EP1518144A1 - Procede de fabrication d'un dispositif delimitant un volume pour le confinement d'un fluide ou d'une matiere sensible - Google Patents

Procede de fabrication d'un dispositif delimitant un volume pour le confinement d'un fluide ou d'une matiere sensible

Info

Publication number
EP1518144A1
EP1518144A1 EP03732553A EP03732553A EP1518144A1 EP 1518144 A1 EP1518144 A1 EP 1518144A1 EP 03732553 A EP03732553 A EP 03732553A EP 03732553 A EP03732553 A EP 03732553A EP 1518144 A1 EP1518144 A1 EP 1518144A1
Authority
EP
European Patent Office
Prior art keywords
substrates
sealing material
volume
fluid
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03732553A
Other languages
German (de)
English (en)
Inventor
Gilles Rey-Mermet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Priority to EP03732553A priority Critical patent/EP1518144A1/fr
Publication of EP1518144A1 publication Critical patent/EP1518144A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]

Definitions

  • the present invention relates to a method of manufacturing a device such as electro-optical display cells or electrochemical photovoltaic cells.
  • the present invention also relates to certain types of microsystems better known by their Anglo-Saxon name “Micro Electro Mechanical Systems” or "MEMS”.
  • a first known category of photovoltaic cells converts light into electricity by exploiting the photovoltaic effect which appears at the junction of semiconductor materials.
  • the semiconductor material simultaneously fulfills the functions of absorbing light and separating the resulting electric charges (electrons and holes).
  • the material must be of high purity, free from defects, otherwise electrons and holes will recombine before they can be separated.
  • the present invention relates to a second type of so-called electrochemical photovoltaic cells which comprise a semiconductor material which is normally insensitive to visible light due to the width of its prohibited band, and which only begins to absorb in the near ultraviolet.
  • a material can nevertheless be sensitized by the adsorption of a dye such as a complex of a transition metal which allows a conversion rate between an incident photon and an electron approaching the unit.
  • the dye After being excited by the absorption of a photon, the dye can transfer an electron into the conduction band of the semiconductor material.
  • the electric field prevailing within the semiconductor material allows the extraction of this electron. After transfer of the electron, the dye returns to the oxidized ground state.
  • the recombination between the electron in the conduction band of the semiconductor material and the hole on the oxidized dye is much slower than the reduction of the oxidized dye by a mediator. Therefore, load separation is effective.
  • Cells of the kind described above generally comprise a first transparent front substrate and a second rear substrate that may or may not be transparent. These two substrates each have on their opposite faces a first electrode also called a counter electrode, and a second electrode usually known as a photo electrode. These electrodes are intended to be connected to an electrical supply circuit and are conventionally produced in the form of a thin layer of a transparent conductive oxide such as a mixture of indium / tin oxide or of oxide of tin / antimony.
  • the two substrates are joined together by a sealing frame which extends along the perimeter thereof. This sealing frame defines a sealed volume for the confinement of the semiconductor material deposited as a layer on one of the substrates and of an electrolyte containing the aforementioned mediator.
  • the present invention also relates to so-called electro-optical display cells, in particular liquid crystal, which, in a similar manner to electrochemical photovoltaic cells, comprise:
  • the substrates each comprising on their opposite faces at least one electrode, these electrodes being intended to be connected to a display control circuit which, by applying appropriate electrical voltages to selected electrodes, is able to modify the transmission or reflection characteristics of an optically active medium;
  • the substrates being joined by a sealing frame delimiting a sealed volume for the confinement of the optically active medium
  • Connection means for establishing the electrical connection between each electrode and the display control circuit.
  • the sealing frames ensure the hermeticity of the edges of the cells in order to effectively confine the active medium which such cells contain, and to protect this medium from the phenomena of gas diffusion coming from the surrounding atmosphere which can compromise the perenniality of the cells.
  • the sealing frames are deposited by screen printing, a process the implementation of which can irreparably deteriorate all fragile structures such as electrical connections or spacers which have already been removed at the time of the step of serigraphy.
  • the screen printing technique which consists, let us remember, of depositing a material with a pasty consistency through the non-closed meshes of a screen, for example nylon or stainless steel, with very fine meshes using '' A squeegee actuated by hand or mechanically, is a technique whose implementation generates significant mechanical stresses which are often detrimental to the neighboring structures already deposited such as the alignment layers, the space bars or even the connections electric.
  • the spacers are intended to maintain a constant spacing between the two substrates of the cells and to give the latter a satisfactory mechanical rigidity.
  • maintaining the distance between the two substrates is generally ensured by balls or staple fibers of perfectly controlled geometric dimensions, spread over one of the substrates before the second substrate is placed.
  • This initial technique has certain drawbacks such as, in particular, a high price and a random positioning of the balls which can constitute, at the heart of the pixels of a matrix display, optical diffusion centers deteriorating the appearance of the display. It has therefore been proposed to replace these balls with continuous spacers obtained by depositing a layer of photoresist material of the desired thickness on one of the substrates, this layer then being structured to give it the shape of the desired spacers.
  • the spacers structured by photolithography can have an adhesive power making it possible to assemble the two substrates together.
  • the spacers play a particularly decisive role in the proper functioning of cells with an optically or electro-optically active medium in which the present invention is concerned.
  • these spacers when made in photoresist, can be irreparably damaged during deposition by screen printing of the sealing frame.
  • Another disadvantage which weighs on the techniques of deposition by screen printing of the sealing frames lies in the fact that it is difficult to control with precision the final dimensions of such frames.
  • the sealing material crushes and tends to spread under the effect of the pressure exerted, so that the width of the sealing frame cannot be controlled only with an accuracy which is typically of the order of a tenth of a millimeter.
  • the inner wall of the sealing frames deposited by screen printing which is in contact with the liquid crystal usually has irregularities in shape, so that these frames must be provided at a sufficient distance from the electrodes so that they do not encroach not on these.
  • the present invention finally relates to fluid type microsystems such as pressure sensors, micropumps or else micromixers intended to channelize in a controlled manner the flow of fluids.
  • These microstructures indeed have many analogies with liquid crystal display cells and electrochemical photovoltaic cells. They include, in particular, two substrates separated from each other by a constant distance and between which are formed channels. These channels, inside which the liquid or gaseous fluids circulate, are conventionally machined by etching in the volume of said substrates.
  • the nature of the materials using which said substrates are made often imposes strong constraints, in particular in terms of welding temperature and electrical voltages. applied. These constraints can be detrimental to the structures already deposited on the substrates before welding.
  • the object of the present invention is to remedy the abovementioned problems as well as others still by providing a manufacturing method, in particular of a liquid crystal display cell, which is easy to implement and which especially limits the risk of damaging elements of the cell already deposited.
  • the present invention also relates to a device with an optically or chemically active medium which allows, in particular, the implementation of the method according to the invention.
  • the present invention relates to a method of manufacturing at least one device delimiting a volume for the confinement of a fluid or a sensitive material capable of changing physical properties, in particular optical properties, under the effect of the application of a voltage, or of electrical properties under the effect of a stress or radiation, this device comprising at least a first front substrate and at least a second rear substrate maintained at a constant distance from each other, these two substrates being joined by a sealing joint which defines the volume for the confinement of the sensitive medium or of the fluid, this method being characterized in that it comprises the steps consisting in:
  • the present invention provides a method of manufacturing devices such as, in particular, liquid crystal display cells, which makes it possible to coat with the sealing material fragile structures previously deposited such as connection elements. , thus greatly limiting the risks of damaging such structures. Such a result would also be difficult to obtain by screen printing without the risk of locally achieving an extra thickness which would inevitably lead to imprecise spacing between the two substrates during the assembly which follows.
  • a layer of a photoresist material is deposited on one of the substrates which is then structured by photogravure techniques to give it the form of a or several partitions.
  • the present invention thus makes use of simple techniques commonly used in the field of manufacturing cells such as liquid crystal display cells. These techniques are therefore perfectly mastered.
  • the method according to the invention makes it possible to control with great precision the width of the sealing frames as well as the positioning of the inner wall of said frames which is in contact with the liquid crystal, which is not the case. with screen printing type processes.
  • the photolithographic techniques to which the invention makes use do not generate any mechanical stress during their implementation, which is very favorable to the elements of the cell already deposited and which no longer risk being damaged or put out of use during manufacture.
  • the partition (s) are structured by screen printing.
  • the partitions are formed by means of a dispenser of photoresistive material of the syringe type.
  • the photoresist layer is structured so as to form not only the partition or partitions, but also spacers intended to maintain a constant spacing between the two substrates of the cell.
  • the present invention makes it possible to structure the spacers and the walls during a single manufacturing step, which saves time and therefore considerable money. Above all, the spacers no longer risk being damaged during a subsequent step of manufacturing the sealing frame as was the case in the prior art. In addition, the spacers and the walls are made from the same material, which further contributes to the simplification of the present process.
  • the present invention relates to a method of manufacturing a device of the above-described type, characterized in that it comprises the steps consisting in:
  • the present invention also relates to a device delimiting a volume for confining a fluid or a sensitive material capable of changing physical properties, in particular optical properties, under the effect of the application of a voltage, or of electrical properties under the effect of a stress or radiation, this device comprising at least a first front substrate and at least a second rear substrate maintained at a constant distance from each other, these two substrates being combined by a sealing joint which defines the volume for the confinement of the sensitive medium or of the fluid, this device being characterized in that it comprises a filling channel delimited by two walls which extend at a distance from each other on the substrate on which these walls are formed, at least one hole communicating with the filling channel being drilled in one of the substrates.
  • FIG. 1 is a top view of a cell on which is shown in particular the filling channel for receiving a fluid sealing material to form the sealing frame of this cell and the corresponding feed hole of the material seal;
  • FIG. 2 is a perspective view of the cell shown in Figure 1, the upper glass substrate having been omitted for reasons of clarity;
  • FIG. 3 is a perspective view with partial cutaway of the upper substrate showing the volume defined by the two superimposed substrates and the external face of a partition produced according to the method according to the invention;
  • FIG. 4 is a schematic representation of a fluid microsystem of the piezoresistive pressure sensor type
  • FIG. 5 is a longitudinal sectional view of a micropump type fluid microsystem
  • FIG. 6 is a top view of the micropump shown in Figure 5;
  • FIG. 7 is a top view of a batch of liquid crystal cells
  • FIG. 8 is a partial view of a batch of cells, two of which have one side of a filling channel in common.
  • the present invention proceeds from the general inventive idea which consists in proposing a new method of manufacturing the sealing frames which conventionally bring together the lower and upper substrates of display cells, in particular liquid crystal, or electro-chemical photovoltaic cells.
  • the technique of deposition by screen printing of the sealing frames is replaced, which usually occurs at an advanced stage of cell production and which generates mechanical stresses which can be harmful for the structures neighboring said cells already deposited, by a photolithography technique which does not generate any particular constraint and which makes it possible, in particular, to structure at the same time the spacers and the filling channels intended to receive a fluid sealing material which, after solidification, will form the desired sealing frames.
  • the present invention also provides a new technique for assembling and sealing the substrates of a fluid-type microsystem.
  • the present invention will be described in connection with a liquid crystal display cell. It goes without saying that the invention is not limited to such a type of cell and that it can be applied to any type of display cell comprising an optically active medium as well as to electrochemical photovoltaic cells of the kind described. in the introductory part of this patent application. Likewise, the present invention applies to microsystems of the fluidic type.
