EP1516072B1 - Part cast from aluminium alloy with high hot strength - Google Patents

Part cast from aluminium alloy with high hot strength Download PDF

Info

Publication number
EP1516072B1
EP1516072B1 EP03760770A EP03760770A EP1516072B1 EP 1516072 B1 EP1516072 B1 EP 1516072B1 EP 03760770 A EP03760770 A EP 03760770A EP 03760770 A EP03760770 A EP 03760770A EP 1516072 B1 EP1516072 B1 EP 1516072B1
Authority
EP
European Patent Office
Prior art keywords
part according
content
alloy
alloys
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03760770A
Other languages
German (de)
French (fr)
Other versions
EP1516072A2 (en
Inventor
Gérard Laslaz
Michel Garat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of EP1516072A2 publication Critical patent/EP1516072A2/en
Application granted granted Critical
Publication of EP1516072B1 publication Critical patent/EP1516072B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the invention relates to molded aluminum alloy parts subjected to high thermal and mechanical stresses, including cylinder heads and crankcases of internal combustion engines, and more particularly turbocharged gasoline or diesel engines. There are also, outside the automobile parts subject to the same types of constraints, for example in the field of mechanics or aeronautics.
  • the first and third alloy-state combinations can be used for heavily loaded cylinder heads.
  • the search continued for an improved compromise between strength and ductility.
  • the patent FR 2690927 in the name of the applicant, filed in 1992, describes creep resistant aluminum alloys containing from 4 to 23% of silicon, at least one of magnesium elements (0.1 - 1%), copper (0.3 - 4.5%) and nickel (0.2 - 3%), and 0.1 to 0.2% titanium, 0.1 to 0.2% zirconium and 0.2 to 0.4 % of vanadium.
  • An improvement in the creep resistance at 300 ° C was observed without significant loss of elongation measured at 250 ° C.
  • the patent EP 1057900 (VAW Aluminum), filed in 1999, is a development in the same way and describes the addition to an Al-Si7Mg0.3Cu0.35 alloy of tightly controlled amounts of iron (0.35 - 0.45%), manganese (0.25 - 0.30%), nickel (0.45 - 0.55%), zinc (0.10 - 0.15) and titanium (0.11 - 0.15%).
  • This alloy exhibits in the T6 and T7 states good creep resistance, high thermal conductivity, satisfactory ductility and good resistance to corrosion.
  • the object of the present invention is to further improve the mechanical strength and the creep resistance of AlSiCuMg alloy castings in the temperature range 250-300 ° C, without degrading their ductility, and avoiding the multiplication of elements. addition that may be problematic for recycling.
  • the object of the invention is a molded part with high mechanical resistance to heat and high resistance to creep alloy composition (% by weight): If: 5 - 11 and preferably 6.5 - 7.5 Fe ⁇ 0.6 and preferably ⁇ 0.3 Mg: 0.15 - 0.6 «» 0.25 - 0.5 Cu: 0.3 - 1.5 «« 0.4 - 0.7 Ti: 0.05 - 0.25 «» 0.08 - 0.20 Zr: 0.05 - 0.25 «« 0.12 - 0.18 Mn ⁇ 0.4 «« 0.1 - 0.3 Zn ⁇ 0.3 « « ⁇ 0,1 Ni ⁇ 0.4 « « ⁇ 0,1 other elements ⁇ 0.10 each and 0.30 in total, remain aluminum.
  • the part is preferably treated by dissolution, quenching and tempering at T6 or T7.
  • the invention is based on the finding by the applicant that adding a small amount of zirconium to a silicon alloy containing less than 1.5% copper and less than 0.6% magnesium, could be obtained on parts moldings treated in the T6 or T7 state, good mechanical strength and good creep resistance in the range 250-300 ° C, without loss of ductility. This result is achieved without having to use elements such as nickel or vanadium that pose problems with recycling. In addition, nickel has the disadvantage of reducing the ductility of the part.
  • the alloy contains from 5 to 11% silicon, and preferably from 6.5 to 7.5%.
  • the iron is maintained below 0.6%, and preferably below 0.3%, which means that it may be first or second fusion alloys, with a preference for the first one. melting when a high elongation at break is desired.
  • Magnesium is a common addition element for cylinder head alloys; at a content of at least 0.15%, and in combination with copper, it improves the mechanical properties at 20 and 250 ° C. Beyond 0.6%, there is a risk of reducing the ductility at room temperature.
  • manganese also has a positive effect on mechanical strength at 250 ° C, but this effect peaks above a content of 0.4%.
  • Titanium contributes to the refining of the primary grain during solidification, but, in the case of the alloys according to the invention, it also contributes, in connection with zirconium, to the formation, during the dissolution of the piece molded, very fine dispersoids ( ⁇ 1 ⁇ m) AlSiZrTi located at the heart of the solid solution ⁇ -Al which are stable above 300 ° C, unlike phases Al 2 CuMg, AlCuMgSi, Mg 2 Si and Al 2 Cu which coalesce from 150 ° C.
  • dispersoid phases are not embrittling, unlike the large AlSiFe and AlSiMnFe iron phases (20 to 100 ⁇ m), as well as the nickel phases, which are formed during casting in the interdendritic spaces.
  • the parts are made by the usual molding processes, including gravity mold casting and low pressure casting for the cylinder heads, but also sand casting, squeeze casting (especially in the case of composite insertion) and lost foam molding.
  • the heat treatment comprises a dissolution typically of 3 to 10 h at a temperature of between 500 and 545 ° C, a quench preferably with cold water, a quench between tempering and income of 4 to 16 h, and an income from 4 to 10 h at a temperature between 150 and 240 ° C.
  • the temperature and the duration of the income are adjusted to obtain either an income at the peak of mechanical strength (T6) or an over-income (T7).
  • the parts according to the invention exhibit both high mechanical strength, good ductility, higher mechanical strength and creep resistance than pieces of the prior art.
  • compositions were measured by spark emission spectrometry, except for Cu and Zr which were measured by induced plasma emission spectrometry.
  • the alloy C with zirconium addition has a significantly improved creep behavior, the deformation under constant load being reduced, as the case may be, from 40 to 75%.
  • the tensile strength and the yield strength increase when the Cu and Mg contents increase, but also that the elongation is not affected.
  • the increase of 0.3 to 0.4% in the Mg content has a very favorable effect on the tensile strength and the yield strength, in particular for the alloy with the highest copper content (H ).
  • test pieces of 6 alloys 1 to N were prepared, the composition of which is shown in Table 6: Table 6 Alloy Yes Cu mg mn Zr Ti I 7 0.5 0.3 - 0.14 0.12 J 7 0.5 0.3 0.15 0.14 0.12 K 7 1 0.3 - 0.14 0.12 The 7 1 0.3 0.15 0.14 0.12 M 7 1 0.3 0.25 0.14 0.12 NOT 7 1 0.5 0.25 0.14 0.12

