EP1501763A2 - Dispositifs et procedes de production de rayons ultraviolets au moyen de diodes electroluminescentes - Google Patents

Dispositifs et procedes de production de rayons ultraviolets au moyen de diodes electroluminescentes

Info

Publication number
EP1501763A2
EP1501763A2 EP01964558A EP01964558A EP1501763A2 EP 1501763 A2 EP1501763 A2 EP 1501763A2 EP 01964558 A EP01964558 A EP 01964558A EP 01964558 A EP01964558 A EP 01964558A EP 1501763 A2 EP1501763 A2 EP 1501763A2
Authority
EP
European Patent Office
Prior art keywords
led
ultraviolet
processor
light
leds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01964558A
Other languages
German (de)
English (en)
Inventor
Kevin J. Dowling
Frederick M. Morgan
Matthew L. Tullman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify North America Corp
Original Assignee
Color Kinetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Color Kinetics Inc filed Critical Color Kinetics Inc
Publication of EP1501763A2 publication Critical patent/EP1501763A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/16Mobile applications, e.g. portable devices, trailers, devices mounted on vehicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/21Pharmaceuticals, e.g. medicaments, artificial body parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/326Lamp control systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to light emitting diode devices. More particularly, the present invention relates to ultraviolet light emitting diode systems and methods for generating ultraviolet light.
  • Water purification systems are in great demand for industrial, home, portable, and other uses. These systems are designed to purify a predetermined quantity of water before dispensing for consumption or other use. There are many techniques or methods used to purify water. Usually, multiple techniques are employed within one purification device. Filters are generally used to remove particulates from the water while ultra-violet light is used to disinfect the water. The disinfection process may involve passing water through a clear tube while passing ultraviolet light through the tube simultaneously. The ultraviolet radiation is used to eliminate most bacteria and viruses.
  • HID high intensity discharge
  • low-pressure discharge lamps for the purpose of purifying water.
  • HID sources require high voltage and high power sources to operate the lamps.
  • the ballasts for these lamps are large, heavy and not portable. With these constraints, the HID source may provide an acceptable solution for industrial settings but is undesirable for the home or as a portable unit.
  • a problem associated with fluorescent lamps is that the lamps are fragile because they are relatively long tubes of thin glass. This causes a significant problem in portable units because many of these portable units are used while camping or hiking and the units may not be treated with the care required to prevent breakage.
  • discharge lamps there are many other devices that use discharge lamps to generate ultraviolet light. These devices include devices designed for curing ink, cement, glue or enamel (such as the material used by dentists); devices designed to illuminate and inspect articles such as money or other articles with fluorescent properties. In some applications, fluorescent dyes are applied to articles and the ultraviolet source is used to inspect for the presence of the dye.
  • Ultraviolet Photography is used for many applications to provide information that is otherwise difficult to depict. There are two primary methods of photographing an object under ultraviolet: reflected and fluorescence photography. There are also many applications for ultraviolet photography ranging from recreational, scientific, and medical to geology. Ultraviolet can be used to illuminate objects for inspection as well as illumination for photography to document the appearance of the object under ultraviolet radiation. Most ultraviolet photography is done by irradiating a photographic sample with long wavelength ultraviolet 320 to 400nm. Long wavelength ultraviolet is most preferable because most conventional camera lenses pass the long ultraviolet wavelengths. Shorter wavelength ultraviolet can be used but special ultraviolet pass glass must be used in the lens to allow the reflected ultraviolet to reach the film. Another problem associated with shorter wavelength ultraviolet is the dangers to the eyes and skin.
  • the difference between reflected and fluorescent photography is the method that is used to irradiate the object to be filmed.
  • fluorescent lamps with special ultraviolet producing phosphors are used to irradiate the object. These lamps emit radiation other than just ultraviolet and this radiation may reside in the visible spectrum. If the visible radiation is not filtered out, the film will react to the visible light and the desired effect may not be achieved.
