EP1517757B1 - Switching circuit for an electromagnetic source for the generation of acoustic waves - Google Patents

Switching circuit for an electromagnetic source for the generation of acoustic waves Download PDF

Info

Publication number
EP1517757B1
EP1517757B1 EP03740093A EP03740093A EP1517757B1 EP 1517757 B1 EP1517757 B1 EP 1517757B1 EP 03740093 A EP03740093 A EP 03740093A EP 03740093 A EP03740093 A EP 03740093A EP 1517757 B1 EP1517757 B1 EP 1517757B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
voltage
source
switching circuit
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03740093A
Other languages
German (de)
French (fr)
Other versions
EP1517757A1 (en
Inventor
Arnim Rohwedder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1517757A1 publication Critical patent/EP1517757A1/en
Application granted granted Critical
Publication of EP1517757B1 publication Critical patent/EP1517757B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/52Electrodynamic transducer
    • B06B2201/53Electrodynamic transducer with vibrating magnet or coil

Definitions

  • the invention relates to a circuit for an electromagnetic source for generating acoustic waves, comprising a coil of the electromagnetic source and at least one first capacitor, which is connected in parallel to at least one series circuit of a second capacitor and a first valve.
  • such a circuit for an electromagnetic pressure wave source has two LC resonant circuits connected in series.
  • the first resonant circuit has a first capacitor and, in parallel thereto, a semiconductor power switch comprising a triggerable thyristor and a freewheeling diode connected in antiparallel thereto, as well as a subsequent inductance.
  • a second capacitor is connected, which also belongs to the second resonant circuit. Parallel to it, a saturable inductor and designed as an inductive load electromagnetic pressure wave source is arranged.
  • the first capacitor charged with a capacitor charger is switched to the first non-charged second capacitor so that its charge is transferred to it.
  • the inductor and the two capacitors are dimensioned so that only at the time when practically all the charge has been transferred from the first capacitor to the second capacitor saturates the saturable inductor and thus becomes low-inductance.
  • a high discharge current flows only due to the discharge voltage of the second capacitor with a predetermined by the second resonant circuit Time constant through the inductive load of the electromagnetic pressure wave source, where an acoustic pulse is generated.
  • the SU 17 47 188 A1 removable circuit for the inductance of an electrodynamic radiator has a common voltage source to which a plurality of parallel branches each having a diode at the input, a grounded storage capacitor and an output side commutator, i. Switch are connected.
  • the diodes are poled in such a way that the storage capacitors of the individual parallel branches always separate with respect to their charging voltages from each other, i. stay separated so that Umlade- or balancing operations of these charging voltages are mutually avoided.
  • the commutators of all parallel branches are collectively, i. closed at the same time. During this discharging process, the storage capacitor of the respective branch is connected in parallel with the input-side diode thereof.
  • the circuit comprises a DC voltage source 1, a switching means 2, which is usually designed as a spark gap, a capacitor C and a coil L, which is part of a sound generating unit of the electromagnetic source.
  • the sound generating unit of the electromagnetic source has, in addition to the coil L a coil carrier, not shown, on which the coil is arranged, and a likewise not shown, arranged on the coil L insulating membrane.
  • the membrane is thereby repelled into an acoustic propagation medium, whereby source pressure waves in the acoustic propagation medium as a carrier medium between the sound generating unit of the electromagnetic source and an object to be irradiated to be sent out.
  • Nonlinear effects in the carrier medium can, for example, result in shockwaves from the acoustic source pressure waves.
  • the structure of an electromagnetic source, in particular an electromagnetic shock wave source is described for example in EP 0 133 665 B1.
  • Shock waves are used, for example, for the non-invasive destruction of concrements in the interior of the body of a patient, e.g. used to destroy a kidney stone.
  • the kidney stone shock waves cause cracks to form in the kidney stone.
  • the kidney stone eventually breaks apart and can be excreted naturally.
  • the square of the current i (t), curve 5 in FIG. 2, is proportional to the acoustic waves generated by the electromagnetic shock wave source. Accordingly, a first acoustic source pressure wave from the first acoustic source pressure pulse (1st maximum) and further acoustic source pressure waves from the decaying sequence of positive acoustic source pressure pulses emerge from a discharging process of the capacitor C.
  • the first source pressure wave and the subsequent source pressure waves can, as already mentioned, by non-linear effects in the carrier medium and a non-linear focusing, which is usually done with a conventional acoustic focusing lens, in shock waves forming short upright positive portions and subsequent elongated so-called vacuum pans.
  • the frequency of the current i (t) flowing through the coil L characteristics of the shock wave, e.g. whose focus diameter, be changed.
  • the size of the active focus can be changed and, depending on the application, adjusted to the object to be treated.
  • the effective focus can be selected according to the particular stone size, so that the acoustic energy is better utilized for the disintegration of the stone and the surrounding tissue is less stressed.
  • the invention is therefore based on the object, a circuit of the type mentioned in such a way that the generation of acoustic waves is improved.
  • this object is achieved by a circuit of the type mentioned, which is characterized in that the first valve is connected such that it blocks after charging both capacitors during discharge of the first capacitor, as long as the first capacitor with a larger Voltage as the second capacitor is charged, and becomes conductive, as soon as the charging voltage of the first discharging first capacitor at least substantially the charging voltage of the second capacitor which causes the second capacitor to discharge and the two discharging capacitors energize the coil of the electromagnetic source.
  • the invention further relates to an electromagnetic source with a circuit according to the invention and a lithotripter with such an electromagnetic source.
  • the first valve which according to a preferred embodiment of the invention is a first diode or a first diode module, is connected in such a way that it blocks after charging both capacitors, thus preventing compensation processes between the two capacitors.
  • the first capacitor can be charged with a larger charging voltage than the second capacitor before the discharge of both capacitors. For the generation of the acoustic wave through the circuit is first started with the discharge of the first capacitor, that is with the capacitor with the larger charging voltage, via the coil of the electromagnetic source.
  • the first valve becomes conductive, so that both capacitors discharge and both capacitors feed the coil of the electromagnetic source with current. Consequently, the circuit has the capacitance of the first capacitor before the second capacitor starts to discharge. As both capacitors discharge, the circuit has a capacitance equal to the sum of the capacitances of both capacitors.
  • a time-varying capacitance of the circuit adjusts, whereby the waveform of the current flowing through the coil of the electromagnetic source current can be influenced.
  • the waveform of the discharge current may be further varied if the circuit has a plurality of series-connected valve / capacitor pairs connected in parallel with the first capacitor and charged with different charging voltages.
  • the first diode module includes, for example, a series and / or parallel connection of a plurality of diodes.
  • the first capacitor may be charged with a first DC voltage source and the second capacitor with a second DC voltage source prior to discharge. According to a preferred embodiment of the invention, it is also provided to charge the first capacitor and the second capacitor with exactly one DC voltage source and to switch off the DC voltage source from the second capacitor with a switching means as soon as the second capacitor has reached its charging voltage.
  • the switching means according to one embodiment of the invention comprises at least one semiconductor element.
  • a second valve is connected in parallel.
  • the second valve is according to an embodiment of the invention, a second diode or a second diode module.
  • a stronger first acoustic wave for example in the generation of shock waves, ie a stronger first shock wave generated, resulting in an increase in the volume of the integrating effect for the destruction of concrements.
  • tissue-damaging cavitation caused by the shock waves following the first shock wave and resulting from the subsequent source pressure pulses is also reduced.
  • the reduced polarity reversal voltage caused by the second valve increases the service life of the first and second capacitors.
  • With such a generation of shock waves less audible sound waves are generated, so that there is a noise reduction.
  • the decisive factor in the generation of audible sound waves in the generation of shock waves is namely the total area under the curve of the square of the current. In the case of the present invention, this is reduced overall by the omission of the source pressure pulse normally following the first source pressure pulse.
  • FIG. 3 shows, in the form of a partially sectioned and partially block diagram-like illustration, an electromagnetic shockwave source in the form of a therapy head 10, which in the case of the present exemplary embodiment is part of a lithotripter not shown in more detail.
  • the therapy head 10 has a known per se 11, known per se sound generating unit, which operates on the electromagnetic principle.
  • the sound generating unit 11 has, in a manner not shown in FIG. 3, a coil carrier, a flat coil arranged thereon, and a metallic membrane insulated from the flat coil. To generate shockwaves, the membrane is repelled by electromagnetic interaction with the pancake coil into an acoustic propagation medium denoted by 12, whereby a source pressure wave is emitted into the acoustic propagation medium 12.
  • the source pressure wave of the acoustic lens 13 is focused on a focus zone F, with the source pressure wave splitting into a shock wave as it propagates in the acoustic propagation medium 12 and into the body of a patient P.
  • the shock wave serves to break up a stone ST in the kidney N of the patient P.
  • the therapy head 10 is associated with an operating and supply unit 14 which, except for the flat coil, comprises the circuit according to the invention for generating acoustic waves shown in FIG.
  • the control and supply unit 14 is electrically connected via a connecting line 15 shown in FIG. 3 to the sound generating unit 11 comprising the flat coil.
  • the acoustic shock wave source circuit according to the invention shown in FIG. 4 has DC power sources DC0, DC1 and DC2, a switching means S, capacitors C0, C1 and C2, and the flat coil 23 of the electromagnetic sound generating unit 11 of the therapy head 10.
  • a diode D1 and the capacitor C2 With the capacitor C1 is in the case of the present embodiment, a diode D1 and the capacitor C2, a diode D2 is connected in series.
  • the series circuits of capacitor C1 / diode D1 and capacitor C2 / diode D2 are also connected in parallel with the capacitor C0.
  • the switching means S is opened.
  • the capacitor C0 is therefore charged with the DC voltage U 0 of the DC voltage source DC0 and the polarity shown in FIG.
  • the capacitor C1 is charged with the DC voltage U 1 of the DC voltage source DC1 and the polarity shown in FIG.
  • the voltage U 1 of the DC voltage source DC1 is smaller than the voltage U 0 of the DC voltage source DC0 in the case of the present embodiment.
  • the diode D1 is switched so that it blocks as long as the capacitor C0 is charged with a larger voltage u 0 (t) than the capacitor C1.
  • the diode D1 thus prevents a compensation process between the charged with the voltages U 0 and U 1 capacitors C0 and C1, which is why the capacitor C0 is charged at the end of the charging with the higher voltage U 0 than the capacitor C1, which at the end of the charging charged with the voltage U 1 .
  • the capacitor C2 becomes the Further charged with the DC voltage U 2 of the DC voltage source DC2 and the polarity shown in Figure 4.
  • the DC voltage U 2 is smaller than the DC voltage U 1 in the case of the present embodiment.
  • the diode D2 is also connected to turn off as long as the voltage u 2 (t) of the capacitor C2 is lower than the voltage u 0 (t) of the capacitor C0. Thus, it is possible to charge the capacitors C0 to C2 with different voltages.
  • the switching means S is closed.
  • the capacitor C0 begins to discharge via the coil 23, whereby the voltage u 0 (t) of the capacitor C0 decreases and a current i '(t) flows through the flat coil 23.
  • the voltage applied to the flat coil 23 is denoted by u '(t).
  • the diode D1 becomes conductive and the current i '(t) through the flat coil 23 is fed by both capacitors C0 and C1.
  • FIG. 5 shows, as an example, curves of currents i '(t) through the flat coil 23 during discharging, when the circuit shown in FIG. 4 only shows the capacitors C0 and C1 includes.
  • FIG. 6 shows a further embodiment of a circuit according to the invention.
  • the circuit shown in FIG. 6 comprises, in the case of the present exemplary embodiment, capacitors C0 'to C2', switching means S ', S1 and S2, diodes D1' and D2 ', a DC voltage source DC0' and the flat coil 23.
  • the diode D1 'and the capacitor C1' and the diode D2 'and the capacitor C2' are connected in series.
  • the series circuits of capacitor C1 '/ diode D1' and capacitor C2 '/ diode D2' are connected in parallel with the capacitor C0 '.
  • the diodes D1 'and D2' are poled in such a way that they block as long as the capacitor C0 'is charged with a voltage u 0 ' (t) according to the polarity shown in FIG. 6 which is greater than the voltage u 1 '(t ) of the capacitor C1 'and the voltage u 2 ' (t) of the capacitor C2 'according to the marked polarity.
  • the switching means S ' is opened.
  • the scarfs S1 and S2 are closed. Since the capacitors C1 'and C2' are to be charged with charging voltages U 1 'and U 2 ' which are smaller than the voltage U 0 'of the DC voltage source DC0', the switches S1 and S2 are then opened when the capacitors C1 'and C2 'are charged with the desired voltages U 1 ' and U 2 '.
  • the switching means S1 and S2 are opened, the capacitor C0 'with the voltage U 0 ' of the DC voltage source DC0 'and the capacitors C1' and C2 'with the voltages U 1 ' and U 2 'loaded.
  • the voltage U 2 'of the charged capacitor C2 is smaller than the voltage U 1 ' of the charged capacitor C1.
  • the switching means S ' is closed and the capacitor C0' begins to discharge via the flat coil 23, whereby a current i '(t) flows through the flat coil 23.
  • the diodes D1 'and D2' lock.
  • the diode D1 'becomes conductive and the current i' (t) through the flat coil 23 is discharged from the capacitors C0 '. and C1 'fed.
  • FIG. 7 shows a further circuit according to the invention which has an additional diode D3 in comparison to the circuit shown in FIG.
  • the diode D3 is connected in parallel and in the reverse direction to the charging voltage U 0 of the capacitor C0.
  • FIG. 8 shows yet another circuit according to the invention, which has an additional diode D3 'in comparison to the circuit shown in FIG.
  • the diode D3 ' is connected in parallel and in the reverse direction to the charging voltage U' 0 of the capacitor C0 '.
  • the switching means S, S ', S1 and S2 may be a series connection of thyristors known per se, e.g. from the company BEHLKE ELECTRONIC GmbH, Am Auerberg 4, 61476 Kronberg in their catalog “Fast High Voltage Solid-State Switches" from June 2001 are offered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)
  • Dc-Dc Converters (AREA)