  • FIG. 1 is a plan view of a liquid crystal cell 2 during manufacture, this cell being formed by a set of two superimposed substrates 4 and 6, for example glass substrates, the front substrate 4 of which is transparent , while the rear substrate 6 can also be transparent or not.
  • the cell 2 defines a cavity 8 intended to contain the liquid crystals, this cavity 8 being delimited by the substrates 4 and 6 and by watertight partitions 10 and 12 intended to receive a sealing material which fixes said said substrates 4 and 6 to each other as will be described in detail below.
  • the cavity 8 also contains a multiplicity of structures or spacing bars 14 intended to maintain a constant spacing between the substrates 4 and 6 over the entire extent of the cell 2 and to confer on the latter an adapted mechanical rigidity.
  • a hole 16 for filling the cavity 8 with liquid crystal, and at least one hole 18 for supplying the sealing material are made in the front substrate 4.
  • the bulkhead 10 follows an outer contour between the two superimposed glass substrates 4 and 6, while the partition 12 follows the inner contour of the liquid crystal cell 2, so that the outer partition 10 surrounds the inner partition 12.
  • these partitions 10 and 12 which are in the form of substantially vertical walls extending parallel to one another, are in direct contact with the one 10, with the external atmosphere, and for the other 12 with the liquid crystal. They advantageously form a filling channel 20 which can be seen in FIG. 1 and better still in FIG. 2.
  • This channel 20 is intended to be filled with a sealing material to form the sealing frame of the cell 2 and will prove to be particularly advantageous in particular during the mass production of cells in accordance with the present invention.
  • the wall 10 can be omitted, only the wall 12 which is in contact with the liquid crystal being preserved.
  • the sealing material will be introduced into the gap 22 defined by the external lateral face of the partition 12 and the two superposed substrates 4 and 6 until at least part of the volume of this gap 22 is occupied by said sealing material as shown in FIG. 3.
  • This operation can be carried out by means of a distributor of sealing material better known under its Anglo-Saxon name "dispenser".
  • the dispenser will be moved along at least part of the periphery of the two substrates 4 and 6, so as to form a bead of sealing material 26 which, pressing against the external lateral face of the partition 12 and joining said two substrates 4 and 6, will constitute the sealing framework. It is not necessary for the bead of sealing material 26 to extend to the edges of the two substrates 4 and 6. It is sufficient that it is wide enough to act as a sealing frame, this is that is to say isolating the sensitive material from the external environment, likewise preventing the latter from leaking towards the outside of the cell and holding the two substrates 4 and 6 together.
  • sealing material 26 can also dip one of the edges of the cell 2 delimited by the two substrates 4 and 6 superimposed in a container containing said sealing material. By capillary action, the sealing material will gradually fill the vacant volume 22 located outside the perimeter of the partition 12. Yet another possibility is to inject the sealing material between the two substrates 4 and 6 via a filling hole drilled in one of said substrates 4 or 6 outside the perimeter of the partition 12.
  • this substrate is covered with a layer of photoresist material.
  • This photoresist layer is then structured by conventional photogravure techniques to give it the shape of the aforementioned filling channel 20 delimited by the partitions 10 and 12.
  • the remaining substrate also suitably primed, is joined with the first substrate.
  • the photoresist layer is structured so as to form not only the filling channel 20, but also the spacers 14 intended to maintain a constant spacing between the two substrates 4 and 6. Thanks to the present invention, it is thus possible to structure the spacing structures and the filling channel in a single manufacturing step. In addition to the savings in time and money that such a method makes it possible to achieve, another advantage of this variant implementation of the method according to the invention lies in the fact that, as the spacers and the sealing frame are made of concomitantly, said spacers no longer risk being damaged during a subsequent step of manufacturing the sealing frame as was the case in the prior art. Finally, the filling channel and the spacers are made from the same material, which further simplifies the present process.
  • the photolithography techniques used in the context of the present invention are of the conventional type and well known to those skilled in the art. They consist essentially of sensitizing the photoresist layer by means of light passing through the transparent areas of a screen reproducing the shapes of the areas to be sensitized.
  • the photoresist material it is also, very conventionally, a photosensitive resin which a person skilled in the art can easily select, and whose usual purpose is to protect the surface of the layer to be photoetched. action of an attacking reagent in the places where this resin remains after sensitization by optical radiation and chemical elimination of the areas covering the places to be engraved.
  • partitions 10 and 12 Mention may be made, as well-suited materials for producing partitions 10 and 12, of photosensitive cyclotene from Dow Chemical and the product sold under the reference SU8 by MicroChem Corp.
  • it can be structured by screen printing or using a syringe-type distributor and, more generally, using any technique d selective printing such as flexography or inkjet deposition that those skilled in the art can easily select.
  • any technique d selective printing such as flexography or inkjet deposition that those skilled in the art can easily select.
  • the material used to seal the cell 2 is a photosensitive resin which is introduced in the liquid state into the filling channel. 20 and which is then polymerized by sensitization using an ultraviolet light through the upper substrate 4.
  • the sealing material must ensure a hermetic closure of the edges of the cell 2 in order to effectively confine and protect the liquid crystal gas diffusion phenomena from the ambient atmosphere.
  • the sealing material must also have an adhesive power in order to allow the two substrates 4 and 6 to be held together.
  • the sealing material may also consist of a resin which will polymerize under the effect of a rise in temperature in the working enclosure.
  • a two-component adhesive can also be used as sealing material, the components of which harden over time or under the effect of an increase in temperature when they are brought into contact with one another.
  • materials which are well suited for producing the sealing frame according to the invention mention may be made of the products Loctite 3492 and Norland Optical Adhesives 61.
  • Another family of adhesives well suited to the needs of the present invention consists of cyanoacrylate adhesives.
  • thermoplastic resins can also be used in the context of the invention.
  • the liquid crystal can be introduced into the cell 2 via the filling hole 16.
  • the introduction of the sealing material, its polymerization, and then the liquid crystal introduction step can be carried out one after the other or simultaneously in the same machine.
  • the filling hole 16 of the liquid crystals is closed as well as the space 28 located in the immediate vicinity of the filling hole 16, in order to achieve continuity of sealing with the parts of the partition 12 closest so that the sealing is perfectly realized around the entire periphery of cell 2.
  • additional layers such as polarizers can still be deposited on the substrates 4 and 6.
  • this sensor also applies to microsystems or MEMS such as the piezoresistive pressure sensor shown in section in FIG. 4.
  • this sensor consists of a lower substrate 32 in which is formed a conduit for supplying a fluid whose pressure is to be measured.
  • This conduit 34 opens into a cavity 36 machined in the thickness of the upper substrate 38 to form a diaphragm 40 which constitutes the element sensitive to variations in pressure to be measured.
  • the diaphragm and piezoresistive elements 42 formed on the external face of the upper substrate 38 will deform.
  • At least one partition 44 is structured by any suitable technique such as, preferably, by photoengraving or by screen printing, for example on the lower substrate 32.
  • the upper substrate 38 is then positioned on the lower substrate 32, then a bead of sealing material 46 is introduced into the space delimited by said two substrates 32 and 38 and the external face, opposite the active interior volume of the pressure sensor 30, of the partition 44.
  • the sealing material can be introduced into the free space between the two substrates 32 and 38 either by means of a distributor, or by dipping one of the edges of the pressure sensor 30 in a container filled with sealing material, or even via a hole drilled in the outside the perimeter of the partition 44 through one of the two substrates 32 or 38.
  • the present invention advantageously makes it possible to overcome the constraints linked to the nature of the substrates that are usually encountered during the manufacture of microsystems.
  • either the two substrates are of the same nature, for example made of silicon, and in this case they are welded directly to one another by means of a chemical reaction which takes place at high temperature between the -OH groups present in the primitive oxide layers or obtained by growth which cover said two silicon substrates.
  • Either one of the substrates is made of silicon and the other is typically made of Pyrex ®, and in this case it is necessary to have recourse to anodic welding also called electrostatic welding which involves temperatures between 180 ° C and 350 ° C and electrical voltages of the order of 200 to 1000 volts.
  • two substrates can be brought together independently of their respective natures, insofar as this operation is akin here to simple bonding by means of the bead of sealing material.
  • the present invention can be implemented without the addition of heat or the application of an electrical voltage, which leaves great freedom as to the choice of materials intended to be deposited on the substrates.
  • the welding of two substrates involves welding temperatures which can reach 100 ° C. It is therefore necessary, in this case, that the materials chosen to be deposited on the substrates are able to withstand these temperatures. Despite the care taken in choosing these materials, it is not uncommon for thin layers to oxidize or for membranes machined in the volume of one of the substrates to deflect and adhere to the other substrate.
  • the present invention also makes it possible to replace micromachining steps in the volume of the substrates with micromachining steps on the surface.
  • the various channels no longer necessarily have to be arranged in the thickness of the substrates, but only in the hermetic volume separating said two substrates and delimited by the partitions.
  • FIGS. 5 and 6 are views, respectively in section and from above, of a microsystem of the pump type.
  • this micropump has the distinction of not having a valve. It consists of a lower substrate 50 in which are formed a supply pipe 52 and a discharge pipe 54 for a fluid.
  • an actuation chamber 58 is provided, the volume of which, which can vary, is for example controlled by a piezoresistive element 60.
  • the actuation chamber 58 communicates with the supply 52 and evacuation 54 conduits via two throttles, 62 and 64 respectively.
  • a partition 66 is provided, for example on the lower substrate 50, preferably but not exclusively by photolithography. This partition 66 delimits the cavities 68 and 70 which connect the supply 52 and evacuation 54 conduits with the actuation chamber 58. As in the example described in connection with FIG. 4, the space left vacant between the two substrates 50 and 56 and the external face of the partition 66 which is not in contact with the fluid is filled with a bead of sealing material 72.
  • the invention applies identically to a cell comprising more than two substrates, for example four, the substrates being joined two by two by a sealing frame according to the invention and consisting of at least one wall which delimits the volume for the confinement of the sensitive material or of the fluid as well as of a bead of sealing material which fills the gap between the two substrates considered.
  • the invention can be applied analogously to a batch manufacturing process for cells as shown in FIG. 7.
  • Such a batch of cells comprises two plates 74 and 76 common to all the cells 2 and a network of watertight partitions 10 and 12 delimiting, for each cell 2, a cavity 8 intended to contain the liquid crystals as well as filling channels 20 which are intended to be filled with a sealing material to bond the two plates 74 and 76 and form the sealing frames of said cells 2.
  • a first plurality of holes 16 for filling the cavities 8 with liquid crystal, and a second plurality of holes 18 for supplying the sealing material are formed in the upper plate 74 Thanks to this characteristic, it is possible to fill the filling channels 20, not from the side, for example of liquid crystal cells, but from above. of these.
  • cells 2 can be filled with liquid crystal and the filling holes 16 closed while the cells are still in a batch.
  • a filling channel 20 can be common to two or more cells 2.
  • the saw line represented by dotted lines in the drawing, will pass substantially in the middle on each side of the filling channel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Micromachines (AREA)
  • Reciprocating Pumps (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'au moins un dispositif (2, 30, 48) délimitant un volume (8) pour le confinement d'un fluide ou d'une matière sensible susceptible de changer de propriétés physiques, notamment optiques, sous l'effet de l'application dune tension, ou de propriétés électriques sous l'effet dune contrainte ou d'un rayonnement, ce dispositif (2, 30, 48) comprenant au moins un premier substrat avant (4, 38, 56) et au moins un second substrat arrière (6, 32, 50) maintenus à une distance constante l'un de l'autre, ces deux substrats (6, 32, 50; 4, 38, 56) étant réunis par un joint de scellement (24, 46, 72) qui définit le volume (8) pour le confinement du milieu sensible ou du fluide, ce procédé étant caractérisé en ce qu'il comprend les étapes consistant à - structurer sur l'un des substrats (6, 32, 50) au moins une cloison (12, 44, 66) qui délimite par sa face latérale interne le volume (8) pour le confinement du milieu sensible ou du fluide; - réunir le second substrat (4, 38, 56) avec le premier substrat (6, 32, 50); - introduire une matière de scellement susceptible de s'écouler dans l'interstice (22) défini par la face latérale externe de la cloison (12, 44, 66) et les deux substrats superposés (6, 32, 50; 4, 38, 56) jusqu'à ce qu'au moins une partie du volume de cet interstice (22) soft occupée par la matière de scellement, et - solidifier la matière de scellement afin que celle-ci forme le joint de scellement (26, 46, 72).