  • a filter is placed in front of the camera lens to eliminate all of the visible energy while passing the ultraviolet.
  • an ultraviolet pass filter is placed in front of the ultraviolet source to eliminate all visible energy and an ultraviolet pass filter is placed in front of the camera lens to remove stray light. This technique provides different effects and is useful for several applications including, but not limited to, archaeological photography. See Ultra Violet Photography by Eliadis Elias.
  • Ultraviolet Photography can be used in many applications such as, but not limited to, capturing images of finger prints, body secretions from animals and humans, images of articles that fluoresce or have fluorescent materials applied, medical images, natural objects, art, repairs made to articles, tracks or residue. When objects are lit with ultraviolet they appear quite different from when they are lit with visible light. Geologists use ultraviolet light to examine stone for composition and identifying materials or the level of water penetration. Ultraviolet sources are required for the inspection of these various items and ultraviolet imagery is required to capture the images.
  • ultraviolet inspection or photography is in analyzing insect life patterns. Insects can only see ultraviolet and short wavelength visible light, so the best way to see what they see is to irradiate objects with the same light. After illumination, the best way of capturing these images is to use ultraviolet photography. Many photographers also use ultraviolet photographic techniques for artistic reasons to capture unique images that cannot be achieved with any other technique.
  • Light therapy can take many forms and can be designed to remedy mental, emotional, or physical illnesses or disorders. Full spectrum lighting or specific wavelengths of visible, ultraviolet, or infrared radiation can be used during treatments of such illnesses or disorders. Light therapy has been a valued therapeutic technique throughout history. The sun is a good source of full spectrum lighting and can provide healing effects. Many of the light therapy techniques attempt to provide light that emulates sunlight. Several recent studies suggest there is an importance in being exposed to full spectrum lighting. According to photobiologist John Nash Ott D.Sc. (hon.), poor lighting can pose a serious threat to health. Most artificial lighting systems, such as incandescent and fluorescent, lack the complete balance of emitted wavelengths to be categorized as full spectrum lights.
  • One embodiment of the invention is directed to improved systems and methods of providing ultraviolet light.
  • the present invention relates to ultraviolet systems and methods of producing such systems with light emitting diodes.
  • An embodiment of the present invention is a purification device.
  • the purification device may comprise a purification chamber, and at least one LED that produces ultraviolet light, wherein the at least one LED is arranged to irradiate the inside of the chamber.
  • the hand held device may comprise a handheld housing, and at least one LED that produces ultraviolet, light wherein the at least one LED is arranged to irradiate from the housing.
  • a further embodiment of the present invention is an insect light.
  • the insect light may comprise at least one of an ultraviolet light producing LED and a blue light producing LED for attracting insects, and at least one of an insect trap and insect killing device.
  • Another embodiment of the present invention is a method of purifying. The method may involve the steps of providing at least one LED that produces ultraviolet light; providing a chamber for containing at least one of a liquid and a vapor; and irradiating the interior of the chamber with the at least one LED.
  • a further embodiment of the present invention is a method of purifying a surface.
  • the method may comprise providing a handheld housing; providing at least one LED that produces ultraviolet light wherein the at least one LED is associated with the housing and arranged to irradiate from the housing; and having a user hold the housing and irradiate a surface to be purified.
  • a further embodiment of the present invention is a method of irradiating an object with ultraviolet light.
  • the method may comprise providing a handheld housing; providing at least one LED that produces ultraviolet light wherein the at least one LED is associated with the housing and arranged to irradiate from the housing; and having a user hold the housing an irradiate an object.
  • the illumination device may comprise at least one visible LED that generates visible light, at least one ultraviolet LED that generates ultraviolet light, a processor that independently controls the at least one visible LED and the at least one ultraviolet LED, and a housing wherein the LEDs are housed and arranged to irradiate from the housing.
  • Another embodiment of the present invention is directed to a method of irradiating a display.