Description

Die Erfindung betrifft einen Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen, der eine Spule der elektromagnetischen Quelle und wenigstens einen ersten Kondensator umfasst, der parallel zu wenigstens einer Serienschaltung aus einem zweitem Kondensator und einem ersten Ventil geschaltet ist.The invention relates to a circuit for an electromagnetic source for generating acoustic waves, comprising a coil of the electromagnetic source and at least one first capacitor, which is connected in parallel to at least one series circuit of a second capacitor and a first valve.

Z.B. aus der DE 198 14 331 A1 ist ein derartiger Schaltkreis für eine elektromagnetische Druckwellenquelle bekannt. Er weist zwei hintereinandergeschaltete LC-Schwingkreise auf. Davon hat der erste Schwingkreis einen ersten Kondensator und parallel dazu einen Halbleiter-Leistungsschalter aus einem triggerbaren Thyristor und einer dazu antiparallel geschalteten Freilaufdiode sowie eine nachfolgende Induktivität. Teil dieses ersten Schwingkreises und in Serie zum Halbleiter-Leistungsschalter und der Induktivität sowie parallel zum ersten Kondensator ist ein zweiter Kondensator geschaltet, der ebenfalls dem zweiten Schwingkreis angehört. Parallel zu ihm ist ein sättigbarer Induktor und eine als induktive Last ausgebildete elektromagnetische Druckwellenquelle angeordnet. Sobald der Thyristor des Halbleiter-Leistungsschalters in den leitenden Zustand getriggert worden ist, wird der mit einem Kondensatorladegerät aufgeladene erste Kondensator auf den zunächst nichtgeladenen, zweiten Kondensator geschaltet, so dass seine Ladung auf diesen übergeht. Der Induktor und die beiden Kondensatoren sind so bemessen, dass erst zu dem Zeitpunkt, wenn praktisch die gesamte Ladung von dem ersten Kondensator auf den zweiten Kondensator umgeladen worden ist, der sättigbare Induktor in Sättigung gerät und damit niederinduktiv wird. In diesem Moment fließt ein hoher Entladestrom lediglich aufgrund der Entladespannung des zweiten Kondensators mit einer durch den zweiten Schwingkreis vorgegebenen Zeitkonstanten durch die induktive Last der elektromagnetischen Druckwellenquelle, wo ein akustischer Puls erzeugt wird.For example, from DE 198 14 331 A1, such a circuit for an electromagnetic pressure wave source is known. It has two LC resonant circuits connected in series. Of these, the first resonant circuit has a first capacitor and, in parallel thereto, a semiconductor power switch comprising a triggerable thyristor and a freewheeling diode connected in antiparallel thereto, as well as a subsequent inductance. Part of this first resonant circuit and in series with the semiconductor power switch and the inductor and in parallel with the first capacitor, a second capacitor is connected, which also belongs to the second resonant circuit. Parallel to it, a saturable inductor and designed as an inductive load electromagnetic pressure wave source is arranged. Once the thyristor of the semiconductor power switch has been triggered into the conducting state, the first capacitor charged with a capacitor charger is switched to the first non-charged second capacitor so that its charge is transferred to it. The inductor and the two capacitors are dimensioned so that only at the time when practically all the charge has been transferred from the first capacitor to the second capacitor saturates the saturable inductor and thus becomes low-inductance. At this moment, a high discharge current flows only due to the discharge voltage of the second capacitor with a predetermined by the second resonant circuit Time constant through the inductive load of the electromagnetic pressure wave source, where an acoustic pulse is generated.

