EP1511967B1 - Hollow chamber profile made of metal, especially for heat exchangers - Google Patents

Hollow chamber profile made of metal, especially for heat exchangers Download PDF

Info

Publication number
EP1511967B1
EP1511967B1 EP03735565A EP03735565A EP1511967B1 EP 1511967 B1 EP1511967 B1 EP 1511967B1 EP 03735565 A EP03735565 A EP 03735565A EP 03735565 A EP03735565 A EP 03735565A EP 1511967 B1 EP1511967 B1 EP 1511967B1
Authority
EP
European Patent Office
Prior art keywords
profile
extrusion
hollow
base profile
webs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03735565A
Other languages
German (de)
French (fr)
Other versions
EP1511967A1 (en
Inventor
Norbert William Sucke
Ismail Boyraz
Reiner Breindl
Reinhold Schurf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erbsloeh Aluminium GmbH
Original Assignee
Erbsloeh Aluminium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10225812A external-priority patent/DE10225812C1/en
Priority claimed from DE20209005U external-priority patent/DE20209005U1/en
Application filed by Erbsloeh Aluminium GmbH filed Critical Erbsloeh Aluminium GmbH
Publication of EP1511967A1 publication Critical patent/EP1511967A1/en
Application granted granted Critical
Publication of EP1511967B1 publication Critical patent/EP1511967B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C35/00Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels
    • B21C35/02Removing or drawing-off work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C35/00Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels
    • B21C35/02Removing or drawing-off work
    • B21C35/023Work treatment directly following extrusion, e.g. further deformation or surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49391Tube making or reforming

Definitions

  • the invention relates to a hollow chamber profile made of metal, in particular for heat exchangers, consisting of an extruded base profile, which has the shape of a round tube or a coaxial tube or is equipped with two parallel broad sides and two narrow sides, wherein at least one channel in the interior of the base profile extends in the longitudinal direction.
  • This design of a hollow chamber profile for heat exchangers is from the German utility model DE 94 06 559 U1 known.
  • the deformation of the channels forming webs during extrusion is shown in a simple manner.
  • the profiling of the webs is not subsequently, but generated during extrusion.
  • more extruded material is offered for that web which is to be profiled wavy, as for another web, which is not to be profiled wavy.
  • This increased supply of the compressive material leads to a compression of the material and thus to an arbitrary deformation of the web to be pressed.
  • an increase in the surface is achieved in a simple manner, resulting in improved heat transfer.
  • the arbitrary deformation of the webs causes a channel which is bounded by two deformed webs to be narrowed or widened in the longitudinal direction of the profile.
  • Such a change in the flow cross-section leads to pressure losses and thus to a lower heat exchange performance.
  • a cooler tube which has at regular intervals annular waves which extend radially outward and were generated by axial compression of the previously smooth cylindrical tube. Between the waves are smooth cylindrical pipe sections. Such a tube has due to its enlarged outer surface a relation to the smooth tube greater heat transfer. However, since the free flow cross-section at the points of the tube, where an annular shaft is provided, is increased, occur in the pipe flowing through the medium pressure losses and thus heat exchange losses. Furthermore, this tube has the disadvantage that the tube is influenced by the subsequently made axial upsetting in its strength.
  • the object of the invention is to provide hollow chamber profiles, in particular for heat exchangers, which have improved heat transfer properties compared to conventional extruded profiles and can be produced in a simple manner.
  • the hollow chamber profile according to the invention made of metal, in particular for a heat exchanger is constructed from a base profile, which preferably consists of a corrosion-resistant, brazeable aluminum alloy, such as, for example, a 1xxx, 3xxx or 6xxx alloy.
  • the extruded base profile has a round tube shape or a Koaxialrohrform or a flat tube shape with two parallel broad sides and two connecting these broad sides narrow sides.
  • the interior of the basic profile is formed by at least one channel in the longitudinal direction. Perpendicular to the longitudinal orientation of the base profile are deformed opposite sides, with left-facing profiles and right-handed profiling alternate. These profiles are coordinated so that the width of the basic profile does not change over the entire longitudinal extent.
  • such deformations are provided in a flat-tube profile both on the narrow sides and on the webs extending from broad side to broad side of the basic profile and forming a plurality of channels.
  • the profiles of the narrow sides and the webs are uniform. This is achieved by making all deformations simultaneously and in the same way. If, for example, a wavy deformation is provided in the longitudinal extent of the base profile, with the left and right-hand profilings alternating transversely to the longitudinal extent, the wave crests of the wavy course of each web and the two narrow sides engage in the corresponding wave troughs of the wave-shaped deformation of the respectively adjacent webs or narrow sides one.
  • a tube profile in particular a coaxial tube with several channels in the longitudinal direction, such deformations are provided both on the outer sides and on the webs forming the channels.
  • the profiles of the outer sides and the webs are uniformly formed here as well.
  • the amplitudes of the wave-shaped course of the deformed sides and the webs in the entire hollow chamber profile are the same size, as well as can be provided for the wavelengths of the deformation.
  • the wavelength or amplitude of such a wavy course of deformation changes, this must apply equally to the adjacent webs as well as to the sides, so that in no case do two adjacent walls approach each other.
  • the flow cross section of the channels is not changed by the deformations.
  • the deformations represent turbulences for the gas flowing through the profile or the liquid flow, which are comparable to known turbulators which can be used.
  • a verwelltes profile can be used both to increase the heat exchange performance of a gas stream and a liquid flow, the effect of the liquid flow, however, is generally lower.
  • Advantageous application can find such a hollow chamber profile as a cooler, in particular as a CO 2 gas cooler or as a charge air cooler for motor vehicles.
  • the hollow chamber profile according to the invention has over the previously known extruded profiles with parallel webs and undeformed narrow sides on a higher performance, since at the same good heat transfer through the turbulence generated by the deformation of the webs and narrow sides transverse to the gas or liquid flow, in addition a better convection is achieved.
  • Such a hollow chamber profile can be produced in a simple manner.
  • a hollow profile strand for example a round tube profile strand, a coaxial tube profile strand or a flat tube profile strand with two mutually parallel broad sides and arched or flat narrow sides, is produced by extrusion with at least one channel extending in the interior of the base profile.
  • the emerging from the forming zone of the extruder and hot hollow profile strand is defined by an oscillating moving deformation tool vibrated and deformed.
  • the deformed Hollow profile strand can then be cut to the desired length of a hollow chamber profile and, if necessary, provided with imprints on the pipe ends. These embossings are used for easy insertion into the headers and a perfect soldering to a heat exchanger.
  • the emerging from the forming and hot hollow profile strand is acted upon by a perpendicular to the outlet direction of the profile strand oscillating moving deformation tool.
  • a perpendicular to the outlet direction of the profile strand oscillating moving deformation tool is acted upon.
  • both the narrow sides of the flat tube profile and the outer sides of the round tube profile and the possibly present webs are deformed.
  • the deformations on the sides and on the webs have a wavy course in the longitudinal direction of the base profile.
  • the wavelength of such a wave-shaped course is preferably unchanged for a hollow profile strand. This is achieved in that the oscillation frequency of the deformation tool is adapted to the strand exit speed of the hollow profile strand.
  • extrusion rates of 15 to 200 m / min, preferably 60 to 150 m / min are used.
  • Deformations of the profile strand can be of the order of 1 to 100 mm.
  • the deformation of the flat tube profile strand i. the deflection is preferably in the direction of the tube width, so that the broad sides maintain their parallel course and are not deformed. This has the advantage that in the subsequent processing to the heat exchanger easy installation, especially the connection with cooling fins and headers can be done.
  • the oscillating movement of the deformation tool generates a deflection force transversely to the outlet direction of the hollow profile strand.
  • This deflection can be effected by mechanical pressure and shear forces.
  • an electromagnetic deflection of the hollow profile strand is possible.
  • a particularly gentle action on the deflection of the hollow profile strand by the deformation tool is achieved by means of a fluid medium.
  • a fluid medium here, both air, nitrogen and water can be used.
  • a hot hollow profile strand is deformed.
  • This can be achieved by arranging the deformation tool in the immediate vicinity of the extrusion die.
  • the temperature of the hollow profile strand in the deformation tool should be greater than 250 ° C, preferably more than 400 ° C, to allow a low-deformation deformation. If now the emerging from the extruder hot hollow profile strand is detected and deflected by the oscillating deformation tool, the deflection forces act back into the extrusion die and there influence the flow of material.
  • a deformation tool can be arranged for example in a recess in the counter-spar of the extruder.
  • the emerging from the extrusion die hollow profile strand is led out of the extruder.
  • the high exit temperature of the hollow section strand is used to allow a low deformation deformation.
  • the hollow profile strand in the deformation tool has the desired forming temperature greater than 250 ° C.
  • the extrusion die itself as a deforming tool moving in an oscillating manner acts.
  • the extrusion die or plant and tool components that position the extrusion die in the extrusion press perform an oscillating motion during the extrusion molding process.
  • hollow-chamber profiles can be provided with wave-shaped deformations, although, in contrast to the prior art, these are defined wave characteristics that can be produced in a defined manner, ie. around reproducible amplitudes or wavelengths of the corrugations.
  • a hollow chamber profile is produced, which over the entire longitudinal extent of the profile has an always constant free flow cross-section and constant wall thicknesses. It is achieved an increase in the heat exchange surface without high pressure losses can occur in the profile. At the same time, the laminar flow is disturbed by the swellings. These turbulences advantageously increase the heat exchange performance of the profile.
  • an inventive hollow chamber profile made of metal is shown.
  • This preferably consists of an extruded base profile 10 made of light metal.
  • This base profile 10 has at least one aligned in the longitudinal direction of the base profile 10 channel 11, preferably a plurality of channels 11. These channels 11 are bounded by the wall 12 and by the webs 13.
  • the base profile 10 may further have arranged on the inner sides of the wall 12 and pointing in the channels 11, parallel to the webs 13 extending web approaches, which are not shown here.
  • the base profile 10 has two parallel broad sides 16, 17, which form a flat top and bottom of the profile. This is advantageous when using the profile as a heat exchanger profile. It allows easy installation and connection with the arranged on the top and bottom of the base section 10 cooling fins.
  • An inventive hollow chamber profile can also show the shape of a round tube or a coaxial tube and have one or more channels oriented in the longitudinal direction of the profile.
  • the intended to increase the heat exchange performance of the profile Verwellept concern here only the narrow sides 18, 19 and the webs 13.
  • the narrow sides 18, 19 are deformed perpendicular to the longitudinal orientation of the base profile, with left-facing profiles 21 and right-hand profiles 22 at the two narrow sides 18, 19 and also at the webs 13 alternate each other.
  • the base profile 10 has a width B, which is the same size despite the Verwellept at each point of the longitudinal extent. This is because the two narrow sides 18, 19 are profiled in the same way, ie have the same undulating course.
  • the webs 13 show the same undulating course.
  • the distance A between two adjacent webs 13 is the same size.
  • the distance C between the narrow side 18 and the first web 13 'and the distance D between the narrow side 19 and the last web 13 is constant, which means that any cross-section of the base profile 10 according to FIG Fig. 1 the same cross-section as in Fig. 2 shows, ie that the basic profile 10 in the longitudinal direction always has the same free flow cross-section. Accordingly, despite the swelling, there are no high pressure losses in the basic profile 10 according to the invention, since there are no impediments influencing the flow.
  • FIGS. 1 and 3 basic profile 10 shown in an advantageous manner, a deformation of the narrow sides 18, 19 and the webs 13, which show a wave-like course in the longitudinal direction, said waves having the same wavelength.
  • the profiles 21, 22 of the narrow sides 18, 19 and the webs 13 are in their maximum deflection, ie in their amplitudes match.
  • Such a configuration is not mandatory for achieving a high heat exchange performance.
  • the wave-shaped course can also have different wavelengths or amplitudes.
  • the above-described embodiment is easier to manufacture.
  • the extrusion rates v for hollow chamber profiles, in particular for MP profiles (multiport profiles) or MMP profiles (Milcro multiport profiles) are 15 to 200 m / min, preferably 60 to 150 m / min.
  • the wavelengths 1 of the wave-like deformations according to the invention are in the order of magnitude of 1 to 100 mm.
  • the oscillating movement of the deformation tool 30, which generates a deformation when hitting the hollow profile strand 20 due to the force can be realized in various ways. For example, by an electric motor, by an eccentric drive or a hydraulic system.
  • the forming temperature of the hollow section strand 20 in the forming tool 30 should be at least 250 ° C, but preferably it should be greater than 400 ° C. Is due to the construction of the entire production of the straight profile strand course BI so long that the temperature of the hollow profile strand 20 drops substantially below 250 ° C, between the outlet of the extrusion die 33 and the deformation tool 30, a heating device is provided, the hollow profile strand 20 to the desired Forming temperature in the deformation tool 30 holds. If the region of the straight profile strand profile B I is very small, such heating can be dispensed with.
  • a further basic structure of a device for a method according to the invention is shown.
  • the deformation tool 30 also takes over the function of the strand guide of the hollow profile strand 20.
  • the deflection forces generated by the deformation tool 30 by movement in the direction of displacement 31, 32, back to the die 33 and there influence the flow of material.
  • the profilings 21, 22 form directly after exiting the tool, ie already present between the die 33 and the deformation tool 30.
  • the deformation tool 30 should have a width BIII in the exit direction 36, which corresponds to at least twice the wavelength 1 of the wave-shaped profiles.
  • Such a deformation tool 30, which constitutes an oscillating strand guide, is preferably provided on the extrusion press itself, in particular, such a deformation tool 30 can be arranged and guided in a recess in the counter-spar of the extrusion press.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Extrusion Of Metal (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to a hollow chamber profile made of metal, especially for heat exchangers. Said profile is made of an extruded base profile (10) having two broad parallel sides and two narrow sides or is made of a base profile which is a circular tube type or coaxial tube type. At least one channel (11) extends inside said base profile in the longitudinal direction thereof. The hollow profile has improved heat transfer properties on the sides and webs (13) which are deformed perpendicular to the longitudinal direction thereof.

