EP1504240A1 - Appareil de terrain variable pour l'automatisation de processus - Google Patents
Appareil de terrain variable pour l'automatisation de processusInfo
- Publication number
- EP1504240A1 EP1504240A1 EP03752749A EP03752749A EP1504240A1 EP 1504240 A1 EP1504240 A1 EP 1504240A1 EP 03752749 A EP03752749 A EP 03752749A EP 03752749 A EP03752749 A EP 03752749A EP 1504240 A1 EP1504240 A1 EP 1504240A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- field device
- module
- variable field
- logic module
- reprogrammable logic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D3/00—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
- G01D3/02—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
- G01D3/022—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation having an ideal characteristic, map or correction data stored in a digital memory
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
Definitions
- the invention relates to a variable field device for process automation.
- Field devices are often used in automation and process control technology, which measure process variables (sensors) or control controlled variables (actuators) in an industrial process.
- Field devices for flow, level, differential pressure, temperature determination etc. are generally known.
- the field devices are usually arranged in the immediate vicinity of the process component concerned in order to record the corresponding process variables, mass or volume flow, fill level, pressure, temperature, etc.
- the field devices deliver a measurement signal that corresponds to the value of the detected process variables.
- This measurement signal is forwarded to a control unit (e.g. programmable logic controller PLC, waiting or process control system PLS).
- a control unit e.g. programmable logic controller PLC, waiting or process control system PLS.
- the process is controlled by the control unit, where the measurement signals from various field devices are evaluated and, based on the evaluation, control signals are generated for the actuators which control the process flow.
- Controllable valves that regulate the flow of a liquid or a gas in a pipeline section are to be mentioned as an example of actuators.
- the signal transmission between field device and control unit can take place in analog or digital form (e.g. current loop or digital data bus).
- analog or digital form e.g. current loop or digital data bus.
- Known international standards for signal transmission are 4-20 milliampere current loops, HART®, Profibus®, Foundation Fieldbus® or CAN-Bus®.
- the signal processing in the field device and the communication of the field device with the control unit or other field devices is becoming more and more complex.
- various hardware components with corresponding software are implemented in the field device.
- the software that runs as a sequence program in a microprocessor is usually very flexible and can be easily replaced.
- the disadvantage of using software is that data processing takes place sequentially and is therefore relatively slow.
- Hardware components on the other hand must hold a certain functionality that is hard-wired into special blocks (IC's). Examples include ASICs (Application Specific Integrated Circuits) or SMDs (Service Mounted Devices). These modules are very application-specific and can, for example, perform an FFT (Fast Fourier Transformation), which is very computation-intensive, extremely quickly.
- FFT Fast Fourier Transformation
- the communication of the field device with a higher-level evaluation unit also takes place partly via analog hardware components or via a digital data bus.
- Each field device normally consists of different hardware components that determine the functionality of the field device. Different field devices, such as Coriolis mass flow meters or magnetic inductive flow meters MIDs, have completely different hardware components. Even for one and the same field device, for example a Coriolism mass flow meter, e.g. Different hardware components are required for communication.
- a Profibus module is required to connect to a Profibus, and an FF module is required to connect to a Foundation Fieldbus. If the field device is to deliver a frequency, pulse or current signal, a corresponding hardware component is required.
- a trend with field devices is that they should always be more compact.
- the components, especially the hardware components are moving ever closer together on the respective circuit boards.
- a limit has almost been reached here.
- the hardware components must be tested after the circuit boards have been fitted.
- a large number of test pads are provided on the underside of a printed circuit board, which can be contacted via so-called needle adapters. Only certain parts of the circuit can be tested in isolation.
- Coriolism mass flow meter is replaced by a magnetic inductive flow meter in the field, the entire field device must be replaced today.
- the object of the invention is to provide a variable field device for process automation which does not have the disadvantages mentioned above, which is particularly very flexible, has a compact design, is made from a few components, has a high level of safety and reliability and at the same time is inexpensive and is easy to manufacture.
- variable field device for process automation according to claim 1.
- Reprogrammable logic modules are very flexible and can be easily configured as different hardware components.
- FIG. 1 data bus system in a schematic representation
- FIG. 2 shows a schematic representation of a conventional field device with different hardware components
- FIG. 3 shows a schematic representation of a field device according to the invention
- Fig. 4 shows a schematic representation of a reprogrammable logic module
- FIG. 5 shows a schematic representation of a logic module with memory and charging controller
- FIG. 1 shows a data bus system DBS with several field devices and a process control system PLS.