Der der SU 17 47 188 A1 entnehmbare Schaltkreis für die Induktivität eines elektrodynamischen Strahlers weist eine gemeinsame Spannungsquelle auf, an die mehrere parallele Zweige mit jeweils einer Diode am Eingang, einem auf Masse gelegten Speicherkondensator sowie einem ausgangsseitigen Kommutator, d.h. Schalter angeschlossen sind. Die Dioden sind dabei derart gepolt, dass die Speicherkondensatoren der einzelnen Parallelzweige bezüglich ihrer Ladespannungen stets voneinander separiert, d.h. getrennt bleiben, so dass Umlade- oder Ausgleichsvorgänge dieser Ladespannungen untereinander vermieden sind. Zum gemeinsamen Entladen der Speicherkondensatoren werden die Kommutatoren aller Parallelzweige kollektiv, d.h. gleichzeitig geschlossen. Während dieses Entladevorgangs ist der Speicherkondensator des jeweiligen Zweigs parallel zur dessen eingangsseitiger Diode geschaltet.The SU 17 47 188 A1 removable circuit for the inductance of an electrodynamic radiator has a common voltage source to which a plurality of parallel branches each having a diode at the input, a grounded storage capacitor and an output side commutator, i. Switch are connected. The diodes are poled in such a way that the storage capacitors of the individual parallel branches always separate with respect to their charging voltages from each other, i. stay separated so that Umlade- or balancing operations of these charging voltages are mutually avoided. For common discharge of the storage capacitors, the commutators of all parallel branches are collectively, i. closed at the same time. During this discharging process, the storage capacitor of the respective branch is connected in parallel with the input-side diode thereof.

Ein weiterer Schaltkreis gemäß dem Stand der Technik ist in der Figur 1 dargestellt. Der Schaltkreis umfasst eine Gleichspannungsquelle 1, ein Schaltmittel 2, das in der Regel als Funkenstrecke ausgeführt ist, einen Kondensator C sowie eine Spule L, die Teil einer Schallerzeugungseinheit der elektromagnetischen Quelle ist. Die Schallerzeugungseinheit der elektromagnetischen Quelle weist neben der Spule L einen nicht dargestellten Spulenträger, auf dem die Spule angeordnet ist, und eine ebenfalls nicht dargestellte, isolierend auf der Spule L angeordnete Membran auf. Bei der Entladung des Kondensators C über die Spule L fließt durch die Spule L ein Strom i(t), wodurch ein elektromagnetisches Feld erzeugt wird, das mit der Membran in Wechselwirkung tritt. Die Membran wird dabei in ein akustisches Ausbreitungsmedium abgestoßen, wodurch Quelldruckwellen in das akustische Ausbreitungsmedium als Trägermedium zwischen der Schallerzeugungseinheit der elektromagnetischen Quelle und einem zu beschallenden Objekt ausgesendet werden. Durch nichtlineare Effekte im Trägermedium können aus den akustischen Quelldruckwellen beispielsweise Stoßwellen entstehen. Der Aufbau einer elektromagnetischen Quelle, insbesondere einer elektromagnetischen Stoßwellenquelle, ist beispielsweise in der EP 0 133 665 B1 beschrieben.Another circuit according to the prior art is shown in FIG. The circuit comprises a DC voltage source 1, a switching means 2, which is usually designed as a spark gap, a capacitor C and a coil L, which is part of a sound generating unit of the electromagnetic source. The sound generating unit of the electromagnetic source has, in addition to the coil L a coil carrier, not shown, on which the coil is arranged, and a likewise not shown, arranged on the coil L insulating membrane. Upon discharge of the capacitor C via the coil L, a current i (t) flows through the coil L, thereby generating an electromagnetic field which interacts with the membrane. The membrane is thereby repelled into an acoustic propagation medium, whereby source pressure waves in the acoustic propagation medium as a carrier medium between the sound generating unit of the electromagnetic source and an object to be irradiated to be sent out. Nonlinear effects in the carrier medium can, for example, result in shockwaves from the acoustic source pressure waves. The structure of an electromagnetic source, in particular an electromagnetic shock wave source, is described for example in EP 0 133 665 B1.

Stoßwellen werden beispielsweise zur nichtinvasiven Zerstörung von Konkrementen im Körperinneren eines Patienten, z.B. zur Zerstörung eines Nierensteins, eingesetzt. Die auf den Nierenstein gerichteten Stoßwellen bewirken, dass in dem Nierenstein Risse entstehen. Der Nierenstein bricht schließlich auseinander und kann auf natürlichem Weg ausgeschieden werden.Shock waves are used, for example, for the non-invasive destruction of concrements in the interior of the body of a patient, e.g. used to destroy a kidney stone. The kidney stone shock waves cause cracks to form in the kidney stone. The kidney stone eventually breaks apart and can be excreted naturally.

Betreibt man den in Figur 1 gezeigten Schaltkreis zur Erzeugung akustischer Wellen, so ergeben sich während des Entladevorgangs des Kondensators C über die Spule L, wozu mittels des Schaltmittels 2 ein Kurzschluss erzeugt wird, die in der Figur 2 exemplarisch eingetragenen Verläufe der Spannung u(t) (Kurve 3) über der Spule L und des Stromes i(t) (Kurve 4) durch die Spule L. Der durch die Spule 4 fließende abklingende Strom i(t), ist, wie bereits erwähnt, ursächlich für die Erzeugung von akustischen Wellen.If the circuit for generating acoustic waves shown in FIG. 1 is operated, the result is during the discharging process of the capacitor C via the coil L, for which purpose a short circuit is generated by means of the switching means 2, which in FIG. 2 shows curves of the voltage u (t ) (Curve 3) across the coil L and the current i (t) (curve 4) through the coil L. The evanescent current i (t) flowing through the coil 4 is, as already mentioned, the cause of the generation of acoustic Waves.

Dem Quadrat des Stromes i(t), Kurve 5 in der Figur 2, proportional sind die von der elektromagnetischen Stoßwellenquelle erzeugten akustische Wellen. Aus einem Entladevorgang des Kondensators C gehen demnach eine erste akustische Quelldruckwelle aus dem ersten akustischen Quelldruckpuls (1. Maximum) und weitere akustische Quelldruckwellen aus der abklingenden Folge von positiven akustischen Quelldruckpulsen hervor. Die erste Quelldruckwelle und die nachfolgenden Quelldruckwellen können sich, wie bereits erwähnt, durch nichtlineare Effekte im Trägermedium und eine nichtlineare Fokussierung, welche in der Regel mit einer an sich bekannten akustischen Fokussierungslinse erfolgt, in Stoßwellen mit kurzen aufgesteilten Positivanteilen und nachfolgenden langgezogenen sogenannten Unterdruckwannen formen.The square of the current i (t), curve 5 in FIG. 2, is proportional to the acoustic waves generated by the electromagnetic shock wave source. Accordingly, a first acoustic source pressure wave from the first acoustic source pressure pulse (1st maximum) and further acoustic source pressure waves from the decaying sequence of positive acoustic source pressure pulses emerge from a discharging process of the capacitor C. The first source pressure wave and the subsequent source pressure waves can, as already mentioned, by non-linear effects in the carrier medium and a non-linear focusing, which is usually done with a conventional acoustic focusing lens, in shock waves forming short upright positive portions and subsequent elongated so-called vacuum pans.

Durch die Frequenz des durch die Spule L fließenden Stromes i(t) können Eigenschaften der Stoßwelle, wie z.B. deren Fokusdurchmesser, verändert werden. Mit einer variablen Stromfrequenz und somit einer variablen Frequenz der Stoßwelle lässt sich beispielsweise die Größe des Wirkfokus verändern und je nach Anwendung auf das zu behandelnde Objekt einstellen. Beispielsweise kann bei einem Lithotripter der Wirkfokus entsprechend der jeweiligen Steingröße gewählt werden, so dass die akustische Energie besser für die Desintegration des Steines ausgenutzt und das umliegendes Gewebe weniger belastet wird.By the frequency of the current i (t) flowing through the coil L, characteristics of the shock wave, e.g. whose focus diameter, be changed. With a variable current frequency and thus a variable frequency of the shock wave, for example, the size of the active focus can be changed and, depending on the application, adjusted to the object to be treated. For example, in a lithotripter, the effective focus can be selected according to the particular stone size, so that the acoustic energy is better utilized for the disintegration of the stone and the surrounding tissue is less stressed.