Description

Die Erfindung bezieht sich auf ein Hohlkammerprofil aus Metall, insbesondere für Wärmetauscher, bestehend aus einem stranggepressten Grundprofil, welches die Form eines Rundrohres oder eines Koaxialrohres hat oder mit zwei zueinander parallelen Breitseiten und zwei Schmalseiten ausgestattet ist, wobei im Innenraum des Grundprofils sich mindestens ein Kanal in Längsrichtung erstreckt.The invention relates to a hollow chamber profile made of metal, in particular for heat exchangers, consisting of an extruded base profile, which has the shape of a round tube or a coaxial tube or is equipped with two parallel broad sides and two narrow sides, wherein at least one channel in the interior of the base profile extends in the longitudinal direction.

Diese Gestaltung eines Hohlkammerprofils für Wärmetauscher ist aus dem deutschen Gebrauchsmuster DE 94 06 559 U1 bekannt. Dort wird auf einfache Weise die Verformung der die Kanäle bildenden Stege beim Strangpressen gezeigt. Die Profilierung der Stege wird nicht nachträglich, sondern beim Strangpressen erzeugt. Hierfür wird für denjenigen Steg, der wellenförmig profiliert werden soll mehr Strangpressmaterial angeboten, als für einen anderen Steg, der nicht wellenförmig profiliert werden soll. Dieses vermehrte Angebot des verpressenden Materials führt zu einer Stauchung des Materials und demgemäß zu einer willkürlichen Verformung des zu verpressenden Steges. Damit wird auf einfache Weise eine Vergrößerung der Oberfläche erzielt, was zu einem verbesserten Wärmeübergang führt. Die willkürliche Verformung der Stege führt jedoch dazu, dass ein Kanal der durch zwei verformte Stege begrenzt wird, in Längsrichtung des Profils verengt bzw. erweitert wird. Eine solche Veränderung des Strömungsquerschnitts führt zu Druckverlusten und damit zu einer geringeren Wärmeaustauschleistung.This design of a hollow chamber profile for heat exchangers is from the German utility model DE 94 06 559 U1 known. There, the deformation of the channels forming webs during extrusion is shown in a simple manner. The profiling of the webs is not subsequently, but generated during extrusion. For this purpose, more extruded material is offered for that web which is to be profiled wavy, as for another web, which is not to be profiled wavy. This increased supply of the compressive material leads to a compression of the material and thus to an arbitrary deformation of the web to be pressed. Thus, an increase in the surface is achieved in a simple manner, resulting in improved heat transfer. However, the arbitrary deformation of the webs causes a channel which is bounded by two deformed webs to be narrowed or widened in the longitudinal direction of the profile. Such a change in the flow cross-section leads to pressure losses and thus to a lower heat exchange performance.

Aus der DE 100 49 987 A1 ist des Weiteren ein Kühlerrohr bekannt, welches in regelmäßigem Abstand ringförmige Wellen aufweist, die sich radial nach außen erstrecken und durch axiales Stauchen des zuvor glatten zylindrischen Rohres erzeugt wurden. Zwischen den Wellen befinden sich glatte zylindrische Rohrabschnitte. Ein solches Rohr weist aufgrund seiner vergrößerten Außenoberfläche einen gegenüber dem glatten Rohr größeren Wärmeübergang auf. Da jedoch der freie Strömungsquerschnitt an den Stellen des Rohres, wo eine ringförmige Welle vorgesehen ist, vergrößert ist, treten bei dem das Rohr durchfließenden Medium Druckverluste und damit Wärmeaustauschverluste auf. Des Weiteren besitzt dieses Rohr den Nachteil, dass das Rohr durch das nachträglich vorgenommene axiale Stauchen in seiner Festigkeit beeinflusst ist.From the DE 100 49 987 A1 Furthermore, a cooler tube is known which has at regular intervals annular waves which extend radially outward and were generated by axial compression of the previously smooth cylindrical tube. Between the waves are smooth cylindrical pipe sections. Such a tube has due to its enlarged outer surface a relation to the smooth tube greater heat transfer. However, since the free flow cross-section at the points of the tube, where an annular shaft is provided, is increased, occur in the pipe flowing through the medium pressure losses and thus heat exchange losses. Furthermore, this tube has the disadvantage that the tube is influenced by the subsequently made axial upsetting in its strength.

