EP1504240A1 - Appareil de terrain variable pour l'automatisation de processus - Google Patents

Appareil de terrain variable pour l'automatisation de processus

Info

Publication number
EP1504240A1
EP1504240A1 EP03752749A EP03752749A EP1504240A1 EP 1504240 A1 EP1504240 A1 EP 1504240A1 EP 03752749 A EP03752749 A EP 03752749A EP 03752749 A EP03752749 A EP 03752749A EP 1504240 A1 EP1504240 A1 EP 1504240A1
Authority
EP
European Patent Office
Prior art keywords
field device
module
variable field
logic module
reprogrammable logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03752749A
Other languages
German (de)
English (en)
Inventor
Eugenio Ferreira Da Silva Neto
Jörg Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP1504240A1 publication Critical patent/EP1504240A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/022Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation having an ideal characteristic, map or correction data stored in a digital memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention relates to a variable field device for process automation.
  • Field devices are often used in automation and process control technology, which measure process variables (sensors) or control controlled variables (actuators) in an industrial process.
  • Field devices for flow, level, differential pressure, temperature determination etc. are generally known.
  • the field devices are usually arranged in the immediate vicinity of the process component concerned in order to record the corresponding process variables, mass or volume flow, fill level, pressure, temperature, etc.
  • the field devices deliver a measurement signal that corresponds to the value of the detected process variables.
  • This measurement signal is forwarded to a control unit (e.g. programmable logic controller PLC, waiting or process control system PLS).
  • a control unit e.g. programmable logic controller PLC, waiting or process control system PLS.
  • the process is controlled by the control unit, where the measurement signals from various field devices are evaluated and, based on the evaluation, control signals are generated for the actuators which control the process flow.
  • Controllable valves that regulate the flow of a liquid or a gas in a pipeline section are to be mentioned as an example of actuators.
  • the signal transmission between field device and control unit can take place in analog or digital form (e.g. current loop or digital data bus).
  • analog or digital form e.g. current loop or digital data bus.
  • Known international standards for signal transmission are 4-20 milliampere current loops, HART®, Profibus®, Foundation Fieldbus® or CAN-Bus®.
  • the signal processing in the field device and the communication of the field device with the control unit or other field devices is becoming more and more complex.
  • various hardware components with corresponding software are implemented in the field device.
  • the software that runs as a sequence program in a microprocessor is usually very flexible and can be easily replaced.
  • the disadvantage of using software is that data processing takes place sequentially and is therefore relatively slow.
  • Hardware components on the other hand must hold a certain functionality that is hard-wired into special blocks (IC's). Examples include ASICs (Application Specific Integrated Circuits) or SMDs (Service Mounted Devices). These modules are very application-specific and can, for example, perform an FFT (Fast Fourier Transformation), which is very computation-intensive, extremely quickly.
  • FFT Fast Fourier Transformation
  • the communication of the field device with a higher-level evaluation unit also takes place partly via analog hardware components or via a digital data bus.
  • Each field device normally consists of different hardware components that determine the functionality of the field device. Different field devices, such as Coriolis mass flow meters or magnetic inductive flow meters MIDs, have completely different hardware components. Even for one and the same field device, for example a Coriolism mass flow meter, e.g. Different hardware components are required for communication.
  • a Profibus module is required to connect to a Profibus, and an FF module is required to connect to a Foundation Fieldbus. If the field device is to deliver a frequency, pulse or current signal, a corresponding hardware component is required.
  • a trend with field devices is that they should always be more compact.
  • the components, especially the hardware components are moving ever closer together on the respective circuit boards.