Wegen der relativ hohe Kurzschlussleistungen bis in den 100 MW-Bereich, sind eine variable Kapazität des Kondensators C und eine variable Induktivität der Spule L kostspielig. Um die Stoßwelle zu variieren, wird daher im Allgemeinen nur die Ladespannung des Kondensators C variiert, wodurch sich die Maxima des Stromes i(t) durch die Spule L und der Spannung u(t) an der Spule L ändern. Die Kurvenformen des Stromes i(t) und der Spannung u(t) bleiben jedoch im Wesentlichen gleich.Because of the relatively high short-circuit power up to the 100 MW range, a variable capacitance of the capacitor C and a variable inductance of the coil L are expensive. Therefore, in order to vary the shock wave, generally only the charging voltage of the capacitor C is varied, whereby the maximums of the current i (t) through the coil L and the voltage u (t) on the coil L change. However, the waveforms of the current i (t) and the voltage u (t) remain substantially the same.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Schaltkreis der eingangs genannten Art derart auszubilden, dass die Erzeugung von akustischen Wellen verbessert wird.The invention is therefore based on the object, a circuit of the type mentioned in such a way that the generation of acoustic waves is improved.

Nach der Erfindung wird diese Aufgabe gelöst durch einen Schaltkreis der eingangs genannten Art, welcher dadurch gekennzeichnet ist, dass das erste Ventil derart geschaltet ist, dass es nach dem Aufladen beider Kondensatoren während des Entladens des ersten Kondensators sperrt, solange der erste Kondensator mit einer größeren Spannung als der zweite Kondensator aufgeladen ist, und leitend wird, sobald die Ladespannung des sich zuerst entladenden, ersten Kondensators wenigstens im Wesentlichen die Ladespannung des zweiten Kondensators erreicht, wodurch sich der zweite Kondensator zu entladen beginnt und die beiden, sich entladenden Kondensatoren die Spule der elektromagnetischen Quelle mit Strom speisen.According to the invention, this object is achieved by a circuit of the type mentioned, which is characterized in that the first valve is connected such that it blocks after charging both capacitors during discharge of the first capacitor, as long as the first capacitor with a larger Voltage as the second capacitor is charged, and becomes conductive, as soon as the charging voltage of the first discharging first capacitor at least substantially the charging voltage of the second capacitor which causes the second capacitor to discharge and the two discharging capacitors energize the coil of the electromagnetic source.

Die Erfindung betrifft weiterhin eine elektromagnetische Quelle mit einem erfindungsgemäßen Schaltkreis sowie einem Lithotripter mit einer derartigen elektromagnetischen Quelle.The invention further relates to an electromagnetic source with a circuit according to the invention and a lithotripter with such an electromagnetic source.

Das erste Ventil, das gemäß einer bevorzugten Ausführungsform der Erfindung eine erste Diode oder ein erstes Diodenmodul ist, ist dabei derart geschaltet, dass es nach dem Aufladen beider Kondensatoren sperrt, also Ausgleichsvorgänge zwischen beiden Kondensatoren verhindert. Dadurch kann, wie es nach einer bevorzugten Variante der Erfindung vorgesehen ist, der erste Kondensator vor der Entladung beider Kondensatoren mit einer größeren Ladespannung als der zweite Kondensator aufgeladen werden. Für die Erzeugung der akustischen Welle durch den Stromkreis wird zuerst mit dem Entladen des ersten Kondensators, also mit dem Kondensator mit der größeren Ladespannung, über die Spule der elektromagnetischen Quelle begonnen. Sobald die Ladespannung des ersten Kondensators wenigstens im Wesentlichen gleich der Ladespannung des zweiten Kondensators ist, wird das erste Ventil leitend, so dass sich beide Kondensatoren entladen und beide Kondensatoren die Spule der elektromagnetischen Quelle mit Strom speisen. Folglich hat der Schaltkreis die Kapazität des ersten Kondensators, bevor der zweite Kondensator beginnt, sich zu entladen. Während sich beide Kondensatoren entladen, hat der Schaltkreis eine Kapazität, die der Summe der Kapazitäten beider Kondensatoren entspricht. Somit stellt sich eine zeitlich veränderbare Kapazität des Schaltkreises ein, wodurch die Kurvenform des durch die Spule der elektromagnetischen Quelle fließenden Stromes beeinflussbar ist. Durch ein Variierung der Ladespannungen beider Kondensatoren kann somit die Kurvenform des Stromes durch die Spule verändert werden, wodurch wiederum die Eigenschaften der Stoßwelle der elektromagnetischen Quelle variiert werden können. Die Kurvenform des Entladestromes kann weiter variiert werden, wenn der Schaltkreis mehrere in Serie geschaltete Ventil/Kondensatorpaare aufweist, die parallel zum ersten Kondensator geschaltet und mit unterschiedlichen Ladespannungen geladen sind.The first valve, which according to a preferred embodiment of the invention is a first diode or a first diode module, is connected in such a way that it blocks after charging both capacitors, thus preventing compensation processes between the two capacitors. As a result, as is provided according to a preferred variant of the invention, the first capacitor can be charged with a larger charging voltage than the second capacitor before the discharge of both capacitors. For the generation of the acoustic wave through the circuit is first started with the discharge of the first capacitor, that is with the capacitor with the larger charging voltage, via the coil of the electromagnetic source. As soon as the charging voltage of the first capacitor is at least substantially equal to the charging voltage of the second capacitor, the first valve becomes conductive, so that both capacitors discharge and both capacitors feed the coil of the electromagnetic source with current. Consequently, the circuit has the capacitance of the first capacitor before the second capacitor starts to discharge. As both capacitors discharge, the circuit has a capacitance equal to the sum of the capacitances of both capacitors. Thus, a time-varying capacitance of the circuit adjusts, whereby the waveform of the current flowing through the coil of the electromagnetic source current can be influenced. By varying the charging voltages of both capacitors, the waveform of the current through the coil can thus be changed, which in turn changes the characteristics of the shock wave from the electromagnetic source can be varied. The waveform of the discharge current may be further varied if the circuit has a plurality of series-connected valve / capacitor pairs connected in parallel with the first capacitor and charged with different charging voltages.

Das erste Diodenmodul umfasst im Übrigen beispielsweise eine Reihen- und/oder Parallelschaltung mehrerer Dioden.Incidentally, the first diode module includes, for example, a series and / or parallel connection of a plurality of diodes.

Gemäß einer Ausführungsform der Erfindung kann vor der Entladung der erste Kondensator mit einer ersten Gleichspannungsquelle und der zweite Kondensator mit einer zweiten Gleichspannungsquelle aufgeladen werden. Nach einer bevorzugten Ausführungsform der Erfindung ist es auch vorgesehen, den ersten Kondensator und den zweiten Kondensator mit genau einer Gleichspannungsquelle aufzuladen und die Gleichspannungsquelle von dem zweiten Kondensator mit einem Schaltmittel wegzuschalten, sobald der zweite Kondensator seine Ladespannung erreicht hat. Das Schaltmittel umfasst gemäß einer Ausführungsform der Erfindung wenigstens ein Halbleiterelement.According to one embodiment of the invention, the first capacitor may be charged with a first DC voltage source and the second capacitor with a second DC voltage source prior to discharge. According to a preferred embodiment of the invention, it is also provided to charge the first capacitor and the second capacitor with exactly one DC voltage source and to switch off the DC voltage source from the second capacitor with a switching means as soon as the second capacitor has reached its charging voltage. The switching means according to one embodiment of the invention comprises at least one semiconductor element.