Alternativ zu stranggepressten Aluminiumrohren bzw. Mehrkammerhohlprofilen werden aus Aluminiumblech rollgeformte Profile eingesetzt. Diese werden häufig durch Hochfrequenzschweißen bzw. durch geeignete Verformung und ein nachfolgendes Verlöten verschlossen. Durch den Einsatz von Turbulatoren können die Wäremübertragungseigenschaften verbessert werden. Nachteil dieses Verfahrens ist der hohe Aufwand für die Herstellung und Montage der Turbulatoren. Zudem sind die gelöteten bzw. geschweißten Rohrnähte häufige Versagungsursache bei mechanischer bzw. bei korrosiver Beanspruchung. Durch den Einsatz stranggepresster Aluminiumprofile kann die Aufgabe nur teilweise gelöst werden. Zwar sind die Rohrnähte erheblich stabiler, jedoch ist die Eignung zur Wärmeübertragung durch die nur in Strangpressrichtung ausgeformten Rohrwände und Rohrstege beschränkt. Speziell bei gasförmigen Medien, wie z. B. Luft bei Ladeluftkühlern oder CO2 bzw. gasförmiges Kältemittel bei Klimawärmetauschern, kann Wärme nicht optimal übertragen werden.As an alternative to extruded aluminum tubes or multi-chamber hollow profiles, aluminum profiles are used for roll-formed profiles. These are often closed by high-frequency welding or by suitable deformation and subsequent soldering. By using turbulators, the heat transfer properties can be improved. Disadvantage of this method is the high cost of manufacturing and mounting the turbulators. In addition, the soldered or welded pipe seams are frequent sources of failure in the case of mechanical or corrosive stress. By using extruded aluminum profiles, the task can only be partially solved. Although the pipe seams are considerably more stable, however, the suitability for heat transfer is limited by the only formed in the extrusion direction tube walls and pipe webs. Especially with gaseous media, such as. B. air in charge air coolers or CO 2 or gaseous refrigerant in Klimaärmetauschern, heat can not be optimally transmitted.

Die Aufgabe der Erfindung besteht darin, Hohlkammerprofile, insbesondere für Wärmetauscher, zur Verfügung zu stellen, die verbesserte Wärmeübertragungseigenschaften gegenüber herkömmlichen stranggepressten Profilen aufweisen und auf einfache Weise herstellbar sind.The object of the invention is to provide hollow chamber profiles, in particular for heat exchangers, which have improved heat transfer properties compared to conventional extruded profiles and can be produced in a simple manner.

Diese Aufgabe wird erfingdungsgemäß durch ein Hohlkammerprofil aus Metall mit den in Anspruch 1 oder 5 aufgeführten Merkmalen sowie einem Verfahren gemäß Anspruch 8 erfüllt.This object is achieved erfingdungsgemäß by a hollow chamber profile made of metal with the features listed in claim 1 or 5 and a method according to claim 8.

Das erfindungsgemäße Hohlkammerprofil aus Metall, insbesondere für einen Wärmetauscher, ist aus einem Grundprofil aufgebaut, welches bevorzugt aus einer korrosionsbeständigen, hartlötbaren Aluminiumlegierung besteht, wie beispielsweise aus einer 1xxx-, 3xxx- oder 6xxx-Legierung. Das stranggepresste Grundprofil besitzt eine Rundrohrform oder eine Koaxialrohrform oder eine Flachrohrform mit zwei zueinander parallele Breitseiten und zwei diese Breitseiten verbindende Schmalseiten. Der Innenraum des Grundprofils wird durch mindestens einen Kanal in Längsrichtung gebildet. Senkrecht zur Längsausrichtung des Grundprofils sind gegenüberliegenden Seiten verformt, wobei sich linksgerichtete Profilierungen und rechtsgerichtete Profilierungen abwechseln. Diese Profilierungen sind so aufeinander abgestimmt, dass sich die Breite des Grundprofils über die gesamte Längsausdehnung nicht verändert.The hollow chamber profile according to the invention made of metal, in particular for a heat exchanger, is constructed from a base profile, which preferably consists of a corrosion-resistant, brazeable aluminum alloy, such as, for example, a 1xxx, 3xxx or 6xxx alloy. The extruded base profile has a round tube shape or a Koaxialrohrform or a flat tube shape with two parallel broad sides and two connecting these broad sides narrow sides. The interior of the basic profile is formed by at least one channel in the longitudinal direction. Perpendicular to the longitudinal orientation of the base profile are deformed opposite sides, with left-facing profiles and right-handed profiling alternate. These profiles are coordinated so that the width of the basic profile does not change over the entire longitudinal extent.

Nach der Erfindung werden bei einem Flachrohrprofil solche Verformungen sowohl an den Schmalseiten als auch an den von Breitseite zu Breitseite des Grundprofils sich erstreckenden, mehrere Kanäle bildenden Stege vorgesehen. In jedem Fall sind die Profilierungen der Schmalseiten und der Stege gleichförmig ausgebildet. Dies wird dadurch erreicht, dass alle Verformungen gleichzeitig und in gleicher Weise vorgenommen werden. Wird beispielsweise eine wellenförmige Verformung in der Längsausdehnung des Grundprofils vorgesehen, wobei sich quer zur Längsausdehnung die linksgerichteten und rechtsgerichteten Profilierungen abwechseln, greifen die Wellenberge des wellenförmigen Verlaufs eines jeden Steges und der beiden Schmalseiten in die entsprechenden Wellentäler der wellenförmigen Verformung der jeweils benachbarten Stege oder Schmalseiten ein.According to the invention, such deformations are provided in a flat-tube profile both on the narrow sides and on the webs extending from broad side to broad side of the basic profile and forming a plurality of channels. In any case, the profiles of the narrow sides and the webs are uniform. This is achieved by making all deformations simultaneously and in the same way. If, for example, a wavy deformation is provided in the longitudinal extent of the base profile, with the left and right-hand profilings alternating transversely to the longitudinal extent, the wave crests of the wavy course of each web and the two narrow sides engage in the corresponding wave troughs of the wave-shaped deformation of the respectively adjacent webs or narrow sides one.

Bei einem Rohrprofil, insbesondere einem Koaxialrohr mit mehreren Kanälen in Längsrichtung, werden solche Verformungen sowohl an den Außenseiten als auch an den die Kanäle bildenden Stege vorgesehen. In jedem Fall sind auch hier die Profilierungen der Außenseiten und der Stege gleichförmig ausgebildet.In a tube profile, in particular a coaxial tube with several channels in the longitudinal direction, such deformations are provided both on the outer sides and on the webs forming the channels. In any case, the profiles of the outer sides and the webs are uniformly formed here as well.

Es kann in bevorzugter Weise dafür gesorgt werden, dass die Amplituden des wellenförmigen Verlaufs der verformten Seiten und der Stege im gesamten Hohlkammerprofil gleich groß sind, ebenso kann dies für die Wellenlängen der Verformung vorgesehen werden. Es ist zur Erzielung einer hohen Konvektion bei gleichbleibend gutem Wärmeübergang jedoch nicht notwendig, dass der wellenförmige Verlauf der Verformungen mit unveränderter Wellenlänge und gleich großer Amplitude vorliegt. Ändert sich jedoch Wellenlänge oder Amplitude eines solchen wellenförmigen Verlaufs einer Verformung, so muss dies in gleicher Weise für die benachbarten Stege wie auch für die Seiten zutreffen, damit sich in keinem Fall zwei benachbarte Wandungen einander nähern. Der Strömungsquerschnitt der Kanäle wird durch die Verformungen nicht verändert. Die Verformungen stellen jedoch für das das Profil durchströmende Gas bzw. den Flüssigkeitsstrom Turbulenzen dar, die vergleichbar sind mit bekannten einsetzbaren Turbulatoren. Ein solches verwelltes Profil kann sowohl zur Erhöhung der Wärmeaustauschleistung eines Gasstromes als auch eines Flüssigkeitsstromes eingesetzt werden, wobei die Wirkung beim Flüssigkeitsstrom jedoch im allgemeinen geringer ist. Vorteilhafte Anwendung kann ein solches Hohlkammerprofil als Kühler, insbesondere als CO2-Gaskühler oder als Ladeluftkühler für Kraftfahrzeuge, finden.It can be ensured in a preferred manner that the amplitudes of the wave-shaped course of the deformed sides and the webs in the entire hollow chamber profile are the same size, as well as can be provided for the wavelengths of the deformation. However, it is not necessary to achieve a high convection with consistently good heat transfer that the wave-shaped course of the deformations with unchanged wavelength and amplitude is equal. However, if the wavelength or amplitude of such a wavy course of deformation changes, this must apply equally to the adjacent webs as well as to the sides, so that in no case do two adjacent walls approach each other. The flow cross section of the channels is not changed by the deformations. However, the deformations represent turbulences for the gas flowing through the profile or the liquid flow, which are comparable to known turbulators which can be used. Such a verwelltes profile can be used both to increase the heat exchange performance of a gas stream and a liquid flow, the effect of the liquid flow, however, is generally lower. Advantageous application can find such a hollow chamber profile as a cooler, in particular as a CO 2 gas cooler or as a charge air cooler for motor vehicles.

Das erfindungsgemäße Hohlkammerprofil weist gegenüber den vorbekannten stranggepressten Profilen mit parallel verlaufenden Stegen und unverformten Schmalseiten eine höhere Leistung auf, da bei gleich gutem Wärmeübergang durch die Turbulenzen, die mittels der Verformung der Stege und Schmalseiten quer zum Gas- bzw. Flüssigkeitsstrom erzeugt werden, zusätzlich eine bessere Konvektion erzielt wird.The hollow chamber profile according to the invention has over the previously known extruded profiles with parallel webs and undeformed narrow sides on a higher performance, since at the same good heat transfer through the turbulence generated by the deformation of the webs and narrow sides transverse to the gas or liquid flow, in addition a better convection is achieved.