  • a limit has almost been reached here.
  • the hardware components must be tested after the circuit boards have been fitted.
  • a large number of test pads are provided on the underside of a printed circuit board, which can be contacted via so-called needle adapters. Only certain parts of the circuit can be tested in isolation.
  • Coriolism mass flow meter is replaced by a magnetic inductive flow meter in the field, the entire field device must be replaced today.
  • the object of the invention is to provide a variable field device for process automation which does not have the disadvantages mentioned above, which is particularly very flexible, has a compact design, is made from a few components, has a high level of safety and reliability and at the same time is inexpensive and is easy to manufacture.
  • variable field device for process automation according to claim 1.
  • Reprogrammable logic modules are very flexible and can be easily configured as different hardware components.
  • FIG. 1 data bus system in a schematic representation
  • FIG. 2 shows a schematic representation of a conventional field device with different hardware components
  • FIG. 3 shows a schematic representation of a field device according to the invention
  • Fig. 4 shows a schematic representation of a reprogrammable logic module
  • FIG. 5 shows a schematic representation of a logic module with memory and charging controller
  • FIG. 1 shows a data bus system DBS with several field devices and a process control system PLS.
  • the field devices are various sensors S1, S2, S3 and actuators A1, A2.
  • the data bus participants are connected to each other via a data bus line DBL.
  • the process control system PLS is normally located in a control room from which the entire process control takes place.
  • the sensors S1, S2, S3 and the actuators A1, A2 are in the field, i.e. arranged in the individual process components (tank, filling device, pipeline, etc.).
  • the sensors S1, S2 and S3 detect, for example, the process variables temperature, pressure or flow at the respective process component.
  • Actuators A1 and A2 regulate the flow of a liquid or a gas in a pipe section as valves.
  • the data communication between the process control system PLS, the sensors S1, S2, S3 and the actuators A1, A2 takes place in a known manner according to internationally standardized transmission techniques (RS435, IEC1158) using special protocols (e.g. Profibus, Foundation Fieldbus, CAN-Bus).
  • the sensor S1 consists of a sensor MA, which is connected to a sensor unit SE.
  • a digital signal processor DSP is connected downstream of the sensor unit SE.
  • the digital signal processor DSP is connected to a system processor MP.
  • the system processor MP is connected to the data bus line DBL via a communication unit CE.
  • the system processor MP is connected to an analog unit AE, which has several analog inputs and outputs I / O.
  • a display operating unit AB which is also connected to the system processor MP, serves to display the measured value and for manual input.
  • the voltage supply of the sensor S1 is ensured by a voltage supply unit SV, which is connected to the various hardware components of the sensor S1 (shown in dashed lines). Power can be supplied externally or via the DBL data bus line.
  • the digital signal processor DSP and the system processor MP are each connected to watchdogs WZ1, WZ2 and EEPROM memories E1, E2.
  • the sensor MA serves to record the corresponding process variables and consists, for example, of a temperature-sensitive resistor or a pressure-sensitive piezo element or of two coils which record the tube vibration of a Coriolis mass flow meter.
  • the analog signals of the transducer MA are converted into digital signals in the sensor unit SE and further processed in the digital signal processor DSP and supplied to the system processor MP as a measured value.
  • the system processor MP controls the entire sensor S1.
  • the connection to the data bus line DBL is made via the communication unit CE.
  • the communication unit CE reads telegrams on the data bus and writes data itself on the data bus line DBL. It supports all send and receive functions according to the transmission technology used.
  • each field device has a sensor module SM, which includes the sensor MA and the sensor unit SE, a signal processing module VM, which, for. B. can consist of the digital signal processor DSP, a processor module PM, which consists essentially of the system processor MP and a communication module KM, which consists either of the communication unit CE and / or the analog unit AE.