- the field devices are various sensors S1, S2, S3 and actuators A1, A2.
- the data bus participants are connected to each other via a data bus line DBL.
- the process control system PLS is normally located in a control room from which the entire process control takes place.
- the sensors S1, S2, S3 and the actuators A1, A2 are in the field, i.e. arranged in the individual process components (tank, filling device, pipeline, etc.).
- the sensors S1, S2 and S3 detect, for example, the process variables temperature, pressure or flow at the respective process component.
- Actuators A1 and A2 regulate the flow of a liquid or a gas in a pipe section as valves.
- the data communication between the process control system PLS, the sensors S1, S2, S3 and the actuators A1, A2 takes place in a known manner according to internationally standardized transmission techniques (RS435, IEC1158) using special protocols (e.g. Profibus, Foundation Fieldbus, CAN-Bus).
- the sensor S1 consists of a sensor MA, which is connected to a sensor unit SE.
- a digital signal processor DSP is connected downstream of the sensor unit SE.
- the digital signal processor DSP is connected to a system processor MP.
- the system processor MP is connected to the data bus line DBL via a communication unit CE.
- the system processor MP is connected to an analog unit AE, which has several analog inputs and outputs I / O.
- a display operating unit AB which is also connected to the system processor MP, serves to display the measured value and for manual input.
- the voltage supply of the sensor S1 is ensured by a voltage supply unit SV, which is connected to the various hardware components of the sensor S1 (shown in dashed lines). Power can be supplied externally or via the DBL data bus line.
- the digital signal processor DSP and the system processor MP are each connected to watchdogs WZ1, WZ2 and EEPROM memories E1, E2.
- the sensor MA serves to record the corresponding process variables and consists, for example, of a temperature-sensitive resistor or a pressure-sensitive piezo element or of two coils which record the tube vibration of a Coriolis mass flow meter.
- the analog signals of the transducer MA are converted into digital signals in the sensor unit SE and further processed in the digital signal processor DSP and supplied to the system processor MP as a measured value.
- the system processor MP controls the entire sensor S1.
- the connection to the data bus line DBL is made via the communication unit CE.
- the communication unit CE reads telegrams on the data bus and writes data itself on the data bus line DBL. It supports all send and receive functions according to the transmission technology used.
- each field device has a sensor module SM, which includes the sensor MA and the sensor unit SE, a signal processing module VM, which, for. B. can consist of the digital signal processor DSP, a processor module PM, which consists essentially of the system processor MP and a communication module KM, which consists either of the communication unit CE and / or the analog unit AE.
- a sensor module SM which includes the sensor MA and the sensor unit SE
- a signal processing module VM which, for. B. can consist of the digital signal processor DSP
- a processor module PM which consists essentially of the system processor MP
- a communication module KM which consists either of the communication unit CE and / or the analog unit AE.
- FIG. 3 shows a first exemplary embodiment of sensor S1 according to the invention.
- Fig. 3 corresponds essentially to Fig. 2 with the difference that the digital signal processor DSP and the system processor MP including watchdogs W1, W2 and EEPROMS E1, E2 are replaced by a logic module LB.
- the logic module LB is additionally connected to a permanent memory SP (flash memory) and a charge controller LC.
- 4 shows a further exemplary embodiment.
- the logic module LB includes not only the digital signal processor DSP and system processor MP, but also parts of the display of the operating unit AB and the communication unit CE as well as parts of the analog unit AE and the sensor unit SE.
- the logic module LB comprises all digitally working components of the sensor S.
- the outputs of the logic module LB only serve to control the analog components of the sensor S1.
- the logic module LB is a reconfigurable logic module, such as that sold by Altera® under the name Excalibur®.
- the configuration of the logic module LB is shown in more detail with reference to FIG. 5.
- the memory SP is divided into two memory areas A and B.
- Memory area A contains a description of the hardware of the logic module LB
- memory area B contains the sequence program for the "embedded controller”.
- the "hardware of the logic module” LB is configured using the LC charge controller.
- at least one “embedded processor” EP, a memory M and a logic L are configured in the logic module LB.
- the sequence program for the embedded controller is loaded into the memory M.