Nach einer besonders bevorzugten Variante der Erfindung ist vorgesehen, dass der Parallelschaltung aus zweitem Kondensator/erstem Ventil und erstem Kondensator ein zweites Ventil parallel geschaltet ist. Das zweite Ventil ist gemäß einer Ausführungsform der Erfindung eine zweite Diode oder ein zweites Diodenmodul. Durch die Parallelschaltung des zweiten Ventils zu den Kondensatoren erreicht man bei der Entladung der Kondensatoren eine zeitliche Verlängerung des ersten Quelldruckpulses. Außerdem werden die nachfolgenden abklingenden Quelldruckpulse abhängig von der Impedanz des zweiten Ventils stark bedämpft. Die Dämpfung kann dabei so groß sein, dass die nachfolgenden Quelldruckpulse gänzlich verschwinden. Durch die zeitliche Verlängerung des ersten Quelldruckpulses wird eine stärkere erste akustische Welle, beispielsweise bei der Erzeugung von Stoßwellen, also eine stärkere erste Stoßwelle, erzeugt, wodurch sich für die Zertrümmerung von Konkrementen eine Verstärkung der Volumen desintegrierenden Wirkung ergibt. Dadurch, dass zudem nur noch wenige schwache oder überhaupt keine dem ersten Quelldruckpuls nachfolgende Quelldruckpulse auftreten, wird auch die gewebeschädigende Kavitation, verursacht durch die auf die erste Stoßwelle folgenden aus den nachfolgenden Quelldruckpulsen hervorgegangenen Stoßwellen vermindert. Dadurch erhöht sich durch die durch das zweite Ventil bedingte verringerte Umpolspannung die Lebensdauer des ersten und des zweiten Kondensators. Zudem werden bei einer derartigen Erzeugung von Stoßwellen weniger hörbare Schallwellen erzeugt, so dass sich eine Lärmreduzierung ergibt. Maßgeblich bei der Erzeugung von hörbaren Schallwellen bei der Erzeugung von Stoßwellen ist nämlich die Gesamtfläche unter der Kurve des Quadrates des Stromes. Diese wird im Falle der vorliegenden Erfindung insgesamt durch den Wegfall des normalerweise auf den ersten Quelldruckpuls folgenden Quelldruckpulses verringert.According to a particularly preferred variant of the invention it is provided that the parallel connection of the second capacitor / first valve and the first capacitor, a second valve is connected in parallel. The second valve is according to an embodiment of the invention, a second diode or a second diode module. By the parallel connection of the second valve to the capacitors can be reached during the discharge the capacitors a time extension of the first source pressure pulse. In addition, the subsequent decaying source pressure pulses are heavily attenuated depending on the impedance of the second valve. The damping can be so great that the subsequent swelling pressure pulses disappear completely. By the time extension of the first source pressure pulse, a stronger first acoustic wave, for example in the generation of shock waves, ie a stronger first shock wave generated, resulting in an increase in the volume of the integrating effect for the destruction of concrements. In addition, since only a few weak or no source pressure pulses following the first source pressure pulse occur, the tissue-damaging cavitation caused by the shock waves following the first shock wave and resulting from the subsequent source pressure pulses is also reduced. As a result, the reduced polarity reversal voltage caused by the second valve increases the service life of the first and second capacitors. In addition, with such a generation of shock waves less audible sound waves are generated, so that there is a noise reduction. The decisive factor in the generation of audible sound waves in the generation of shock waves is namely the total area under the curve of the square of the current. In the case of the present invention, this is reduced overall by the omission of the source pressure pulse normally following the first source pressure pulse.

Ausführungsbeispiele der Erfindung sind in den beigefügten schematischen Zeichnungen exemplarisch dargestellt. Es zeigen:

Figur 1
einen bekannten Schaltkreis zur Erzeugung akustischer Wellen,
Figur 2
Den Verlauf der Spannung u(t), des Stromes i(t) und des Quadrates des Stromes i2(t) über der Zeit während der Entladung des Kondensators des Schaltkreises aus Figur 1,
Figur 3
eine elektromagnetische Stoßwellenquelle,
Figur 4
einen erfindungsgemäßen Schaltkreis zur Erzeugung akustischer Wellen,
Figur 5
den Verlauf des Stromes i'(t) über der Zeit während der Entladung eines erfindungsgemäßen Schaltkreises und
Figur 6 bis 8
weitere erfindungsgemäße Schaltkreise.
Embodiments of the invention are illustrated by way of example in the accompanying schematic drawings. Show it:
FIG. 1
a known circuit for generating acoustic waves,
FIG. 2
The course of the voltage u (t), the current i (t) and the square of the current i 2 (t) over the Time during the discharge of the capacitor of the circuit of Figure 1,
FIG. 3
an electromagnetic shock wave source,
FIG. 4
a circuit according to the invention for generating acoustic waves,
FIG. 5
the course of the current i '(t) over time during the discharge of a circuit according to the invention and
FIGS. 6 to 8
further circuits according to the invention.

Die Figur 3 zeigt in Form einer teils geschnittenen und teils blockschaltartigen Darstellung eine elektromagnetische Stoßwellenquelle in Form eines Therapiekopfes 10, der im Falle des vorliegenden Ausführungsbeispiels Bestandteil eines nicht näher dargestellten Lithotripters ist. Der Therapiekopf 10 weist eine mit 11 bezeichnete, an sich bekannte Schallerzeugungseinheit auf, welche nach dem elektromagnetischen Prinzip arbeitet. Die Schallerzeugungseinheit 11 weist in in der Figur 3 nicht dargestellter Weise einen Spulenträger, eine auf diesem angeordnete Flachspule und eine gegenüber der Flachspule isolierte metallische Membran auf. Zur Erzeugung von Stoßwellen wird die Membran durch elektromagnetische Wechselwirkung mit der Flachspule in ein mit 12 bezeichnetes akustisches Ausbreitungsmedium abgestoßen, wodurch eine Quelldruckwelle in das akustische Ausbreitungsmedium 12 ausgesendet wird. Die Quelledruckwelle der akustischen Linse 13 wird auf eine Fokuszone F fokussiert, wobei sich die Quelldruckwelle während ihrer Ausbreitung in dem akustischen Ausbreitungsmedium 12 und nach Einleitung in den Körper eines Patienten P zu einer Stoßwelle aufsteilt. Im Falle des in Figur 3 gezeigten Ausführungsbeispiels dient die Stoßwelle zur Zertrümmerung eines Steines ST in der Niere N des Patienten P.FIG. 3 shows, in the form of a partially sectioned and partially block diagram-like illustration, an electromagnetic shockwave source in the form of a therapy head 10, which in the case of the present exemplary embodiment is part of a lithotripter not shown in more detail. The therapy head 10 has a known per se 11, known per se sound generating unit, which operates on the electromagnetic principle. The sound generating unit 11 has, in a manner not shown in FIG. 3, a coil carrier, a flat coil arranged thereon, and a metallic membrane insulated from the flat coil. To generate shockwaves, the membrane is repelled by electromagnetic interaction with the pancake coil into an acoustic propagation medium denoted by 12, whereby a source pressure wave is emitted into the acoustic propagation medium 12. The source pressure wave of the acoustic lens 13 is focused on a focus zone F, with the source pressure wave splitting into a shock wave as it propagates in the acoustic propagation medium 12 and into the body of a patient P. In the case of the embodiment shown in FIG. 3, the shock wave serves to break up a stone ST in the kidney N of the patient P.

Dem Therapiekopf 10 ist eine Bedien- und Versorgungseinheit 14 zugeordnet, die bis auf die Flachspule den in der Figur 4 gezeigten erfindungsgemäßen Schaltkreis zur Erzeugung von akustischen Wellen umfasst. Die Bedien- und Versorgungseinheit 14 ist dabei über eine in der Figur 3 gezeigte Verbindungsleitung 15 mit der die Flachspule umfassenden Schallerzeugungseinheit 11 elektrisch verbunden.The therapy head 10 is associated with an operating and supply unit 14 which, except for the flat coil, comprises the circuit according to the invention for generating acoustic waves shown in FIG. The control and supply unit 14 is electrically connected via a connecting line 15 shown in FIG. 3 to the sound generating unit 11 comprising the flat coil.

Der in der Figur 4 gezeigte erfindungsgemäße Schaltkreis für eine elektromagnetische Stoßwellenquelle zur Erzeugung akustischer Wellen weist Gleichspannungsquellen DC0, DC1 und DC2, ein Schaltmittel S, Kondensatoren C0, C1 und C2 und die Flachspule 23 der elektromagnetischen Schallerzeugungseinheit 11 des Therapiekopfes 10 auf. Mit dem Kondensator C1 ist im Falle des vorliegenden Ausführungsbeispiels eine Diode D1 und mit dem Kondensator C2 ist eine Diode D2 in Serie geschaltet. Die Serienschaltungen aus Kondensator C1/Diode D1 und Kondensator C2/Diode D2 sind außerdem parallel zum Kondensator C0 geschaltet.The acoustic shock wave source circuit according to the invention shown in FIG. 4 has DC power sources DC0, DC1 and DC2, a switching means S, capacitors C0, C1 and C2, and the flat coil 23 of the electromagnetic sound generating unit 11 of the therapy head 10. With the capacitor C1 is in the case of the present embodiment, a diode D1 and the capacitor C2, a diode D2 is connected in series. The series circuits of capacitor C1 / diode D1 and capacitor C2 / diode D2 are also connected in parallel with the capacitor C0.