Abstract

Cast part with high creep resistance, made of an alloy with a composition comprising (% by weight): Si: 5-11 Fe<0.6 Mg: 0.15-0.6 Cu: 0.3-1.5 Ti: 0.05-0.25 Zr: 0.05-0.25 Mn<0.4 Zn<0.3 Ni<0.4 other elements<0.10 each and 0.30 total, remainder aluminium.

Description

Domaine de l'inventionField of the invention

L'invention concerne les pièces moulées en alliage d'aluminium soumises à des contraintes thermiques et mécaniques élevées, notamment les culasses et les carters de moteurs à combustion interne, et plus particulièrement de moteurs turbochargés à essence ou diesel. On trouve également, en dehors de l'automobile des pièces soumises aux mêmes types de contraintes, par exemple dans le domaine de la mécanique ou de l'aéronautique.The invention relates to molded aluminum alloy parts subjected to high thermal and mechanical stresses, including cylinder heads and crankcases of internal combustion engines, and more particularly turbocharged gasoline or diesel engines. There are also, outside the automobile parts subject to the same types of constraints, for example in the field of mechanics or aeronautics.

Etat de la techniqueState of the art

Dans la fabrication des culasses de moteurs, on utilise habituellement deux familles d'alliages d'aluminium :

  1. 1) les alliages contenant de 5 à 9% de silicium, de 3 à 4% de cuivre et du magnésium. Il s'agit le plus souvent d'alliages de seconde fusion, avec des teneurs en fer comprises entre 0,5 et 1%, et des teneurs en impuretés, notamment en manganèse, zinc, plomb, étain ou nickel, assez élevées. Ces alliages sont généralement utilisés sans traitement thermique (état F) ou simplement stabilisés (état T5). Ils sont plutôt destinés à la fabrication de culasses de moteurs à essence assez peu sollicités thermiquement. Pour les pièces plus sollicitées destinées aux moteurs diesel ou turbo-diesel, on utilise des alliages de première fusion, avec une teneur en fer inférieure à 0,3%, traités thermiquement à l'état T6 (revenu au pic de résistance mécanique) ou T7 (sur-revenu).
  2. 2) Les alliages de première fusion contenant de 7 à 10% de silicium et du magnésium, traités à l'état T6 ou T7, pour les pièces les plus sollicitées comme celles destinées aux moteurs turbo-diesel.
In the manufacture of engine cylinder heads, two families of aluminum alloys are usually used:
  1. 1) alloys containing 5 to 9% silicon, 3 to 4% copper and magnesium. It is most often secondary alloys, with iron contents between 0.5 and 1%, and levels of impurities, including manganese, zinc, lead, tin or nickel, quite high. These alloys are generally used without heat treatment (state F) or simply stabilized (state T5). They are rather intended for the manufacture of cylinder heads of gasoline engines with little thermal stress. For more stressed parts for diesel or turbo-diesel engines, primary alloys with an iron content of less than 0.3% are used, heat treated in the T6 state (at peak strength) or T7 (over-income).
  2. 2) Primary alloys containing 7 to 10% silicon and magnesium, treated in the T6 or T7 state, for the most stressed parts such as those intended for turbo-diesel engines.

Ces deux grandes familles d'alliages conduisent à des compromis différents entre les diverses propriétés d'emploi : résistance mécanique, ductilité, tenue au fluage et à la fatigue. Cette problématique a été décrite par exemple dans l'article de R. Chuimert et M. Garat : « Choix d'alliages d'aluminium de moulage pour culasses Diesel fortement sollicitées », paru dans la Revue SIA de mars 1990 . Cet article résume ainsi les propriétés de 3 alliages étudiés :

  • Al-Si5Cu3MgFe0,15 T7 : bonne résistance - bonne ductilité
  • Al-Si5Cu3MgFe0,7 F : bonne résistance - faible ductilité
  • Al-Si7Mg0,3Fe0,15 T6 : faible résistance - extrême ductilité
These two major families of alloys lead to different compromises between the various properties of use: mechanical strength, ductility, creep and fatigue resistance. This problem has been described for example in the article of R. Chuimert and M. Garat: "Choice of Heavy Duty Cast Aluminum Casting Aluminum Alloys", published in the March 1990 SIA Review . This article summarizes the properties of 3 alloys studied:
  • Al-Si5Cu3MgFe0,15 T7: good resistance - good ductility
  • Al-Si5Cu3MgFe0.7 F: good strength - low ductility
  • Al-Si7Mg0.3Fe0.15 T6: low strength - extreme ductility

La première et la troisième combinaison alliage-état peuvent être utilisées pour les culasses fortement sollicitées. Cependant, on a continué à rechercher un compromis amélioré entre résistance et ductilité. Le brevet FR 2690927 au nom de la demanderesse, déposé en 1992, décrit des alliages d'aluminium résistant au fluage contenant de 4 à 23% de silicium, au moins l'un des éléments magnésium (0,1 - 1%), cuivre (0,3 - 4,5%) et nickel (0,2 - 3%), et de 0,1 à 0,2% de titane, de 0,1 à 0,2% de zirconium et de 0,2 à 0,4% de vanadium. On observe une amélioration de la tenue au fluage à 300°C sans perte notable de l'allongement mesuré à 250°C.The first and third alloy-state combinations can be used for heavily loaded cylinder heads. However, the search continued for an improved compromise between strength and ductility. The patent FR 2690927 in the name of the applicant, filed in 1992, describes creep resistant aluminum alloys containing from 4 to 23% of silicon, at least one of magnesium elements (0.1 - 1%), copper (0.3 - 4.5%) and nickel (0.2 - 3%), and 0.1 to 0.2% titanium, 0.1 to 0.2% zirconium and 0.2 to 0.4 % of vanadium. An improvement in the creep resistance at 300 ° C was observed without significant loss of elongation measured at 250 ° C.

