente in einem Netz (im folgenden als autonomes Netz bezeichnet) arbeiten unter Führung einer adaptiven Steuerung aber ohne ihren dauernden Eingriff.
Die Elemente des autonomen Netzes (siehe Fig 1) sind: zum einen die Netzknoten, welche den Verkehr autonom vermitteln/weiterleiten (Router) , die in Randknoten (Edge Router) und Kernknoten (Core Router) unterschieden werden, - zum anderen die Ressourcenkontrollinstanzen (RCA) , die am Netzrand angeordnet sind.
Die RCAs sind den Randknoten zugeordnet. Ihre Aufgabe ist es, Ressourcenanforderungen (z.B. Verbindungsauf-/-abbau) an einen zugeordneten Ein- oder Ausgangs-Randknoten entgegenzunehmen (z.B. von einer separaten, hier nicht näher beschriebenen Dienstesteuerung (siehe Fig 1, ©) ) und sie auf Zulässigkeit und Erfüllbarkeit zu prüfen, sie anzunehmen oder abzulehnen. In der Folge versieht die RCA den entsprechenden Randknoten mit Parametern (siehe Fig 1, ®) , die es ihm ermöglichen, die Nutzung und Nutzungsüberwachung der Ressourcen einzustellen und die Regeln für die Behandlung der zu dem entsprechenden Verkehrsfluss gehörigen Datenpakete zu konfigurieren (z.B. Marking, Policing, Scheduling) .
Die RCAs arbeiten wie die Router an Hand von Verhaltensregeln autonom. Diese Verhaltensregeln beschreiben deren Steuerungsaufgabe und beinhalten explizit oder implizit (z.B. als Berechnungsvorschrift) die an die Edge Router im Betrieb weiterzugebenden Parameter.
Für die Implementierung eines RCA gibt es mehrere Optionen: • als separater Server
• integriert in einen Edge Router
Dabei kann ein RCA zuständig sein für: » je einen Edge Router
• für mehrere Edge Router
Die -Elemente (Router, RCA) des autonomen Netzes arbeiten nach Verhaltensregeln. Diese können vom NCS an die Netzelemente gegeben oder auch anderweitig, z.B. über das Netzmanagement, konfiguriert werden. Der NCS kann also zuständig sein für:
• CoreRouter (siehe Fig 1,®)
• Edge Router (siehe Fig 1,©)
• RCAs (siehe Fig 1,©) • jede Kombination
Netz- und Steuerungshierarchie
Für die Netz- und Steuerungshierarchie gibt es vier Ebenen, die jeweils unterschiedliche Schwerpunkte/Zielsetzungen bei der Steuerung und ein unterschiedliches zeitliches Verhalten haben. Von unten nach oben sind dies (vgl. Fig 2) :
• Die Übertragungsinfrastruktur/Transmission
• Das autonome IP-Netz • Die adaptive Steuerung der Netzelemente
• Das Netzmanagement
Die Übertragungsinfrastruktur ist in erster Linie für die Transmission der Daten zuständig und mag Mechanismen zur sehr schnellen Ersatzschaltung im Fehlerfall (z.B. Leitungsbruch etc.) beinhalten, z.B. bei SDH oder ähnlichen Ansätzen im Bereich optischer Netze. Dies ist eine Steuerungsaufgabe, die durch die Übertragungsinfrastruktur im Bereich von Millisekunden selbständig geleistet wird.
Das oben beschriebene, autonome IP Netz bearbeitet autonom Ressourcenanforderungen, eine Steuerungsaufgabe in Kooperation mit einer Dienstesteuerung, verteilt den Verkehr im Netz und reagiert schnell selbständig auf Fehlerfälle. Dabei werden nur die Fehler bearbeitet, die in der Transmissionsebene nicht bereits behoben werden konnten.
Die erfindungsgemäße adaptive Netzsteuerung (Regelung) hat im Gegensatz zu den unteren beiden Ebenen keine EchtZeitanforderungen. Sie beobachtet das Netz und erzeugt bei signifikanten Abweichungen vom Sollbetrieb neue Regeln. Der Zeithorizont liegt bei Stunden oder darüber.