  • the method may comprise the acts of providing a display, providing a plurality of ultraviolet LEDs, and irradiating the display with the ultraviolet LEDs.
  • Another embodiment of the present invention is directed to a method of impacting the growth of plants.
  • the method may comprise the acts of providing at least one ultraviolet LED, providing at least one visible LED, providing a processor that independently controls the at least one ultraviolet LED and the at least one visible LED, directing the at least one ultraviolet LED and the at least one visible LED to irradiate a plant, and causing the processor to vary the output of the LEDs over a period of time.
  • Figure 1 illustrates a purification device according to one embodiment of the present invention.
  • Figure 2 shows a stand-alone LED unit for inspection or for ultraviolet photography according to another embodiment of the present invention.
  • Figure 3 shows two LED units according to another embodiment of the present invention with one combined into the front of a camera and one located on the top of the camera as a detachable unit.
  • Figure 4 illustrates an ultraviolet inspection device with a magnifying glass according to another embodiment of the present invention.
  • Figure 5 illustrates a flashlight style ultraviolet source according to a further embodiment of the present invention.
  • Figure 6 illustrates an ultraviolet source according to another embodiment of the present invention.
  • One embodiment of the invention is directed to the use of ultraviolet radiation, generated light emitting diodes, for purification, inspection and many other uses. This provides a number of advantages over conventional UN sources, including that it is mercury-free.
  • the advent of the high brightness light emitting diode (LED) has opened up many new applications for the LED.
  • the LED was primarily used as an indicator light and now is being used as an illumination device.
  • the brightness of the LED has been increasing exponentially over the past three decades. LEDs are now being used in color changing illumination devices such as that described in U.S. patent 6,016,038.
  • LED manufacturers such as Nichia, Lumileds, Philips, Siemens and Osram Opto are all attempting to create highly efficient high quality white light producing LEDs. This is for general lighting applications to replace incandescent, halogen, and fluorescent lighting.
  • White LEDs are generally devices that produce blue, violet or ultraviolet light, which is then converted to visible radiation through a phosphor. If the phosphor layer is eliminated, the LED becomes an ultraviolet radiation source. Nichia has also recently announced a violet LED where the primary emission spectrum has wavelengths between 395nm and 420nm. This short wavelength may be acceptable for water purification purposes. If even shorter wavelengths are desired, US patent 6,084,250 discloses an LED with emission centered between 300nm and 370nm. Other ultraviolet producing LEDs are available or can be manufactured to produce different ultraviolet bands of radiation. The recent trends in the development of ultraviolet LEDs indicate that even shorter wavelength producing light emitting diodes will soon be available. A die could also be developed to produce deep ultraviolet for the production of ozone to assist in the water purification process. Ozone treatment is typically a separate process from ultraviolet treatment.
  • the ultraviolet-producing LED can be used to purify water in a similar fashion as the mercury-containing discharge tube methods.
  • the purification system can include one or more LEDs to provide the requisite level of ultraviolet radiation.
  • This new method of water purification can be provided as a stand-alone device or in combination with other purification devices such as, but not limited to, filters, scrubbers, other ultraviolet sources, mixers and any delivering system.
  • An ultraviolet-producing LED device can also be provided to kill bacteria and viruses or for general sterilization in non- water applications such as for the treatment of surfaces, tables, countertops, walls, floors, ceilings, instruments, tools, utensils, storage units, food handling devices, food, drinks or any other surface, device or object that can be sterilized.
  • non- water applications such as for the treatment of surfaces, tables, countertops, walls, floors, ceilings, instruments, tools, utensils, storage units, food handling devices, food, drinks or any other surface, device or object that can be sterilized.
  • a countertop in a kitchen needs disinfection.
  • a handheld LED device can be used by sweeping it across the counter in the same way a sponge is used.
  • the device could also be designed to automatically cover or cross over the counter.
  • Another application would be where the device is combined with a medical instrument drawer.
  • the device could be arranged to irradiate the inside of the drawer to provide sterilized instruments.