L'article de F. J. Feikus « Optimization of Al-Si cast alloys for cylinder head applications » AFS Transactions 98-61, pp. 225-231, étudie l'ajout de 0,5% et 1% de cuivre à un alliage AlSi7Mg0,3 pour la fabrication de culasses de moteurs à combustion interne. Après un traitement T6 classique comportant une mise en solution de 5 h à 525°C, suivi d'une trempe à l'eau froide et d'un revenu de 4 h à 165°C, il n'observe aucun gain en limite d'élasticité, ni en dureté à température ambiante, mais à des températures d'utilisation au delà de 150°C, l'ajout de cuivre apporte un gain significatif de limite d'élasticité et de résistance au fluage.The article by F. J. Feikus "Optimization of Al-Si cast alloys for cylinder head applications" AFS Transactions 98-61, pp. 225-231, studies the addition of 0.5% and 1% copper to an alloy AlSi7Mg0.3 for the manufacture of cylinder heads of internal combustion engines. After a conventional T6 treatment comprising a dissolution of 5 h at 525 ° C., followed by quenching with cold water and a 4 hour yield at 165 ° C., it does not observe any gain in limiting the temperature. elasticity, neither in hardness at room temperature, but at operating temperatures above 150 ° C, the addition of copper brings a significant gain in yield strength and creep resistance.

Le brevet EP 1057900 (VAW Aluminium), déposé en 1999, est un développement dans la même voie et décrit l'ajout à un alliage Al-Si7Mg0,3Cu0,35 de quantités étroitement contrôlées de fer (0,35 - 0,45%), de manganèse (0,25 - 0,30%), de nickel (0,45 - 0,55%), de zinc (0,10 - 0,15) et de titane (0,11 - 0,15%). Cet alliage présente aux états T6 et T7 une bonne résistance au fluage, une conductivité thermique élevée, une ductilité satisfaisante et une bonne tenue à la corrosion.The patent EP 1057900 (VAW Aluminum), filed in 1999, is a development in the same way and describes the addition to an Al-Si7Mg0.3Cu0.35 alloy of tightly controlled amounts of iron (0.35 - 0.45%), manganese (0.25 - 0.30%), nickel (0.45 - 0.55%), zinc (0.10 - 0.15) and titanium (0.11 - 0.15%). This alloy exhibits in the T6 and T7 states good creep resistance, high thermal conductivity, satisfactory ductility and good resistance to corrosion.

Le but de la présente invention est d'améliorer encore la résistance mécanique et la tenue au fluage des pièces moulées en alliages du type AlSiCuMg dans le domaine de température 250-300°C, sans dégrader leur ductilité, et en évitant la multiplication des éléments d'addition qui peuvent poser problème au recyclage.The object of the present invention is to further improve the mechanical strength and the creep resistance of AlSiCuMg alloy castings in the temperature range 250-300 ° C, without degrading their ductility, and avoiding the multiplication of elements. addition that may be problematic for recycling.

Objet de l'inventionObject of the invention

L'objet de l'invention est une pièce moulée à haute résistance mécanique à chaud et haute résistance au fluage en alliage de composition (% en poids) : Si : 5 - 11 et de préférence 6,5 - 7,5 Fe < 0,6 et de préférence < 0,3 Mg : 0,15 - 0,6 «    « 0,25 - 0,5 Cu: 0,3 - 1,5 «    « 0,4 - 0,7 Ti : 0,05 - 0,25 «    « 0,08 - 0,20 Zr: 0,05 - 0,25 «    « 0,12 - 0,18 Mn < 0,4 «    « 0,1 - 0,3 Zn < 0,3 «    « < 0,1 Ni < 0,4 «    « < 0,1 autres éléments < 0,10 chacun et 0,30 au total, reste aluminium.The object of the invention is a molded part with high mechanical resistance to heat and high resistance to creep alloy composition (% by weight): If: 5 - 11 and preferably 6.5 - 7.5 Fe <0.6 and preferably <0.3 Mg: 0.15 - 0.6 «« 0.25 - 0.5 Cu: 0.3 - 1.5 «« 0.4 - 0.7 Ti: 0.05 - 0.25 «« 0.08 - 0.20 Zr: 0.05 - 0.25 «« 0.12 - 0.18 Mn <0.4 «« 0.1 - 0.3 Zn <0.3 «« <0,1 Ni <0.4 «« <0,1 other elements <0.10 each and 0.30 in total, remain aluminum.

La pièce est, de préférence, traitée par mise en solution, trempe et revenu à l'état T6 ou T7.The part is preferably treated by dissolution, quenching and tempering at T6 or T7.

Description de l'inventionDescription of the invention

L'invention repose sur la constatation par la demanderesse qu'en ajoutant une faible quantité de zirconium à un alliage au silicium contenant moins de 1,5% de cuivre et moins de 0,6% de magnésium, on pouvait obtenir, sur des pièces moulées traitées à l'état T6 ou T7, une bonne résistance mécanique et une bonne tenue au fluage dans le domaine 250-300°C, sans perte de ductilité. Ce résultat est obtenu sans avoir à utiliser des éléments comme le nickel ou le vanadium qui posent des problèmes au recyclage. De plus, le nickel a l'inconvénient de réduire la ductilité de la pièce.The invention is based on the finding by the applicant that adding a small amount of zirconium to a silicon alloy containing less than 1.5% copper and less than 0.6% magnesium, could be obtained on parts moldings treated in the T6 or T7 state, good mechanical strength and good creep resistance in the range 250-300 ° C, without loss of ductility. This result is achieved without having to use elements such as nickel or vanadium that pose problems with recycling. In addition, nickel has the disadvantage of reducing the ductility of the part.