Für eine Aufladung der Kondensatoren C0 bis C2 ist das Schaltmittel S geöffnet. Der Kondensator C0 wird deshalb mit der Gleichspannung U0 der Gleichspannungsquelle DC0 und der in der Figur 4 dargestellten Polarität aufgeladen. Der Kondensator C1 wird mit der Gleichspannung U1 der Gleichspannungsquelle DC1 und der in der Figur 4 dargestellten Polarität aufgeladen. Die Spannung U1 der Gleichspannungsquelle DC1 ist im Falle des vorliegenden Ausführungsbeispiels kleiner als die Spannung U0 der Gleichspannungsquelle DC0. Die Diode D1 ist derart geschaltet, dass sie sperrt, solange der Kondensator C0 mit einer größeren Spannung u0(t) aufgeladen ist als der Kondensator C1. Die Diode D1 verhindert also einen Ausgleichsvorgang zwischen den mit den Spannungen U0 bzw. U1 aufgeladenen Kondensatoren C0 und C1, weshalb der Kondensator C0 am Ende des Aufladens mit der höheren Spannung U0 aufgeladen ist als der Kondensator C1, der am Ende des Aufladens mit der Spannung U1 aufgeladen ist. Der Kondensator C2 wird des Weiteren mit der Gleichspannung U2 der Gleichspannungsquelle DC2 und der in der Figur 4 dargestellten Polarität aufgeladen. Die Gleichspannung U2 ist im Falle des vorliegenden Ausführungsbeispiels kleiner als die Gleichspannung U1. Die Diode D2 ist ebenfalls derart geschaltet, dass sie sperrt, solange die Spannung u2(t) des Kondensators C2 kleiner als die Spannung u0(t) des Kondensators C0 ist. Somit ist es möglich, die Kondensatoren C0 bis C2 mit unterschiedlich großen Spannungen aufzuladen.For a charging of the capacitors C0 to C2, the switching means S is opened. The capacitor C0 is therefore charged with the DC voltage U 0 of the DC voltage source DC0 and the polarity shown in FIG. The capacitor C1 is charged with the DC voltage U 1 of the DC voltage source DC1 and the polarity shown in FIG. The voltage U 1 of the DC voltage source DC1 is smaller than the voltage U 0 of the DC voltage source DC0 in the case of the present embodiment. The diode D1 is switched so that it blocks as long as the capacitor C0 is charged with a larger voltage u 0 (t) than the capacitor C1. The diode D1 thus prevents a compensation process between the charged with the voltages U 0 and U 1 capacitors C0 and C1, which is why the capacitor C0 is charged at the end of the charging with the higher voltage U 0 than the capacitor C1, which at the end of the charging charged with the voltage U 1 . The capacitor C2 becomes the Further charged with the DC voltage U 2 of the DC voltage source DC2 and the polarity shown in Figure 4. The DC voltage U 2 is smaller than the DC voltage U 1 in the case of the present embodiment. The diode D2 is also connected to turn off as long as the voltage u 2 (t) of the capacitor C2 is lower than the voltage u 0 (t) of the capacitor C0. Thus, it is possible to charge the capacitors C0 to C2 with different voltages.

Für das Erzeugen der Stoßwellen wird das Schaltmittel S geschlossen. Dadurch beginnt der Kondensator C0 sich über die Spule 23 zu entladen, wodurch die Spannung u0(t) des Kondensators C0 sinkt und ein Strom i'(t) durch die Flachspule 23 fließt. Die an der Flachspule 23 anliegende Spannung ist mit u'(t) bezeichnet. Erreicht die Spannung u0(t) des Kondensators C0 den Wert der Spannung U1 des geladenen Kondensators C1, wird die Diode D1 leitend und der Strom i'(t) durch die Flachspule 23 wird von beiden Kondensatoren C0 und C1 gespeist. Erreichen die Spannung u0(t) des Kondensators C0 und die Spannung u1(t) des Kondensators C1 die Spannung U2 des aufgeladenen Kondensators C2, wird die Diode D2 leitend und der Strom i'(t) durch die Flachspule 23 wird von den drei Kondensatoren C0 bis C2 gespeist. Somit stellt sich eine zeitlich veränderbare Kapazität des Schaltkreises ein, wodurch die Kurvenform des durch die Flachspule 23 fließenden Stromes i'(t) beeinflussbar ist. Durch in der Figur 4 nicht dargestellte weitere, parallel zum Kondensator C0 geschaltete Kondensator/Dioden Kombinationen, deren Kondensatoren mit unterschiedlich hohen Spannungen kleiner als die Spannung U0 der Gleichspannungsquelle DC0 aufgeladen sind, kann die Kurvenform des Stromes i'(t) durch die Flachspule 23 während des Entladens weiter beeinflusst werden.For generating the shock waves, the switching means S is closed. As a result, the capacitor C0 begins to discharge via the coil 23, whereby the voltage u 0 (t) of the capacitor C0 decreases and a current i '(t) flows through the flat coil 23. The voltage applied to the flat coil 23 is denoted by u '(t). When the voltage u 0 (t) of the capacitor C0 reaches the value of the voltage U 1 of the charged capacitor C1, the diode D1 becomes conductive and the current i '(t) through the flat coil 23 is fed by both capacitors C0 and C1. When the voltage u 0 (t) of the capacitor C0 and the voltage u 1 (t) of the capacitor C1 reach the voltage U 2 of the charged capacitor C2, the diode D2 becomes conductive and the current i '(t) through the flat coil 23 becomes of the three capacitors C0 to C2 fed. Thus, a time-variable capacitance of the circuit adjusts, whereby the waveform of the current flowing through the flat coil 23 current i '(t) can be influenced. By not further shown in Figure 4, parallel to the capacitor C0 switched capacitor / diode combinations whose capacitors are charged with different high voltages smaller than the voltage U 0 of the DC voltage source DC0, the waveform of the current i '(t) through the flat coil 23 are further influenced during unloading.

Die Figur 5 zeigt als Beispiel Verläufe von Strömen i'(t) durch die Flachspule 23 während des Entladens, wenn der in der Figur 4 gezeigte Schaltkreis nur die Kondensatoren C0 und C1 umfasst. Durch eine geeignete Wahl der Spannungen U0 und U1 der Gleichspannungsquellen DC0 und DC1 haben die Strommaxima gleiche Werte.FIG. 5 shows, as an example, curves of currents i '(t) through the flat coil 23 during discharging, when the circuit shown in FIG. 4 only shows the capacitors C0 and C1 includes. By a suitable choice of the voltages U 0 and U 1 of the DC voltage sources DC0 and DC1, the current maxima have the same values.

Die Figur 6 zeigt eine weitere Ausführungsform eines erfindungsgemäßen Schaltkreises. Der in der Figur 6 dargestellte Schaltkreis umfasst im Falle des vorliegenden Ausführungsbeispiels Kondensatoren C0' bis C2', Schaltmittel S', S1 und S2, Dioden D1' und D2', eine Gleichspannungsquelle DC0' und die Flachspule 23.FIG. 6 shows a further embodiment of a circuit according to the invention. The circuit shown in FIG. 6 comprises, in the case of the present exemplary embodiment, capacitors C0 'to C2', switching means S ', S1 and S2, diodes D1' and D2 ', a DC voltage source DC0' and the flat coil 23.

Die Diode D1' und der Kondensator C1' sowie die Diode D2' und der Kondensator C2' sind in Serie geschaltet. Die Serienschaltungen aus Kondensator C1'/Diode D1' und Kondensator C2'/Diode D2' sind parallel zum Kondensator C0' geschaltet. Die Dioden D1' und D2' sind derart gepolt, dass sie sperren, solange der Kondensator C0' mit einer Spannung u0'(t) gemäß der in der Figur 6 eingezeichneten Polarität geladen ist, die größer als die Spannung u1'(t)des Kondensators C1' bzw. der Spannung u2'(t) des Kondensators C2' gemäß der eingezeichneten Polarität ist.The diode D1 'and the capacitor C1' and the diode D2 'and the capacitor C2' are connected in series. The series circuits of capacitor C1 '/ diode D1' and capacitor C2 '/ diode D2' are connected in parallel with the capacitor C0 '. The diodes D1 'and D2' are poled in such a way that they block as long as the capacitor C0 'is charged with a voltage u 0 ' (t) according to the polarity shown in FIG. 6 which is greater than the voltage u 1 '(t ) of the capacitor C1 'and the voltage u 2 ' (t) of the capacitor C2 'according to the marked polarity.

