EP1512913B1 - Eindüsungsvorrichtung für Luft und Brennstoff mit Mitteln zur Erzeugung von Kaltplasma - Google Patents

Eindüsungsvorrichtung für Luft und Brennstoff mit Mitteln zur Erzeugung von Kaltplasma Download PDF

Info

Publication number
EP1512913B1
EP1512913B1 EP04292036A EP04292036A EP1512913B1 EP 1512913 B1 EP1512913 B1 EP 1512913B1 EP 04292036 A EP04292036 A EP 04292036A EP 04292036 A EP04292036 A EP 04292036A EP 1512913 B1 EP1512913 B1 EP 1512913B1
Authority
EP
European Patent Office
Prior art keywords
air
fuel
downstream
cold plasma
fuel injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04292036A
Other languages
English (en)
French (fr)
Other versions
EP1512913A1 (de
Inventor
Michel Cazalens
Frédéric Beule
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1512913A1 publication Critical patent/EP1512913A1/de
Application granted granted Critical
Publication of EP1512913B1 publication Critical patent/EP1512913B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99005Combustion techniques using plasma gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2300/00Pretreatment and supply of liquid fuel
    • F23K2300/10Pretreatment
    • F23K2300/101Application of magnetism or electricity

Definitions

  • the present invention relates to the general field of injection systems of an air / fuel mixture for a turbomachine combustion chamber. It is more particularly an injection system provided with a cold plasma generator capable of controlling the reactivity of the air / fuel mixture during its injection into the combustion chamber.
  • the classic process for developing and optimizing a combustion chamber of a turbomachine has the main objective of reconciling the implementation of the operational performances of the chamber (combustion efficiency, stability range, ignition range and relight, life of the combustion chamber, etc.) depending on the mission envisaged for the aircraft on which the turbomachine is mounted while minimizing pollutant emissions (nitrogen oxides, carbon monoxide, unburned hydrocarbons, etc. .).
  • pollutant emissions nitrogen oxides, carbon monoxide, unburned hydrocarbons, etc. .
  • the combustion chamber of a turbomachine typically consists of several systems: a system for injecting an air / fuel mixture into a flame tube, a cooling system and a dilution system.
  • the combustion is organized mainly within a first part of the flame tube (primary zone) in which it is stabilized by means of zones of recirculation of the air / fuel mixture induced by the flow of air coming from the system. injection.
  • first part of the flame tube primary zone
  • various physical phenomena are used: injection and atomization in fine droplets of the fuel, evaporation of the droplets, mixing of the fuel vapors with the air and chemical reactions of oxidation of the fuel by the oxygen from the air.
  • the chemical activity used is lower and the flow is diluted by means of dilution holes.
  • staged combustion Concept
  • multipoint injection systems
  • Staged double-head combustion chambers are chambers whose fuel injectors are distributed on a so-called “pilot” head and on a so-called “take-off” head.
  • the pilot head operates continuously and thus prevents the firebox from extinguishing, while the takeoff head is designed to reduce NOx emissions.
  • a stepped double head chamber remains difficult to fly and expensive given the doubling of the number of fuel injectors compared to a conventional single head combustion chamber.
  • multipoint air / fuel mixture injection systems are systems in which the air and fuel injection is effected by several independent conduits and is regulated according to the operating speed of the turbomachine.
  • the main feature of such multipoint injection systems lies in the complexity of the different fuel systems and the control system.
  • the main purpose of the present invention is thus to overcome such drawbacks by proposing an injection system for an air / fuel mixture for a combustion chamber which makes it possible to increase the resistance of the combustion chamber to extinction while maintaining a simple architecture and limiting polluting emissions.
  • an injection system for an air / fuel mixture for a turbomachine combustion chamber comprising a hollow tubular structure for the flow of the air / fuel mixture to the combustion chamber, means for fuel injection disposed at an upstream end of the hollow tubular structure, and air injection means arranged downstream of the fuel injection means, characterized in that it further comprises means for generating plasmas coolers disposed downstream of the air injection means to generate active species in the flow of the air / fuel mixture and to achieve a pre-breaking of the molecules of the air / fuel mixture, and control means of the means of generation of cold plasmas as a function of the operating speed of the turbomachine.
  • the cold plasma generator makes it possible to adapt the characteristic times of the chemical reactions according to the cooling regime. operation of the turbomachine.
  • the control of the characteristic times of chemical reactions is ensured by the production and injection of active species (free-radical species and excited species) in the flow of the air / fuel mixture and by pre-breaking of the air and fuel molecules. .
  • the means for generating cold plasmas can be adapted to aeromechanical injection systems as well as to aerodynamic type injection systems.
  • the means for generating cold plasmas may comprise at least one pair of electrodes connected to an alternating current generator which is controlled by the control means.
  • these cold plasma generation means may comprise a solenoidal winding connected to an alternating current generator which is also controlled by the control means.
  • the present invention makes it easy to adapt to known systems for injecting an air / fuel mixture without leading to major transformations of these injection systems.