Description

PROCEDE DE FABRICATION D'UN D ISPOSITI F DELIMITANT UN
VOLUME POUR LE CONFINEMENT
D'U N FLU IDE OU D'UNE MATI ERE SENSI BLE
La présente invention concerne un procédé de fabrication d'un dispositif tel que des cellules d'affichage électro-optiques ou des cellules photovoltaïques électrochimiques. La présente invention concerne également certains types de microsystèmes mieux connus sous leur dénomination anglo-saxonne "Micro Electro Mechanical Systems" ou "MEMS".
Une première catégorie connue de cellules photovoltaïques convertit la lumière en électricité en exploitant l'effet photovoltaïque qui apparaît à la jonction de matériaux semi-conducteurs. Le matériau semi-conducteur remplit en même temps les fonctions d'absorption de la lumière et de séparation des charges électriques résultantes (électrons et trous). Le matériau doit être de grande pureté, exempt de défaut, faute de quoi électrons et trous se recombinent avant d'avoir pu être séparés.
La présente invention vise un second type de cellules photovoltaïques dites électrochimiques qui comprennent un matériau semi-conducteur qui est normalement insensible à la lumière visible en raison de la largeur de sa bande interdite, et qui ne commence à absorber que dans le proche ultraviolet. Un tel matériau peut néanmoins être sensibilisé par l'adsorption d'un colorant tel qu'un complexe d'un métal de transition qui permet un taux de conversion entre un photon incident et un électron approchant l'unité. Après avoir été excité par l'absorption d'un photon, le colorant peut transférer un électron dans la bande de conduction du matériau semi-conducteur. Le champ électrique régnant au sein du matériau semi-conducteur permet l'extraction de cet électron. Après transfert de l'électron, le colorant retourne à l'état fondamental oxydé. La recombinaison entre l'électron dans la bande de conduction du matériau semi-conducteur et le trou sur le colorant oxydé est beaucoup plus lente que la réduction du colorant oxydé par un médiateur. De ce fait, la séparation de charge est efficace.
Les cellules du genre décrit ci-dessus comprennent généralement un premier substrat avant transparent et un second substrat arrière également transparent ou non. Ces deux substrats comportent chacun sur leurs faces en regard une première électrode encore appelée contre-électrode, et une seconde électrode habituellement connue sous le nom de photo-électrode. Ces électrodes sont destinées à être reliées à un circuit d'alimentation électrique et sont classiquement réalisées sous la forme d'une couche mince d'un oxyde conducteur transparent tel qu'un mélange d'oxyde d'indium/étain ou d'oxyde d'étain/antimoine. Les deux substrats sont réunis entre eux par un cadre de scellement qui s'étend le long du périmètre de ceux-ci. Ce cadre de scellement définit un volume étanche pour le confinement du matériau semi-conducteur déposé en couche sur l'un des substrats et d'un électrolyte contenant le médiateur susmentionné. La présente invention vise également les cellules d'affichage dites électrooptiques, en particulier à cristaux liquides, qui, de manière analogue aux cellules photovoltaïques électrochimiques, comprennent :
- un premier substrat avant transparent dont la surface supérieure constitue la face avant de la cellule; - un second substrat arrière, également transparent ou non, dont la surface inférieure constitue la face arrière de ladite cellule;
- les substrats comportant chacun sur leurs faces en regard au moins une électrode, ces électrodes étant destinées à être reliées à un circuit de commande de l'affichage qui, par application de tensions électriques appropriées à des électrodes sélectionnées, est en mesure de modifier les caractéristiques de transmission ou de réflexion d'un milieu optiquement actif;
- les substrats étant réunis par un cadre de scellement délimitant un volume étanche pour le confinement du milieu optiquement actif, et
- des moyens de connexion pour établir la liaison électrique entre chaque électrode et le circuit de commande de l'affichage.
Les cadres de scellement assurent l'herméticité des bords des cellules afin de confiner efficacement le milieu actif que de telles cellules renferment, et de protéger ce milieu des phénomènes de diffusion de gaz provenant de l'atmosphère environnante qui peuvent compromettre la pérénité des cellules. Habituellement, le dépôt des cadres de scellement s'effectue par sérigraphie, procédé dont la mise en œuvre peut détériorer de façon irrémédiable toutes les structures fragiles telles que les connexions électriques ou les espaceurs qui ont déjà été déposées au moment où intervient l'étape de sérigraphie. En effet, la technique de sérigraphie qui consiste, rappelons-le, à déposer un matériau à consistance pâteuse à travers les mailles non obturées d'un écran, par exemple en nylon ou en acier inoxydable, à mailles très fines à l'aide d'une raclette actionnée à la main ou mécaniquement, est une technique dont la mise en oeuvre engendre des contraintes mécaniques non négligeables qui sont souvent préjudiciables aux structures avoisinantes déjà déposées telles que les couches d'alignement, les barres d'espacement ou encore les connexions électriques.
Comme on le sait, les espaceurs sont destinés à maintenir un espacement constant entre les deux substrats des cellules et à conférer à ces dernières une rigidité mécanique satisfaisante. Dans les procédés connus à ce jour, le maintien de la distance entre les deux substrats est généralement assuré par des billes ou des fibres discontinues de dimensions géométriques parfaitement contrôlées, répandues sur l'un des substrats avant mise en place du second substrat. Cette technique initiale présente certains inconvénients tels que, notamment, un prix élevé et un positionnement aléatoire des billes qui peuvent constituer, au cœur des pixels d'un affichage matriciel, des centres de diffusion optique détériorant l'aspect de l'afficheur. Il a donc été proposé de remplacer ces billes par des espaceurs continus obtenus en déposant une couche d'un matériau photorésist de l'épaisseur voulue sur l'un des substrats, cette couche étant ensuite structurée pour lui donner la forme des espaceurs recherchés. Cette dernière technique est seule capable d'assurer la rigidité mécanique nécessaire pour certains types de cristaux liquides. Elle permet en outre d'éviter les phénomènes de diffusion optique susmentionnés qui dégradent l'aspect des afficheurs dans la mesure où les espaceurs peuvent être déposés de manière sélective en des endroits choisis à l'avance, notamment en dehors des pixels. Enfin, les espaceurs structurés par photolithographie peuvent présenter un pouvoir adhésif permettant d'assembler les deux substrats ensemble.
Comme on l'aura compris de ce qui précède, les espaceurs jouent un rôle particulièrement déterminant dans le bon fonctionnement des cellules à milieu optiquement ou électro-optiquement actif auxquelles la présente invention s'intéresse. Malheureusement, ces espaceurs, lorsqu'ils sont réalisés en photorésist, peuvent être endommagés de façon irrémédiable lors du dépôt par sérigraphie du cadre de scellement.
Un autre inconvénient qui pèse sur les techniques de dépôt par sérigraphie des cadres de scellement réside dans le fait qu'il est difficile de contrôler avec précision les dimensions finales de tels cadres. En effet, lorsqu'on applique le substrat supérieur sur le substrat inférieur, la matière de scellement s'écrase et a tendance à s'étaler sous l'effet de la pression exercée, de sorte que la largeur du cadre de scellement ne peut être contrôlée qu'avec une précision qui est typiquement de l'ordre du dixième de millimètre. Par ailleurs, la paroi intérieure des cadres de scellement déposés par sérigraphie qui est en contact avec le cristal liquide présente habituellement des irrégularités de forme, de sorte qu'il faut ménager ces cadres à une distance suffisante des électrodes afin qu'ils n'empiètent pas sur ces dernières. Une telle situation peut être acceptable si l'on dispose d'un espace suffisant entre les bords de la cellule d'où émergent les connexions et la zone active proprement dite de cette cellule. Par contre, dès que l'on cherche à réduire les dimensions de la zone morte réservée à la connectique afin d'optimiser la surface de la zone d'affichage de la cellule ou pour répondre à des problèmes d'encombrement, la précision offerte par les techniques de sérigraphie n'est plus suffisante.
La présente invention vise enfin des microsystèmes de type fluidique tels que des capteurs de pression, des micropompes ou encore des micromélangeurs destinés à canaliser de façon contrôlée l'écoulement de fluides. Ces microstructures présentent en effet bon nombre d'analogies avec les cellules d'affichage à cristaux liquides et les cellules photovoltaïques électrochimiques. Elles comprennent, en particulier, deux substrats séparés l'un de l'autre d'une distance constante et entre lesquels sont ménagés des canaux. Ces canaux, à l'intérieur desquels circulent les fluides liquides ou gazeux, sont classiquement usinés par gravure dans le volume desdits substrats. Lors de l'assemblage des substrats qui peut se faire, par exemple, par soudage anodique, la nature des matériaux à l'aide desquels lesdits substrats sont réalisés impose souvent de fortes contraintes, en particulier en termes de température de soudage et de tensions électriques appliquées. Ces contraintes peuvent être préjudiciables aux structures déjà déposées sur les substrats avant soudage.
La présente invention a pour but de remédier aux problèmes susmentionnés ainsi qu'à d'autres encore en procurant un procédé de fabrication, notamment d'une cellule d'affichage à cristaux liquides, qui soit facile à mettre en œuvre et qui limite surtout les risques de détériorer des éléments de la cellule déjà déposés. La présente invention a également pour objet un dispositif à milieu optiquement ou chimiquement actif qui permette, en particulier, la mise en œuvre du procédé selon l'invention.