  • This device could also be used in conjunction with or following other sterilization procedures.
  • One significant problem with sterilization is keeping the objects sterile after the sterilization process is complete. So, in the example of medical instruments, the instruments could be exposed to ultraviolet radiation in a storage tray or drawer following any other sterilization process as a method of maintaining the instruments' sterile condition.
  • the UV-producing LED system can take any of numerous forms, and is not limited to any particular implementation.
  • the LED system can have one or more LEDs arranged into a fixture.
  • the LEDs can be controlled by passive or active circuitry.
  • the power to the LED can be controlled through current regulation, voltage regulation, waveform modifications, or other regulation or modulation techniques.
  • the waveform modification can take the form of a pulse width modulated (PWM) waveform signal processing.
  • PWM control could take any number of forms to produce any number of functions such as, but not limited to, power source conservation or maximizing, optimizing the efficiency of the process or other functions.
  • each LED could be controlled independently or as a group.
  • a microprocessor can be used to regulate the LEDs.
  • the microprocessor can control individual LEDs or a group of LEDs.
  • the microprocessor could have a number of predefined control signals that could be sent to the LEDs.
  • the microprocessor could also have one or more programming devices to provide an input signal.
  • the control signals could be generated and/or communicated in response to the input signals.
  • the programming device could be connected to one or more potentiometers, switches, transducers, sensors or other devices or combinations of devices. When the programming device is activated, changed or sends a signal, a controller may react by sending control signals to the LEDs.
  • One example of using a programming device in the water purification system is where optical feedback is desired.
  • the water should be exposed for a certain amount of time under a certain amount of energy.
  • An energy detector can be employed as the programming device to monitor the energy output and adjust the control signal if the output has changed. If the energy falls below some predetermined acceptable level, the device can indicate a problem.
  • LEDs two or more with different outputs could also be used in this system.
  • the different LEDs could be independently controlled or controlled as a group. This system could be used to optimize the purification process.
  • One or more of the LEDs could produce visible light to make indications of certain conditions. If a water purity sensor is connected to a programming means, the visible light LEDs could be activated to indicate the process is complete or at what stage the process is in or what mode the system is in.
  • Two or more colored LEDs could be used to produce different colored outputs.
  • One of the LEDs could also be used as a transmitter to provide communication to other devices.
  • the visible LEDs could be activated to produce visual effects to provide an indication of the device's operating mode or to provide information or for aesthetic reasons. There could be any number of lighting effects produced by a single or multiple LEDs in combination. These could be effects such as color-changing, fixed colors, pulsing colors, strobing colors or any other effect. The lighting effects could also be initiated from another device through communications means.
  • a programming device could be connected to other sensors for electromagnetic signal reception to allow the programming device to receive information from external sources or other components of the purification system.
  • Other types of transmitters could also be controlled to allow communication from the water purification system.
  • the system can be part of a network. As such, the system could listen for instructions by listening for its particular address and the system could react to the instructions. For example, there could be a water monitoring device or system analyzing the purity of the upstream or downstream water and the monitoring system could change the control signals to change the irradiation level.
  • a water purification system such as that described could be used to purify water from any source, including purification of water from a fish tank, pond, swimming pool, fountain, spa, or other water source.
  • FIG. 1 illustrates a purification system according to one embodiment of the present invention.
  • LEDs 102 are arranged to irradiate chamber 104, which contains water, from one side but the arrangement of LEDs 102 could take many different forms.
  • the LEDs 102 may be arranged within the chamber or external to the chamber.
  • a material may be incorporated into the chamber to provide for the transmission of the ultraviolet light.
  • the LEDs 102 are being controlled by a controller 108.
  • the LEDs 102 do not need to be provided on the outer perimeter, they could also be mounted on the inner perimeter or inside of the water stream or bath.
  • the water could be in a stagnant, agitated or mixed bath or could be flowing during the irradiation process.
  • the LEDs can be arranged in any manner with respect to the water and the water can be presented in any manner so long as the water is irradiated.