  • the cold plasma generation means can be associated with one or all injection systems of the same combustion chamber, which improves the operation of existing combustion chambers.
  • the injection system according to the present invention can also operate for operating points of the turbomachine where the combustion is stabilized so that the combustion efficiency is increased for these points. For example, if we consider a re-ignition point at altitude in auto-rotation, the volume of the focus must be sufficient to ensure a combustion efficiency for the turbomachine to accelerate. Under these conditions, the present invention makes it possible to reduce the volume of combustion fires and thus to reduce the mass of the turbomachine.
  • the present invention makes it possible to simplify the ignition systems of the combustion chamber by integrating this function with the injection system.
  • the ignition is in fact carried out by the means for generating cold plasmas powered with a suitable energy and frequency. It is thus possible to remove the traditional devices spark ignition and avoid the problems associated with them (cooling of the body and nose of the candle, disruption of the cooling of the home, life of the candle, etc.. ).
  • the figure 1 represents, in longitudinal section, an injection system according to one embodiment of the invention.
  • the injection system is of the aeromechanical type.
  • the longitudinal axis injection system XX essentially consists of a tubular structure for the flow of a mixture air / fuel to the focus of a combustion chamber 12 of a turbomachine. This air / fuel mixture is intended to be burned in the combustion chamber 12.
  • the combustion chamber 12 is for example of the annular type. It is delimited by two annular walls (not represented on the figure 1 ) spaced radially from the axis of the turbomachine and connected upstream by a chamber bottom 14.
  • the chamber bottom 14 has a plurality of openings 16 regularly spaced circularly about the axis of the turbomachine. In each of these openings 16 is mounted an injection system 10 according to the invention.
  • the gases resulting from the combustion of the air / fuel mixture flow downstream into the combustion chamber 12 to feed a high-pressure turbine (not shown) disposed at the outlet of the combustion chamber.
  • An annular deflector 18 is mounted in the opening 16 via a sleeve 20. This deflector is mounted parallel to the chamber bottom 14 and acts as a heat shield against the radiation of the combustion flame.
  • a bowl 22 is mounted inside the sleeve 20.
  • This bowl 22 has a wall 22a flared downstream in the extension of a substantially cylindrical wall 22b arranged coaxially with the longitudinal axis XX of the injection system 10. Through its opening angle, the bowl 22 distributes the air / fuel mixture in the primary zone of the combustion chamber.
  • the flared wall 22a of the bowl has a plurality of holes 24 for introducing air into the combustion chamber. These holes 24 make it possible to refocus the flow of the air / fuel mixture around the longitudinal axis X-X at the outlet of the bowl.
  • the bowl 22 has an annular collar 25 which extends parallel to the chamber bottom 14. As for the deflector 18, this collar 25 forms a heat shield between the radiation of the combustion flame and the bowl 22. The collar is cooled by impact of air passing through holes 25a through the flared wall 22a of the bowl.
  • the cylindrical wall 22b of the bowl 22 surrounds a venturi 26 having an internal contour of convergent divergent shape.
  • the venturi 26 makes it possible to delimit the air flows coming from an internal swirler 28 and of an external swirler 30.
  • the venturi 26 comprises a radial flange 26a separating the internal swirler 28 and the external swirler 30.
  • the internal swirler 28 is of radial type. It is arranged upstream of the venturi 26 and delivers an internal radial air flow inside the venturi.
  • the external swirler 30 is also of the radial type. It is disposed upstream of the cylindrical wall 22b of the bowl 22 and delivers an external radial air flow between the venturi 26 and the cylindrical wall 22b of the bowl 22.
  • the internal 28 and external 30 swirlers rotate the flow of the mixture air / fuel and thus increase turbulence and shear to promote the atomization of fuel and its mixture with air.
  • the internal swirler 28 is secured to a retaining piece 32 having an annular groove 34 open on the side of the longitudinal axis X-X of the injection system.
  • a support ring 36 is mounted in the annular groove 34. This support ring 36 allows the attachment of the downstream end of a fuel injector 38 centered on the longitudinal axis X-X of the injection system.
  • the bearing ring 36 can move radially in the annular groove 34 in order to allow a clearance that can be generated by the thermal stresses to which the various elements of the injection system 10 are subjected.
  • the support ring 36 In its portion in contact with the fuel injector 38, the support ring 36 is pierced with a plurality of orifices 40 regularly spaced circularly around the longitudinal axis X-X of the injection system. These orifices 40 serve the purpose of purging by ventilating the fuel nozzle 38 and avoiding the formation of coke at the downstream end thereof.
  • the bearing ring 36, the internal 28 and external 30 tendrils, the venturi 26 and the bowl 22 thus form the hollow tubular structure 41 of the injection system 10 in which flows the air / fuel mixture.
  • the fuel injector 38 is secured upstream of an injector arm (not shown). After it flows into the injector arm, the fuel is sprayed by the injector 38 in the form of a fuel cone which partly hits the venturi 26. Once sprayed, the fuel is mixed with the air internal and external 28 and 30 jibs and holes 24 of the bowl 22.
  • the fuel is sprayed in the form of fine droplets under the effect of aerodynamic shear from differences in the velocities of the liquid flow and the gas flow.
  • the air / fuel mixture thus formed is then introduced into the combustion chamber 12 to be burned.