- such logic modules are also referred to as SoPC systems or programmable chips.
- a reconfigurable logic module LB By using a reconfigurable logic module LB, a Coriolis mass flow meter can easily be replaced by a magnetic inductive mass flow meter MID or any other field device. All that is necessary for this is the corresponding reconfiguration of the logic module LB when the system starts by means of new memory information in the memory areas A and B.
- parts of the communication module can also be integrated in the logic module LB. This means that a sensor designed for the HART ⁇ protocol can easily be converted into a sensor suitable for Profibus® or FF. To do this, only the corresponding area of the logic module LB must be configured when the system is started.
- a reconfigurable logic module LB By using a reconfigurable logic module LB, the number of parts in the manufacture of a field device is considerably reduced. Another advantage that the field device according to the invention offers is that new test strategies are possible. In principle, any area, ie functionalities, of Logic module LB can be isolated and monitored. To do this, the logic module only has to be configured accordingly and the signals tapped or added at corresponding test points.
- reconfigurable logic modules With the help of reconfigurable logic modules, it is possible to configure hardware components and thus easily change the functionality and behavior.
- the hardware components can thus be adapted to different tasks and functionalities.
- Inputs and outputs I / Os can be easily defined.
- function blocks e.g. Flexible Function Blocks (Foundation Fieldbus® Organization) or Profibus® Function Blocks (Profibus® Organization) can be easily defined and modified in terms of hardware and software.
- the function block (Flexible Function Block or Profibus®) is loaded into the reconfigurable logic module and generates its I / Os itself. This means that an LB logic module can be used for various functionalities, depending on what is loaded for a function block.
- the essential idea of the invention is to flexibly design field devices in a wide range by using a reconfigurable logic module.
- the invention is of course not only limited to the field devices field, but can also be used with corresponding sensors and actuators in motor vehicle construction.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Technology Law (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Measuring Volume Flow (AREA)
- Programmable Controllers (AREA)
- Control By Computers (AREA)
Abstract
L'invention concerne un appareil de terrain pour l'automatisation de processus, dans lequel on intègre un module logique reprogrammable afin d'obtenir une grande souplesse eu égard aux composantes matérielles.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10221772A DE10221772A1 (de) | 2002-05-15 | 2002-05-15 | Variables Feldgerät für die Prozeßautomation |
DE10221772 | 2002-05-15 | ||
PCT/EP2003/005130 WO2003098154A1 (fr) | 2002-05-15 | 2003-05-15 | Appareil de terrain variable pour l'automatisation de processus |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1504240A1 true EP1504240A1 (fr) | 2005-02-09 |
Family
ID=29285457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03752749A Withdrawn EP1504240A1 (fr) | 2002-05-15 | 2003-05-15 | Appareil de terrain variable pour l'automatisation de processus |
Country Status (7)
Country | Link |
---|---|
US (1) | US8275472B2 (fr) |
EP (1) | EP1504240A1 (fr) |
CN (1) | CN100360902C (fr) |
AU (1) | AU2003232783A1 (fr) |
DE (1) | DE10221772A1 (fr) |
RU (1) | RU2327113C2 (fr) |
WO (1) | WO2003098154A1 (fr) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004016311B4 (de) * | 2004-03-29 | 2008-02-14 | Siemens Ag | Elektrisches Messgerät |
EP2082485A2 (fr) * | 2006-10-17 | 2009-07-29 | Endress+Hauser GmbH+Co. KG | Système de configuration flexible de modules de fonctions |