Ein solches Hohlkammerprofil kann auf einfache Weise hergestellt werden. Im ersten Verfahrensschritt wird durch Strangpressen ein Hohlprofilstrang, beispielsweise ein Rundrohrprofilstrang, ein Koaxialrohrprofilstrang oder eine Flachrohrprofilstrang mit zwei zueinander parallelen Breitseiten sowie gewölbten oder ebenen Schmalseiten, mit mindestens einem sich im Innenraum des Grundprofils erstreckender Kanal erzeugt. Der aus der Umformzone der Strangpresse austretende und heiße Hohlprofilstrang wird durch ein sich oszillierend bewegendes Verformungswerkzeug definiert in Schwingung versetzt und verformt. Der verformte Hohlprofilstrang kann dann auf die gewünschte Länge eines Hohlkammerprofils abgelängt und bedarfsweise mit Prägungen an den Rohrenden versehen werden. Diese Prägungen dienen einem einfachen Einschieben in die Sammelrohre und einer einwandfreien Verlötung zu einem Wärmetauscher.Such a hollow chamber profile can be produced in a simple manner. In the first process step, a hollow profile strand, for example a round tube profile strand, a coaxial tube profile strand or a flat tube profile strand with two mutually parallel broad sides and arched or flat narrow sides, is produced by extrusion with at least one channel extending in the interior of the base profile. The emerging from the forming zone of the extruder and hot hollow profile strand is defined by an oscillating moving deformation tool vibrated and deformed. The deformed Hollow profile strand can then be cut to the desired length of a hollow chamber profile and, if necessary, provided with imprints on the pipe ends. These embossings are used for easy insertion into the headers and a perfect soldering to a heat exchanger.

In bevorzugter Weise wird der aus der Umformzone austretende und heiße Hohlprofilstrang durch ein sich senkrecht zur Austrittsrichtung des Profilstrangs oszillierend bewegendes Verformungswerkzeugs beaufschlagt. Dabei werden gleichzeitig sowohl die Schmalseiten des Flachrohrprofils bzw. die Außenseiten des Rundrohrprofiles als auch die eventuell vorhandenen Stege verformt.Preferably, the emerging from the forming and hot hollow profile strand is acted upon by a perpendicular to the outlet direction of the profile strand oscillating moving deformation tool. At the same time both the narrow sides of the flat tube profile and the outer sides of the round tube profile and the possibly present webs are deformed.

In einer besonderen Ausführungsform weisen die Verformungen an den Seiten und an den Stegen einen in Längsrichtung des Grundprofils wellenförmigen Verlauf auf. Die Wellenlänge eines solchen wellenförmigen Verlaufes ist in bevorzugter Weise für einen Hohlprofilstrang unverändert. Dies wird dadurch erreicht, dass die Ozillationsfrequenz des Verformungswerkzeuges an die Strangaustrittsgeschwindigkeit des Hohlprofilsstrangs angepasst wird. Bei der Herstellung von Mehrkammerhohlprofilen werden Strangpressgeschwindigkeiten von 15 bis 200 m/min, vorzugsweise 60 bis 150 m/min verwendet. Die Wellenlängen der wellenförmigen. Verformungen des Profilsstrangs können in der Größenordnung 1 bis 100 mm liegen.In a particular embodiment, the deformations on the sides and on the webs have a wavy course in the longitudinal direction of the base profile. The wavelength of such a wave-shaped course is preferably unchanged for a hollow profile strand. This is achieved in that the oscillation frequency of the deformation tool is adapted to the strand exit speed of the hollow profile strand. In the production of multi-chamber hollow profiles extrusion rates of 15 to 200 m / min, preferably 60 to 150 m / min are used. The wavelengths of the wavy. Deformations of the profile strand can be of the order of 1 to 100 mm.

Die Verformung des Flachrohrprofilstranges, d.h. die Auslenkung erfolgt vorzugsweise in Richtung der Rohrbreite, so dass die Breitseiten ihren parallelen Verlauf beibehalten und nicht verformt werden. Dies hat den Vorteil, dass bei der nachfolgenden Verarbeitung zum Wärmetauscher eine einfache Montage, insbesondere die Verbindung mit Kühllamellen und Sammelrohren, erfolgen kann.The deformation of the flat tube profile strand, i. the deflection is preferably in the direction of the tube width, so that the broad sides maintain their parallel course and are not deformed. This has the advantage that in the subsequent processing to the heat exchanger easy installation, especially the connection with cooling fins and headers can be done.

Es ist jedoch auch möglich, zwei Schwingungsebenen getrennt voneinander zu steuern und somit zirkulare Verwellungen zu erzeugen. dies kann insbesondere bei einem Rundrohrprofil oder einem Koaxialrohrprofil vorteilhaft sein.However, it is also possible to control two oscillation planes separately from each other and thus to produce circular eddies. this may be advantageous in particular in the case of a round tube profile or a coaxial tube profile.

Die oszillierende Bewegung des Verformungswerkzeuges erzeugt eine Auslenkkraft quer zur Austrittsrichtung des Hohlprofilstranges. Diese Auslenkung kann durch mechanische Druck- und Schubkräfte bewirkt werden. Ebenso ist eine elektromagnetische Auslenkung des Hohlprofilstranges möglich. Eine besonders schonende Beaufschlagung zur Auslenkung des Hohlprofilstranges durch das Verformungswerkzeug wird mittels eines fluiden Mediums erzielt. Hierbei können sowohl Luft, Stickstoff als auch Wasser eingesetzt werden.The oscillating movement of the deformation tool generates a deflection force transversely to the outlet direction of the hollow profile strand. This deflection can be effected by mechanical pressure and shear forces. Likewise, an electromagnetic deflection of the hollow profile strand is possible. A particularly gentle action on the deflection of the hollow profile strand by the deformation tool is achieved by means of a fluid medium. Here, both air, nitrogen and water can be used.

Wesentlich bei dem erfindungsgemäßen Verfahren ist; dass ein heißer Hohlprofilstrang verformt wird. Dies kann dadurch erzielt werden, dass das Verformungswerkzeug in unmittelbarer Nähe der Strangpressmatrize angeordnet ist. So kommt es zu keiner merklichen Abkühlung des Hohlprofilstranges, nachdem dieser aus der Strangpressmatrize austritt und dann vom Verformungswerkzeug beaufschlagt wird. Die Temperatur des Hohlprofilstrangs im Verformungswerkzeug sollte größer als 250° C sein, vorzugsweise mehr als 400° C, um eine deformationsarme Umformung zu ermöglichen. Wird nun der aus der Strangpresse austretende heiße Hohlprofilstrang von dem oszillierenden Verformungswerkzeug erfasst und ausgelenkt, wirken die Auslenkungskräfte bis zurück in die Strangpressmatrize und beeinflussen dort den Materialfluss. Ein solches Verformungswerkzeug lässt sich beispielsweise in einer Ausnehmung im Gegenholm der Strangpresse anordnen.Essential in the method according to the invention; that a hot hollow profile strand is deformed. This can be achieved by arranging the deformation tool in the immediate vicinity of the extrusion die. Thus, there is no noticeable cooling of the hollow profile strand after it emerges from the extrusion die and is then acted upon by the deformation tool. The temperature of the hollow profile strand in the deformation tool should be greater than 250 ° C, preferably more than 400 ° C, to allow a low-deformation deformation. If now the emerging from the extruder hot hollow profile strand is detected and deflected by the oscillating deformation tool, the deflection forces act back into the extrusion die and there influence the flow of material. Such a deformation tool can be arranged for example in a recess in the counter-spar of the extruder.

Es ist jedoch auch denkbar, dass der aus der Strangpressmatrize austretende Hohlprofilstrang aus der Strangpresse herausgeführt wird. In diesem Fall ist es vorteilhaft eine entsprechende Vorrichtung zum Führen des Profilsstrangs zwischen der Strangpresse und der Verformungsvorrichtung vorzusehen. Auch hier wird die hohe Austrittstemperatur des Hohlprofilsstrangs benutzt, um eine deformationsarme Umformung zu ermöglichen. Allerdings muss abgesichert sein, dass der Hohlprofilstrang im Verformungswerkzeug die gewünschte Umformtemperatur von größer als 250° C aufweist.However, it is also conceivable that the emerging from the extrusion die hollow profile strand is led out of the extruder. In this case, it is advantageous to provide a corresponding device for guiding the profile strand between the extrusion press and the deformation device. Again, the high exit temperature of the hollow section strand is used to allow a low deformation deformation. However, it must be ensured that the hollow profile strand in the deformation tool has the desired forming temperature greater than 250 ° C.

In einer weiteren Ausführung des erfindungsgemäßen Verfahrens wird vorgesehen, dass die Strangpressmatrize selbst als sich oszillierend bewegendes Verformungswerkzeug wirkt. Die Strangpressmatrize oder Anlagen- und Werkzeugkomponenten, die die Strangpressmatrize in der Strangpresse positionieren, führen während des Strangspressvorgangs eine oszillierende Bewegung aus.In a further embodiment of the method according to the invention it is provided that the extrusion die itself as a deforming tool moving in an oscillating manner acts. The extrusion die or plant and tool components that position the extrusion die in the extrusion press perform an oscillating motion during the extrusion molding process.