Comme la plus grande partie des alliages destinés à la fabrication des culasses de moteurs, l'alliage contient de 5 à 11% de silicium, et de préférence de 6,5 à 7,5%. Le fer est maintenu en dessous de 0,6%, et de préférence en dessous de 0,3%, ce qui veut dire qu'il peut s'agir d'alliages de première ou de deuxième fusion, avec une préférence pour la première fusion lorsqu'on souhaite un allongement à la rupture élevé.Like most of the alloys for the manufacture of motor cylinder heads, the alloy contains from 5 to 11% silicon, and preferably from 6.5 to 7.5%. The iron is maintained below 0.6%, and preferably below 0.3%, which means that it may be first or second fusion alloys, with a preference for the first one. melting when a high elongation at break is desired.

Le magnésium est un élément d'addition habituel des alliages pour culasses ; à une teneur d'au moins 0,15%, et en association avec le cuivre, il permet d'améliorer les propriétés mécaniques à 20 et 250°C. Au-delà de 0,6%, on risque de réduire la ductilité à température ambiante.Magnesium is a common addition element for cylinder head alloys; at a content of at least 0.15%, and in combination with copper, it improves the mechanical properties at 20 and 250 ° C. Beyond 0.6%, there is a risk of reducing the ductility at room temperature.

L'addition de 0,3 à 1,5%, et de préférence de 0,4 à 0,7%, de cuivre permet d'améliorer la résistance mécanique sans affecter la résistance à la corrosion. De plus, la demanderesse a constaté que, dans ces limites, la ductilité et la résistance à chaud des pièces à l'état T6 ou T7 n'étaient pas abaissées. De plus, il est apparu, de manière surprenante, que, lorsque les teneurs en % en Cu et Mg augmentent conjointement dans les limites indiquées précédemment en suivant la condition : 0,3Cu + 0,18 < Mg < 0,6, on améliore de manière significative la résistance mécanique à chaud et la tenue au fluage à 250°C.The addition of 0.3 to 1.5%, and preferably 0.4 to 0.7%, of copper makes it possible to improve the mechanical strength without affecting the corrosion resistance. In addition, the Applicant has found that, within these limits, the ductility and the hot resistance of the parts in the T6 or T7 state were not lowered. In addition, it has been found, surprisingly, that when the Cu and Mg% contents increase together within the limits indicated above by following the condition: 0.3Cu + 0.18 <Mg <0.6, we improve significantly heat resistance and creep resistance at 250 ° C.

A une teneur de plus de 0,1%, le manganèse a, lui aussi, un effet positif sur la résistance mécanique à 250°C, mais cet effet plafonne au-delà d'une teneur de 0,4%.At a level of more than 0.1%, manganese also has a positive effect on mechanical strength at 250 ° C, but this effect peaks above a content of 0.4%.

La teneur en titane est maintenue entre 0,05 et 0,25%, ce qui est assez habituel pour ce type d'alliage. Le titane contribue à l'affinage du grain primaire lors de la solidification, mais, dans le cas des alliages selon l'invention, il contribue aussi, en liaison avec le zirconium, à la formation, lors de la mise en solution de la pièce moulée, de dispersoïdes très fins (< 1 µm) AlSiZrTi situés à coeur de la solution solide α-Al qui sont stables au-delà de 300°C, contrairement aux phases Al2CuMg, AlCuMgSi, Mg2Si et Al2Cu qui coalescent à partir de 150°C.The titanium content is maintained between 0.05 and 0.25%, which is quite usual for this type of alloy. Titanium contributes to the refining of the primary grain during solidification, but, in the case of the alloys according to the invention, it also contributes, in connection with zirconium, to the formation, during the dissolution of the piece molded, very fine dispersoids (<1 μm) AlSiZrTi located at the heart of the solid solution α-Al which are stable above 300 ° C, unlike phases Al 2 CuMg, AlCuMgSi, Mg 2 Si and Al 2 Cu which coalesce from 150 ° C.

Ces phases de dispersoïdes ne sont pas fragilisantes contrairement aux phases au fer AlSiFe et AlSiMnFe de taille importante (20 à 100 µm), ainsi qu'aux phases au nickel, qui se forment à la coulée dans les espaces interdendritiques.These dispersoid phases are not embrittling, unlike the large AlSiFe and AlSiMnFe iron phases (20 to 100 μm), as well as the nickel phases, which are formed during casting in the interdendritic spaces.

Les pièces sont fabriquées par les procédés habituels de moulage, notamment le moulage en coquille par gravité et le moulage basse pression pour les culasses, mais également le moulage au sable, le squeeze casting (en particulier dans le cas d'insertion de composites) et le moulage à mousse perdue (lost foam).The parts are made by the usual molding processes, including gravity mold casting and low pressure casting for the cylinder heads, but also sand casting, squeeze casting (especially in the case of composite insertion) and lost foam molding.

Le traitement thermique comporte une mise en solution typiquement de 3 à 10 h à une température comprise entre 500 et 545°C, une trempe de préférence à l'eau froide, une attente entre trempe et revenu de 4 à 16 h, et un revenu de 4 à 10 h à une température comprise entre 150 et 240°C. La température et la durée du revenu sont ajustées de manière à obtenir, soit un revenu au pic de résistance mécanique (T6), soit un sur-revenu (T7).The heat treatment comprises a dissolution typically of 3 to 10 h at a temperature of between 500 and 545 ° C, a quench preferably with cold water, a quench between tempering and income of 4 to 16 h, and an income from 4 to 10 h at a temperature between 150 and 240 ° C. The temperature and the duration of the income are adjusted to obtain either an income at the peak of mechanical strength (T6) or an over-income (T7).

Les pièces selon l'invention, et notamment les culasses et les carters de moteur d'automobile ou d'avion, présentent à la fois une résistance mécanique élevée, une bonne ductilité, une résistance mécanique à chaud et une résistance au fluage supérieures à celles des pièces de l'art antérieur.The parts according to the invention, and in particular the cylinder heads and crankcases of an automobile or aircraft, exhibit both high mechanical strength, good ductility, higher mechanical strength and creep resistance than pieces of the prior art.