  • the injection system 10 further comprises means for generating cold plasmas in order to generate active species in the flow of the air / fuel mixture and to perform a pre-breaking of the molecules of the air / fuel mixture.
  • Control means are also provided in order to control these means for generating cold plasmas as a function of the operating speed of the turbomachine.
  • these cold plasma generation means may be arranged either around the downstream end of the venturi 26 (implantation A), or around the upstream end of the bowl 22 (implantation B), or around the downstream end of the venturi 26 and around the upstream end of the bowl 22 (implantation C).
  • the Figure 2A illustrates the implantation A means for generating cold plasmas around the downstream end of the venturi 26. This figure shows schematically, in front view, the circular downstream end of the venturi.
  • the means for generating cold plasmas are formed by at least one pair of electrodes 42 disposed on the circumference of the downstream end of the venturi 26. These electrodes 42 are connected by means of electrical wires 44 to a AC generator 46. The current generator is controlled by a control system 48 described later.
  • the electrodes 42 are disposed on the same diameter of the venturi 26, that is to say that they are aligned radially with respect to each other. However, as shown dashed by the pair of electrodes 42 ', the latter can be offset radially relative to each other by being arranged on different radii of the venturi 26.
  • the number of electrode pairs may be greater. These electrodes are then distributed angularly around the circumference of the venturi, for example in a uniform manner. Moreover, in the case of several couples electrodes, these couples can be powered by the AC generator 46 simultaneously or sequentially.
  • the cold plasma generation means can also be made in the form of a solenoidal winding connected to the alternating current generator.
  • the outer surface of the venturi has a solenoidal winding.
  • the implantation of the cold plasma generation means around the upstream end of the bowl 22 corresponds to the implantation A described above and will therefore not be repeated.
  • the Figure 2B illustrates the implantation C cold plasma generation means around the downstream end of the venturi 26 and around the upstream end of the bowl 22.
  • the venturi 26 and the bowl 22 each have a substantially circular cross section and are arranged concentrically with respect to each other.
  • the means for generating cold plasmas are formed by at least one pair of electrodes 42, one of which is disposed on the circumference of the downstream end of the venturi 26 and the other electrode is disposed on the circumference of the upstream end of the bowl 22.
  • These electrodes 42 are also connected by means of electrical wires 44 to an alternating current generator 46 controlled by a control system 48.
  • the electrodes 42 are disposed on the same radius of the ring defined by the downstream end of the venturi 26 and the upstream end of the bowl 22, that is to say that they are aligned radially with respect to the other. However, as shown dashed by the pair of electrodes 42 ', the latter can be offset radially relative to each other by being arranged on different radii of the ring.
  • the number of electrode pairs may be greater depending on the nature and the need of the application.
  • the arrangement of these pairs of electrodes may vary on the circumference of the venturi and the bowl.
  • the electrode pairs can also be powered simultaneously or sequentially.
  • the pairs of electrodes make it possible to create, via the alternating current generator 46 connected to the control system 48, an electric discharge in the air / fuel mixture flowing between the electrodes ( or inside the solenoid winding).
  • the parameters of the alternating current generator 46 are controlled by the control system 48 as a function of the operating speed of the turbomachine, with respect to the active species (radical species, excited species) that one wishes to produce, compared to the desired degree of pre-breaking of the molecules of air and fuel and with respect to the intended function (ignition, reignition at altitude, extension of the stability domain, active control of the combustion chamber, etc.).
  • the AC generator 46 has the particularity of allowing the generation of so-called "cold” plasmas.
  • cold plasmas are characterized by an electric discharge of the "streamer” type, that is to say by propagation of an ionization front.
  • Cold plasmas are also characterized by a thermodynamic imbalance in which the temperature of the electrons emitted during the electric discharge is very high compared to that of the air / fuel mixture passing through the electric discharge. This feature has the main advantage of allowing the production of radical species active in the flow of the air / fuel mixture with less energy expenditure than with hot plasmas.
  • Such an alternating current generator 46 making it possible to generate cold plasmas results in particular in a duration electrical pulses between 2 and 50 nanoseconds, and preferably between 2 and 30 nanoseconds.
  • an electric current generator for the production of hot plasmas delivers electrical pulses typically having a duration of the order of one hundred microseconds.
  • control system 48 can use information captured in real time inside the combustion chamber.
  • an instability detector placed in the combustion chamber.
  • Such an instability detector measures the pressure (or any other parameter) inside the combustion chamber and transmits it in real time to the control system.
  • an optical detector of the combustion flame Such an optical detector thus makes it possible to inform the control system in real time in the event of extinction of the combustion flame.
  • the injection system is also of the aeromechanical type so that only the differences existing with the injection system illustrated by FIG. figure 1 .