Mit dem erfindungsgemäßen Verfahren lassen sich Hohlkammerprofile mit wellenförmigen Verformungen versehen, wobei im Gegensatz zum Stand der Technik es sich hier jedoch um definiert herstellbare Wellenverläufe handelt, d.h. um reproduzierbare Amplituden bzw. Wellenlängen der Verwellungen. Dadurch wird ein Hohlkammerprofil erzeugt, welches über die gesamte Längsausdehnung des Profils einen immer gleichbleibenden freien Strömungsquerschnitt und gleichbleibende Wanddicken aufweist. Es wird eine Vergrößerung der Wärmeaustauschfläche erzielt, ohne dass hohe Druckverluste im Profil auftreten können. Gleichzeitig wird die laminare Strömung durch die Verwellungen gestört. Diese Turbulenzen erhöhen vorteilhafterweise die Wärmeaustauschleistung des Profils.With the method according to the invention, hollow-chamber profiles can be provided with wave-shaped deformations, although, in contrast to the prior art, these are defined wave characteristics that can be produced in a defined manner, ie. around reproducible amplitudes or wavelengths of the corrugations. As a result, a hollow chamber profile is produced, which over the entire longitudinal extent of the profile has an always constant free flow cross-section and constant wall thicknesses. It is achieved an increase in the heat exchange surface without high pressure losses can occur in the profile. At the same time, the laminar flow is disturbed by the swellings. These turbulences advantageously increase the heat exchange performance of the profile.

Weitere Merkmale, Vorteile und vorteilhafter Ausgestaltungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung der Erfindung anhand der beigefügten Zeichnungen. Die Zeichnungen zeigen in:

Fig. 1
eine perspektivische Ansicht eines erfindungsgemäßen Hohlkammerprofils,
Fig. 2
einen Querschnitt des Hohlkammerprofils gemäß Fig. 1,
Fig. 3
ein Längsschnitt durch das Hohlkammerprofil entlang Schnittlinie III - III gemäß Fig. 1,
Fig.4 a
die prinzipielle Darstellung einer erfindungsgemäßen Verfahrensvariante für ein Rundrohrprofil,
Fig. 4 b
die prinzipielle Darstellung der erfindungsgemäßen Verfahrensvariante nach Fig 4a für ein Flachrohrprofil,
Fig. 5
die prinzipielle Darstellung einer weiteren erfindungsgemäßen Verfahrensvariante.
Further features, advantages and advantageous embodiments of the invention will become apparent from the following description of the invention with reference to the accompanying drawings. The drawings show in:
Fig. 1
a perspective view of a hollow chamber profile according to the invention,
Fig. 2
a cross section of the hollow chamber profile according to Fig. 1 .
Fig. 3
a longitudinal section through the hollow chamber profile along section line III - III according to Fig. 1 .
Fig.4 a
the basic representation of a method variant according to the invention for a round tube profile,
Fig. 4 b
the basic representation of the method variant according to the invention Fig. 4a for a flat tube profile,
Fig. 5
the basic representation of another method variant according to the invention.

In der Fig. 1 ist ein erfindungsgemäßes Hohlkammerprofil aus Metall gezeigt. Dieses besteht vorzugsweise aus einem stranggepressten Grundprofil 10 aus Leichtmetall. Dieses Grundprofil 10 weist mindestens einen in Längsrichtung des Grundprofils 10 ausgerichteten Kanal 11 auf, vorzugsweise mehrere Kanäle 11. Diese Kanäle 11 werden durch die Wandung 12 bzw. durch die Stege 13 begrenzt. Das Grundprofil 10 kann des weiteren an den Innenseiten der Wandung 12 angeordnete und in die Kanäle 11 weisende, parallel zu den Stegen 13 verlaufende Stegansätze besitzen, die hier nicht gezeigt werden. Wie den Figuren 1 und 2 zu entnehmen ist, besitzt das Grundprofil 10 zwei zueinander parallelen Breitseiten 16, 17, die eine ebene Ober- und Unterseite des Profils bilden. Dies ist bei einer Anwendung des Profils als Wärmetauscherprofil von Vorteil. Es ermöglicht eine einfache Montage und Verbindung mit den auf der Oberseite und Unterseite des Grundprofils 10 angeordneten Kühllamellen.In the Fig. 1 an inventive hollow chamber profile made of metal is shown. This preferably consists of an extruded base profile 10 made of light metal. This base profile 10 has at least one aligned in the longitudinal direction of the base profile 10 channel 11, preferably a plurality of channels 11. These channels 11 are bounded by the wall 12 and by the webs 13. The base profile 10 may further have arranged on the inner sides of the wall 12 and pointing in the channels 11, parallel to the webs 13 extending web approaches, which are not shown here. Like that Figures 1 and 2 can be seen, the base profile 10 has two parallel broad sides 16, 17, which form a flat top and bottom of the profile. This is advantageous when using the profile as a heat exchanger profile. It allows easy installation and connection with the arranged on the top and bottom of the base section 10 cooling fins.

Ein erfindungsgemäßes Hohlkammerprofil kann auch die Form eines Rundrohres oder eines Koaxialrohres zeigen und ein oder mehrere in Längsrichtung des Profils ausgerichtete Kanäle aufweisen.An inventive hollow chamber profile can also show the shape of a round tube or a coaxial tube and have one or more channels oriented in the longitudinal direction of the profile.

Die zur Erhöhung der Wärmeaustauschleistung des Profils vorgesehenen Verwellungen betreffen hier ausschließlich die Schmalseiten 18, 19 und die Stege 13. Die Schmalseiten 18, 19 sind senkrecht zur Längsausrichtung des Grundprofils verformt, wobei sich linksgerichtete Profilierungen 21 und rechtsgerichtete Profilierungen 22 bei den beiden Schmalseiten 18, 19 und auch bei den Stegen 13 einander abwechseln. Wie insbesondere aus der Fig. 3 zu ersehen ist, besitzt das Grundprofil 10 eine Breite B, die trotz der Verwellungen an jeder Stelle der Längsausdehnung gleich groß ist. Dies deshalb, weil die beiden Schmalseiten 18, 19 in gleicher Weise profiliert sind, d.h. den gleichen wellenförmige Verlauf aufweisen. Ebenso zeigen die Stege 13 den gleichen wellenförmigen Verlauf. An jeder beliebigen Stelle des Grundprofils 10 ist der Abstand A zwischen zwei benachbarten Stegen 13 gleich groß. Auch der Abstand C zwischen der Schmalseite 18 und dem ersten Steg 13' sowie der Abstand D zwischen der Schmalseite 19 und dem letzten Steg 13" ist konstant. Dies bedeutet, dass jeder beliebige Querschnitt des Grundprofils 10 gemäß Fig. 1 den gleichen Querschnitt wie in Fig. 2 zeigt, d.h. dass das Grundprofil 10 in Längsausrichtung immer den gleichen freien Strömungsquerschnitt aufweist. Es treten demzufolge bei dem erfindungsgemäßen Grundprofil 10 trotz der Verwellungen keine hohen Druckverluste auf, da keine die Strömung beeinflussenden Widerstände vorhanden sind.The intended to increase the heat exchange performance of the profile Verwellungen concern here only the narrow sides 18, 19 and the webs 13. The narrow sides 18, 19 are deformed perpendicular to the longitudinal orientation of the base profile, with left-facing profiles 21 and right-hand profiles 22 at the two narrow sides 18, 19 and also at the webs 13 alternate each other. As in particular from the Fig. 3 can be seen, the base profile 10 has a width B, which is the same size despite the Verwellungen at each point of the longitudinal extent. This is because the two narrow sides 18, 19 are profiled in the same way, ie have the same undulating course. Likewise, the webs 13 show the same undulating course. At every arbitrary position of the base profile 10, the distance A between two adjacent webs 13 is the same size. Also, the distance C between the narrow side 18 and the first web 13 'and the distance D between the narrow side 19 and the last web 13 "is constant, which means that any cross-section of the base profile 10 according to FIG Fig. 1 the same cross-section as in Fig. 2 shows, ie that the basic profile 10 in the longitudinal direction always has the same free flow cross-section. Accordingly, despite the swelling, there are no high pressure losses in the basic profile 10 according to the invention, since there are no impediments influencing the flow.

Das in den Figuren 1 und 3 gezeigte Grundprofil 10 zeigt in vorteilhafter Weise eine Verformung der Schmalseiten 18, 19 und der Stege 13, die in Längsrichtung einen wellenförmigen Verlauf zeigen, wobei diese Wellen gleiche Wellenlänge aufweisen. Die Profilierungen 21, 22 der Schmalseiten 18, 19 und der Stege 13 stimmen in ihrer maximalen Auslenkung, d.h. in ihren Amplituden, überein. Eine solche Ausgestaltung ist nicht zwingend für die Erzielung einer hohen Wärmeaustauschleistung. Solange der freie Strömungsquerschnitt konstant bleibt, kann der wellenförmige Verlauf auch unterschiedliche Wellenlängen oder Amplituden aufweisen. Die vorbeschriebene Ausführung lässt sich jedoch leichter fertigen.That in the FIGS. 1 and 3 basic profile 10 shown in an advantageous manner, a deformation of the narrow sides 18, 19 and the webs 13, which show a wave-like course in the longitudinal direction, said waves having the same wavelength. The profiles 21, 22 of the narrow sides 18, 19 and the webs 13 are in their maximum deflection, ie in their amplitudes match. Such a configuration is not mandatory for achieving a high heat exchange performance. As long as the free flow cross section remains constant, the wave-shaped course can also have different wavelengths or amplitudes. However, the above-described embodiment is easier to manufacture.