  • a sensor module SM which includes the sensor MA and the sensor unit SE
  • a signal processing module VM which, for. B. can consist of the digital signal processor DSP
  • a processor module PM which consists essentially of the system processor MP
  • a communication module KM which consists either of the communication unit CE and / or the analog unit AE.
  • FIG. 3 shows a first exemplary embodiment of sensor S1 according to the invention.
  • Fig. 3 corresponds essentially to Fig. 2 with the difference that the digital signal processor DSP and the system processor MP including watchdogs W1, W2 and EEPROMS E1, E2 are replaced by a logic module LB.
  • the logic module LB is additionally connected to a permanent memory SP (flash memory) and a charge controller LC.
  • 4 shows a further exemplary embodiment.
  • the logic module LB includes not only the digital signal processor DSP and system processor MP, but also parts of the display of the operating unit AB and the communication unit CE as well as parts of the analog unit AE and the sensor unit SE.
  • the logic module LB comprises all digitally working components of the sensor S.
  • the outputs of the logic module LB only serve to control the analog components of the sensor S1.
  • the logic module LB is a reconfigurable logic module, such as that sold by Altera® under the name Excalibur®.
  • the configuration of the logic module LB is shown in more detail with reference to FIG. 5.
  • the memory SP is divided into two memory areas A and B.
  • Memory area A contains a description of the hardware of the logic module LB
  • memory area B contains the sequence program for the "embedded controller”.
  • the "hardware of the logic module” LB is configured using the LC charge controller.
  • at least one “embedded processor” EP, a memory M and a logic L are configured in the logic module LB.
  • the sequence program for the embedded controller is loaded into the memory M.
  • such logic modules are also referred to as SoPC systems or programmable chips.
  • a reconfigurable logic module LB By using a reconfigurable logic module LB, a Coriolis mass flow meter can easily be replaced by a magnetic inductive mass flow meter MID or any other field device. All that is necessary for this is the corresponding reconfiguration of the logic module LB when the system starts by means of new memory information in the memory areas A and B.
  • parts of the communication module can also be integrated in the logic module LB. This means that a sensor designed for the HART ⁇ protocol can easily be converted into a sensor suitable for Profibus® or FF. To do this, only the corresponding area of the logic module LB must be configured when the system is started.
  • a reconfigurable logic module LB By using a reconfigurable logic module LB, the number of parts in the manufacture of a field device is considerably reduced. Another advantage that the field device according to the invention offers is that new test strategies are possible. In principle, any area, ie functionalities, of Logic module LB can be isolated and monitored. To do this, the logic module only has to be configured accordingly and the signals tapped or added at corresponding test points.
  • reconfigurable logic modules With the help of reconfigurable logic modules, it is possible to configure hardware components and thus easily change the functionality and behavior.
  • the hardware components can thus be adapted to different tasks and functionalities.
  • Inputs and outputs I / Os can be easily defined.
  • function blocks e.g. Flexible Function Blocks (Foundation Fieldbus® Organization) or Profibus® Function Blocks (Profibus® Organization) can be easily defined and modified in terms of hardware and software.
  • the function block (Flexible Function Block or Profibus®) is loaded into the reconfigurable logic module and generates its I / Os itself. This means that an LB logic module can be used for various functionalities, depending on what is loaded for a function block.
  • the essential idea of the invention is to flexibly design field devices in a wide range by using a reconfigurable logic module.
  • the invention is of course not only limited to the field devices field, but can also be used with corresponding sensors and actuators in motor vehicle construction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Measuring Volume Flow (AREA)
  • Programmable Controllers (AREA)
  • Control By Computers (AREA)