Exemplesexamples Exemple 1Example 1

On a élaboré dans le creuset en carbure de silicium d'un four électrique 100 kg d'alliage A de composition (% en poids) :

  • Si=7,10 Fe=0,15 Mg=0,37 Ti=0,14 Sr=170 ppm
100 kg d'alliage B de même composition avec une addition complémentaire de 0,49% de cuivre
100 kg d'alliage C de même composition que B avec une addition complémentaire de 0,14% de zirconium.In the silicon carbide crucible of an electric furnace, 100 kg of alloy A of composition (% by weight) were produced:
  • Si = 7.10 Fe = 0.15 Mg = 0.37 Ti = 0.14 Sr = 170 ppm
100 kg of alloy B of the same composition with a supplementary addition of 0.49% of copper
100 kg of alloy C of the same composition as B with a complementary addition of 0.14% zirconium.

Ces compositions ont été mesurées par spectrométrie d'émission par étincelle, sauf pour Cu et Zr qui ont été mesurés par spectrométrie d'émission à plasma induit.These compositions were measured by spark emission spectrometry, except for Cu and Zr which were measured by induced plasma emission spectrometry.

On a coulé 50 éprouvettes coquille de traction AFNOR de chaque alliage. Ces éprouvettes ont été soumises à un traitement thermique comportant une mise en solution de 10 h à 540°C, précédée pour les alliages au cuivre B et C d'un palier de 4 h à 500°C pour éviter la brûlure, une trempe à l'eau froide, une maturation à la température ambiante de 24 h et un revenu de 5 h à 200°C.50 AFNOR tensile shell specimens of each alloy were cast. These specimens were subjected to a heat treatment comprising a dissolution of 10 h at 540 ° C, preceded for copper alloys B and C by a 4 hour step at 500 ° C to avoid burns, a quenching. cold water, ripening at room temperature for 24 h and 5 h at 200 ° C.

A partir de ces éprouvettes, on a usiné des éprouvettes de traction et des éprouvettes de fluage de manière à mesurer les caractéristiques mécaniques (résistance à la rupture Rm en MPa, limite d'élasticité Rp0,2 en MPa et allongement à la rupture A en %) à la température ambiante, à 250°C et à 300°C. Les résultats sont indiqués au tableau 1 : Tableau 1 Rm Rp0,2 A Rm Rp0,2 A Rm Rp0,2 A Temp. Amb. Amb. Amb. 250°C 250°C 250°C 300°C 300°C 300°C A 299 257 9,9 61 55 34,5 43 40 34,5 B 327 275 9,8 73 66 34,5 44 40 34,6 C 324 270 9,8 68 63 34,5 45 42 35,0 From these specimens, tensile specimens and creep specimens were machined to measure the mechanical properties (tensile strength R m in MPa, yield strength R p0,2 in MPa and elongation at break A%) at room temperature, 250 ° C and 300 ° C. The results are shown in Table 1: Table 1 R m R p0,2 AT R m R p0,2 AT R m R p0,2 AT Temp. Amb. Amb. Amb. 250 ° C 250 ° C 250 ° C 300 ° C 300 ° C 300 ° C AT 299 257 9.9 61 55 34.5 43 40 34.5 B 327 275 9.8 73 66 34.5 44 40 34.6 VS 324 270 9.8 68 63 34.5 45 42 35.0

On constate que l'addition de cuivre à l'alliage A est favorable à la résistance mécanique, aussi bien à froid qu'à chaud, sans modifier l'allongement, et que l'addition de zirconium à B est pratiquement sans influence sur les caractéristiques mécaniques.It is found that the addition of copper to the alloy A is favorable to the mechanical strength, both cold and hot, without modifying the elongation, and that the addition of zirconium to B is practically without influence on the mechanical characteristics.

On a mesuré ensuite sur les éprouvettes de fluage, pour les alliages B et C, l'allongement (en %) après 100 h à 250°C et 300°C sous différents niveaux de contrainte (en MPa). Les résultats sont indiqués au tableau 2 : Tableau 2 Température (°C) 250 250 300 Contrainte (MPa) 45 40 22 A (%) alliage B 2,43 0,134 0,136 A(%) alliage C 0,609 0,079 0,084 The elongation (in%) after 100 h at 250 ° C. and 300 ° C. under different stress levels (in MPa) was then measured on the creep specimens, for alloys B and C. The results are shown in Table 2: Table 2 Temperature (° C) 250 250 300 Constraint (MPa) 45 40 22 A (%) alloy B 2.43 0.134 0,136 A (%) alloy C 0.609 0.079 0.084

On constate qu'à température et contrainte identiques, l'alliage C avec addition de zirconium présente un comportement au fluage nettement amélioré, la déformation sous charge constante étant réduite, selon le cas, de 40 à 75%.It is found that at identical temperature and stress, the alloy C with zirconium addition has a significantly improved creep behavior, the deformation under constant load being reduced, as the case may be, from 40 to 75%.

Exemple 2Example 2

On a préparé, dans les mêmes conditions que pour l'alliage C de l'exemple 1, 10 éprouvettes de chacun des 5 alliages D à H en faisant varier la teneur en cuivre et en magnésium à l'intérieur des limites de composition préférentielles mentionnées plus haut. Les compositions des alliages sont indiquées au tableau 3 : Tableau 3 Alliage Si Cu Mg Zr Ti D 7,1 0,4 0,3 0,14 0,12 E 7,1 0,4 0,4 0,14 0,12 F 7,1 0,5 0,35 0,14 0,12 G 7,1 0,65 0,3 0,14 0,12 H 7,1 0,65 0,4 0,14 0,12 Under the same conditions as for the alloy C of Example 1, 10 test pieces of each of the 5 alloys D to H were prepared by varying the content of copper and magnesium within the aforementioned preferential composition limits. upper. The compositions of the alloys are shown in Table 3: Table 3 Alloy Yes Cu mg Zr Ti D 7.1 0.4 0.3 0.14 0.12 E 7.1 0.4 0.4 0.14 0.12 F 7.1 0.5 0.35 0.14 0.12 BOY WUT 7.1 0.65 0.3 0.14 0.12 H 7.1 0.65 0.4 0.14 0.12