Ein erfindungsgemäßes Hohlkammerprofil aus Metall mit definierten, reproduzierbaren Verwellungen zu versehen, wird in zwei alternativen Ausführungen des Verfahrens gemäß der Fig. 4 a und 4 b bzw. der Fig. 5 beschrieben.To provide an inventive hollow chamber profile made of metal with defined, reproducible Verwellungen, is in two alternative embodiments of the method according to the Fig. 4 a and 4 b and the Fig. 5 described.

In bekannten Weise wird durch Strangpressen ein Hohlprofilstrang 20 erzeugt. Von der Strangpresseinrichtung ist in der Fig. 4a, 4b und 5 jeweils nur die Strangpressmatrize 33 mit den Matrizenkammern 34, 35 gezeigt. Dabei kann es sich bei der Strangpressvorrichtung um eine aus dem Stand der Technik bekannte Direktstrangpresse, Indirektstrangpresse oder Conformpresse handeln. Der die gewünschte Profilform aufweisende Profilstrang 20 wird in Austrittsrichtung 36 aus der Strangpressmatrize 33 ausgepresst. In der Ausführung nach Fig. 4a und 5 ergibt sich ein Rundrohr und in der Ausführung nach Fig. 4b ein Flachrohrprofil mit mehreren Kanälen 11. Herkömmlicherweise wird der heiße Hohlprofilstrang 20 entlang eines Kühlbettes Weiterverarbeitungsstationen, beispielsweise zum Beschichten, Umformen oder Ablängen, zugeführt. Bei der in Fig. 4 a bzw. 4 b gezeigten Vorrichtung zeigt der Hohlprofilstrang 20 bis zu einer Führung 37 einen geraden Profilstrangverlauf B I. An diesem geraden Profilstrangverlauf B I schließt sich ein verformter Profilstrangverlauf B II an. Die Verformungen stellen linksgerichtete Profilierungen 21 und rechtsgerichtete Profilierungen 22 dar, die durch ein Verformungswerkzeug 30 bewirkt werden. Dieses Verformungswerkzeug 30 bewegt sich in Verschieberichtung 31 um eine linksgerichtete Profilierung 21 im Hohlprofilstrang 20 zu erzeugen und anschließend in Verschieberichtung 32 um eine rechtsgerichtete Profilierung 22 zu formen. Das Verformungswerkzeug 30 stellt einen Oszillator dar, der mit einer auf die Strangpressgeschwindigkeit und damit Strangaustrittsgeschwindigkeit v angepasste Ozszillationsfrequenz f angepasst ist, um eine wunschgemäße Wellenlänge 1 für das Hohlkammerprofil 10 zu erzielen. Die Oszillationsfrequenz f des Verformungswerkzeuges 30 lässt sich nach folgender Formel einstellen: f = v / 1

Figure imgb0001

  • f = Oszillationsfrequenz in Hz (1/s),
  • v = Strangaustrittsgeschwindigkeit in m/s,
  • l = Wellenlänge in m.
In a known manner, a hollow profile strand 20 is produced by extrusion. From the extrusion press is in the Fig. 4a . 4b and 5 only the extrusion die 33 with the die chambers 34, 35 are shown. In this case, the extrusion molding device can be a direct extrusion press, indirect extrusion press or conformation press known from the prior art. The profile strand 20 having the desired profile shape is pressed out of the extrusion die 33 in the outlet direction 36. In the execution after Fig. 4a and 5 results in a round tube and in the execution Fig. 4b a flat tube profile with several channels 11. Conventionally, the hot hollow profile strand 20 along a cooling bed further processing stations, for example, for coating, forming or cutting to length, fed. At the in Fig. 4 A or 4 b shown apparatus shows the hollow profile strand 20 to a guide 37 a straight profile strand profile B I. This straight profile strand profile BI is followed by a deformed profile strand profile B II. The deformations represent left-facing profiles 21 and right-hand profilings 22, which are caused by a deformation tool 30. This deformation tool 30 moves in the displacement direction 31 to produce a left-directional profiling 21 in the hollow profile strand 20 and then to form in the direction 32 to a right-hand profiling 22. The deformation tool 30 represents an oscillator which is adapted with an oscillation frequency f adapted to the extrusion speed and thus strand exit velocity v in order to achieve a desired wavelength 1 for the hollow chamber profile 10. The oscillation frequency f of the deformation tool 30 can be set according to the following formula: f = v / 1
Figure imgb0001
  • f = oscillation frequency in Hz (1 / s),
  • v = strand exit velocity in m / s,
  • l = wavelength in m.

Bei einer Strangaustrittsgeschwindigkeit von 1 m/s (60 m/min) und einer angestrebten Wellenlänge 1 von 0,005 m (5 mm) wäre eine Oszillationsfrequenz für das Verformungswerkzeug von f = 200 Hz einzustellen. Die Strangpressgeschwindigkeiten v für Hohlkammerprofile, insbesondere für MP-Profile (Multiport-Profile) oder MMP-Profile (Milcro-Multiport-Profile) liegen bei 15 bis 200 m/min, vorzugsweise 60 bis 150 m/min. Die Wellenlängen 1 der erfindungsgemäßen wellenförmigen Verformungen liegen in der Größenordnung von 1 bis 100 mm.At a strand exit speed of 1 m / s (60 m / min) and a target wavelength 1 of 0.005 m (5 mm), an oscillation frequency for the deformation tool of f = 200 Hz would have to be set. The extrusion rates v for hollow chamber profiles, in particular for MP profiles (multiport profiles) or MMP profiles (Milcro multiport profiles) are 15 to 200 m / min, preferably 60 to 150 m / min. The wavelengths 1 of the wave-like deformations according to the invention are in the order of magnitude of 1 to 100 mm.

Die oszillierende Bewegung des Verformungswerkzeug 30, die beim Auftreffen auf dem Hohlprofilstrang 20 aufgrund der Krafteinwirkung eine Verformung erzeugt, kann auf verschiedene Weise realisiert werden. Beispielsweise elektromotorisch, durch einen Exzenterantrieb oder ein Hydrauliksystem.The oscillating movement of the deformation tool 30, which generates a deformation when hitting the hollow profile strand 20 due to the force, can be realized in various ways. For example, by an electric motor, by an eccentric drive or a hydraulic system.

Es ist auch möglich den Hohlprofilstrang 30 elektromagnetisch auszulenken.It is also possible to deflect the hollow profile strand 30 electromagnetically.

Um eine deformationsarme Umformung zu ermöglichen, sollte die Umformtemperatur des Hohlprofilsstrangs 20 im Verformungswerkzeug 30 mindestens 250° C betragen, vorzugsweise sollte sie jedoch größer als 400° C sein. Ist aufgrund der Konstruktion der gesamten Produktionsanlage der gerade Profilstrangverlauf B I so lang, dass die Temperatur des Hohlprofilstrangs 20 wesentlich unter 250° C absinkt, ist zwischen dem Austritt aus der Strangpressmatrize 33 und dem Verformungswerkzeug 30 eine Erwärmungsvorrichtung vorzusehen, die den Hohlprofilstrang 20 auf die gewünschte Umformtemperatur in dem Verformungswerkzeug 30 hält. Ist der Bereich des geraden Profilstrangsverlaufs B I sehr klein, kann auf eine solche Erwärmung verzichtet werden.In order to enable a low-deformation deformation, the forming temperature of the hollow section strand 20 in the forming tool 30 should be at least 250 ° C, but preferably it should be greater than 400 ° C. Is due to the construction of the entire production of the straight profile strand course BI so long that the temperature of the hollow profile strand 20 drops substantially below 250 ° C, between the outlet of the extrusion die 33 and the deformation tool 30, a heating device is provided, the hollow profile strand 20 to the desired Forming temperature in the deformation tool 30 holds. If the region of the straight profile strand profile B I is very small, such heating can be dispensed with.

In der Fig. 5 wird ein weiterer prinzipieller Aufbau einer Vorrichtung für ein erfindungsgemäßes Verfahren gezeigt. Hier ist auf eine separate Führung 37 verzichtet worden. Das Verformungswerkzeug 30 übernimmt auch die Funktion der Strangführung des Hohlprofilstrangs 20. In diesem Fall wirken jedoch die Auslenkungskräfte, die von dem Verformungswerkzeug 30 durch Bewegung in Verschieberichtung 31, 32 erzeugt werden, bis zurück in die Matrize 33 und beeinflussen dort den Materialfluss. In diesem Fall existiert kein gerader Profilstrangverlauf B I nach dem Austritt des Hohlprofilsstrangs 20 aus der Matrize 33. Da der Hohlprofilstrang 20 bis in die Umformzone hinein im Materialfluss beeinflusst wird, bilden sich die Profilierungen 21,22 direkt nach dem Austritt aus dem Werkzeug, sind also schon zwischen der Matrize 33 und dem Verformungswerkzeug 30 vorhanden. Vorteilhafterweise sollte das Verformungswerkzeug 30 eine Breite BIII in Austrittsrichtung 36 haben, die mindestens dem 2-fachen der Wellenlänge 1 der wellenförmigen Profilierungen entspricht.In the Fig. 5 a further basic structure of a device for a method according to the invention is shown. Here has been dispensed with a separate guide 37. The deformation tool 30 also takes over the function of the strand guide of the hollow profile strand 20. In this case, however, the deflection forces generated by the deformation tool 30 by movement in the direction of displacement 31, 32, back to the die 33 and there influence the flow of material. In this case, there is no straight profiled strand profile BI after the emergence of the hollow profile strand 20 from the die 33. Since the hollow profile strand 20 is influenced into the material flow up to the forming zone, the profilings 21, 22 form directly after exiting the tool, ie already present between the die 33 and the deformation tool 30. Advantageously, the deformation tool 30 should have a width BIII in the exit direction 36, which corresponds to at least twice the wavelength 1 of the wave-shaped profiles.