Abstract

L'invention concerne un appareil de terrain pour l'automatisation de processus, dans lequel on intègre un module logique reprogrammable afin d'obtenir une grande souplesse eu égard aux composantes matérielles.
EP03752749A 2002-05-15 2003-05-15 Appareil de terrain variable pour l'automatisation de processus Withdrawn EP1504240A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10221772A DE10221772A1 (de) 2002-05-15 2002-05-15 Variables Feldgerät für die Prozeßautomation
DE10221772 2002-05-15
PCT/EP2003/005130 WO2003098154A1 (fr) 2002-05-15 2003-05-15 Appareil de terrain variable pour l'automatisation de processus

Publications (1)

Publication Number Publication Date
EP1504240A1 true EP1504240A1 (fr) 2005-02-09

Family

ID=29285457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03752749A Withdrawn EP1504240A1 (fr) 2002-05-15 2003-05-15 Appareil de terrain variable pour l'automatisation de processus

Country Status (7)

Country Link
US (1) US8275472B2 (fr)
EP (1) EP1504240A1 (fr)
CN (1) CN100360902C (fr)
AU (1) AU2003232783A1 (fr)
DE (1) DE10221772A1 (fr)
RU (1) RU2327113C2 (fr)
WO (1) WO2003098154A1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016311B4 (de) * 2004-03-29 2008-02-14 Siemens Ag Elektrisches Messgerät
EP2082485A2 (fr) * 2006-10-17 2009-07-29 Endress+Hauser GmbH+Co. KG Système de configuration flexible de modules de fonctions
DE102007021099A1 (de) 2007-05-03 2008-11-13 Endress + Hauser (Deutschland) Ag + Co. Kg Verfahren zum Inbetriebnehmen und/oder Rekonfigurieren eines programmierbaren Feldmeßgeräts
DE102007022991A1 (de) * 2007-05-15 2008-11-20 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Vorrichtung zur Signalüberwachung für einen zeitweiligen Einsatz in einem Feldgerät der Prozessautomatisierungstechnik
DE102007030690A1 (de) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030699A1 (de) 2007-06-30 2009-01-15 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030700A1 (de) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030691A1 (de) 2007-06-30 2009-01-02 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
US9217653B2 (en) 2007-09-13 2015-12-22 Rosemount Inc. High performance architecture for process transmitters
DE102007053223A1 (de) 2007-11-06 2009-05-07 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren zum Betreiben einer Messstelle, Messstelle und Sensoreinheit für eine solche Messstelle
DE102007054672A1 (de) 2007-11-14 2009-05-20 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
DE102009005399B4 (de) * 2009-01-19 2024-02-08 Phoenix Contact Gmbh & Co. Kg Verfahren und Kommunikationssystem zum Konfigurieren eines einen Logikbaustein enthaltenden Kommunikationsmoduls
DE102009026785A1 (de) 2009-01-30 2010-08-05 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung und/oder Überwachung einer physikalischen oder chemischen Prozessgröße
DE102009002734A1 (de) 2009-04-29 2010-11-11 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
DE102009028938A1 (de) 2009-08-27 2011-03-03 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Variablen
DE102009029495A1 (de) * 2009-09-16 2011-03-24 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Messumformer für ein Multisensorsystem, insbesondere als Feldgerät für die Prozessautomatisierungstechnik und Verfahren zum Betreiben des Messumformers
DE102010002346A1 (de) 2009-10-12 2011-04-14 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße
DE102010043706A1 (de) 2010-07-05 2012-01-05 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße
DE102010048809A1 (de) 2010-10-20 2012-04-26 Hüttinger Elektronik Gmbh + Co. Kg Leistungsversorgungssystem für eine Plasmaanwendung und/oder eine Induktionserwärmungsanwendung
DE102010048810A1 (de) 2010-10-20 2012-04-26 Hüttinger Elektronik Gmbh + Co. Kg System zur Bedienung mehrerer Plasma- und/oder Induktionserwärmungsprozesse
US20120316809A1 (en) * 2011-06-08 2012-12-13 Elster Solutions, Llc Virtual option board for use in performing metering operations
EP2626785A1 (fr) * 2012-02-08 2013-08-14 Siemens Aktiengesellschaft Procédé de configuration spécifique aux branches d'un client technique d'automatisation, programme informatique pour l'implémentation du procédé et ordinateur doté d'une tel programme informatique
DE202012100754U1 (de) 2012-03-02 2012-06-15 Johann Hölldobler Universal-Steuereinheit mit BUS- und WEB-Anbindung
CA2903695A1 (fr) * 2013-03-14 2014-10-02 Rosemount Inc. Unite de communication pour un reseau de processus industriel
CN107218955B (zh) * 2016-03-22 2021-04-20 横河电机株式会社 现场设备以及检测器
DE202019106358U1 (de) 2019-11-15 2021-02-16 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Modul mit Anzeige zum Anzeigen eines physikalischen Zustands eines am Modul angeschlossenen Sensors
DE102020120822A1 (de) 2020-08-06 2022-02-10 Endress+Hauser Conducta Gmbh+Co. Kg Absperrhahn