On a mesuré de la même manière les caractéristiques mécaniques à 20°C et 250°C. Les résultats, correspondant à la moyenne des valeurs obtenues sur les éprouvettes de chaque alliage, sont indiqués au tableau 4 : Tableau 4 Alliage Rm (MPa) R0,2(MPa) A (%) Rm(MPa) R0,2(MPa) A (%) 20°C 20°C 20°C 250°C 250°C 250°C D 301 250 8,9 69 60 44,5 E 325 282 7,6 77 66 36,3 F 320 271 8,7 74 63 41,5 G 315 259 9,1 71 60 45,2 H 339 291 8,7 81 69 39,6 The mechanical characteristics at 20 ° C and 250 ° C were measured in the same manner. The results, corresponding to the average of the values obtained on the test pieces of each alloy, are shown in Table 4: Table 4 Alloy R m (MPa) R 0.2 (MPa) AT (%) R m (MPa) R 0.2 (MPa) AT (%) 20 ° C 20 ° C 20 ° C 250 ° C 250 ° C 250 ° C D 301 250 8.9 69 60 44.5 E 325 282 7.6 77 66 36.3 F 320 271 8.7 74 63 41.5 BOY WUT 315 259 9.1 71 60 45.2 H 339 291 8.7 81 69 39.6

On constate que, dans les limites de composition testées, la résistance à la rupture et la limite élastique augmentent lorsque les teneurs en Cu et Mg augmentent, mais aussi que l'allongement est peu affecté. A 250°C, l'augmentation de 0,3 à 0,4% de la teneur en Mg a un effet très favorable sur la résistance à la rupture et la limite élastique, notamment pour l'alliage le plus chargé en cuivre (H).It is found that, within the composition limits tested, the tensile strength and the yield strength increase when the Cu and Mg contents increase, but also that the elongation is not affected. At 250 ° C., the increase of 0.3 to 0.4% in the Mg content has a very favorable effect on the tensile strength and the yield strength, in particular for the alloy with the highest copper content (H ).

D'autre part, à teneur en cuivre égale, l'augmentation de 0,3 à 0,4% de la teneur en magnésium améliore la résistance au fluage à 250°C, comme le montrent les résultats des essais de fluage sous contrainte de 40 MPa après 100, 200 et 300 h pour les alliages G et H, comme indiqué au tableau 5 : Tableau 5 Durée 100 h 200 h 300 h ε (%) G 0,098 0,48 1,20 ε (%) H 0,078 0,18 0,31 On the other hand, with an equal copper content, the increase of 0.3 to 0.4% of the magnesium content improves the creep resistance at 250 ° C, as shown by the results of the stress creep tests. 40 MPa after 100, 200 and 300 h for G and H alloys, as shown in Table 5: Table 5 duration 100 h 200 h 300 h ε (%) G 0.098 0.48 1.20 ε (%) H 0.078 0.18 0.31

Exemple 3Example 3

On a préparé, de la même manière que pour l'alliage C de l'exemple 1, des éprouvettes des 6 alliages 1 à N dont la composition est indiquée au tableau 6 : Tableau 6 Alliage Si Cu Mg Mn Zr Ti I 7 0,5 0,3 - 0,14 0,12 J 7 0,5 0,3 0,15 0,14 0,12 K 7 1 0,3 - 0,14 0,12 L 7 1 0,3 0,15 0,14 0,12 M 7 1 0,3 0,25 0,14 0,12 N 7 1 0,5 0,25 0,14 0,12 In the same way as for alloy C of Example 1, test pieces of 6 alloys 1 to N were prepared, the composition of which is shown in Table 6: Table 6 Alloy Yes Cu mg mn Zr Ti I 7 0.5 0.3 - 0.14 0.12 J 7 0.5 0.3 0.15 0.14 0.12 K 7 1 0.3 - 0.14 0.12 The 7 1 0.3 0.15 0.14 0.12 M 7 1 0.3 0.25 0.14 0.12 NOT 7 1 0.5 0.25 0.14 0.12

On a mesuré les caractéristiques mécaniques à 250°C et les résultats sont indiqués au tableau 7 : Tableau 7 Alliage Rm (MPa) R0,2 (MPa) A (%) I 73 62 45 J 76 65 37 K 70 59 46 L 77 62 47 M 77 62 46 N 90 75 33 The mechanical characteristics were measured at 250 ° C. and the results are shown in Table 7: Table 7 Alloy R m (MPa) R 0.2 (MPa) AT (%) I 73 62 45 J 76 65 37 K 70 59 46 The 77 62 47 M 77 62 46 NOT 90 75 33

On constate que l'addition de 0,1 à 0,3% de manganèse augmente d'au moins 5% la résistance mécanique à 250°C. Il n'y a pas, par contre, d'augmentation entre 0,15 et 0,25%. Enfin, pour l'alliage N à cuivre élevé, l'augmentation de la teneur en magnésium de 0,3 à 0,5% conduit à une augmentation spectaculaire et inexpliquée de la résistance mécanique à chaud.It is found that the addition of 0.1 to 0.3% of manganese increases by at least 5% the strength at 250 ° C. On the other hand, there is no increase between 0.15 and 0.25%. Finally, for the high copper N alloy, the increase in magnesium content from 0.3 to 0.5% leads to a spectacular and unexplained increase in the mechanical strength when hot.