A cet effet, et selon son premier aspect, la présente invention concerne un procédé de fabrication d'au moins un dispositif délimitant un volume pour le confinement d'un fluide ou d'une matière sensible susceptible de changer de propriétés physiques, notamment optiques, sous l'effet de l'application d'une tension, ou de propriétés électriques sous l'effet d'une contrainte ou d'un rayonnement, ce dispositif comprenant au moins un premier substrat avant et au moins un second substrat arrière maintenus à une distance constante l'un de l'autre, ces deux substrats étant réunis par un joint de scellement qui définit le volume pour le confinement du milieu sensible ou du fluide, ce procédé étant caractérisé en ce qu'il comprend les étapes consistant à :
- structurer sur l'un des substrats au moins une cloison qui délimite par sa face latérale interne le volume pour le confinement du milieu sensible ou du fluide;
- réunir le second substrat avec le premier substrat; - introduire une matière de scellement susceptible de s'écouler dans l'interstice défini par la face latérale externe de la cloison et les deux substrats superposés jusqu'à ce qu'au moins une partie du volume de cet interstice soit occupée par la matière de scellement, et - solidifier la matière de scellement afin que celle-ci forme le joint de scellement.
Grâce à ces caractéristiques, la présente invention procure un procédé de fabrication de dispositifs tels que, notamment, des cellules d'affichage à cristaux liquides, qui permet d'enrober avec la matière de scellement des structures fragiles préalablement déposées telles que des éléments de connexion, limitant ainsi grandement les risques de détériorer de telles structures. Un tel résultat serait également difficile à obtenir par sérigraphie sans risque d'aboutir, localement, à une surépaisseur qui conduirait inévitablement à un espacement imprécis entre les deux substrats lors de l'assemblage qui suit. Selon une première variante de mise en œuvre du procédé de l'invention, on dépose sur l'un des substrats une couche d'un matériau photorésist que l'on va ensuite structurer par des techniques de photogravure pour lui donner la forme d'une ou de plusieurs cloisons.
La présente invention fait ainsi appel à des techniques simples et couramment employées dans le domaine de la fabrication de cellules telles que les cellules d'affichage à cristaux liquides. Ces techniques sont donc parfaitement maîtrisées. En particulier, le procédé selon l'invention permet de contrôler avec une grande précision la largeur des cadres de scellement de même que le positionnement de la paroi intérieure desdits cadres qui est en contact avec le cristal liquide, ce qui n'est pas le cas avec les procédés de type sérigraphique. D'autre part, les techniques photolithographiques auxquelles l'invention a recours n'engendrent aucune contrainte mécanique lors de leur mise en œuvre, ce qui est très favorable aux éléments de la cellule déjà déposés et qui ne risquent plus d'être détériorés ou mis hors d'usage en cours de fabrication. Selon une seconde variante de mise en œuvre du procédé de l'invention, la ou les cloisons sont structurées par sérigraphie.
En effet, dans le cas où la cloison n'a pas besoin d'être réalisée avec une grande précision, par exemple lorsqu'on peut disposer d'un espace suffisant pour réaliser les plages de connexion d'une cellule à cristaux liquides, on peut quand même avoir recours à un procédé de type sérigraphique. Selon encore une autre variante de mise en œuvre du procédé de l'invention, les cloisons sont formées au moyen d'un distributeur de matière photorésistive du type seringue.
Selon une autre caractéristique de l'invention, la couche de photorésist est structurée de façon à former, non seulement la ou les cloisons, mais également des espaceurs destinés à maintenir un écartement constant entre les deux substrats de la cellule.
Grâce à cette autre caractéristique, la présente invention permet de structurer au cours d'une seule et unique étape de fabrication les espaceurs et les parois, ce qui permet de réaliser des gains de temps et donc d'argent non négligeables. Surtout, les espaceurs ne risquent plus d'être endommagés lors d'une l'étape ultérieure de fabrication du cadre de scellement comme tel était le cas dans l'art antérieur. En outre, les espaceurs et les parois sont réalisés au moyen du même matériau, ce qui contribue encore davantage à la simplification du présent procédé. Selon son deuxième aspect, la présente invention concerne un procédé de fabrication d'un dispositif du genre susdécrit, caractérisé en ce qu'il comprend les étapes consistant à :
- structurer sur l'un des substrats au moins un canal de remplissage délimité par deux cloisons qui s'étendent à distance l'une de l'autre; - réunir le second substrat avec le premier substrat;
- introduire une matière de scellement susceptible de s'écouler dans le canal de remplissage jusqu'à ce tout le volume dudit canal de remplissage soit occupé, et
- solidifier la matière de scellement afin que celle-ci forme le joint de scellement. Enfin, la présente invention concerne également un dispositif délimitant un volume pour le confinement d'un fluide ou d'une matière sensible susceptible de changer de propriétés physiques, notamment optiques, sous l'effet de l'application d'une tension, ou de propriétés électriques sous l'effet d'une contrainte ou d'un rayonnement, ce dispositif comprenant au moins un premier substrat avant et au moins un second substrat arrière maintenus à une distance constante l'un de l'autre, ces deux substrats étant réunis par un joint de scellement qui définit le volume pour le confinement du milieu sensible ou du fluide, ce dispositif étant caractérisé en ce qu'il comprend un canal de remplissage délimité par deux parois qui s'étendent à distance l'une de l'autre sur le substrat sur lequel ces parois sont formées, au moins un trou communiquant avec le canal de remplissage étant percé dans l'un des substrats. Grâce à cette caractéristique, il est possible de remplir les canaux de remplissage, non pas par le côté, par exemple de cellules à cristaux liquides, mais par le dessus de ces dernières. On peut donc travailler avec un lot complet de telles cellules, sans être obligé de diviser ce lot en bandes pour pouvoir avoir accès aux trous de remplissage qui sont habituellement ménagés sur un des côtés des cellules. Les cellules peuvent donc être pratiquement terminées en lot avant découpage. On peut notamment effectuer le remplissage et le scellement des trous d'amenée de la matière de scellement destinée à former les cadres de scellement des cellules sur le lot entier, donc d'une façon plus simple et plus économique que sur des cellules individuelles.
D'autres caractéristiques et avantages de la présente invention ressortiront plus clairement de la description détaillée qui suit d'un exemple de mise en œuvre du procédé selon l'invention, cet exemple étant donné à titre purement illustratif et non limitatif seulement, en liaison avec le dessin annexé sur lequel :
- la figure 1 est une vue de dessus d'une cellule sur laquelle est notamment représenté le canal de remplissage destiné à recevoir une matière de scellement fluide pour former le cadre de scellement de cette cellule et le trou d'amenée correspondant de la matière de scellement;
- la figure 2 est une vue en perspective de la cellule représentée à la figure 1 , le substrat de verre supérieur ayant été omis pour des raisons de clarté;
- la figure 3 est une vue en perspective avec arrachement partiel du substrat supérieur montrant le volume délimité par les deux substrats superposés et la face externe d'une cloison réalisée conformément au procédé selon l'invention;
- la figure 4 est une représentation schématique d'un microsystème fluidique de type capteur de pression piézorésistif;
- la figure 5 est une vue en coupe longitudinale d'un microsystème fluidique du type micropompe;
- la figure 6 est une vue de dessus de la micropompe représentée à la figure 5;
- la figure 7 est une vue de dessus d'un lot de cellules à cristal liquide, et
- la figure 8 est une vue partielle d'un lot de cellules dont deux d'entre elles ont un côté d'un canal de remplissage en commun. La présente invention procède de l'idée générale inventive qui consiste à proposer une nouvelle méthode de fabrication des cadres de scellement qui réunissent classiquement les substrats inférieurs et supérieurs de cellules d'affichage, notamment à cristaux liquides, ou de cellules photovoltaïques électro-chimiques. Conformément à cette nouvelle méthode, on remplace la technique de dépôt par sérigraphie des cadres de scellement qui intervient habituellement à un stade avancé de la fabrication des cellules et qui engendre des contraintes mécaniques qui peuvent être néfastes pour les structures avoisinantes desdites cellules déjà déposées, par une technique de photolithographie qui n'engendre aucune contrainte particulière et qui permet, en particulier, de structurer en même temps les espaceurs et les canaux de remplissage destinés à recevoir une matière de scellement fluide qui, après solidification, formera les cadres de scellement recherchés. La présente invention offre également une nouvelle technique d'assemblage et de scellement des substrats d'un microsystème de type fluidique.
La présente invention va être décrite en liaison avec une cellule d'affichage à cristaux liquides. Il va de soi que l'invention n'est pas limitée à un tel type de cellule et qu'elle peut s'appliquer à tout type de cellule d'affichage comprenant un milieu optiquement actif ainsi qu'aux cellules photovoltaïques électrochimiques du genre décrit dans la partie introductive de la présente demande de brevet. De même, la présente invention s'applique à des microsystèmes de type fluidique.