Während des Aufladens der Kondensatoren C0' bis C2' ist das Schaltmittel S' geöffnet. Zu Beginn des Aufladens sind die Schaler S1 und S2 geschlossen. Da die Kondensatoren C1' und C2' mit Ladespannungen U1' und U2' geladen werden sollen, die kleiner als die Spannung U0' der Gleichspannungsquelle DC0' sind, werden die Schalter S1 und S2 dann geöffnet, wenn die Kondensatoren C1' und C2' mit den gewünschten Spannungen U1' und U2' aufgeladen sind. Da die Kondensatoren im Falle des vorliegenden Ausführungsbeispiels mit relativ geringen Strömen kleiner als 1 Ampere aufgeladen werden, sind Schaltgenauigkeiten der Schalter S1 und S2 im Millisekundenbereich ausreichend, um die Kondensatoren C1' und C2' mit ausreichender Genauigkeit aufzuladen. Die Spannungen u1'(t) und u2'(t) der Kondensatoren C1' und C2' werden während des Aufladens mit in der Figur 6 nicht dargestellten Messgeräten überwacht.During charging of the capacitors C0 'to C2', the switching means S 'is opened. At the beginning of charging, the scarfs S1 and S2 are closed. Since the capacitors C1 'and C2' are to be charged with charging voltages U 1 'and U 2 ' which are smaller than the voltage U 0 'of the DC voltage source DC0', the switches S1 and S2 are then opened when the capacitors C1 'and C2 'are charged with the desired voltages U 1 ' and U 2 '. Since the capacitors in the case of the present embodiment are charged with relatively low currents of less than 1 ampere, switching accuracies of the switches S1 and S2 in the millisecond range are sufficient to charge the capacitors C1 'and C2' with sufficient accuracy. The voltages u 1 '(t) and u 2 ' (t) of the capacitors C1 'and C2' are monitored during charging with measuring devices not shown in FIG.

Am Ende des Aufladens sind daher die Schaltmittel S1 und S2 geöffnet, der Kondensator C0' mit der Spannung U0' der Gleichspannungsquelle DC0' und die Kondensatoren C1' und C2' mit den Spannungen U1' und U2' geladen. Außerdem ist im Falle des vorliegenden Ausführungsbeispiels die Spannung U2' des aufgeladenen Kondensators C2 kleiner als die Spannung U1' des aufgeladenen Kondensators C1.At the end of the charging, therefore, the switching means S1 and S2 are opened, the capacitor C0 'with the voltage U 0 ' of the DC voltage source DC0 'and the capacitors C1' and C2 'with the voltages U 1 ' and U 2 'loaded. In addition, in the case of the present embodiment, the voltage U 2 'of the charged capacitor C2 is smaller than the voltage U 1 ' of the charged capacitor C1.

Für die Entladung der Kondensatoren C0' bis C2' wird das Schaltmittel S' geschlossen und der Kondensator C0' beginnt sich über die Flachspule 23 zu entladen, wodurch ein Strom i'(t) durch die Flachspule 23 fließt. Solange die Spannung u0'(t) des Kondensators C0' größer als die Spannung U1' des aufgeladenen Kondensators C1' ist, sperren die Dioden D1' und D2'. Erreicht die Spannung u0'(t) des Kondensators C0' den Wert der Spannung U1' des aufgeladenen Kondensators C1', wird die Diode D1' leitend und der Strom i'(t) durch die Flachspule 23 wird von den Kondensatoren C0' und C1' gespeist. Erreichen die Spannungen u0'(t) und u1'(t) der Kondensatoren C0' und C1' den Wert der Spannung U2' des aufgeladenen Kondensators C2', wird auch die Diode D2' leitend und der Strom i'(t) durch die Flachspule 23 wird von den Kondensatoren C0' bis C2' gespeist.For the discharge of the capacitors C0 'to C2', the switching means S 'is closed and the capacitor C0' begins to discharge via the flat coil 23, whereby a current i '(t) flows through the flat coil 23. As long as the voltage u 0 '(t) of the capacitor C0' is greater than the voltage U 1 'of the charged capacitor C1', the diodes D1 'and D2' lock. When the voltage u 0 '(t) of the capacitor C0' reaches the value of the voltage U 1 'of the charged capacitor C1', the diode D1 'becomes conductive and the current i' (t) through the flat coil 23 is discharged from the capacitors C0 '. and C1 'fed. If the voltages u 0 '(t) and u 1 ' (t) of the capacitors C0 'and C1' reach the value of the voltage U 2 'of the charged capacitor C2', the diode D2 'becomes conductive and the current i' (t ) through the flat coil 23 is fed by the capacitors C0 'to C2'.

Die Figur 7 zeigt einen weiteren erfindungsgemäßen Schaltkreis, der im Vergleich zu dem in der Figur 4 gezeigten Schaltkreis eine zusätzliche Diode D3 aufweist. Die Diode D3 ist parallel und in Sperrrichtung zur Ladespannung U0 des Kondensators C0 geschaltet.FIG. 7 shows a further circuit according to the invention which has an additional diode D3 in comparison to the circuit shown in FIG. The diode D3 is connected in parallel and in the reverse direction to the charging voltage U 0 of the capacitor C0.

Die Figur 8 zeigt noch einen weiteren erfindungsgemäßen Schaltkreis, der im Vergleich zu dem in der Figur 6 gezeigten Schaltkreis eine zusätzliche Diode D3' aufweist. Die Diode D3' ist parallel und in Sperrrichtung zur Ladespannung U'0 des Kondensators C0' geschaltet.FIG. 8 shows yet another circuit according to the invention, which has an additional diode D3 'in comparison to the circuit shown in FIG. The diode D3 'is connected in parallel and in the reverse direction to the charging voltage U' 0 of the capacitor C0 '.

Anstelle der Dioden D1 bis D3 und D1' bis D3' können insbesondere auch Diodenmodule aufweisend eine Reihenschaltung und/oder Parallelschaltung mehrerer Dioden eingesetzt werden. Die Schaltmittel S, S', S1 und S2 können insbesondere eine Reihenschaltung von an sich bekannten Thyristoren sein, die z.B. von der Firma BEHLKE ELECTRONIC GmbH, Am Auerberg 4, 61476 Kronberg in ihrem Katalog "Fast High Voltage Solid-State Switches" vom Juni 2001 angeboten werden.Instead of the diodes D1 to D3 and D1 'to D3' in particular diode modules having a series connection and / or parallel connection of a plurality of diodes can be used. In particular, the switching means S, S ', S1 and S2 may be a series connection of thyristors known per se, e.g. from the company BEHLKE ELECTRONIC GmbH, Am Auerberg 4, 61476 Kronberg in their catalog "Fast High Voltage Solid-State Switches" from June 2001 are offered.

Claims (10)

  1. Switching circuit for an electromagnetic source (10) for generating acoustic waves, comprising a coil (23) of the electromagnetic source (10) and at least one first capacitor (C0), which is connected in parallel with at least one series circuit composed of a second capacitor (C1) and a first valve (D1)
    characterised in that
    the first valve (D1) is connected such that it blocks after charging both capacitors (C0,C1) during discharge of the first capacitor (C0) as long as the first capacitor (C0) is charged with a larger voltage (u 0(t)) than the second capacitor (C1) and it is conductive as soon as the charging voltage (u 0(t)) of the first capacitor, during discharge thereof, reaches at least substantially the charging voltage (u 1(t)) of the second capacitor (C1), whereupon the second capacitor (C1) begins to discharge and the two discharging capacitors (C0, C1) feed the coil (23) of the electromagnetic source (10) with current (i'(t).
  2. Switching circuit according to claim 1,
    characterised in that
    the first valve is a first diode (D1, D2, D1', D2') or a first diode module.
  3. Switching circuit according to claim 1 or 2,
    characterised in that
    the first capacitor (C0, C0') can be charged with a greater charging voltage (U 0.U 0') than said second capacitor (C1, C2, C1', C2'), before discharge of the first capacitor (C0, C0') and of the second capacitor (C1, C2, C1', C2').
  4. Switching circuit according to one of claims 1 to 3,
    characterised in that
    before discharge, the first capacitor (C0) can be charged with a first direct voltage source (CD0) and the second capacitor (C1, C2) can be charged with a second direct voltage source (DC1, DC2).
  5. Switching circuit according to one of claims 1 to 3,
    characterised in that
    the first capacitor (CO') and the second capacitor (C1', C2') can be charged with precisely one direct voltage source (DC) and the direct voltage source (DC) can be disconnected from the second capacitor using a switching means (S1, S2) when said second capacitor has reached its charging voltage.
  6. Switching circuit according to claim 5,
    characterised in that
    the switching means (S1, S2) comprises at least one semiconductor element.
  7. Switching circuit according to claims 1 to 6,
    characterised in that
    the parallel circuit composed of the second capacitor (C1, C2, C1', C2')/first valve (D1, D2, D1', D2') and a first capacitor (C0, C0') is connected in parallel with a second valve (D3, D3').
  8. Switching circuit according to claim 7
    characterised in that
    the second valve is a second diode (D3, D3') or a second diode module.
  9. Electromagnetic source (10) with a switching circuit according to one of the preceding claims.
  10. Lithotripter with an electromagnetic source (10) according to claim 9.
EP03740093A 2002-06-28 2003-06-16 Switching circuit for an electromagnetic source for the generation of acoustic waves Expired - Lifetime EP1517757B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10229112A DE10229112B4 (en) 2002-06-28 2002-06-28 Circuit for an electromagnetic source for generating acoustic waves
DE10229112 2002-06-28
PCT/DE2003/002017 WO2004002635A1 (en) 2002-06-28 2003-06-16 Switching circuit for an electromagnetic source for the generation of acoustic waves