Claims (13)

  1. Cast part with high creep resistance, made of an alloy with composition (% by weight):
    Si: 5 - 11
    Fe < 0.6
    Mg: 0.15 - 0.6
    Cu: 0.3 - 1.5
    Ti: 0.05 - 0.25
    Zr: 0.05 - 0.25
    Mn < 0.4
    Zn < 0.3
    Ni < 0.4
    other elements < 0.10 each and 0.30 total, remainder aluminium.
  2. Part according to claim 1, characterised in that its silicon content is between 6.5 and 7.5%.
  3. Part according to either claim 1 or 2, characterised in that its iron content is less than 0.3%.
  4. Part according to one of claims 1 to 3, characterised in that its copper content is between 0.4 and 0.7%.
  5. Part according to one of claims 1 to 4, characterised in that its magnesium content is between 0.25 and 0.5%.
  6. Part according to one of claims 1 to 4, characterised in that the contents of magnesium and copper in % are such that 0.3Cu + 0.18 < Mg < 0.6.
  7. Part according to one of claims 1 to 6, characterised in that its titanium content is between 0.08 and 0.20%.
  8. Part according to one of claims 1 to 7, characterised in that its zirconium content is between 0.12 and 0.18%.
  9. Part according to one of claims 1 to 8, characterised in that its manganese content is between 0.1 and 0.3%.
  10. Part according to one of claims 1 to 9, characterised in that its zinc content is less than 0.1%.
  11. Part according to one of claims 1 to 10, characterised in that its nickel content is less than 0.1%.
  12. Part according to one of claims 1 to 11, characterised in that it is solution heat treated, quenched and tempered to T6 or T7.
  13. Part according to one of claims 1 to 12, characterised in that it is a cylinder head or a crankcase of an automobile or aircraft engine.
EP03760770A 2002-06-25 2003-06-23 Part cast from aluminium alloy with high hot strength Expired - Lifetime EP1516072B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0207873A FR2841164B1 (en) 2002-06-25 2002-06-25 ALLOY MOLDING WITH HIGH FLUID RESISTANCE
FR0207873 2002-06-25
PCT/FR2003/001916 WO2004001079A2 (en) 2002-06-25 2003-06-23 Part cast from aluminium alloy with high hot strength

Publications (2)

Publication Number Publication Date
EP1516072A2 EP1516072A2 (en) 2005-03-23
EP1516072B1 true EP1516072B1 (en) 2008-05-07

Family

ID=29720036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03760770A Expired - Lifetime EP1516072B1 (en) 2002-06-25 2003-06-23 Part cast from aluminium alloy with high hot strength

Country Status (11)

Country Link
US (1) US20050224145A1 (en)
EP (1) EP1516072B1 (en)
JP (1) JP2005530927A (en)
AT (1) ATE394513T1 (en)
AU (1) AU2003255687B2 (en)
CA (1) CA2489349C (en)
DE (1) DE60320790D1 (en)
ES (1) ES2305507T3 (en)
FR (1) FR2841164B1 (en)
NO (1) NO339371B1 (en)
WO (1) WO2004001079A2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857378B1 (en) * 2003-07-10 2005-08-26 Pechiney Aluminium HIGH-RESISTANCE ALUMINUM ALLOY-MOLDED MOLDED PIECE
DE102005037738B4 (en) * 2005-08-10 2009-03-05 Daimler Ag Aluminum casting alloy with high dynamic strength and thermal conductivity
US20100163137A1 (en) * 2005-08-31 2010-07-01 Ksm Castings Gmbh Aluminum Casting Alloys
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
DE102006032699B4 (en) * 2006-07-14 2010-09-09 Bdw Technologies Gmbh & Co. Kg Aluminum alloy and its use for a cast component, in particular a motor vehicle
DE102006059899A1 (en) * 2006-12-19 2008-06-26 Bayerische Motoren Werke Ag High temperature resistant aluminum casting alloy for use in engine core construction units, ingot pouring, engine block, cylinder head, crankcase and in automotive industry, consists of various metals
DE102007012423A1 (en) * 2007-03-15 2008-09-18 Bayerische Motoren Werke Aktiengesellschaft Cast aluminum alloy
JP5344527B2 (en) * 2007-03-30 2013-11-20 株式会社豊田中央研究所 Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JP5300118B2 (en) 2007-07-06 2013-09-25 日産自動車株式会社 Aluminum alloy casting manufacturing method
WO2009059591A2 (en) 2007-11-08 2009-05-14 Ksm Castings Gmbh Front axle carrier for motor vehicles
WO2009059593A2 (en) * 2007-11-08 2009-05-14 Ksm Castings Gmbh CAST Al/Si ALLOYS
DE102008024531A1 (en) 2008-05-21 2009-11-26 Bayerische Motoren Werke Aktiengesellschaft Aluminum cast alloy used for cylinder heads, pistons of combustion engines, crank housings or engine blocks contains alloying additions of silicon, magnesium, titanium and vanadium
FR2934607B1 (en) 2008-07-30 2011-04-29 Alcan Int Ltd ALUMINUM ALLOY MOLDED PART WITH HIGH FATIGUE AND HOT FLUID RESISTANCE
CN102470433B (en) 2009-07-07 2016-02-24 Ksm铸造集团有限公司 For the equipment cast and method
EP2683842A2 (en) * 2011-03-09 2014-01-15 KSM Castings Group GmbH Chassis part, in particular junction element or sub-frame
US10174409B2 (en) * 2011-10-28 2019-01-08 Alcoa Usa Corp. High performance AlSiMgCu casting alloy
KR101326884B1 (en) 2011-11-16 2013-11-11 현대자동차주식회사 Multi-layer type cylinder head and manufacturing method therefor
US9284636B1 (en) * 2011-12-21 2016-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Impact toughness and heat treatment for cast aluminum
EP2811041B1 (en) * 2012-02-01 2016-07-06 UACJ Corporation Aluminum alloy having excellent wear resistance, extrudability, and forging workability
DE102013002632B4 (en) * 2012-02-16 2015-05-07 Audi Ag Aluminum-silicon diecasting alloy and method of making a die cast component
EP2700727B1 (en) 2012-08-23 2014-12-17 KSM Castings Group GmbH Al casting alloy
WO2014121785A1 (en) 2013-02-06 2014-08-14 Ksm Castings Group Gmbh Aluminium casting alloy
CN103484732B (en) * 2013-09-16 2016-12-07 重庆通用工业(集团)有限责任公司 A kind of centrifugal refrigeration compressor impeller alloy material and preparation method thereof
EP2865772B1 (en) * 2013-10-23 2016-04-13 Befesa Aluminio, S.L. Aluminium casting alloy
US20160250683A1 (en) 2015-02-26 2016-09-01 GM Global Technology Operations LLC Secondary cast aluminum alloy for structural applications
EP3235916B1 (en) 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Cast alloy
EP3235917B1 (en) 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Alloy for pressure die casting
US20180010214A1 (en) * 2016-07-05 2018-01-11 GM Global Technology Operations LLC High strength high creep-resistant cast aluminum alloys and hpdc engine blocks
WO2019101316A1 (en) * 2017-11-23 2019-05-31 Norsk Hydro Asa Al-si-mg-zr-sr alloy with particle-free grain refinement and improved heat conductivity
CN112795820A (en) * 2019-10-28 2021-05-14 晟通科技集团有限公司 Aluminum alloy template die-casting material for buildings
CN111455233B (en) * 2020-05-27 2021-11-26 东莞市青鸟金属材料有限公司 High-thermal-conductivity aluminum alloy material and preparation method thereof
DE102021131935A1 (en) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Die-cast aluminum alloy
FR3140635A1 (en) * 2022-10-07 2024-04-12 Renault S.A.S Aluminum alloy and associated manufacturing process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2821495A (en) * 1955-06-24 1958-01-28 Aluminum Co Of America Brazing and heat treatment of aluminum base alloy castings
AU536976B2 (en) * 1980-09-10 1984-05-31 Comalco Limited Aluminium-silicon alloys
JPS5754244A (en) * 1980-09-17 1982-03-31 Mitsubishi Keikinzoku Kogyo Kk Heat resisting aluminum alloy
JPS6034616B2 (en) * 1981-06-22 1985-08-09 京浜産業株式会社 High strength aluminum alloy for die casting
FR2690927B1 (en) * 1992-05-06 1995-06-16 Pechiney Aluminium ALUMINUM-BASED MOLDING ALLOYS HAVING GOOD RESISTANCE TO HOT CREAM.
DE19524564A1 (en) * 1995-06-28 1997-01-02 Vaw Alucast Gmbh Aluminium@ alloy for casting cylinder heads
JP3261056B2 (en) * 1997-01-14 2002-02-25 住友軽金属工業株式会社 High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same
DE19925666C1 (en) * 1999-06-04 2000-09-28 Vaw Motor Gmbh Cast cylinder head and engine block component is made of an aluminum-silicon alloy containing aluminum-nickel, aluminum-copper, aluminum-manganese and aluminum-iron and their mixed phases