La figure 1 est une vue en plan d'une cellule à cristaux liquides 2 en cours de fabrication, cette cellule étant formée par un ensemble de deux substrats superposés 4 et 6, par exemple des substrats de verre, dont le substrat avant 4 est transparent, tandis que le substrat arrière 6 peut être également transparent ou non.
On voit sur la figure 1 que la cellule 2 définit une cavité 8 destinée à renfermer les cristaux liquides, cette cavité 8 étant délimitée par les substrats 4 et 6 et par des cloisons étanches 10 et 12 destinées à recevoir une matière de scellement qui fixe lesdits substrats 4 et 6 l'un à l'autre comme cela va être décrit en détail ci-dessous. La cavité 8 contient également une multiplicité de structures ou barres d'espacement 14 destinées à maintenir un écartement constant entre les substrats 4 et 6 sur toute l'étendue de la cellule 2 et à conférer à cette dernière une rigidité mécanique adaptée. Enfin, un trou 16 pour le remplissage de la cavité 8 avec du cristal liquide, et au moins un trou 18 pour l'amenée de la matière de scellement sont pratiqués dans le substrat avant 4.
Dans l'exemple représenté à la figure 1 , on voit que la cloison étanche 10 suit un contour extérieur entre les deux substrats de verre superposés 4 et 6, tandis que la cloison 12 suit le contour intérieur de la cellule à cristaux liquides 2, de sorte que la cloison extérieure 10 entoure la cloison intérieure 12. Ainsi, ces cloisons 10 et 12 qui se présentent sous la forme de parois sensiblement verticales s'étendant parallèlement l'une par rapport à l'autre, sont en contact direct pour l'une 10, avec l'atmosphère extérieure, et pour l'autre 12 avec le cristal liquide. Elles forment avantageusement un canal de remplissage 20 qui peut être vu sur la figure 1 et mieux encore sur la figure 2. Ce canal 20 est destiné à être rempli avec une matière de scellement pour former le cadre de scellement de la cellule 2 et se révélera particulièrement avantageux notamment lors de la fabrication en série de cellules conformes à la présente invention.
On comprendra, bien entendu, que la paroi 10 peut être omise, seule la paroi 12 qui est en contact avec le cristal liquide étant conservée. Dans ce cas, après structuration de ladite paroi 12 et positionnement du substrat supérieur 4 sur le substrat inférieur 6, on introduira la matière de scellement dans l'interstice 22 défini par la face latérale externe de la cloison 12 et les deux substrats superposés 4 et 6 jusqu'à ce qu'au moins une partie du volume de cet interstice 22 soit occupée par ladite matière de scellement comme représenté à la figure 3. Cette opération peut être réalisée au moyen d'un distributeur de matière de scellement mieux connu sous sa dénomination anglo-saxonne "dispenser". Le distributeur sera déplacé le long d'au moins une partie du pourtour des deux substrats 4 et 6, de façon à former un cordon de matière de scellement 26 qui, s'appuyant contre la face latérale externe de la cloison 12 et réunissant lesdits deux substrats 4 et 6, constituera le cadre de scellement. Il n'est pas nécessaire que le cordon de matière de scellement 26 s'étende jusqu'aux bords des deux substrats 4 et 6. Il suffit qu'il soit suffisamment large pour jouer le rôle d'un cadre de scellement, c'est-à-dire isoler la matière sensible de l'environnement extérieur, empêcher de même celle-ci de fuir vers l'extérieur de la cellule et maintenir ensemble les deux substrats 4 et 6. Pour déposer le cordon de matière de scellement 26, on peut également tremper l'un des bords de la cellule 2 délimitée par les deux substrats 4 et 6 superposés dans un récipient contenant ladite matière de scellement. Par capillarité, la matière de scellement va venir progressivement combler le volume vacant 22 situé à l'extérieur du périmètre de la cloison 12. Une autre possibilité encore consiste à injecter la matière de scellement entre les deux substrats 4 et 6 via un trou de remplissage percé dans l'un desdits substrats 4 ou 6 à l'extérieur du périmètre de la cloison 12.
Conformément à l'invention, après avoir déposé sur la face interne de l'un des deux substrats 4 ou 6 toutes les structures nécessaires au bon fonctionnement de la cellule 2 à venir telles que, par exemple, des électrodes ou bien encore une couche d'alignement, on recouvre ce substrat d'une couche de matériau photorésist. Cette couche de photorésist est ensuite structurée par des techniques de photogravure classiques pour lui donner la forme du canal de remplissage 20 susmentionné délimité par les cloisons 10 et 12. Une fois obtenu le canal de remplissage 20, le substrat restant, également convenablement apprêté, est réuni avec le premier substrat. Selon une variante, on peut également envisager de structurer la cloison 10 sur i'un des substrats 4 ou 6 et la cloison 12 sur l'autre substrat. Selon une variante du procédé, la couche de photorésist est structurée de façon à former, non seulement le canal de remplissage 20, mais également les espaceurs 14 destinés à maintenir un espacement constant entre les deux substrats 4 et 6. Grâce à la présente invention, il est ainsi possible de structurer en une seule étape de fabrication les structures d'espacement et le canal de remplissage. Outre les gains en temps et en argent qu'un tel procédé permet de réaliser, un autre avantage de cette variante de mise en œuvre du procédé selon l'invention réside dans le fait que, comme les espaceurs et le cadre de scellement sont réalisés de manière concomitante, lesdits espaceurs ne risquent plus d'être endommagés lors d'une étape ultérieure de fabrication du cadre de scellement comme tel était le cas dans l'art antérieur. Enfin, le canal de remplissage et les espaceurs sont réalisés au moyen du même matériau, ce qui simplifie encore davantage le présent procédé.
Les techniques de photolithographie utilisées dans le cadre de la présente invention sont de type conventionnel et bien connues de l'homme du métier. Elles consistent, pour l'essentiel, à sensibiliser la couche de photorésist au moyen d'une lumière passant par les zones transparentes d'un écran reproduisant les formes des zones à sensibiliser. Quant au matériau photorésist, il s'agit également, de manière très classique, d'une résine photosensible que l'homme du métier pourra sélectionner sans peine, et dont le but habituel est de protéger la surface de la couche à photograver de l'action d'un réactif d'attaque aux endroits où cette résine subsiste après sensibilisation par le rayonnement optique et élimination chimique des zones recouvrant les endroits à graver. On peut citer comme matériaux bien adaptés pour réaliser les cloisons 10 et 12 le cyclotène photosensible de chez Dow Chemical et le produit commercialisé sous la référence SU8 par MicroChem Corp. Bien entendu, si les exigences sur le positionnement du cadre de scellement sont moins strictes, celui-ci pourra être structuré par sérigraphie ou à l'aide d'un distributeur de type seringue et, plus généralement, à l'aide de toute technique d'impression sélective telle que la flexographie ou le dépôt par jet d'encre que l'homme du métier pourra sélectionner sans peine. Comme cela a été dit ci-dessus, après structuration des cloisons étanches 10 et 12 délimitant le canal de remplissage 20 et, le cas échéant, des espaceurs 14, les deux substrats 4 et 6 sont réunis. On peut alors procéder au remplissage dudit canal 20. Pour ce faire, on commence à faire le vide dans l'enceinte de travail dans laquelle est réalisée la cellule 2. Une fois le vide établi, on dépose une goutte de matière de scellement au-dessus du trou 18 qui communique avec le canal de remplissage 20. Par.capillarité, la matière de scellement commence à s'écouler dans le canal 20. Puis on rétablit la pression atmosphérique dans l'enceinte de travail. Sous l'effet de la différence de pression entre le canal de remplissage dans lequel règne un vide assez poussé et la pression atmosphérique, la matière de scellement est chassée jusqu'au fond du canal de remplissage. On notera que, comme le canal de remplissage 20 peut être d'une grande longueur selon la géométrie de la cellule 2, il pourra être séparé en deux ou plusieurs canaux isolés les uns des autres par une paroi et remplis chacun depuis un trou de remplissage 18 correspondant, de façon à raccourcir le chemin que doit parcourir la matière de scellement pour arriver en fond de canal. Bien entendu, selon une variante, on pourrait également pratiquer au moins un trou de remplissage dans la cloison extérieure 10. Typiquement, la matière utilisée pour sceller la cellule 2 est une résine photosensible qui est introduite à l'état liquide dans le canal de remplissage 20 et qui est ensuite polymérisée par sensibilisation à l'aide d'une lumière ultraviolette à travers le substrat supérieur 4. La matière de scellement doit assurer une fermeture hermétique des bords de la cellule 2 afin de confiner efficacement le cristal liquide et de le protéger des phénomènes de diffusion de gaz de l'atmosphère ambiante. La matière de scellement doit également présenter un pouvoir adhésif afin de permettre de maintenir les deux substrats 4 et 6 ensemble. A titre de variante, la matière de scellement peut également être constituée par une résine qui polymérisera sous l'effet d'une élévation de la température dans l'enceinte de travail. On peut également utiliser comme matière de scellement une colle bicomposant dont les composants durcissent avec le temps ou sous l'effet d'une augmentation de température lorsqu'ils sont mis en présence l'un de l'autre. On peut citer comme matériaux bien adaptés pour réaliser le cadre de scellement selon l'invention les produits Loctite 3492 et Norland Optical Adhesives 61. Une autre famille de colles bien adaptée aux besoins de la présente invention est constituée par les colles cyanoacrylates. Enfin, les résines thermoplastiques peuvent également être utilisées dans le cadre de l'invention.