  • Figure 1 illustrates the chamber 104 as containing a liquid, the chamber could also be arranged to contain a vapor or a solid.
  • Another embodiment of the present invention is directed to an ultraviolet LED device for ultraviolet photography, inspection, or detection.
  • an ultraviolet radiation device where the primary, secondary or only source of ultraviolet radiation is an LED device.
  • This device can be used as a stand-alone device or in combination with other devices or combined with a network to be a network device.
  • the controller 108 may be an addressable controller.
  • a device may also be incorporated into a still frame camera, motion picture camera, video recoding device, or other recoding device.
  • the photography systems can use film as the recording media or they can store the images digitally or by any other means.
  • the ultraviolet radiating device may be used as a stand-alone device for inspection, irradiating, or detection purposes.
  • This device can be used for any purpose where ultraviolet irradiation is desired. Such uses include, but are not limited to, inspection of materials, body secretions, fluorescent display or analysis, or medical reasons.
  • the device can also be incorporated into other systems such as manufacturing lines and process control where ultraviolet light is used for imaging and or control.
  • a device may be constructed with one or more LEDs with different output spectra to provide the desired radiation output.
  • LEDs with different wavelength characteristics could also be used for various applications.
  • One example of using different wavelength LEDs is where one ultraviolet radiating type of LED is combined with another ultraviolet radiation LED of a different ultraviolet wavelength or where visible or infrared (TR) LEDs are combined in the system.
  • Visible LEDs may be combined for effect or for assisting the user in aiming the radiation towards the subject or object to be photographed.
  • Output levels can be adjusted once the illumination direction and pattern are set.
  • the ratio of ultraviolet to visible to IR emission properties of the device could also be changed to suit to a particular application.
  • any of these materials can be used in signs and displays in conjunction with an LED light to create unique visual effects.
  • the materials include, but are not limited to, plastics, such as core, rod, tube and sheet; paints and dyes such as fluorescent, phosphorescent and invisible paint that is revealing under ultraviolet or blue irradiation; water dyes; bubble fluid; and any other material that reflects, fluoresces or phosphoresces.
  • LED lighting examples include, but are not limited to, displays, identifying marks, backdrops, scenic artwork, body paints, tattoos, club wear, party products, bar products, catering products, 3D glasses, floor tiles, special effects in movies, films, television, theater, concerts, events, conferences, press launches.
  • Other applications include, but are not limited to, using these materials and LED lighting for scenic effects at clubs, pubs, bars, cinemas, casinos, hotels, theme parks, amusement park attractions, bowling alleys, quasar arenas, amusement arcades, and any other area.
  • Other applications include, but are not limited to, promotion and advertising at the point of sale, in window displays, signs, billboards, exhibition stands, and product launches and any other display.
  • Figure 2 shows a stand-alone LED device 200 according to one embodiment of the present invention for purification, inspection, ultraviolet photography or other uses.
  • the device 200 in this embodiment may include one or more LEDs 102 and a handheld housing 202. As indicated in figure 2, the device may include more than one LED with different spectral output.
  • Figure 3 shows another embodiment that includes two LED units, with one combined into the front of a camera 302 and one located on the top of the camera as a detachable unit.
  • the LEDs produce light almost instantaneously upon the application of the control signal and this makes them suitable for a flashing or pulsing mode to create different effects or power supply conservation.
  • the device could be set to pulse periodically while the subject is rotated or moved or the pulse could be applied much like a regular camera flash where the application or radiation only occurs at the moment of the shutter opening.
  • the LEDs in a device can be controlled by passive or active circuitry.
  • a microprocessor could be used to provide control signals to the LEDs or network of LEDs.
  • the microprocessor could also have an input signal from a programming device.
  • the programming device can include a receiver for the receipt of an input signal from another device for example.
  • the input signal could come from a camera or other device such as, but not limited to, a transducer, switch, transmitter, or other device to supply a signal.