  • this injection system is of the LLP (for "Lean Premixed Prevaporized") type.
  • the longitudinal axis injection system 50 YY essentially consists of a hollow tubular structure 51 for the flow of an air / fuel mixture to the combustion chamber firebox 12 of a turbomachine.
  • this bowl 56 can supply the combustion chamber with a homogeneous lean air / fuel mixture in order to avoid the establishment in the home stoichiometric combustion conditions generating emissions NOx type.
  • the bowl 56 surrounds a first venturi 58.
  • This first venturi 58 has the function of guiding air through holes 60 formed through the cylindrical wall 56c of the bowl 56, at its upstream end. This air is intended to cool the bowl 56 by flowing along the inner face thereof.
  • the first venturi 58 surrounds a second venturi 62 having an internal contour of convergent divergent shape.
  • the second venturi 62 defines the air flows coming from a radial internal swirler 64 and a radial external swirler 66.
  • the internal swirler 64 delivers a radial air flow inside the second venturi 62 and the external swirler 66 delivers a radial air flow between the first venturi 58 and the second venturi 62.
  • the means for generating cold plasmas for generating active species in the flow of the air / fuel mixture and for pre-breaking the molecules of the air / fuel mixture are arranged around the downstream end. of the bowl 56 (implantation D on the figure 3 ).
  • the implantation D cold plasma generation means around the downstream end of the bowl 56 corresponds to the implantation illustrated by the Figure 2A .
  • the cold plasma generating means can thus be made in the form of at least one pair of electrodes arranged on the circumference of the downstream end of the bowl or in the form of a solenoidal winding.
  • the implantation D of the cold plasma generation means makes it possible, on the one hand, to increase the stability range of the combustion chamber by pushing the extinction limits in a lean air / fuel mixture medium, and on the other hand, to control the combustion chamber so as to reduce its vulnerability to instabilities of combustion.
  • the injection system is of the aerodynamic type.
  • the injection system 72 with a longitudinal axis ZZ consists essentially of a hollow tubular structure 73 for the flow of an air / fuel mixture towards the combustion chamber hearth 12. a turbomachine.
  • a deflector 74 is mounted in the opening 16 formed in the chamber bottom 14 via a sleeve 76.
  • a bowl 78 is mounted inside the sleeve 76. This bowl has a divergent wall downstream. .
  • the bowl 78 is extended by an annular retaining ring 80 which surrounds and maintains a fuel injector 82 centered on the longitudinal axis Z-Z of the injection system.
  • the fuel injector 82 comprises a first tubular portion 84 arranged coaxially with the longitudinal axis ZZ of the injection system 72.
  • This first tubular portion 84 defines a first axial internal volume 86 which opens at its downstream end for mixing air / fuel.
  • the inner surface of the first tubular portion 84 of the fuel nozzle 82 surrounds a second tubular portion 90 which is also disposed coaxially with the longitudinal axis Z-Z of the injection system.
  • the first tubular portion 84 and the second tubular portion 90 define between them a second annular passage 92.
  • This second tubular portion 90 further defines a second axial internal volume 94 which opens into the axial internal volume 86 of the first tubular portion 84 .
  • the fuel injector 82 also comprises a plurality of air supply ducts 96 opening outside the injector and opening into the second axial internal volume 94, at an upstream end of the second tubular portion 90. These air supply channels 96 thus making it possible to inject air at an upstream end of the second tubular portion 90 in a substantially axial direction.
  • the fuel injector 82 has at least one fuel inlet 98 in the form of a cylindrical recess. This cylindrical recess is supplied with fuel by an injector arm (not shown).
  • Fuel supply channels 100 open into this cylindrical recess 98 and open into the second annular passage 92. These fuel supply channels thus make it possible to inject fuel between the first tubular portion 84 and the second tubular portion. 90.
  • the fuel injector 82, the retaining ring 80 and the bowl 78 thus form the hollow tubular structure 73 of the injection system 72.
  • the injected fuel is atomized by the shear effect of the air. Indeed, a fuel film is formed at the second annular passage 92. At its exit from the second tubular portion 90, the fuel film is subjected to the action of air from the air supply channels 96 before being submitted, upon leaving the first tubular portion 84, the action of the air from the first annular passage 88.
  • the means for generating cold plasmas can be implanted in three different zones: around the downstream end of the second tubular portion 90 (implantation E), around the downstream end of the first tubular portion 84 (F implantation) or around the downstream end of the annular retaining ring 80 and around the downstream end of the first tubular portion 84 (G implantation).
  • the implantation E around the downstream end of the second tubular portion 90 and the implantation F around the downstream end of the first tubular portion 84 both correspond to the implantation illustrated by FIG. Figure 2A and will not be detailed.
  • the means for generating cold plasmas can be made in the form of at least one pair of electrodes or in the form of a solenoidal winding.
  • the implantation G around the downstream end of the annular retaining ring 80 and around the downstream end of the first tubular portion 84 corresponds to the implantation illustrated by FIG. Figure 2B and so will not be detailed either.
  • the cold plasma generation means can be made in the form of at least one pair of electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Claims (16)