Das Netzmanagement dient in Richtung des Netzes zur Einstellung der Grundkonfiguration. Es wird also in aller Regel nur in sehr großen Zeitabständen steuernd tätig, z.B. bei Ausbau des Netzes.
Für die Implementierung eines NCS gibt es mehrere Optionen:
• als separater Server
• einem jeweiligen Netzelement zugeordnet, z. B. integriert
Dabei kann ein NCS zuständig sein für:
• je ein Netzelement
• für mehrere Netzelemente
Regeln und Regelerzeugung
A. Quasi-Statische Regeln:
Im einfachsten Fall sind diese Regeln quasi-statisch, hängen also nur von der Netztopologie und den statischen Eigenschaften des Netzes ab.
Im Unterschied zum , Policy based Networking Λ werden sie jedoch nicht von einem Administrator fest vorgegeben sondern vom NCS automatisch erzeugt.
Die Basisinformation dazu kann der NCS z.B. vom
Netzmanagement und/oder von dem/den Netzelementen selber erhalten. Dazu können gehören: Netztopologie, Leitungsbandbreiten, Eigenschaften des/der Netzelemente, (bevorzugte) Routen, Verkehrsmatrizen, Verkehrsklassen, usw.
Bei Änderungen dieser Basisinformationen, z.B. Änderungen der Netztopologie, werden die Regeln entsprechend neu berechnet und in das jeweilige Netzelement geladen.
Die Regeln werden dergestalt festgelegt, daß das Netz im autonomen Betrieb die oben beschriebenen Eigenschaften sicherstellen kann. Der NCS ist grundsätlich nicht Teil des Regelbetriebs .
B. Dynamische Regeln:
Im diesem komplexeren Fall werden die Regeln zusätzlich in Abhängigkeit vom Netzzustand adaptiv geändert bzw. angepasst bzw. erzeugt. Dabei ist festzuhalten, daß die Regeln in einer größeren Zeitskala angepasst werden (z.B. 15 Minuten oder 2
Tage) und das Netz nach wie vor auf dynamische Änderungen
(auch Fehler) schnell autonom reagiert.
Für die Regelerzeugung durch den NCS sind zwei Varianten denkbar:
• Der NCS wählt Regeln aus einem Satz von vorbestimmten Regeln entsprechend der Netzsituation aus. • Der NCS passt zusätzlich die vorbestimmten Regeln entsprechend der Netzsituation an.
• Der NCS erzeugt Regeln entsprechend der Netzsituation.
Informationen aus dem Netz sind z.B. Statistiken über den Verkehr und die Warteschlangen, Fehlermeldungen aus dem Netz, aktuelle Routenführung, usw. So können z.B. drohende dauerhafte Schieflasten (z.B. durch ausgedehnte Ausfälle oder bleibende Änderung des Benutzerverhaltens und der Verkehrsmatrizen) korrigiert werden.
Informationsgrad und Intelligenz des ,NCS Für den NCS sind abgestufte Ausführungsformen möglich, die sich in den Dimensionen Informationsgrad und Intelligenz unterscheiden. Je mehr Information (-squellen) dem NCS zur Verfügung stehen, desto stärker optimierte Regeln kann er erzeugen. Eng damit verzahnt ist die notwendige und mögliche Intelligenz des NCS, die von einfacher Logik über Optimierungsverfahren und Dimensionierungsverfahren bis hin zu Expertensystem oder Neuronalen Netzen ausgeführt sein kann. Mit zunehmender Information steigt der Bedarf an Intelligenz des NCS.
Mögliche Informationsquellen (auch in verschiedenen Kombinationen) sind u.a. die Netzelemente selber (z.B. Statistikinformation, Netzlast, Routen) , das Netzmanagement (z.B. Topologie, Fehlerereignisse), Administratoreingaben, statische und dynamische Basisdaten (z.B. Verkehrsmatrizen).
Informationsflüsse von/zur adaptiven Netzsteuerung (NCS) : Der NCS bezieht für seine Aufgabe Informationen aus mehreren .Quellen und liefert auch Daten an verschiedene Abnehmer (vgl. Fig 3) .
Input :
• Netzmanagement/Betreiber (u.a.): • Netzbetriebsstrategie
• Netzkonfiguration