DE102007021099A1 (de) | 2007-05-03 | 2008-11-13 | Endress + Hauser (Deutschland) Ag + Co. Kg | Verfahren zum Inbetriebnehmen und/oder Rekonfigurieren eines programmierbaren Feldmeßgeräts |
DE102007022991A1 (de) * | 2007-05-15 | 2008-11-20 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Vorrichtung zur Signalüberwachung für einen zeitweiligen Einsatz in einem Feldgerät der Prozessautomatisierungstechnik |
DE102007030690A1 (de) | 2007-06-30 | 2009-05-07 | Endress + Hauser Flowtec Ag | Meßsystem für ein in einer Prozeßleitung strömendes Medium |
DE102007030699A1 (de) | 2007-06-30 | 2009-01-15 | Endress + Hauser Flowtec Ag | Meßsystem für ein in einer Prozeßleitung strömendes Medium |
DE102007030700A1 (de) | 2007-06-30 | 2009-05-07 | Endress + Hauser Flowtec Ag | Meßsystem für ein in einer Prozeßleitung strömendes Medium |
DE102007030691A1 (de) | 2007-06-30 | 2009-01-02 | Endress + Hauser Flowtec Ag | Meßsystem für ein in einer Prozeßleitung strömendes Medium |
US9217653B2 (en) | 2007-09-13 | 2015-12-22 | Rosemount Inc. | High performance architecture for process transmitters |
DE102007053223A1 (de) | 2007-11-06 | 2009-05-07 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Verfahren zum Betreiben einer Messstelle, Messstelle und Sensoreinheit für eine solche Messstelle |
DE102007054672A1 (de) | 2007-11-14 | 2009-05-20 | Endress + Hauser Gmbh + Co. Kg | Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung |
DE102009005399B4 (de) * | 2009-01-19 | 2024-02-08 | Phoenix Contact Gmbh & Co. Kg | Verfahren und Kommunikationssystem zum Konfigurieren eines einen Logikbaustein enthaltenden Kommunikationsmoduls |
DE102009026785A1 (de) | 2009-01-30 | 2010-08-05 | Endress + Hauser Gmbh + Co. Kg | Feldgerät zur Bestimmung und/oder Überwachung einer physikalischen oder chemischen Prozessgröße |
DE102009002734A1 (de) | 2009-04-29 | 2010-11-11 | Endress + Hauser Gmbh + Co. Kg | Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung |
DE102009028938A1 (de) | 2009-08-27 | 2011-03-03 | Endress + Hauser Gmbh + Co. Kg | Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Variablen |
DE102009029495A1 (de) * | 2009-09-16 | 2011-03-24 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Messumformer für ein Multisensorsystem, insbesondere als Feldgerät für die Prozessautomatisierungstechnik und Verfahren zum Betreiben des Messumformers |
DE102010002346A1 (de) | 2009-10-12 | 2011-04-14 | Endress + Hauser Gmbh + Co. Kg | Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße |
DE102010043706A1 (de) | 2010-07-05 | 2012-01-05 | Endress + Hauser Gmbh + Co. Kg | Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße |
DE102010048809A1 (de) | 2010-10-20 | 2012-04-26 | Hüttinger Elektronik Gmbh + Co. Kg | Leistungsversorgungssystem für eine Plasmaanwendung und/oder eine Induktionserwärmungsanwendung |
DE102010048810A1 (de) | 2010-10-20 | 2012-04-26 | Hüttinger Elektronik Gmbh + Co. Kg | System zur Bedienung mehrerer Plasma- und/oder Induktionserwärmungsprozesse |
US20120316809A1 (en) * | 2011-06-08 | 2012-12-13 | Elster Solutions, Llc | Virtual option board for use in performing metering operations |
EP2626785A1 (fr) * | 2012-02-08 | 2013-08-14 | Siemens Aktiengesellschaft | Procédé de configuration spécifique aux branches d'un client technique d'automatisation, programme informatique pour l'implémentation du procédé et ordinateur doté d'une tel programme informatique |
DE202012100754U1 (de) | 2012-03-02 | 2012-06-15 | Johann Hölldobler | Universal-Steuereinheit mit BUS- und WEB-Anbindung |
CA2903695A1 (fr) * | 2013-03-14 | 2014-10-02 | Rosemount Inc. | Unite de communication pour un reseau de processus industriel |
CN107218955B (zh) * | 2016-03-22 | 2021-04-20 | 横河电机株式会社 | 现场设备以及检测器 |
DE202019106358U1 (de) | 2019-11-15 | 2021-02-16 | WAGO Verwaltungsgesellschaft mit beschränkter Haftung | Modul mit Anzeige zum Anzeigen eines physikalischen Zustands eines am Modul angeschlossenen Sensors |