Une fois la matière de scellement introduite dans le canal de remplissage 20 puis solidifiée, on peut introduire le cristal liquide dans la cellule 2 via le trou de remplissage 16. Avantageusement, l'introduction de la matière de scellement, sa polymérisation, puis l'étape d'introduction du cristal liquide peuvent être effectuées à la suite les unes des autres ou simultanément dans la même machine. Finalement, le trou de remplissage 16 des cristaux liquides est obturé ainsi que l'espace 28 situé à proximité immédiate du trou de remplissage 16, afin de réaliser une continuité de scellement avec les parties de la cloison 12 les plus proches de manière que le scellement soit parfaitement réalisé sur tout le pourtour de la cellule 2. Enfin, des couches supplémentaires telles que des polariseurs peuvent encore être déposées sur les substrats 4 et 6.
La présente invention s'applique également à des microsystèmes ou MEMS tels que le capteur de pression piézorésistif représenté en coupe à la figure 4. Désigné dans son ensemble par la référence numérique 30, ce capteur se compose d'un substrat inférieur 32 dans lequel est ménagé un conduit d'amenée d'un fluide dont la pression est à mesurer. Ce conduit 34 débouche dans une cavité 36 usinée dans l'épaisseur du substrat supérieur 38 pour former un diaphragme 40 qui constitue l'élément sensible aux variations de pression à mesurer. Sous l'effet d'une telle variation de pression, le diaphragme et des éléments piezoresistifs 42 ménagés sur la face extérieure du substrat supérieur 38 vont se déformer. En se déformant, les éléments piezoresistifs vont produire un signal électrique représentatif de la pression du fluide qui va pouvoir être exploité par un circuit électronique de traitement des données. Conformément à la présente invention, au moins une cloison 44 est structurée par toute technique appropriée telle que, préférentiellement, par photogravure ou par sérigraphie, par exemple sur le substrat inférieur 32. Le substrat supérieur 38 est ensuite positionné sur le substrat inférieur 32, puis un cordon de matière de scellement 46 est introduit dans l'espace délimité par lesdits deux substrats 32 et 38 et la face externe, opposée au volume actif intérieur du capteur de pression 30, de la cloison 44. La matière de scellement peut être introduite dans l'espace libre entre les deux substrats 32 et 38 soit au moyen d'un distributeur, soit en trempant l'un des bords du capteur de pression 30 dans un récipient empli de matière de scellement, soit encore via un trou percé à l'extérieur du périmètre de la cloison 44 à travers l'un des deux substrats 32 ou 38.
Bien entendu, on peut également envisager le cas où l'on structure, par exemple sur le substrat inférieur 32, deux cloisons s'étendant parallèlement et à distance l'une de l'autre, de façon à délimiter un canal de remplissage dans lequel, après assemblage des deux substrats 32 et 38, on introduira de la matière de scellement via un trou de remplissage percé à travers l'un desdits deux substrats 32 ou 38 et communiquant avec ce canal de remplissage.
La présente invention permet avantageusement de s'affranchir des contraintes liées à la nature des substrats que l'on rencontre habituellement au cours de la fabrication des microsystèmes. En effet, à l'heure actuelle, soit les deux substrats sont de même nature, par exemple en silicium, et dans ce cas ils sont soudés directement l'un à l'autre par le biais d'une réaction chimique qui s'opère à haute température entre les groupes -OH présents dans les couches d'oxydes primitives ou obtenues par croissance qui recouvrent lesdits deux substrats de silicium. Soit l'un des substrats est en silicium et l'autre est typiquement en Pyrex ®, et dans ce cas il faut avoir recours au soudage anodique encore appelé soudage électrostatique qui met en jeu des températures comprises entre 180°C et 350°C et des tensions électriques de l'ordre de 200 à 1O00 volts. Au contraire, grâce à la présente invention, on peut réunir deux substrats indépendamment de leurs natures respectives, dans la mesure où cette opération s'apparente ici à un simple collage au moyen du cordon de matière de scellement. En outre, la présente invention peut être mise en œuvre sans apport de chaleur ni application d'une tension électrique, ce qui laisse une grande liberté quant au choix des matériaux destinés à être déposés sur les substrats. Au contraire, le soudage de deux substrats, par exemple en silicium, met en jeu des températures de soudage qui peuvent atteindre l'100°C. Il faut donc, dans ce cas, que les matériaux choisis pour être déposés sur les substrats soient en mesure de résister à ces températures. Malgré le soin apporté dans le choix de ces matériaux, il n'est pas rare que les couches minces s'oxydent ou que des membranes usinées dans le volume de l'un des substrats défléchissent et viennent adhérer sur l'autre substrat.
La présente invention permet également de remplacer des étapes de microusinage dans le volume des substrats par des étapes de micro-usinage en surface. En effet, grâce à la présente invention, les divers canaux n'ont plus nécessairement à être aménagés dans l'épaisseur des substrats, mais seulement dans le volume hermétique séparant lesdits deux substrats et délimité par les cloisons.
Les figures 5 et 6 sont des vues, respectivement en coupe et du dessus, d'un microsystème du type pompe. Désignée dans son ensemble par la référence numérique 48, cette micropompe présente la particularité de ne pas comporter de valve. Elle se compose d'un substrat inférieur 50 dans lequel sont ménagés un conduit d'amenée 52 et un conduit d'évacuation 54 d'un fluide. Dans le substrat supérieur 56 est ménagée une chambre d'actionnement 58 dont le volume, susceptible de varier, est par exemple contrôlé par un élément piézorésistif 60. Comme on peut le voir sur la figure 6, la chambre d'actionnement 58 communique avec les conduits d'amenée 52 et d'évacuation 54 via deux étranglements, respectivement 62 et 64. Ainsi, lorsque, par exemple, la chambre d'actionnement 58 diminue de volume, le fluide éjecté sort plus facilement par le conduit d'évacuation 54 que par le conduit d'amenée 52 en raison d'une résistance fluidique plus élevée du côté dudit conduit d'amenée 52. Conformément à l'invention, une cloison 66 est ménagée, par exemple sur le substrat inférieur 50, préférentiellement mais non exclusivement par photolithographie. Cette cloison 66 délimite les cavités 68 et 70 qui mettent en liaison les conduits d'amenée 52 et d'évacuation 54 avec la chambre d'actionnement 58. Comme dans l'exemple décrit en liaison avec la figure 4, l'espace laissé vacant entre les deux substrats 50 et 56 et la face externe de la cloison 66 qui n'est pas en contact avec le fluide est rempli par un cordon de matière de scellement 72. Bien entendu, tout comme mentionné précédemment, on pourrait aussi envisager de structurer à la surface de l'un des deux substrats deux parois s'étendant parallèlement et à distance l'une de l'autre. Ces deux parois délimiteraient ainsi un canal de remplissage qui serait rempli de matière de scellement via un trou de remplissage percé à travers l'un desdits deux substrats. II va de soi que la présente invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits, et que diverses modifications et variantes simples peuvent être envisagées sans sortir du cadre de la présente invention. En particulier, l'invention s'applique de manière identique à une cellule comprenant plus de deux substrats, par exemple quatre, les substrats étant réunis deux à deux par un cadre de scellement conforme à l'invention et constitué d'au moins une paroi qui délimite le volume pour le confinement de la matière sensible ou du fluide ainsi que d'un cordon de matière de scellement qui comble l'interstice entre les deux substrats considérés. De même, l'invention peut s'appliquer de manière analogue à un procédé de fabrication en batch de cellules comme représenté à la figure 7. Un tel lot de cellules comporte deux plaques 74 et 76 communes à toutes les cellules 2 et un réseau de cloisons étanches 10 et 12 délimitant, pour chaque cellule 2, une cavité 8 destinée à renfermer les cristaux liquides de même que des canaux de remplissage 20 qui sont destinés à être remplis avec une matière de scellement pour lier les deux plaques 74 et 76 et former les cadres de scellement desdites cellules 2. Avantageusement, une première pluralité de trous 16 pour le remplissage des cavités 8 avec du cristal liquide, et une seconde pluralité de trous 18 pour l'amenée de la matière de scellement sont pratiqués dans la plaque supérieure 74. Grâce à cette caractéristique, il est possible de remplir les canaux de remplissage 20, non pas par le côté , par exemple de cellules à cristaux liquides, mais par le dessus de ces dernières. On peut donc travailler avec un lot complet de telles cellules, sans être obligé de diviser ce lot en bandes pour pouvoir avoir accès aux trous de remplissage qui sont habituellement ménagés sur un côté des cellules. Les cellules peuvent dont être pratiquement terminées en lot avant découpage. On peut notamment effectuer le remplissage et le scellement des trous d'amenée de la matière de scellement destinée à former les cadres de scellement des cellules sur le lot entier, donc d'une façon plus simple et plus économique que sur des cellules individuelles. De même, les cellules 2 peuvent être remplies de cristal liquide et les trous de remplissage 16 obturés alors que les cellules sont encore en lot.
Selon une variante de réalisation représentée à la figure 8, un canal de remplissage 20 peut être commun à deux ou plusieurs cellules 2. Lors de l'individualisation des cellules, le trait de scie, représenté en pointillés sur le dessin, passera sensiblement au milieu de chacun des côtés du canal de remplissage.