  1. System (10; 50; 72) zum Einspritzen eines Luft-/Kraftstoff-Gemischs für eine Brennkammer (12) einer Turbomaschine, das folgendes umfaßt:
    eine hohle röhrenförmige Struktur (41, 51, 73) für das Strömen des Luft-/Kraftstoff-Gemischs zu der Brennkammer (12),
    Kraftstoffeinspritzmittel (38; 68; 100), die an einem stromaufwärtigen Ende der hohlen röhrenförmigen Struktur angeordnet sind, und
    Lufteinspritzmittel (28, 30; 64, 66; 89, 96), die stromabwärts der Kraftstoffeinspritzmittel (38; 68; 100) angeordnet sind,
    dadurch gekennzeichnet, daß es ferner folgendes umfaßt:
    Mittel zum Erzeugen kalter Plasmen (42, 42'), die stromabwärts der Lufteinspritzmittel (28, 30; 64, 66; 89, 96) angeordnet sind, um in der Strömung des Luft-/Kraftstoff-Gemischs aktive Spezies zu erzeugen und um ein vorheriges Aufbrechen der Moleküle des Luft/Kraftstoff-Gemischs zu vollziehen, sowie
    Mittel (48) zum Steuern der Mittel zum Erzeugen kalter Plasmen (42, 42') in Abhängigkeit des Betriebsbereichs der Turbomaschine.
  2. System (1 0) nach Anspruch 1, dadurch gekennzeichnet, daß es folgendes umfaßt, nämlich einen Kraftstoffinjektor (38), welcher an einem stromaufwärtigen Ende der hohlen röhrenförmigen Struktur (41) angeordnet ist und ermöglicht, Kraftstoff in einer im wesentlichen axialen Richtung in die hohle röhrenförmige Struktur (41) einzuspritzen, eine innere Luftverwlrbelungsvorrichtung (28), die stromabwärts des Kraftstoffinjektors (38) anbeordnet ist und ermöglicht, Luft in einer im wesentlichen radialen Richtung in die hohle röhrenförmige Struktur (41) einzuspritzen, eine äußere Luftverwirbelungsvorrichtung (30), die stromabwärts der inneren Luftverwirbelungsvorrichtung (28) angeordnet ist und ermöglicht, Luft in einer im wesentlichen radialen Richtung in die hohle röhrenförmige Struktur (41) einzuspritzen, eine Venturidüse (26), die zwischen der inneren Luftverwirbelungsvorrichtung (28) und der äußeren Luftverwirbelungsvorrichtung (30) angeordnet ist, sowie eine Schale (22), die stromabwärts der äußeren Luftverwirbelungsvorrichtung (30) angeordnet ist.
  3. System (10) nach Anspruch 2, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen (42, 42') um ein stromabwärtiges Ende der Venturidüse (26) angeordnet sind.
  4. System (10) nach Anspruch 2, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen (42, 42') um ein stromaufwärtiges Ende der Schale (22) angeordnet sind.
  5. System (10) nach Anspruch 2, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen (42, 42') um ein stromabwärtiges Ende der Venturidüse (26) und um ein stromaufwärtiges Ende der Schale (22) angeordnet sind.
  6. System (50) nach Anspruch 1, dadurch gekennzeichnet, daß es folgendes umfaßt, nämlich einen Kraftstoffinjektor (68), welcher an einem stromaufwärtigen Ende der hohlen röhrenförmigen Struktur (51) angeordnet ist und ermöglicht, Kraftstoff in einer im wesentlichen axialen Richtung in die hohle röhrenförmige Struktur (51) einzuspritzen, eine innere Luftverwirbelungsvorrichtung (64), die stromabwärts des Kraftstoffinjektors (68) angeordnet ist und ermöglicht, Luft in einer im wesentlichen radialen Richtung in die hohle röhrenförmige Struktur (51) einzuspritzen, eine äußere Luftverwirbelungsvorrichtung (66), die stromabwärts der inneren Luftverwirbelungsvorrichtung (64) angeordnet ist und ermöglicht, Luft in einer im wesentlichen radialen Richtung in die hohle röhrenförmige Struktur (51) einzuspritzen, eine erste Venturidüse (58), die zwischen der inneren Luftverwirbelungsvorrichtung (64) und der äußeren Luftverwirbelungsvorrichtung (66) angeordnet ist, eine zweite Venturidüse (62), die stromabwärts der äußeren Luftverwirbelungsvorrichtung (66) angeordnet ist, sowie eine Vormisch-Schale (56), die stromabwärts der zweiten Venturidüse (62) angeordnet ist.
  7. System (50) nach Anspruch 6, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen (42, 42') um ein stromabwärtiges Ende der Vormisch-Schale (56) angeordnet sind.
  8. System (72) nach Anspruch 1, dadurch gekennzeichnet, daß es folgendes umfaßt:
    einen Kraftstoffinjektor (82), der einen ersten röhrenförmigen Teil (84) aufweist, welcher einen zweiten röhrenförmigen Teil (90) derart umgibt, daß zwischen dem ersten röhrenförmigen Teil (84) und dem zweiten röhrenförmigen Teil (90) ein ringförmiger Durchlaß (92) definiert wird,
    einen Haltering (80), welcher den ersten röhrenförmigen Teil (84) des Kraftstoffinjektors (82) derart umgibt, daß zwischen dem Haltering (80) und dem Kraftstoffinjektor (82) ein ringförmiger Durchlaß (88) definiert wird,
    eine Schale (78), die in der stromabwärtigen Verlängerung des Halteringes (80) angeordnet ist,
    Luftzufuhröffnungen (89), die in den ringförmigen Durchlaß (88) zwischen dem Haltering (80) und dem Kraftstoffinjektor (82) münden und ermöglichen, Luft stromabwärts des ersten röhrenförmigen Teils (84) des Kraftstoffinjektors (82) einzuspritzen,
    Luftzufuhrkanäle (96), die an einem stromaufwärtigen Ende des zweiten röhrenförmigen Teils (90) des Kraftstoffinjektors (82) ausmünden, und
    Kraftstoffzufuhrkanäle (100), die in den ringförmigen Durchlaß (92) zwischen dem ersten röhrenförmigen Teil (84) und dem zweiten röhrenförmigen Teil (90) münden und ermöglichen, Kraftstoff zwischen dem ersten röhrenförmigen Teil (84) und dem zweiten röhrenförmigen Teil (90) einspritzen.
  9. System (72) nach Anspruch 8, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen (42, 42') um ein stromabwärtiges Ende des zweiten röhrenförmigen Teils (90) des Kraftstoffinjektors (82) angeordnet sind.
  10. System (72) nach Anspruch 8, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen (42, 42') um ein stromabwärtiges Ende des ersten röhrenförmigen Teils (84) des Kraftstoffinjektors (82) angeordnet sind.
  11. System (72) nach Anspruch 8, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen (42, 42') um ein stromabwärtiges Ende des ersten röhrenförmigen Teils (84) des Kraftstoffinjektors (82) und um ein stromabwärtige Ende des Halterings (80) angeordnet sind.
  12. System (10; 50; 72) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen wenigstens ein Paar von Elektroden (42, 42') aufweisen, die mit einem Wechselstromerzeuger (46) verbunden sind.
  13. System (10; 50; 72) nach Anspruch 12, dadurch gekennzeichnet, daß die Elektroden (42, 42') des Elektrodenpaars radial zueinander ausgerichtet sind.
  14. System (10; 50; 72) nach Anspruch 12, dadurch gekennzeichnet, daß die Elektroden (42, 42') des Elektrodenpaars radial zueinander versetzt sind.
  15. System (10; 50; 72) nach einem der Ansprüche 3, 4, 7, 9 und 10, dadurch gekennzeichnet, daß die Mittel zum Erzeugen kalter Plasmen eine mit einem Wechselstromerzeuger (46) verbundene Solenoidwicklung aufweisen.
  16. System (10; 50; 72) nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß der Wechselstromerzeuger (46) elektrische Impulse mit einer Dauer zwischen 2 und 50 Nanosekunden liefert.
EP04292036A 2003-09-02 2004-08-11 Eindüsungsvorrichtung für Luft und Brennstoff mit Mitteln zur Erzeugung von Kaltplasma Active EP1512913B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0310379 2003-09-02
FR0310379A FR2859272B1 (fr) 2003-09-02 2003-09-02 Systeme d'injection air/carburant, dans une chambre de combustion de turbomachine, ayant des moyens de generation de plasmas froids