Publications (2)

Publication Number Publication Date
EP1517757A1 EP1517757A1 (en) 2005-03-30
EP1517757B1 true EP1517757B1 (en) 2007-01-17

Family

ID=29795961

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03740093A Expired - Lifetime EP1517757B1 (en) 2002-06-28 2003-06-16 Switching circuit for an electromagnetic source for the generation of acoustic waves

Country Status (6)

Country Link
US (1) US7821871B2 (en)
EP (1) EP1517757B1 (en)
CN (1) CN100448554C (en)
AU (1) AU2003280438A1 (en)
DE (2) DE10229112B4 (en)
WO (1) WO2004002635A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229112B4 (en) * 2002-06-28 2004-07-15 Siemens Ag Circuit for an electromagnetic source for generating acoustic waves
US8630148B2 (en) * 2011-06-02 2014-01-14 Schlumberger Technology Corporation Systems, methods, and apparatus to drive reactive loads
DE102012013534B3 (en) 2012-07-05 2013-09-19 Tobias Sokolowski Apparatus for repetitive nerve stimulation for the degradation of adipose tissue by means of inductive magnetic fields
US10124187B2 (en) * 2015-04-28 2018-11-13 Btl Holdings Limited Combination of radiofrequency and magnetic treatment methods
US9636519B2 (en) 2015-07-01 2017-05-02 Btl Holdings Limited Magnetic stimulation methods and devices for therapeutic treatments
US11491342B2 (en) * 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US9919161B2 (en) * 2015-07-01 2018-03-20 Btl Holdings Limited Method of neural structure stimulation by magnetic field
US20180001107A1 (en) 2016-07-01 2018-01-04 Btl Holdings Limited Aesthetic method of biological structure treatment by magnetic field
US9937358B2 (en) 2015-07-01 2018-04-10 Btl Holdings Limited Aesthetic methods of biological structure treatment by magnetic field
US9974519B1 (en) 2015-07-01 2018-05-22 Btl Holdings Limited Aesthetic method of biologoical structure treatment by magnetic field
US20170106201A1 (en) * 2015-07-01 2017-04-20 Btl Holdings Limited Combination of magnetic and electromagnetic treatment method
US10478633B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10493293B2 (en) 2015-07-01 2019-12-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10549110B1 (en) 2015-07-01 2020-02-04 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478634B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10549109B2 (en) 2015-07-01 2020-02-04 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10569094B2 (en) 2015-07-01 2020-02-25 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695576B2 (en) 2015-07-01 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US10245439B1 (en) 2015-07-01 2019-04-02 Medical Technologies Cz A.S. Aesthetic method of biological structure treatment by magnetic field
US10471269B1 (en) 2015-07-01 2019-11-12 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10569095B1 (en) 2015-07-01 2020-02-25 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10821295B1 (en) 2015-07-01 2020-11-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10709894B2 (en) 2015-07-01 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20170001030A1 (en) * 2015-07-01 2017-01-05 Btl Holdings Limited Magnetic stimulation device and methods
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US10709895B2 (en) 2016-05-10 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11896823B2 (en) 2017-04-04 2024-02-13 Btl Healthcare Technologies A.S. Method and device for pelvic floor tissue treatment
US10039929B1 (en) 2017-04-04 2018-08-07 BLT Holdings Limited Method and device for pelvic floor tissue treatment
CA3116569C (en) 2019-04-11 2023-08-15 Btl Medical Technologies S.R.O. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
CN113496828A (en) * 2020-04-08 2021-10-12 南京南瑞继保电气有限公司 Control method and control circuit of electromagnetic repulsion operating mechanism and operating mechanism
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
KR200498115Y1 (en) 2020-05-04 2024-07-03 비티엘 헬쓰케어 테크놀로지스 에이.에스. Device for cosmetic procedures on patients
EP4415812A1 (en) 2021-10-13 2024-08-21 BTL Medical Solutions a.s. Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE299873C (en) *
DE896172C (en) * 1943-05-13 1953-11-09 Atlas Werke Ag Device for generating pulses, in particular for exciting sound transmitters
DE3328051A1 (en) * 1983-08-03 1985-02-14 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR CONTACTLESS CRUSHING OF CONCRETE
SU1747188A1 (en) * 1990-07-05 1992-07-15 Центральный научно-исследовательский институт судовой электротехники и технологии Method of excitation of acoustic pulse
CN2173592Y (en) * 1992-11-23 1994-08-10 深圳科达电气新技术有限公司 Electromagnetic extracorporeal shock wave generator
DE19814331A1 (en) * 1998-03-31 1999-10-14 Dornier Medtech Holding Int Gmbh Acoustic pulse generator for kidney stone destruction
DE10207737C1 (en) * 2002-02-22 2003-04-17 Siemens Ag Acoustic wave generation circuit has diode or diode module connected in parallel across HV capacitor
DE10229112B4 (en) * 2002-06-28 2004-07-15 Siemens Ag Circuit for an electromagnetic source for generating acoustic waves

Also Published As

Publication number Publication date
CN100448554C (en) 2009-01-07
DE10229112A1 (en) 2004-01-29
US20060152301A1 (en) 2006-07-13
AU2003280438A1 (en) 2004-01-19
EP1517757A1 (en) 2005-03-30
DE10229112B4 (en) 2004-07-15
WO2004002635A1 (en) 2004-01-08
DE50306318D1 (en) 2007-03-08
US7821871B2 (en) 2010-10-26
CN1665607A (en) 2005-09-07

Similar Documents

Publication Publication Date Title
EP1517757B1 (en) Switching circuit for an electromagnetic source for the generation of acoustic waves
DE69402202T2 (en) ELECTROSURGICAL GENERATOR
DE69628514T2 (en) POWER PULSE GENERATOR WITH ENERGY RECOVERY
DE3750541T2 (en) Device for high-frequency generation in tuned resonant circuits.
DE19607704B4 (en) Device for the magnetic excitation of neuro-muscular tissue
DE102007046902A1 (en) Impulse generator for shock-wave therapy device, has capacitors charged by charging units comprising switch such that charging voltages developed at capacitors are partially compensated based on polarity of capacitors by series connection
EP0414317A2 (en) Inverter device
DE2824326C2 (en)
DE3403619C2 (en)
EP1929628A1 (en) Method for generating intense high-voltage pulses for industrial use and corresponding circuit arrangement
EP1705795B1 (en) XRAM generator with opening switch
EP0241736A1 (en) Firing method for a thyristor circuit
DE830522C (en) Circuit for generating a high-frequency power pulse triggered by a control pulse
EP0359863B1 (en) High voltage generator and method for producing a high-voltage pulse with a large current for driving a shock-wave generator
DE10207737C1 (en) Acoustic wave generation circuit has diode or diode module connected in parallel across HV capacitor
DE69012357T2 (en) Power supply circuit and method for powering pulsed gas lasers.
EP3513574B1 (en) Method and circuit for operating a piezoelectric mems sound transducer and integrated circuitry having such a circuit
EP0235389A1 (en) Circuit for the synthetic testing of high-voltage circuit breakers
DE102018214000B4 (en) DC switching device and its use
EP4124310A1 (en) Generator with feedback device
DE3335690C2 (en) Device for generating high-power, high-voltage pulses with a high repetition frequency
EP1184944A2 (en) Excimer laser and method of operating an excimer laser
DE3437953C2 (en)
DE4433224C1 (en) Control circuit for an impulse sound source
DE10065104B4 (en) defibrillator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50306318

Country of ref document: DE

Date of ref document: 20070308

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110630

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110914

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120820

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306318

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630