Claims

REVEND I CATIONS
1. Procédé de fabrication d'au moins un dispositif (2, 30, 48) délimitant un volume (8) pour le confinement d'un fluide ou d'une matière sensible susceptible de changer de propriétés physiques, notamment optiques, sous l'effet de l'application d'une tension, ou de propriétés électriques sous l'effet d'une contrainte ou d'un rayonnement, ce dispositif (2, 30, 48) comprenant au moins un premier substrat avant (4, 38, 56) et au moins un second substrat arrière (6, 32, 50) maintenus à une distance constante l'un de l'autre, ces deux substrats (6, 32, 50; 4, 38, 56) étant réunis par un joint de scellement (24, 46, 72) qui définit le volume (8) pour le confinement du milieu sensible ou du fluide, ce procédé étant caractérisé en ce qu'il comprend les étapes consistant à :
- structurer sur l'un des substrats (6, 32, 50) au moins une cloison (12, 44, 66) qui délimite par sa face latérale interne le volume (8) pour le confinement du milieu sensible ou du fluide;
- réunir le second substrat (4, 38, 56) avec le premier substrat (6, 32, 50); - introduire une matière de scellement susceptible de s'écouler dans l'interstice
(22) défini par la face latérale externe de la cloison (12, 44, 66) et les deux substrats superposés (6, 32, 50; 4, 38, 56) jusqu'à ce qu'au moins une partie du volume de cet interstice (22) soit occupée par la matière de scellement, et
- solidifier la matière de scellement afin que celle-ci forme le joint de scellement (26, 46, 72).
2. Procédé selon la revendication 1 , caractérisé en ce qu'il comprend les étapes consistant à :
- structurer sur l'un des substrats (6, 32, 50) au moins un canal de remplissage (20) délimité par deux cloisons (10, 12) qui s'étendent à distance l'une de l'autre; - réunir le second substrat (4, 38, 56) avec le premier substrat (6, 32, 50);
- introduire une matière de scellement susceptible de s'écouler dans le canal de remplissage (20) jusqu'à ce que tout le volume dudit canal de remplissage (20) soit occupé, et
- solidifier la matière de scellement afin que celle-ci forme le joint de scellement (26, 46, 72).
3. Procédé selon la revendication 2, caractérisé en ce que l'on réalise un lot de dispositifs (2, 30, 48) comportant deux plaques (74, 76) communes à tous les dispositifs et un réseau de cloisons étanches (10, 12) délimitant, pour chaque dispositif, un volume (8) pour le confinement du milieu sensible ou du fluide de même que des canaux de remplissage (20) qui sont destinés à être remplis avec une matière de scellement pour lier les deux plaques (74, 76) et former les joints de scellement desdits dispositifs.
4. Procédé selon la revendication 3, caractérisé en ce qu'une première pluralité de trous (16) pour le remplissage des volumes (8) avec le fluide ou la matière sensible, et une seconde pluralité de trous (18) pour l'amenée de la matière de scellement sont pratiqués dans l'une des plaques (74) ou (76).
5. Procédé selon l'une quelconque des revendications 3 ou 4, caractérisé en ce qu'un canal de remplissage (20) est commun à au moins deux dispositifs adjacents.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'on fait pénétrer la matière de scellement dans le canal de remplissage (20) ou l'interstice (22) par capillarité.
7. Procédé selon la revendication 6 en ce qu'elle dépend de l'une quelconque des revendications 2 à 5, caractérisé en ce qu'il comprend les étapes supplémentaires consistant à :
- faire le vide dans le canal de remplissage (20);
- faire pénétrer la matière de scellement dans ledit canal de remplissage (20), et
- rétablir la pression à l'extérieur de la cellule (2, 30, 48) de sorte que, sous l'effet de la différence de pression entre le canal de remplissage (20) dans lequel règne le vide et la pression environnante, la matière de scellement est chassée jusqu'au fond du canal de remplissage (20).
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'on dépose sur l'un des substrats (6, 32, 50) une couche d'un matériau photorésist que l'on va ensuite structurer par des techniques de photogravure pour lui donner la forme d'une ou de plusieurs cloisons (10, 12; 44, 66).
9. Procédé selon la revendication 8, caractérisé en ce que la couche de photorésist est structurée de façon à former, non seulement la ou les cloisons
(10, 12), mais également des structures d'espacement (14) destinées à maintenir un écartement constant entre les deux substrats (4, 6) de la cellule (2).
10. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la ou les cloisons (10, 12; 44, 66) sont structurées par une technique de dépôt sélectif de la matière de scellement.
11. Procédé selon la revendication 10, caractérisé en ce que la ou les cloisons (10, 12; 44, 66) sont structurées par sérigraphie.
12. Procédé selon la revendication 10, caractérisé en ce que la ou les cloisons (10, 12; 44, 66) sont structurées au moyen d'un distributeur du type seringue.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la matière de scellement est choisie dans le groupe formé par les résines pouvant être polymérisées par sensibilisation à l'aide d'une lumière ou par chauffage en élevant la température du milieu ambiant, par les colles cyanoacrylates, par les résines thermoplastiques et par les colles bicomposants dont les composants durcissent avec le temps ou sous l'effet d'une augmentation de température lorsqu'ils sont mis en présence l'un de l'autre.
14. Dispositif (2, 30, 48) délimitant un volume (8) pour le confinement d'un fluide ou d'une matière sensible susceptible de changer de propriétés physiques, notamment optiques, sous l'effet de l'application d'une tension, ou de propriétés électriques sous l'effet d'une contrainte ou d'un rayonnement, ce dispositif (2, 30, 48) comprenant au moins un premier substrat avant (4, 38, 56) et au moins un second substrat arrière (6, 32, 50) maintenus à une distance constante l'un de l'autre, ces deux substrats (6, 32, 50; 4, 38, 56) étant réunis par un joint de scellement (24, 46, 72) qui définit le volume (8) pour le confinement du milieu sensible ou du fluide, ce dispositif étant caractérisé en ce que le joint de scellement (26, 46, 72) occupe au moins en partie l'interstice délimité par lesdits substrats et la face externe d'une cloison (12, 44, 66) structurée sur l'un des substrats (4, 38, 56), cette cloison délimitant par sa face latérale interne le volume (8) pour le confinement de la matière sensible ou du fluide.
15. Dispositif selon la revendication 14, caractérisé en ce que le joint de scellement (26, 46, 72) est formé par un canal de remplissage (20) délimité par deux parois (10, 12) qui s'étendent à distance l'une de l'autre sur le substrat (6) sur lequel ces parois sont formées, ce canal de remplissage (20) étant destiné à être rempli avec une matière de scellement.
16. Dispositif selon la revendication 15, caractérisé en ce qu'au moins un trou (18) communiquant avec le canal de remplissage (20) et permettant l'amenée de la matière de scellement est pratiqué dans l'un des substrats (4, 6) ou dans la paroi (10).
17. Dispositif selon l'une quelconque des revendications 14 à 16, caractérisé en ce qu'il constitue une cellule électro-optique, notamment à cristaux liquides, une cellule photovoltaïque électrochimique ou un microsystème de type fluidique.
EP03732553A 2002-06-21 2003-06-10 Procede de fabrication d'un dispositif delimitant un volume pour le confinement d'un fluide ou d'une matiere sensible Withdrawn EP1518144A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03732553A EP1518144A1 (fr) 2002-06-21 2003-06-10 Procede de fabrication d'un dispositif delimitant un volume pour le confinement d'un fluide ou d'une matiere sensible