Publications (2)

Publication Number Publication Date
EP1512913A1 EP1512913A1 (de) 2005-03-09
EP1512913B1 true EP1512913B1 (de) 2008-10-22

Family

ID=34130706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04292036A Active EP1512913B1 (de) 2003-09-02 2004-08-11 Eindüsungsvorrichtung für Luft und Brennstoff mit Mitteln zur Erzeugung von Kaltplasma

Country Status (9)

Country Link
US (1) US7114337B2 (de)
EP (1) EP1512913B1 (de)
JP (1) JP4252513B2 (de)
CA (1) CA2478876C (de)
DE (1) DE602004017263D1 (de)
ES (1) ES2316942T3 (de)
FR (1) FR2859272B1 (de)
RU (1) RU2287742C2 (de)
UA (1) UA82991C2 (de)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249460B2 (en) * 2002-01-29 2007-07-31 Nearhoof Jr Charles F Fuel injection system for a turbine engine
US7511246B2 (en) 2002-12-12 2009-03-31 Perkinelmer Las Inc. Induction device for generating a plasma
DE10326720A1 (de) * 2003-06-06 2004-12-23 Rolls-Royce Deutschland Ltd & Co Kg Brenner für eine Gasturbinenbrennkammer
US7340900B2 (en) * 2004-12-15 2008-03-11 General Electric Company Method and apparatus for decreasing combustor acoustics
US7131273B2 (en) * 2004-12-17 2006-11-07 General Electric Company Gas turbine engine carburetor with flat retainer connecting primary and secondary swirlers
US7308793B2 (en) * 2005-01-07 2007-12-18 Power Systems Mfg., Llc Apparatus and method for reducing carbon monoxide emissions
CN101495262B (zh) 2005-03-11 2014-11-12 魄金莱默有限公司 等离子体及其使用方法
US7628019B2 (en) * 2005-03-21 2009-12-08 United Technologies Corporation Fuel injector bearing plate assembly and swirler assembly
US7673460B2 (en) * 2005-06-07 2010-03-09 Snecma System of attaching an injection system to a turbojet combustion chamber base
US8622735B2 (en) * 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
US7742167B2 (en) 2005-06-17 2010-06-22 Perkinelmer Health Sciences, Inc. Optical emission device with boost device
US7546739B2 (en) * 2005-07-05 2009-06-16 General Electric Company Igniter tube and method of assembling same
FR2893390B1 (fr) * 2005-11-15 2011-04-01 Snecma Fond de chambre de combustion avec ventilation
FR2894327B1 (fr) * 2005-12-05 2008-05-16 Snecma Sa Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
FR2897923B1 (fr) * 2006-02-27 2008-06-06 Snecma Sa Chambre de combustion annulaire a fond amovible
JP5023526B2 (ja) * 2006-03-23 2012-09-12 株式会社Ihi 燃焼器用バーナ及び燃焼方法
FR2903169B1 (fr) * 2006-06-29 2011-11-11 Snecma Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
FR2903170B1 (fr) * 2006-06-29 2011-12-23 Snecma Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
US7966830B2 (en) * 2006-06-29 2011-06-28 The Boeing Company Fuel cell/combustor systems and methods for aircraft and other applications
FR2911667B1 (fr) * 2007-01-23 2009-10-02 Snecma Sa Systeme d'injection de carburant a double injecteur.
DE102007025551A1 (de) 2007-05-31 2008-12-11 Siemens Ag Verfahren und Vorrichtung zur Verbrennung von kohlenwasserstoffhaltigen Brennstoffen
FR2919672B1 (fr) * 2007-07-30 2014-02-14 Snecma Injecteur de carburant dans une chambre de combustion de turbomachine
US20090151322A1 (en) * 2007-12-18 2009-06-18 Perriquest Defense Research Enterprises Llc Plasma Assisted Combustion Device
US20090165436A1 (en) * 2007-12-28 2009-07-02 General Electric Company Premixed, preswirled plasma-assisted pilot
DE102008017962B4 (de) * 2008-04-08 2012-09-06 Eurocopter Deutschland Gmbh Vorrichtung zur Zuführung von Verbrennungsluft zu einem Triebwerk eines Luftfahrzeuges
FR2932251B1 (fr) * 2008-06-10 2011-09-16 Snecma Chambre de combustion de moteur a turbine a gaz comportant des deflecteurs en cmc
US20100186414A1 (en) * 2008-12-15 2010-07-29 Sonic Blue Aerospace, Inc. Magnetic ion plasma annular injection combustor
FR2953278B1 (fr) * 2009-11-27 2012-01-27 Commissariat Energie Atomique Procede et dispositif de destruction thermique de composes organiques par un plasma d'induction.
FR2964177B1 (fr) * 2010-08-27 2012-08-24 Snecma Chambre de combustion de moteur d?aeronef et procede de fixation d?un systeme d?injection dans une chambre de combustion de moteur d?aeronef
US10317081B2 (en) * 2011-01-26 2019-06-11 United Technologies Corporation Fuel injector assembly
CN103562641B (zh) * 2011-05-17 2015-11-25 斯奈克玛 用于涡轮机的环形燃烧室
FR2982010B1 (fr) * 2011-10-26 2013-11-08 Snecma Chambre de combustion annulaire dans une turbomachine