• zus. Konfigurations-Daten (z.B. speziell zu schützende Netzsegmente o.a.)
• Autonomes Netz (u.a.):
• Statistiken
• Betriebszustände • Routen
• Service Provider (u.a.):
• Informationen über Dienste und Applikationen und deren Eigenschaften und Anforderungen Output :
• Netzmanagement/Betreiber (u.a.):
• Info für Betreiber, z.B. Notwendigkeit des Netzausbaus etc.
• Statistiken
• Events
• Autonomes Netz (u.a.) • Verhaltensregeln
• Parameter
Kopplung von (Teil-) Netzen
Sollen mehrere Netze, die nach dem beschriebenen autonomen Prinzip arbeiten, eng gekoppelt werden, so daß sie die Eigenschaften des autonomen Netzes wie Lastverteilung, Fehlerreaktion und Dienstgüte übergreifend darstellen können, müssen die Regeln der Teilnetze aufeinander abgestimmt werden.
Dazu werden die für jeweils ein (Teil-) Netz zuständigen NCSs über ein geeignetes Protokoll miteinander gekoppelt und tauschen Informationen zum Abgleich der Regeln aus. Anschließend erzeugen sie wie oben beschrieben, angepasste Regeln und versorgen damit die Netzelemente ihres (Teil- ) Netzes .
Optionen und Erweiterungen
• Jeder Netzknoten bekommt einen individuellen Satz von Parametern / alle Netzknoten bekommen dieselben Parameter zugespielt.
• Die Parameter beinhalten auch die Auswahl eines Algorithmus wenn mehrere Algorithmen zur Behandlung der Aufgabe in Frage kommen. • Der NCS kann zentral im Netz angeordnet sein / es gibt eine oder mehrere Backup-Einrichtungen / es gibt mehrere gleichberechtigte Koordinationseinrichtungen, die mit Hilfe eines speziellen Koordinationsprotokolles ihre Regel-Vorgaben abgeleichen / verschiedene Bereiche des Netzes respektive Netzelemente werden lokal von verschiedenen NCS gesteuert, die über ein spezielles Kommunikationsprotokoll kommunizieren.
• Die Änderung der Regeln erfolgt abhängig von der Auslastung eines oder mehrerer Links.
• Die Änderung der Regeln erfolgt abhängig von einer beobachteten Dienstgüte. • Die Änderung der Regeln erfolgt abhängig von in den Netzknoten beobachteten Warteschlangenlängen.
• Der NCS wird eingesetzt, um zusätzlich die Parameter in Einrichtungen zur Verbindungsannahmesteuerung am Netzrand vorzugeben. • Der NCS kommuniziert mit anderen Network Control Servern in den Netzen anderer Netzbetreiber.
• Der NCS generiert aus den bei ihm vorhandenen Zustandsinformationen (und eventuell weiteren durch Netzmanagement gelieferten Parametern) aktuelle TarifInformationen, die er an die Transportsteuerung (RCAs) weitergibt.
• Die Kommunikation zwischen Netzelementen und NCS kann vom NCS oder von den Netzelementen ausgehen. Im ersten Fall versorgt der NCS die Netzelemente aktiv mit neuen Regeln und/oder Parametern, sobald diese vorliegen. Im zweiten Fall können die Netzelemente die aktuellen Regeln/Parameter bei Bedarf abrufen. Beide Kommunikationsformen können in einem Netz verwendet werden, wobei sich die zweite insbesondere im Rahmen einer automatischen Konfiguration neuer Netzelemente (z.B. bei Inbetriebnahme oder Neustart) und/oder zur Konfiguration der Kommunikationsparameter für die erste Kommunikationsform anbietet.
• Der NCS berücksichtigt bei der Erstellung der Regeln/Parameter die Einspielreihenfolge der neuen Regeln/Parameter in die Netzelemente. Da nicht alle Netzelemente absolut gleichzeitig neue Regeln/Parameter erhalten können, kann eine solche intelligente Kopplung von Erstellung und Verteilung der Regeln/Parameter helfen, transiente Zustände der Überlast oder Instabilität zu vermeiden.