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02077493 2002-06-21
EP02077493A EP1376209A1 (fr) 2002-06-21 2002-06-21 Procédé de fabrication d'un dispositif délimitant un volume pour le confinement d'un fluide ou d'une matière sensible
EP03732553A EP1518144A1 (fr) 2002-06-21 2003-06-10 Procede de fabrication d'un dispositif delimitant un volume pour le confinement d'un fluide ou d'une matiere sensible
PCT/EP2003/006024 WO2004001493A1 (fr) 2002-06-21 2003-06-10 Procede de fabrication d'un dispositif delimitant un volume pour le confinement d'un fluide ou d'une matiere sensible

Publications (1)

Publication Number Publication Date
EP1518144A1 true EP1518144A1 (fr) 2005-03-30

Family

ID=29716894

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02077493A Withdrawn EP1376209A1 (fr) 2002-06-12 2002-06-21 Procédé de fabrication d'un dispositif délimitant un volume pour le confinement d'un fluide ou d'une matière sensible
EP03732553A Withdrawn EP1518144A1 (fr) 2002-06-21 2003-06-10 Procede de fabrication d'un dispositif delimitant un volume pour le confinement d'un fluide ou d'une matiere sensible

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02077493A Withdrawn EP1376209A1 (fr) 2002-06-12 2002-06-21 Procédé de fabrication d'un dispositif délimitant un volume pour le confinement d'un fluide ou d'une matière sensible

Country Status (8)

Country Link
US (2) US7420648B2 (fr)
EP (2) EP1376209A1 (fr)
JP (1) JP2005534953A (fr)
KR (1) KR101029424B1 (fr)
CN (1) CN100483222C (fr)
AU (1) AU2003238486A1 (fr)
HK (1) HK1077369A1 (fr)
WO (1) WO2004001493A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7392706B2 (en) * 2003-11-27 2008-07-01 Kyocera Corporation Pressure sensor device
KR100672648B1 (ko) * 2004-12-14 2007-01-24 엘지.필립스 엘시디 주식회사 액정 표시 장치 및 이의 제조 방법
US20080062376A1 (en) * 2006-09-12 2008-03-13 United Microdisplay Optronics Corp. Method of fabricating a liquid crystal panel and alignment method
JP2012255840A (ja) 2011-06-07 2012-12-27 Japan Display West Co Ltd 表示装置および電子機器
EP4164796A4 (fr) * 2020-06-10 2024-03-06 10x Genomics, Inc. Procédés de distribution de fluide
WO2022178267A2 (fr) 2021-02-19 2022-08-25 10X Genomics, Inc. Dispositifs de support de dosage modulaires
CN115163465B (zh) * 2022-08-02 2024-03-19 江苏大学 一种基于空化效应的脉冲式微型无阀隔膜泵

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380241A (en) * 1976-12-24 1978-07-15 Seiko Instr & Electronics Ltd Liquid crystal panel
US5944934A (en) * 1995-02-27 1999-08-31 Samsung Electronics Co., Ltd. Manufacturing method of liquid crystal display panel and apparatus therefor
US6099672A (en) * 1996-03-23 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing liquid crystal device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527262A (en) * 1975-06-16 1977-01-20 Matsushita Electric Ind Co Ltd Indicator
JPS59156223U (ja) * 1983-04-05 1984-10-20 シチズン時計株式会社 液晶表示セルの構造
JPH0220A (ja) * 1987-06-02 1990-01-05 Toppan Printing Co Ltd カラー表示装置
JPH04180027A (ja) * 1990-11-15 1992-06-26 Matsushita Electric Ind Co Ltd 液晶表示パネルおよびその製造方法
JP3158667B2 (ja) * 1991-08-01 2001-04-23 セイコーエプソン株式会社 液晶表示素子の製造方法及び液晶表示素子の再生方法
JPH06222317A (ja) * 1993-01-26 1994-08-12 Sharp Corp 液晶表示素子の製造方法
JPH07175072A (ja) * 1993-12-17 1995-07-14 Toshiba Corp 液晶表示器及びその製造方法
JP3074111B2 (ja) * 1994-05-27 2000-08-07 シャープ株式会社 液晶パネル及びその製造方法
US6636192B1 (en) * 1999-01-28 2003-10-21 Seiko Epson Corporation Electrooptic panel, projection display, and method for manufacturing electrooptic panel
JP4414061B2 (ja) * 2000-05-17 2010-02-10 三菱電機株式会社 液晶表示装置およびその製造方法
JP2002040446A (ja) * 2000-05-19 2002-02-06 Minolta Co Ltd 液晶表示パネルの製造方法及び積層型液晶表示パネルの製造方法
JP4609679B2 (ja) * 2000-07-19 2011-01-12 日本電気株式会社 液晶表示装置
JP2002277884A (ja) * 2001-03-14 2002-09-25 Koninkl Philips Electronics Nv 液晶表示装置
KR100483988B1 (ko) * 2001-11-29 2005-04-15 삼성에스디아이 주식회사 투명도전막의 투과도 변형방법
KR100491143B1 (ko) * 2001-12-26 2005-05-24 삼성에스디아이 주식회사 블랙매트릭스를 구비한 평판표시장치 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380241A (en) * 1976-12-24 1978-07-15 Seiko Instr & Electronics Ltd Liquid crystal panel
US5944934A (en) * 1995-02-27 1999-08-31 Samsung Electronics Co., Ltd. Manufacturing method of liquid crystal display panel and apparatus therefor
US6099672A (en) * 1996-03-23 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing liquid crystal device

Also Published As

Publication number Publication date
HK1077369A1 (en) 2006-02-10
US20080218838A1 (en) 2008-09-11
US7671960B2 (en) 2010-03-02
WO2004001493A1 (fr) 2003-12-31
US7420648B2 (en) 2008-09-02
AU2003238486A1 (en) 2004-01-06
KR20050013229A (ko) 2005-02-03
JP2005534953A (ja) 2005-11-17
EP1376209A1 (fr) 2004-01-02
KR101029424B1 (ko) 2011-04-14
US20050174527A1 (en) 2005-08-11
CN1662845A (zh) 2005-08-31
CN100483222C (zh) 2009-04-29

Similar Documents

Publication Publication Date Title
EP1518143B1 (fr) Moyens de connexion destines a etablir une liaison electrique entre une cellule, notamment a cristaux liquides, et un circuit d'alimentation ou de commande
EP1878693B1 (fr) Microcomposant encapsule equipe d'au moins un getter
EP0733930A2 (fr) Cellule électrique
US7671960B2 (en) Method for producing a device defining a volume for retaining a fluid or a sensitive material
EP2036008A1 (fr) Procede de fabrication de cartes comprenant au moins un module electronique, ensemble intervenant dans ce procede et produit intermediaire
WO2001049422A1 (fr) Dispositif de remplissage collectif de cavites borgnes
EP2038061B1 (fr) Dispositif microfluidique avec materiau de volume variable
EP0860732A1 (fr) Procédé de fabrication de cellules électro-optiques, notamment à cristaux liquides, ou de cellules photovoltaiques électrochimiques
EP1518145B1 (fr) Cellule d affichage, notamment a cristal liquide, ou cellule photovoltaique comprenant des moyens pour sa connexion a un circuit electronique de commande
FR2890460A1 (fr) Panneau d'affichage a cristaux liquides
EP1947482A1 (fr) Realisation de cavités remplies par un matériau fluidique dans un composé microtechnologique optique
EP2050713B1 (fr) Procédé de réalisation d'une cavité ayant un cordon de scellement
EP0924547A1 (fr) Procédé de fabrication de cellules électro-optiques, notamment à cristaux liquides
EP1376211B1 (fr) Procédé de fabrication d'un lot de cellules multicouches telles que des cellules d'affichage à cristaux liquides, ou des cellules photovoltaiques électrochimiques
EP1376210B1 (fr) Cellule multicouche, notamment cellule d'affichage à cristaux liquides, ou cellule photovoltaique électrochimique
FR2741460A1 (fr) Procede de remplissage et de scellement d'une cellule compartimentee et cellule ainsi obtenue
WO2024227942A1 (fr) Procédé de fabrication d'une vanne pour micro-injecteur pour un dispositif de chromatographie en phase liquide ou gazeuse
EP2009697B1 (fr) Procédé pour la réalisation d'une matrice de détection de rayonnements électromagnétiques et procédé pour remplacer un module élémentaire d'une telle matrice de détection
FR2803227A1 (fr) Dispositif de remplissage collectif de cavites borgnes
CH691629A5 (fr) Procédé de fabrication de cellules électro-optiques, notamment à cristaux liquides.
FR2929263A1 (fr) Procede de scellement d'enceintes remplies de liquide a l'aide d'une couche de fermeture
EP2365743A2 (fr) Structure d'interconnexion comprenant des vias borgnes destines a etre metallises
FR2636440A1 (fr) Cellule a cristal liquide munie de pieges a bulles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080926

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105