DE102020120822A1 (de) | 2020-08-06 | 2022-02-10 | Endress+Hauser Conducta Gmbh+Co. Kg | Absperrhahn |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4205524A1 (de) * | 1991-02-22 | 1992-08-27 | Siemens Ag | Speicherprogrammierbare steuerung |
US5537295A (en) * | 1994-03-04 | 1996-07-16 | Altera Corporation | Universal reconfigurable printed circuit board |
DE19502499A1 (de) * | 1995-01-27 | 1996-08-01 | Pepperl & Fuchs | Bussystem zur Steuerung und Aktivierung von miteinander vernetzten ASI-Slaves, vorzugsweise binäre Sensoren oder Eingangsmodule und/oder Ausgangsmodule oder Aktuatoren eines Aktuator-Sensor-Interface |
WO2001023971A1 (fr) * | 1999-09-29 | 2001-04-05 | Fisher-Rosemount Systems, Inc. | Dispositif local reprogrammable dans un systeme de controle de processus reparti |
US20020008540A1 (en) * | 2000-05-26 | 2002-01-24 | Britton Barry K. | Multi-master multi-slave system bus in a field programmable gate array (FPGA) |
WO2002020392A1 (fr) * | 2000-09-07 | 2002-03-14 | Watson Enterprises (Bahamas) Limited | Appareil de distribution d'eau potable |
EP1191747A2 (fr) * | 2000-08-02 | 2002-03-27 | National Instruments Corporation | Système et procédé d'interface entre un dispositif CAN et un dispositif périphérique |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450829B2 (fr) * | 1990-03-30 | 2002-09-04 | Texas Instruments Incorporated | Capteur intelligent et programmable |
US5335186A (en) * | 1990-03-30 | 1994-08-02 | Texas Instruments Incorporated | Intelligent programmable sensing |
US5691897A (en) * | 1995-05-30 | 1997-11-25 | Roy-G-Biv Corporation | Motion control systems |
US20040194101A1 (en) * | 1997-08-21 | 2004-09-30 | Glanzer David A. | Flexible function blocks |
WO1998020615A2 (fr) * | 1996-10-21 | 1998-05-14 | Electronics Development Corporation | Module de capteur intelligent |
US6081195A (en) * | 1999-01-27 | 2000-06-27 | Lynch; Adam Q. | System for monitoring operability of fire event sensors |
US6351212B1 (en) * | 1998-01-28 | 2002-02-26 | Adam Q. Lynch | System for monitoring operability of fire event sensors |
GB2342998A (en) | 1998-10-22 | 2000-04-26 | Secretary Trade Ind Brit | Environmental sensors |
US6424567B1 (en) * | 1999-07-07 | 2002-07-23 | Philips Electronics North America Corporation | Fast reconfigurable programmable device |
US6552410B1 (en) * | 1999-08-31 | 2003-04-22 | Quicklogic Corporation | Programmable antifuse interfacing a programmable logic and a dedicated device |
US6854055B1 (en) * | 1999-10-18 | 2005-02-08 | Endress + Hauser Flowtec Ag | Method and system for switching active configuration memory during on-line operation of programmable field mounted device |
US6697684B2 (en) * | 2000-02-15 | 2004-02-24 | Thomas Gillen | Programmable field measuring instrument |
US7062718B2 (en) * | 2001-08-14 | 2006-06-13 | National Instruments Corporation | Configuration diagram which graphically displays program relationship |
US20060064503A1 (en) * | 2003-09-25 | 2006-03-23 | Brown David W | Data routing systems and methods |
-
2002
- 2002-05-15 DE DE10221772A patent/DE10221772A1/de not_active Withdrawn
-
2003
- 2003-05-15 CN CNB038110504A patent/CN100360902C/zh not_active Expired - Fee Related
- 2003-05-15 RU RU2004136606/28A patent/RU2327113C2/ru not_active IP Right Cessation
- 2003-05-15 AU AU2003232783A patent/AU2003232783A1/en not_active Abandoned
- 2003-05-15 EP EP03752749A patent/EP1504240A1/fr not_active Withdrawn
- 2003-05-15 WO PCT/EP2003/005130 patent/WO2003098154A1/fr not_active Application Discontinuation
- 2003-05-15 US US10/514,412 patent/US8275472B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4205524A1 (de) * | 1991-02-22 | 1992-08-27 | Siemens Ag | Speicherprogrammierbare steuerung |
US5537295A (en) * | 1994-03-04 | 1996-07-16 | Altera Corporation | Universal reconfigurable printed circuit board |