Claims

Patentansprüche
1. Verfahren zur Steuerung eines Netzelementes- in einem Kommunikationsnetz demzufolge - ein Netzelement eine Mehrzahl von Verhaltensregeln vorhält und das Netzelement nach Maßgabe der Betriebsbedingungen eine Verhaltensregel autonom/selbsttätig auswählt und Datenpakete entsprechend dieser Verhaltensregel weiterleitet.
2 . Verfahren nach Anspruch 1 d a d u r c h g e k e n n z e i c h n e t , d a s s die Betriebsbedingungen durch eine beliebige Kombination aus Leitungsbruch, Knotenausfall, Netzauslastung,
Verbindungsaufbau, Netzumkonfigurierung gegeben sind.
3. Verfahren nach einem der vorstehenden Ansprüche dadurch gekennzeichnet, dass eine Verhaltensregel die Auswahl eines von mehreren Wegen beinhaltet.
4. Verfahren nach einem der vorstehenden Ansprüche dadurch gekennzeichnet, dass die Verhaltensregeln in einer Steuer-Instanz (NCS) gebildet werden.
5. Verfahren nach einem der vorstehenden Ansprüche dadurch gekennzeichnet, dass die Verhaltensregeln in einer einem Netzelement individuell zugeordneten Steuer-Instanz (NCS) gebildet werden.
6. Verfahren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die Verhaltensregeln über das Netzmanagement von einer mehreren Netzelementen übergeordneten Steuer-Instanz (NCS) dem Netzelement zuführbar sind.
7. Verfahren nach einem der vorstehenden Ansprüche dadurch gekennzeichnet, dass die Verhaltensregeln automatisch erzeugt werden.
8. Verfahren zur Koppelung mehrerer Netzelemente, insbesondere nach einem der vorstehenden Ansprüche, demzufolge zwei Steuer-Instanzen (NCS) über ein Protokoll miteinander gekoppelt werden, über das sie Informationen zum Abgleich von Verhaltensregeln austauschen.
9. Verfahren nach einem der vorstehenden Ansprüche dadurch gekennzeichnet, dass es in einem paketorientierten und verbindungslosen Kommunikationsnetz zur Anwendung kommt.
EP03761480A 2002-06-26 2003-06-20 Adaptive steuerung eines netzelementes Withdrawn EP1518353A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03761480A EP1518353A2 (de) 2002-06-26 2003-06-20 Adaptive steuerung eines netzelementes

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP02014001A EP1376928A1 (de) 2002-06-26 2002-06-26 Adaptive Steuerung eines Kommunikationsnetzes
EP02014001 2002-06-26
DE10255922 2002-11-29
DE10255922 2002-11-29
EP03761480A EP1518353A2 (de) 2002-06-26 2003-06-20 Adaptive steuerung eines netzelementes
PCT/EP2003/006538 WO2004004215A2 (de) 2002-06-26 2003-06-20 Adaptive steuerung eines netzelementes

Publications (1)

Publication Number Publication Date
EP1518353A2 true EP1518353A2 (de) 2005-03-30

Family

ID=30001518

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03761480A Withdrawn EP1518353A2 (de) 2002-06-26 2003-06-20 Adaptive steuerung eines netzelementes

Country Status (5)

Country Link
US (1) US20060023741A1 (de)
EP (1) EP1518353A2 (de)
CN (1) CN1666461A (de)
AU (1) AU2003249858A1 (de)
WO (1) WO2004004215A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011201B4 (de) * 2004-03-04 2006-10-12 Siemens Ag Verfahren zum Management und zur Überwachung des Betriebs mehrerer in wenigstens ein Kommunikationsnetz eingebundener verteilter Hard- und/oder Softwaresysteme sowie System zur Durchführung des Verfahrens
DE102006013769B4 (de) * 2006-03-24 2008-03-27 Nokia Siemens Networks Gmbh & Co.Kg Netzwerk und Verfahren zum rechnergestützten Betreiben eines autonomen Netzwerks mit einer Mehrzahl an autonomen Endgeräten
CN101296111B (zh) * 2007-04-29 2012-06-27 华为技术有限公司 自动实现管理设备和被管理设备链接的方法及系统
US9450819B2 (en) * 2012-10-12 2016-09-20 Cisco Technology, Inc. Autonomic network sentinels