Ein solches Verformungswerkzeug 30, das eine oszillierende Strangführung darstellt, wird vorzugsweise an der Strangpresse selbst vorgesehen, insbesondere kann ein solches Verformungswerkzeug 30 in einer Ausnehmung im Gegenholm der Strangpresse angeordnet und geführt sein.Such a deformation tool 30, which constitutes an oscillating strand guide, is preferably provided on the extrusion press itself, in particular, such a deformation tool 30 can be arranged and guided in a recess in the counter-spar of the extrusion press.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

1010
Grundprofilbasic profile
1111
Kanalchannel
1212
Wandungwall
13,13',13"13,13 ', 13 "
Stegweb
1414
offene Ende von 10open end of 10
1515
offene Ende von 10open end of 10
1616
Breitseitebroadside
1717
Breitseitebroadside
1818
Schmalseitenarrow side
1919
Schmalseitenarrow side
2020
HohlprofilstrangHollow profile strand
2121
linksgerichtete Profilierungleft-directed profiling
2222
rechtsgerichtete Profilierungright-wing profiling
2323
Innenrauminner space
3030
Verformungswerkzeug/ OszillatorDeformation tool / oscillator
3131
Verschieberichtungdisplacement direction
3232
Verschieberichtungdisplacement direction
3333
Strangpreßmatrizeextrusion die
3434
Matrizenkammerdie chamber
3535
Matrizenkammerdie chamber
3636
Austrittsrichtung von 20Exit direction of 20
3737
Führungguide
AA
Abstand benachbarter StegeDistance between adjacent bridges
BB
Breite von 10Width of 10
BIBI
gerader Profilstrangverlaufstraight profile strand course
BIIBII
verformter Profilstrangverlaufdeformed profile strand course
BIIIBIII
Breite von 30Width of 30
CC
Abstand Breitseite 18 und Steg 13'Distance broadside 18 and bridge 13 '
DD
Abstand Breitseite 19 und Steg 13"Distance broadside 19 and bridge 13 "

Claims (22)

  1. Hollow chamber profile made of metal, especially for heat exchangers, consisting of an extruded basic profile (10) with two wide sides (16, 17) parallel to each other and two narrow sides (18, 19), with at least one channel (11) in the inside (23) of the base profile (10) extending in the lengthwise direction of the base profile (10),
    characterized in that
    the narrow sides (18, 19) are deformed vertical to the lengthwise direction of the base profile (10), with profiles (21) left aligned transverse to the lengthwise extension, and profiles (22) right aligned transverse to the lengthwise extension, alternating with each other on both narrow sides (18, 19) and the width (B) of the base profile (10) being the same over the complete lengthwise extension of the base profile (10).
  2. Hollow chamber profile according to Claim 1, characterized in that webs (13) forming several channels (11) are arranged in the inside (23) of the of the base profile (10) and extend from the wide side (16) to the narrow side (17) and that these webs (13) have profiles (21, 22) aligned vertical to the lengthwise direction of the base profile (10), with the distance (A) between two adjacent webs (13) and the distance (C) between the narrow side (18) and the first web (13') and also the distance (D) between the narrow side (19) and the last web (13" ) being the same over the complete lengthwise extension of the base profile (10).
  3. Hollow chamber profile according to Claim 1 or 2, characterized in that the profiles (21, 22) of the narrow sides (18, 19) and the webs (13) have a wave-like pattern in the lengthwise extension of the base profile (10), so that the base profile (10) always has the same free flow cross-section in the lengthwise direction.
  4. Hollow chamber profile according to Claim 3, characterized in that the wave-like pattern for the narrow sides (18, 19) and the webs (13) have the same length of wave over the complete lengthwise extension of the base profile (10).
  5. Hollow chamber profile made of metal, especially for heat exchangers, consisting of an extruded base profile (10) in a round tube shape or coaxial shape, with, in the inside (23) the base profile (10), at least one channel (11) extending in the lengthwise direction of the base profile (10),
    characterized in that
    opposite sides of the base profile (10) are deformed vertically relative to the lengthwise direction of the base profile (10), with profiles left-aligned (21) transverse to the lengthwise extension and profiles (22) right-aligned transverse to the lengthwise extension alternating with each other on the sides and the width (B) of the base profile (10) being the same over the complete lengthwise extension of the base profile (10).
  6. Hollow chamber profile according to one of Claims 1 to 5, characterized in that the base profile (10) is made of aluminium or an aluminium alloy.
  7. Hollow chamber profile in accordance with one of Claims 1 to 6, characterized in that it is used as a cooler for gas or liquid flows, especially as a gas cooler or charge-air cooler for motor vehicles.
  8. Method for manufacturing a hollow chamber profile made of metal, especially for a heat exchanger,
    with a hollow profile extrusion (20) in round-tube form or coaxial form or a hollow profile extrusion (20) with two parallel wide sides (16, 17) and two curved or flat narrow sides (18, 19) and at least one channel (11) extending in the inside (23) of the base profile (10) being produced by extrusion,
    this hollow profile extrusion (20) being deformed and
    the profile extrusion then being cut to the required length of a base profile (10),
    characterized in that
    the hot profile extrusion (20) emerging from the deforming zone of the extrusion matrix (33) is set in a defined oscillation and/or deformed by an oscillating, moving deforming tool (30).
  9. Method according to Claim 8, characterized in that a hollow profile extrusion is extruded from aluminium or aluminium alloy.
  10. Method according to Claim 8 or 9, characterized in that profiling (21, 22) of equal thickness of the narrow sides (18, 19), and any webs (13) present, is simultaneously carried out on the hot profile extrusion, (20) emerging directly from the deforming zone, by means of a moving deforming tool (30) oscillating vertically relative to the direction of emergence (36) of the profile extrusion (20).
  11. Method according to Claim 10, characterized in that the narrow sides (18, 19) and the webs (13) receive equal wave-like deformation in the lengthwise direction of the base profile (10).
  12. Method in accordance with Claim 8 or 9, characterized in that circular wave-like shapes are formed in the profile walls (12) on the hot hollow profile extrusion (20) immediately it emerges from the deforming zone, by means of the deforming tool (30) moving in two planes of oscillation.
  13. Method in accordance with Claims 8 to 11, characterized in that to achieve the required length of wave (1) of the wave-like deformation, the frequency of oscillation (f) of the deforming tool (30) is matched to the speed (v) of emergence of the extrusion.
  14. Method according to one of claims 8 to 13, characterized in that the profile extrusion is generated at extrusion speeds (v) of 15 to 200 m/min, preferably at 60 to 150 m/min.
  15. Method according to one of Claims 8 to 14, characterized in that the length of the waves of the wave-like deformations of the profile extrusion (20) is in the order of 1 to 100 mm.
  16. Method in accordance with one of Claims 8 to 15, characterized in that the deforming tool (30) grips the hot hollow profile extrusion (20) immediately it emerges from the extrusion matrix (33), so that the deflection forces occurring during the oscillating movement of the deforming tool act back directly on the extrusion matrix (33).
  17. Method according to Claim 16, characterized in that the deforming tool (30) is arranged in a recess in the reaction post of the extrusion press.
  18. Method in accordance with one of Claims 8 to 15, characterized in that the hollow profile extrusion (20) emerging from the extrusion press is immediately gripped by a guide (37), arranged at a distance from the extrusion matrix (33), and fed to a deforming tool (30), with the temperature of the hollow profile extrusion (20) reducing during the process from the exit temperature at the extrusion matrix (33), to a deformation temperature of at least 250°C, preferably to greater than 400°C, within the deforming tool (30).
  19. Method according to one of Claims 8 to 15, characterized in that the hollow profile extrusion (20) emerging from the extrusion press is immediately gripped by a guide (37), arranged at a distance from the extrusion matrix (33), and is heated to a deforming temperature of at least 250°C, preferably to greater than 400°C, before being fed to a deforming tool (30).
  20. Method according to one of Claims 8 to 19, characterized in that the oscillating movement of the deforming tool (30) is electromagnetically generated.
  21. Method according to one of Claims 8 to 19, characterized in that a fluid medium is cyclically applied to the deforming tool (30) to achieve the deformation of the hollow profile extrusion (20).
  22. Method according to Claim 8, characterized in that the extrusion press matrix (33) itself acts as an oscillating, moving deforming tool (30).
EP03735565A 2002-06-11 2003-06-06 Hollow chamber profile made of metal, especially for heat exchangers Expired - Lifetime EP1511967B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE20209005U 2002-06-11
DE10225812A DE10225812C1 (en) 2002-06-11 2002-06-11 Hollow chamber metal profile for heat exchanger has deformations in base profile wall for increasing heat transfer efficiency
DE10225812 2002-06-11
DE20209005U DE20209005U1 (en) 2002-06-11 2002-06-11 Hollow chamber profile made of metal, especially for heat exchangers
PCT/EP2003/005943 WO2003104735A1 (en) 2002-06-11 2003-06-06 Hollow chamber profile made of metal, especially for heat exchangers