Also Published As

Publication number Publication date
CA2489349C (en) 2011-04-12
ATE394513T1 (en) 2008-05-15
NO339371B1 (en) 2016-12-05
US20050224145A1 (en) 2005-10-13
WO2004001079A3 (en) 2004-04-15
DE60320790D1 (en) 2008-06-19
NO20050362L (en) 2005-03-29
EP1516072A2 (en) 2005-03-23
AU2003255687B2 (en) 2008-06-19
FR2841164A1 (en) 2003-12-26
WO2004001079A2 (en) 2003-12-31
ES2305507T3 (en) 2008-11-01
JP2005530927A (en) 2005-10-13
CA2489349A1 (en) 2003-12-31
AU2003255687A1 (en) 2004-01-06
FR2841164B1 (en) 2004-07-30

Similar Documents

Publication Publication Date Title
EP1516072B1 (en) Part cast from aluminium alloy with high hot strength
EP1651787B1 (en) Moulded al-si-cu aluminium alloy component with high hot-process resistance
US8574382B2 (en) Heat-resistant aluminium alloy
KR101409586B1 (en) High temperature aluminium alloy
JP4914225B2 (en) Aluminum alloy material, its production method and its use
EP1456302A1 (en) Thermoplastic polymer composition comprising a hyperbranched polymer and articles made using said composition
CN109868393B (en) High temperature cast aluminum alloy for cylinder heads
EP2516687B1 (en) Casting made from copper containing aluminium alloy with high mechanical strength and hot creep
FR2818288A1 (en) METHOD OF MANUFACTURING AN AL-Si ALLOY SAFETY PART
KR20050081168A (en) Casting of an aluminium alloy
WO2003052151A1 (en) Pressure-cast component made of highly ductile and resilient aluminium ally
FR2737225A1 (en) AL-CU-MG ALLOY WITH HIGH FLOW RESISTANCE
KR20070084246A (en) Aluminium-based alloy and moulded part consisting of said alloy
FR2859484A1 (en) Cast aluminum alloy component with high flow resistance for use in turbo-charged petrol and diesel engines, e.g. pistons for internal combustion engines
FR2878534A1 (en) ALUMINUM ALLOY FOR HIGH HARD MECHANICAL RESISTANCE PIECE
JP3853021B2 (en) Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance
JP2001226731A (en) Aluminum-zinc-magnesium series aluminum alloy for casting and forging, aluminum-zinc-magnesium series cast and forged product, and its producing method
FR2690927A1 (en) Aluminium@ alloy - contains silicon, and either magnesium@, copper@ or nickel@ with titanium@, zirconium@ and vanadium@ to increase hot creep resistance
FR2515214A1 (en) ALUMINUM ALLOY FOR MOLDING
JP2020105545A (en) Aluminum alloy having low casting crack sensitivity, and aluminum alloy casting using the same
KR20080001328A (en) Al-alloy for forging
JPH0941060A (en) Non-heat treated aluminum alloy for high pressure casting

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALUMINIUM PECHINEY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60320790

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2305507

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080623

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20100625

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20100604

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100630

Year of fee payment: 8

Ref country code: NL

Payment date: 20100624

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100625

Year of fee payment: 8

BERE Be: lapsed

Owner name: ALUMINIUM PECHINEY

Effective date: 20110630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110623

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200610

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200701

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210525

Year of fee payment: 19

Ref country code: IT

Payment date: 20210526

Year of fee payment: 19

Ref country code: SK

Payment date: 20210525

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210525

Year of fee payment: 19

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210624

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60320790

Country of ref document: DE

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 3849

Country of ref document: SK

Effective date: 20220623

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 394513

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220623

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220623