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999833A (en) * 1985-05-06 1991-03-12 Itt Corporation Network connectivity control by artificial intelligence
JPH06318951A (ja) * 1993-01-07 1994-11-15 Toshiba Corp セル転送方法およびセル転送システム
US5923659A (en) * 1996-09-20 1999-07-13 Bell Atlantic Network Services, Inc. Telecommunications network
US5970064A (en) * 1997-06-12 1999-10-19 Northern Telecom Limited Real time control architecture for admission control in communications network
WO2001003380A1 (fr) * 1999-07-02 2001-01-11 Fujitsu Limited Dispositif d'attribution de services

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004004215A2 *

Also Published As

Publication number Publication date
US20060023741A1 (en) 2006-02-02
CN1666461A (zh) 2005-09-07
AU2003249858A1 (en) 2004-01-19
WO2004004215A3 (de) 2004-09-16
WO2004004215A2 (de) 2004-01-08

Similar Documents

Publication Publication Date Title
EP1593241B1 (de) Zugangskontrolle für ein paketorientiertes netz unter berücksichtigung von resilience anforderungen
DE60102367T2 (de) Netzoptimierungsmethode
DE60204645T2 (de) Ressourcenverwaltung in heterogenen dienstqualitätsbasierten Paketnetzwerken
DE69433968T2 (de) Kommunikationsnetwerkverwaltung
DE602005002877T2 (de) Vorrichtung zu einer Multikriterien Lastverteilung für ein Peripheriegerät in einem etikettenvermittelten Netz
EP1529384B1 (de) Zugangskontrolle bei paketorientierten netzen
EP1133112B1 (de) Verfahren zum Verteilen einer Datenverkehrslast eines Kommunikationsnetzes und Kommunikationsnetz zur Realisierung des Verfahrens
DE102011003321A1 (de) Verfahren zum Erhöhen der Qualität der Datenübertragung in einem paketbasierten Kommunikationsnetz
WO2006058857A1 (de) Verfahren und vorrichtung zur automatischen neueinstellung von grenzen für zugangskontrollen zur beschränkung des verkehrs in einem kommunikationsnetz
DE102006041058A1 (de) Verfahren zur Nachführung von Netzparametern
DE102006014378B4 (de) Verfahren und Netzsteuerungseinheit zum Deaktivieren einer Netzwerkkomponente
EP3628078B1 (de) Verfahren zum betrieb eines mehrere kommunikationsgeräte umfassenden kommunikationsnetzes eines industriellen automatisierungssystems und steuerungseinheit
DE102004005016B4 (de) Verfahren zur Steuerung der Transportkapazität für Datenübertragung über ein Netzwerk und Netzwerk
DE602004005405T2 (de) Verfahren zur Verkehrsplanung eines Virtual Private LAN Dienstes (VPLS)
EP1518353A2 (de) Adaptive steuerung eines netzelementes
DE102005005278B4 (de) Verfahren zum Betrieb eines Netzknoten eines Kommunikationsnetzes und Netzknoten eines Kommunikationsnetzes
DE102004045740B4 (de) Selbstadaptierendes Bandbreitenmanagement
EP1768322A1 (de) Verfahren zur Reservierung von Bandbreite in einer Netzresource in einem Kommunikationsnetzwerk
EP1376928A1 (de) Adaptive Steuerung eines Kommunikationsnetzes
EP3454222A1 (de) Verfahren und automatisierungskomponente zur übertragung von steuerungsdaten in einer industriellen automatisierungsanordnung
EP1530852B1 (de) Verteilungsfächer für eine effiziente, ausfallsichere verkehrsverteilung in einem paketnetz
EP3896918A1 (de) Verfahren zum betrieb eines kommunikationssystems zur übermittlung zeitkritischer daten, domänen-steuerungseinrichtung und kommunikationssteuerungseinrichtung
DE102005046397B4 (de) Verfahren zum raschen Auffinden günstiger Link-Kostenmetriken nach Netzwerkfehler
DE102006003159A1 (de) Ausfallsichere Dimensionierung der Bandbreite in einem Kommunikationsnetz
DE102004036260A1 (de) Verwendung von Ende-zu-Ende-Verfügbarkeitsberechnungen beim Verbindungsaufbau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051213