Publications (2)

Publication Number Publication Date
EP1511967A1 EP1511967A1 (en) 2005-03-09
EP1511967B1 true EP1511967B1 (en) 2009-02-18

Family

ID=29737590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03735565A Expired - Lifetime EP1511967B1 (en) 2002-06-11 2003-06-06 Hollow chamber profile made of metal, especially for heat exchangers

Country Status (7)

Country Link
US (1) US7726390B2 (en)
EP (1) EP1511967B1 (en)
JP (1) JP4211038B2 (en)
AT (1) ATE423299T1 (en)
DE (1) DE50311194D1 (en)
DK (1) DK1511967T3 (en)
WO (1) WO2003104735A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056592A1 (en) * 2004-11-23 2006-05-24 Behr Gmbh & Co. Kg Low-temperature coolant radiator
US7182128B2 (en) * 2005-03-09 2007-02-27 Visteon Global Technologies, Inc. Heat exchanger tube having strengthening deformations
JP4756585B2 (en) * 2005-09-09 2011-08-24 臼井国際産業株式会社 Heat exchanger tube for heat exchanger
JP4830132B2 (en) * 2006-01-31 2011-12-07 国立大学法人 東京大学 Micro heat exchanger
FR2902831B1 (en) * 2006-06-27 2010-10-22 Airbus France TURBOREACTOR FOR AIRCRAFT
WO2008058734A1 (en) * 2006-11-15 2008-05-22 Behr Gmbh & Co. Kg Heat exchanger
DE102007008535A1 (en) * 2007-02-21 2008-08-28 Modine Manufacturing Co., Racine Heat exchanger network, manufacturing process and roller mill
FR2923589B1 (en) * 2007-11-08 2015-12-11 Valeo Systemes Thermiques Branche Thermique Moteur HEAT EXCHANGER FLUID / FLUID TYPE HEAT EXCHANGER
DE102008062704A1 (en) * 2008-01-10 2009-08-27 Behr Gmbh & Co. Kg Extruded tube for a heat exchanger
DE102008022933B3 (en) * 2008-05-09 2009-12-31 Erbslöh Aluminium Gmbh Coaxial molding e.g. for air-conditioning unit, has convexly curved front face of coaxial molding
DE102011106287A1 (en) * 2011-05-12 2012-11-15 F.W. Brökelmann Aluminiumwerk GmbH & Co. KG Method for forming semi-finished products
US8943684B2 (en) * 2011-08-31 2015-02-03 Lexmark International, Inc. Continuous extrusion process for manufacturing a Z-directed component for a printed circuit board
DE102012217333A1 (en) 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg flat tube
JP6254364B2 (en) * 2013-05-21 2017-12-27 株式会社アタゴ製作所 Heat exchanger for heat pump water heater
US10809016B2 (en) * 2015-02-06 2020-10-20 Raytheon Technologies Corporation Heat exchanger system with additively manufactured heat transfer tube that follows a non-linear path
US10092985B2 (en) * 2015-05-06 2018-10-09 Hanon Systems Heat exchanger with mechanically offset tubes and method of manufacturing
US20170051988A1 (en) * 2015-08-21 2017-02-23 Halla Visteon Climate Control Corp. Heat exchanger with turbulence increasing features
US20190257592A1 (en) * 2018-02-20 2019-08-22 K&N Engineering, Inc. Modular intercooler block
CN112588129A (en) * 2020-11-22 2021-04-02 山东优膜膜科技有限公司 Antibacterial ultrafiltration membrane and preparation method thereof
US12044484B2 (en) * 2022-03-31 2024-07-23 Deere & Company Heat tube for heat exchanger

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1481312A (en) * 1918-02-05 1924-01-22 August J Borgman Radiator
US1830412A (en) * 1928-08-25 1931-11-03 Bryant Heater & Mfg Company Air heater
US1913417A (en) * 1930-02-22 1933-06-13 Vereinigte Stahlwerke Ag Undulated tube and method of making the same
US1943417A (en) * 1932-09-03 1934-01-16 George W Bringman Attachment for aquarium tanks
US2270864A (en) * 1938-05-23 1942-01-27 Western Cartridge Co Heat exchanger
DE734100C (en) * 1939-11-01 1943-04-08 Sueddeutsche Kuehler Behr Process for the production of seamless, flat radiator finned tubes
US2819731A (en) * 1954-11-16 1958-01-14 Gen Motors Corp Refrigerating apparatus
DE1053883B (en) * 1957-06-03 1959-03-26 Strobach Doerge & Co O H G Threaded spindle
US3119446A (en) * 1959-09-17 1964-01-28 American Thermocatalytic Corp Heat exchangers
US3529047A (en) * 1966-03-26 1970-09-15 Furukawa Electric Co Ltd Method for continuous manufacture of corrugated plastic pipes
US3596495A (en) * 1969-04-01 1971-08-03 Modine Mfg Co Heat transfer device and method of making
US3692889A (en) * 1970-03-17 1972-09-19 Raybestos Manhattan Inc Method and apparatus for forming corrugated plastic tubing
US4053274A (en) * 1975-01-28 1977-10-11 Lemelson Jerome H Tube wall forming apparatus
KR930009932B1 (en) * 1987-12-09 1993-10-13 후지 꾸라 덴센 가부시끼가이샤 Heat pipe and method of manufacturing the same
JPH02179313A (en) * 1988-12-29 1990-07-12 Showa Alum Corp Manufacture of aluminum extruded/bent products as automobile frame, bumper, side seal, and the like
US5181560A (en) * 1990-10-17 1993-01-26 Burn Mark N Baffleless tube and shell heat exchanger having fluted tubes
GB2264253B (en) * 1991-06-28 1995-03-29 Usui Kokusai Sangyo Kk Long extruded metal article of miscellaneous shapes and method of producing the same
JPH06344023A (en) * 1993-04-12 1994-12-20 Kobe Steel Ltd Extruded shape material of aluminium
WO1994025815A1 (en) * 1993-04-26 1994-11-10 Pühringer, Siegfried Hollow metal chambered section
RU2155921C1 (en) * 1999-04-14 2000-09-10 Дальневосточный государственный технический рыбохозяйственный университет Multiple-channel pressed tube and method for its production
DE10049987A1 (en) 2000-10-06 2002-04-11 Cohnen Beteiligungs Gmbh & Co Coolers, in particular for motor vehicles

Also Published As

Publication number Publication date
DE50311194D1 (en) 2009-04-02
US7726390B2 (en) 2010-06-01
JP4211038B2 (en) 2009-01-21
ATE423299T1 (en) 2009-03-15
WO2003104735A1 (en) 2003-12-18
US20050161208A1 (en) 2005-07-28
EP1511967A1 (en) 2005-03-09
JP2005529304A (en) 2005-09-29
DK1511967T3 (en) 2009-06-02

Similar Documents

Publication Publication Date Title
EP1511967B1 (en) Hollow chamber profile made of metal, especially for heat exchangers
EP1486749B1 (en) Turbulator
DE3615300C2 (en)
EP0223909A1 (en) Extrusion die for manufacturing a drill blank of hard metal or ceramics
DE19510124A1 (en) Exchanger tube for a heat exchanger
DE102012023800A1 (en) Heat exchanger tube, heat exchanger tube assembly and method of making same
EP0566899A1 (en) Heat exchanger, particularly evaporator
DE2829173A1 (en) METHOD FOR CONNECTING A METAL PIPE TO A METAL SHEET
DE10225812C1 (en) Hollow chamber metal profile for heat exchanger has deformations in base profile wall for increasing heat transfer efficiency
DE102005010261A1 (en) Making heat exchanger for confectionery masses, prepares laser-cut non-circular segments to form spiral guide with elongated holes carrying parallel tubes
DE102012023990A1 (en) Heat exchanger tube, heat exchanger tube assembly and method of making same
EP2447626B1 (en) Heat exchanger, in particular for use with refrigerated cabinets
AT401431B (en) HEAT EXCHANGER
DE60015701T2 (en) Bent tube for heat exchangers and its manufacture
CH620760A5 (en)
EP1668303B1 (en) Soldered heat exchanger network
EP0674148B1 (en) Radiator
DE2615168A1 (en) HEAT TRANSFER DEVICE WITH AT LEAST ONE LONGITUDINAL FIBER PIPE
DE4340506A1 (en) Heating or cooling heat exchanger
EP0268831B1 (en) Plate fin
DE10212799C1 (en) Hollow metal chamber profile, particularly for heat exchanger, comprises basic profile which has cooling ribs running parallel longitudinally on at least one outside of its flat walling
DE2225035A1 (en) Process for the manufacture of pipes
DE20209005U1 (en) Hollow chamber profile made of metal, especially for heat exchangers
DE19846346C1 (en) Heat exchanger in layered structure has rectangular configuration in every second layer through extrusion of aluminum or aluminum alloy profile tubes
DE3207267C2 (en) Drawing nozzle for the production of multi-channel pipes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHURF, REINHOLD

Inventor name: BOYRAZ, ISMAIL

Inventor name: SUCKE, NORBERT, WILLIAM

Inventor name: BREINDL, REINER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50311194

Country of ref document: DE

Date of ref document: 20090402

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090529

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090518

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: ERBSLOH ALUMINIUM G.M.B.H.

Effective date: 20090630

26N No opposition filed

Effective date: 20091119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090518

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090606

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110625

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110616

Year of fee payment: 9

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311194

Country of ref document: DE

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702