US9151500B2 (en) * 2012-03-15 2015-10-06 General Electric Company System for supplying a fuel and a working fluid through a liner to a combustion chamber
AU2013290093B2 (en) 2012-07-13 2017-09-21 Peter Morrisroe Torches and methods of using them
KR101284290B1 (ko) * 2012-08-07 2013-07-08 한국기계연구원 연소장치
FR2996286B1 (fr) * 2012-09-28 2014-09-12 Snecma Dispositif d'injection pour une chambre de combustion de turbomachine
US9618209B2 (en) * 2014-03-06 2017-04-11 Solar Turbines Incorporated Gas turbine engine fuel injector with an inner heat shield
EP3140595B1 (de) * 2014-05-08 2021-07-14 FGC Plasma Solutions LLC Verfahren und vorrichtung zur unterstützung der verbrennung von brennstoff
US10184664B2 (en) 2014-08-01 2019-01-22 Capstone Turbine Corporation Fuel injector for high flame speed fuel combustion
KR101730446B1 (ko) 2015-10-12 2017-05-11 한국기계연구원 농후연소와 희박연소 및 마일드 연소가 가능한 연소기
KR101777320B1 (ko) * 2015-10-26 2017-09-26 한국기계연구원 다단연소를 이용한 초저 NOx 연소기
FR3043173B1 (fr) * 2015-10-29 2017-12-22 Snecma Systeme d'injection aerodynamique pour turbomachine d'aeronef, a melange air/carburant ameliore
WO2018075854A1 (en) * 2016-10-21 2018-04-26 Fgc Plasma Solutions Apparatus and method for using plasma to assist with the combustion of fuel
US10794331B2 (en) * 2017-07-31 2020-10-06 The Boeing Company Scramjets and associated aircraft and methods
RU2761262C2 (ru) * 2017-12-26 2021-12-06 Ансальдо Энергия Свитзерленд Аг Трубчатая камера сгорания для газовой турбины и газовая турбина, содержащая такую трубчатую камеру сгорания
FR3091574B1 (fr) * 2019-01-08 2020-12-11 Safran Aircraft Engines Systeme d’injection pour turbomachine, comprenant une vrille et des trous tourbillonnaires de bol melangeur
US11346557B2 (en) * 2019-08-12 2022-05-31 Raytheon Technologies Corporation Aerodynamic guide plate collar for swirler assembly
US10914274B1 (en) 2019-09-11 2021-02-09 General Electric Company Fuel oxygen reduction unit with plasma reactor
FR3103540B1 (fr) * 2019-11-26 2022-01-28 Safran Aircraft Engines Système d'injection de carburant d'une turbomachine, chambre de combustion comprenant un tel système et turbomachine associée
US11773776B2 (en) 2020-05-01 2023-10-03 General Electric Company Fuel oxygen reduction unit for prescribed operating conditions
CN113153539B (zh) * 2021-03-19 2023-05-12 中国人民解放军空军工程大学 一种单双路结合的三维旋转滑动弧等离子体激励器
US11428411B1 (en) * 2021-05-18 2022-08-30 General Electric Company Swirler with rifled venturi for dynamics mitigation
CN113669162A (zh) * 2021-08-31 2021-11-19 中国航发贵阳发动机设计研究所 带冷却结构的电嘴衬套
CN113898974B (zh) * 2021-10-19 2022-10-04 中国人民解放军空军工程大学 一种航空发动机燃烧室滑动弧等离子体值班火焰头部
FR3135114A1 (fr) * 2022-05-02 2023-11-03 Safran Procede d’injection de melange hydrogene-air pour bruleur de turbomachine
KR102539129B1 (ko) * 2023-02-16 2023-06-01 김정길 고형연료 연소장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110294A (en) * 1960-01-04 1963-11-12 Alwac International Inc Methods and apparatus for mixing fluids
US5404712A (en) * 1992-10-06 1995-04-11 University Of Tennessee Research Corporation Laser initiated non-linear fuel droplet ignition
US5515681A (en) * 1993-05-26 1996-05-14 Simmonds Precision Engine Systems Commonly housed electrostatic fuel atomizer and igniter apparatus for combustors
US5367869A (en) * 1993-06-23 1994-11-29 Simmonds Precision Engine Systems Laser ignition methods and apparatus for combustors
JP2950720B2 (ja) * 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
US5640841A (en) * 1995-05-08 1997-06-24 Crosby; Rulon Plasma torch ignition for low NOx combustion turbine combustor with monitoring means and plasma generation control means
US5673554A (en) * 1995-06-05 1997-10-07 Simmonds Precision Engine Systems, Inc. Ignition methods and apparatus using microwave energy
US5689949A (en) * 1995-06-05 1997-11-25 Simmonds Precision Engine Systems, Inc. Ignition methods and apparatus using microwave energy
DE19542918A1 (de) * 1995-11-17 1997-05-22 Asea Brown Boveri Vorrichtung zur Dämpfung thermoakustischer Druckschwingungen
US5845480A (en) * 1996-03-13 1998-12-08 Unison Industries Limited Partnership Ignition methods and apparatus using microwave and laser energy
US6453660B1 (en) 2001-01-18 2002-09-24 General Electric Company Combustor mixer having plasma generating nozzle
US6748735B2 (en) * 2002-08-13 2004-06-15 The Boeing Company Torch igniter