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205524A1 (de) * 1991-02-22 1992-08-27 Siemens Ag Speicherprogrammierbare steuerung
US5537295A (en) * 1994-03-04 1996-07-16 Altera Corporation Universal reconfigurable printed circuit board
DE19502499A1 (de) * 1995-01-27 1996-08-01 Pepperl & Fuchs Bussystem zur Steuerung und Aktivierung von miteinander vernetzten ASI-Slaves, vorzugsweise binäre Sensoren oder Eingangsmodule und/oder Ausgangsmodule oder Aktuatoren eines Aktuator-Sensor-Interface
WO2001023971A1 (fr) * 1999-09-29 2001-04-05 Fisher-Rosemount Systems, Inc. Dispositif local reprogrammable dans un systeme de controle de processus reparti
US20020008540A1 (en) * 2000-05-26 2002-01-24 Britton Barry K. Multi-master multi-slave system bus in a field programmable gate array (FPGA)
WO2002020392A1 (fr) * 2000-09-07 2002-03-14 Watson Enterprises (Bahamas) Limited Appareil de distribution d'eau potable
EP1191747A2 (fr) * 2000-08-02 2002-03-27 National Instruments Corporation Système et procédé d'interface entre un dispositif CAN et un dispositif périphérique

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450829B2 (fr) * 1990-03-30 2002-09-04 Texas Instruments Incorporated Capteur intelligent et programmable
US5335186A (en) * 1990-03-30 1994-08-02 Texas Instruments Incorporated Intelligent programmable sensing
US5691897A (en) * 1995-05-30 1997-11-25 Roy-G-Biv Corporation Motion control systems
US20040194101A1 (en) * 1997-08-21 2004-09-30 Glanzer David A. Flexible function blocks
WO1998020615A2 (fr) * 1996-10-21 1998-05-14 Electronics Development Corporation Module de capteur intelligent
US6081195A (en) * 1999-01-27 2000-06-27 Lynch; Adam Q. System for monitoring operability of fire event sensors
US6351212B1 (en) * 1998-01-28 2002-02-26 Adam Q. Lynch System for monitoring operability of fire event sensors
GB2342998A (en) 1998-10-22 2000-04-26 Secretary Trade Ind Brit Environmental sensors
US6424567B1 (en) * 1999-07-07 2002-07-23 Philips Electronics North America Corporation Fast reconfigurable programmable device
US6552410B1 (en) * 1999-08-31 2003-04-22 Quicklogic Corporation Programmable antifuse interfacing a programmable logic and a dedicated device
US6854055B1 (en) * 1999-10-18 2005-02-08 Endress + Hauser Flowtec Ag Method and system for switching active configuration memory during on-line operation of programmable field mounted device
US6697684B2 (en) * 2000-02-15 2004-02-24 Thomas Gillen Programmable field measuring instrument
US7062718B2 (en) * 2001-08-14 2006-06-13 National Instruments Corporation Configuration diagram which graphically displays program relationship
US20060064503A1 (en) * 2003-09-25 2006-03-23 Brown David W Data routing systems and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205524A1 (de) * 1991-02-22 1992-08-27 Siemens Ag Speicherprogrammierbare steuerung
US5537295A (en) * 1994-03-04 1996-07-16 Altera Corporation Universal reconfigurable printed circuit board
DE19502499A1 (de) * 1995-01-27 1996-08-01 Pepperl & Fuchs Bussystem zur Steuerung und Aktivierung von miteinander vernetzten ASI-Slaves, vorzugsweise binäre Sensoren oder Eingangsmodule und/oder Ausgangsmodule oder Aktuatoren eines Aktuator-Sensor-Interface
WO2001023971A1 (fr) * 1999-09-29 2001-04-05 Fisher-Rosemount Systems, Inc. Dispositif local reprogrammable dans un systeme de controle de processus reparti
US20020008540A1 (en) * 2000-05-26 2002-01-24 Britton Barry K. Multi-master multi-slave system bus in a field programmable gate array (FPGA)
EP1191747A2 (fr) * 2000-08-02 2002-03-27 National Instruments Corporation Système et procédé d'interface entre un dispositif CAN et un dispositif périphérique
WO2002020392A1 (fr) * 2000-09-07 2002-03-14 Watson Enterprises (Bahamas) Limited Appareil de distribution d'eau potable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO03098154A1 *