DE19502499A1 (de) * | 1995-01-27 | 1996-08-01 | Pepperl & Fuchs | Bussystem zur Steuerung und Aktivierung von miteinander vernetzten ASI-Slaves, vorzugsweise binäre Sensoren oder Eingangsmodule und/oder Ausgangsmodule oder Aktuatoren eines Aktuator-Sensor-Interface |
WO2001023971A1 (fr) * | 1999-09-29 | 2001-04-05 | Fisher-Rosemount Systems, Inc. | Dispositif local reprogrammable dans un systeme de controle de processus reparti |
US20020008540A1 (en) * | 2000-05-26 | 2002-01-24 | Britton Barry K. | Multi-master multi-slave system bus in a field programmable gate array (FPGA) |
EP1191747A2 (fr) * | 2000-08-02 | 2002-03-27 | National Instruments Corporation | Système et procédé d'interface entre un dispositif CAN et un dispositif périphérique |
WO2002020392A1 (fr) * | 2000-09-07 | 2002-03-14 | Watson Enterprises (Bahamas) Limited | Appareil de distribution d'eau potable |
Non-Patent Citations (1)
Title |
---|
See also references of WO03098154A1 * |
Also Published As
Publication number | Publication date |
---|---|
RU2004136606A (ru) | 2005-06-27 |
AU2003232783A1 (en) | 2003-12-02 |
CN1653315A (zh) | 2005-08-10 |
CN100360902C (zh) | 2008-01-09 |
US8275472B2 (en) | 2012-09-25 |
US20050231348A1 (en) | 2005-10-20 |
WO2003098154A1 (fr) | 2003-11-27 |
RU2327113C2 (ru) | 2008-06-20 |
DE10221772A1 (de) | 2003-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1504240A1 (fr) | Appareil de terrain variable pour l'automatisation de processus | |
EP2113067B1 (fr) | Appareil de champ configurable pour l'automatisation de processus | |
EP2246984B1 (fr) | Appareil de diagnostic destinée au contrôle d'un appareil de conversion analogique-numérique | |
DE10251503A1 (de) | Verfahren zur Offline-Parametrierung eines Feldgerätes der Prozessautomatisierungstechnik | |
EP1591977B1 (fr) | Procédé de signalisation la condition d'alarme d'un appareil de champ de la technologie d'automatisation | |
DE10014272B4 (de) | Feldgerät, sowie Verfahren zum Umprogrammieren eines Feldgerätes | |
DE102007054672A1 (de) | Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung | |
EP1812832A1 (fr) | Unite radio conçue pour des appareils de champ utilises en technique d'automation | |
EP2156251A1 (fr) | Appareil de terrain comprenant une unité de mise en oeuvre de procédés de diagnostics | |
EP1091199B1 (fr) | Procédé et dispositif pour le test fonctionnel d'un interrupteur de limite | |
EP1920302A1 (fr) | Simulateur de capteur | |
DE102006036909A1 (de) | Trenneinheit für eine herkömmliche 2-Leiter-Kommunikations-verbindung, die einen Sensor, einen Messumformer und eine Steuereinheit umfasst | |
DE102009047535A1 (de) | Verfahren zum Ermitteln einer Anschlusskonfiguration eines Feldgerätes an einem Wireless Adapter | |
EP1486841B1 (fr) | Procédé pour l' indication de fonction d'un appareil de terrain employé dans l'automatisation de processus | |
DE102016120444A1 (de) | Verfahren zum Betreiben eines Feldgerätes für die Automatisierungstechnik | |
WO2008138888A1 (fr) | Dispositif de contrôle de signaux pour une utilisation temporaire dans un appareil de champ en technique d'automatisation de procédés | |
DE102005051795A1 (de) | Anzeigeeinheit für die Prozessautomatisierungstechnik | |
EP2092397B1 (fr) | Unité de séparation de signaux pour boucle de régulation de processus à deux conducteurs | |
DE102005043481A1 (de) | Automatisierungstechnische Einrichtung | |
WO2016087149A1 (fr) | Procédé d'écrasement d'une mémoire non volatile d'un appareil de terrain | |
EP3983853B1 (fr) | Appareil de terrain de la technique de l'automatisation | |
EP1456685A1 (fr) | Appareil de terrain comportant un module gps | |
DE102006013827A1 (de) | Verfahren zur benutzerspezifischen Anpassung eines Feldgerätes der Automatisierungstechnik | |
WO2004102288A1 (fr) | Procede de determination d'une grandeur caracteristique d'un fluide de processus | |
EP3153938B1 (fr) | Dispositif de mesure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20041106 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20101006 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20141202 |