Also Published As

Publication number Publication date
US20050044854A1 (en) 2005-03-03
RU2004126198A (ru) 2006-02-10
JP2005077087A (ja) 2005-03-24
EP1512913A1 (de) 2005-03-09
DE602004017263D1 (de) 2008-12-04
RU2287742C2 (ru) 2006-11-20
CA2478876C (fr) 2012-04-24
CA2478876A1 (fr) 2005-03-02
US7114337B2 (en) 2006-10-03
JP4252513B2 (ja) 2009-04-08
FR2859272B1 (fr) 2005-10-14
FR2859272A1 (fr) 2005-03-04
UA82991C2 (uk) 2008-06-10
ES2316942T3 (es) 2009-04-16

Similar Documents

Publication Publication Date Title
EP1512913B1 (de) Eindüsungsvorrichtung für Luft und Brennstoff mit Mitteln zur Erzeugung von Kaltplasma
CA2605952C (fr) Injecteur de carburant pour chambre de combustion de moteur a turbine a gaz
US8616006B2 (en) Advanced optics and optical access for laser ignition for gas turbines including aircraft engines
EP2026007B1 (de) Kraftstoffeinspritzer in eine Brennkammer einer Strömungsmaschine
US6453660B1 (en) Combustor mixer having plasma generating nozzle
EP1640662B1 (de) Brauseinjektor für ein aeromechanisches Luft/Brennstoffseinspritzsystem einer Gasturbinenbrennkammer
FR2716526A1 (fr) Système de combustion de turbine à gaz et procédé de commande de combustion .
US10197281B2 (en) Supplementary laser firing for combustion stability
JPH08240129A (ja) ガスタービンエンジン用燃焼器
EP0222654B1 (de) Strahltriebwerk mit Nachverbrennung und radial angeordneten einzelnen Injektoren
FR2706020A1 (fr) Ensemble de chambre de combustion, notamment pour turbine à gaz; comprenant des zones de combustion et de vaporisation séparées.
JP4977522B2 (ja) ガスタービン燃焼器
JP2004226051A (ja) 燃料噴射装置
JP2010054087A (ja) ガスタービン燃焼器およびガスタービン燃焼器の運転方法
WO2024052611A1 (fr) Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine
WO2023214129A1 (fr) Procede d'injection de melange hydrogene-air pour bruleur de turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004017263

Country of ref document: DE

Date of ref document: 20081204

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2316942

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120806

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004017263

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 20

Ref country code: GB

Payment date: 20230720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230720

Year of fee payment: 20

Ref country code: FR

Payment date: 20230720

Year of fee payment: 20

Ref country code: DE

Payment date: 20230720

Year of fee payment: 20