Also Published As

Publication number Publication date
RU2004136606A (ru) 2005-06-27
AU2003232783A1 (en) 2003-12-02
CN1653315A (zh) 2005-08-10
CN100360902C (zh) 2008-01-09
US8275472B2 (en) 2012-09-25
US20050231348A1 (en) 2005-10-20
WO2003098154A1 (fr) 2003-11-27
RU2327113C2 (ru) 2008-06-20
DE10221772A1 (de) 2003-11-27

Similar Documents

Publication Publication Date Title
EP1504240A1 (fr) Appareil de terrain variable pour l'automatisation de processus
EP2113067B1 (fr) Appareil de champ configurable pour l'automatisation de processus
EP2246984B1 (fr) Appareil de diagnostic destinée au contrôle d'un appareil de conversion analogique-numérique
DE10251503A1 (de) Verfahren zur Offline-Parametrierung eines Feldgerätes der Prozessautomatisierungstechnik
EP1591977B1 (fr) Procédé de signalisation la condition d'alarme d'un appareil de champ de la technologie d'automatisation
DE10014272B4 (de) Feldgerät, sowie Verfahren zum Umprogrammieren eines Feldgerätes
DE102007054672A1 (de) Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
EP1812832A1 (fr) Unite radio conçue pour des appareils de champ utilises en technique d'automation
EP2156251A1 (fr) Appareil de terrain comprenant une unité de mise en oeuvre de procédés de diagnostics
EP1091199B1 (fr) Procédé et dispositif pour le test fonctionnel d'un interrupteur de limite
EP1920302A1 (fr) Simulateur de capteur
DE102006036909A1 (de) Trenneinheit für eine herkömmliche 2-Leiter-Kommunikations-verbindung, die einen Sensor, einen Messumformer und eine Steuereinheit umfasst
DE102009047535A1 (de) Verfahren zum Ermitteln einer Anschlusskonfiguration eines Feldgerätes an einem Wireless Adapter
EP1486841B1 (fr) Procédé pour l' indication de fonction d'un appareil de terrain employé dans l'automatisation de processus
DE102016120444A1 (de) Verfahren zum Betreiben eines Feldgerätes für die Automatisierungstechnik
WO2008138888A1 (fr) Dispositif de contrôle de signaux pour une utilisation temporaire dans un appareil de champ en technique d'automatisation de procédés
DE102005051795A1 (de) Anzeigeeinheit für die Prozessautomatisierungstechnik
EP2092397B1 (fr) Unité de séparation de signaux pour boucle de régulation de processus à deux conducteurs
DE102005043481A1 (de) Automatisierungstechnische Einrichtung
WO2016087149A1 (fr) Procédé d'écrasement d'une mémoire non volatile d'un appareil de terrain
EP3983853B1 (fr) Appareil de terrain de la technique de l'automatisation
EP1456685A1 (fr) Appareil de terrain comportant un module gps
DE102006013827A1 (de) Verfahren zur benutzerspezifischen Anpassung eines Feldgerätes der Automatisierungstechnik
WO2004102288A1 (fr) Procede de determination d'une grandeur caracteristique d'un fluide de processus
EP3153938B1 (fr) Dispositif de mesure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101006

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141202