  • the signal could be received digitally or as an analog signal through an A/D converter.
  • the controller can also be connected to a transmitter or other output device to provide communication with other devices.
  • the LEDs can also act as communication devices whether the ultraviolet, visible or IR LEDs are used.
  • a PWM control signal can modulate light control output while making communication output on the same or separate LED. The LED reacts so quickly to the drive signal that one LED can be providing both communications and illumination simultaneously. Separate LEDs can also be used to provide communications .
  • Pulse width modulated (PWM) control signals could be used to drive the LEDs where the control signals correspond to an input signal to change the mode of operation. This technique could be used to modulate and thus regulate the output of any of the LEDs.
  • PWM Pulse width modulated
  • visible LEDs are used in the device.
  • the visible-light producing LEDs may be used, for example, as a reference for irradiation direction and/or intensity.
  • the ultraviolet photography techniques require trial and error to determine the proper exposure time for a given setting and object.
  • Ultraviolet meters can also be used with the device but there are no good correlation coefficients determined for ultraviolet photography as in visible light photography. However, an ultraviolet meter could be combined with this device to provide feedback. Another method of feedback would be through an LED power meter or control signal indicator.
  • the visible LEDs could also be used to reference how much ultraviolet radiation there is. Because the ultraviolet radiation is not visible to the user, the user does not have feedback as to the light intensity.
  • a correlation could be drawn between the visible light intensity from the visible LED and the ultraviolet LEDs. This would allow the user to regulate the intensity of the visible light to set the ultraviolet and then turn the visible LEDs off or reduce their input. This could be useful to a user in setting or adjusting the intensities required to make some effects.
  • the microprocessor could have a look-up table or a function that equates the visible light intensity to the ultraviolet light intensity. This table or function could also be user adjustable to provide a customized calibration solution.
  • a device can also be used for viewing and inspection of objects without photography.
  • a device is presented incorporating inspection optics to aid the inspection process.
  • the optics could include any optics such as, but not limited to, magnifying glasses or microscopes.
  • Such a device could take various forms and be portable or non-portable.
  • This type of device can also be incorporated into other systems for inspection.
  • the device could be incorporated into vision systems where the objects in the inspection areas are better defined under ultraviolet.
  • Figure 4 illustrates an ultraviolet inspection device 400 according to one embodiment of the present invention, with a magnifying glass 402 and LEDs 102.
  • Figure 5 illustrates a flashlight style ultraviolet source according to another embodiment.
  • Some of the inspection and photography applications include, but are not limited to, lithic sourcing such as a tool for the inspection of stone, identification of money, identification of stamps and dyes, examination of articles that have been repaired, glue, adhesive, epoxy, oil, grease, in conjunction with rodent control where the body excretions of the animals leave traces that fluoresce, medical examinations, laboratory testing, fluorescent liquid penetrent detection, arson detection, identification of ultraviolet sprays, finger print identification, and other surfaces or articles that are useful to inspect and photograph with the aid of ultraviolet.
  • lithic sourcing such as a tool for the inspection of stone, identification of money, identification of stamps and dyes, examination of articles that have been repaired, glue, adhesive, epoxy, oil, grease, in conjunction with rodent control where the body excretions of the animals leave traces that fluoresce, medical examination
  • a device as described herein may also be used as a curing system for inks, cements, enamels, epoxies, or any other material that can cure under ultraviolet radiation.
  • the device can also be used for black lights, sun tanning, EPROM erasure, web printing, air purification or sterilization of materials.
  • a curing device, inspection device or other device using LED-driven ultraviolet sources can also be coupled with ultraviolet passing fiber optics to provide local or distributed ultraviolet radiation to a remote area. The output from the fiber optics can be connected to other optics for further distribution of the light. Localized tanning, or tanning a pattern on skin, may also be achieved by using a system according to the principles of the present invention.
  • the LED light sources are compact enough that a single LED can be slowly moved over the skin to provide localized tanning.
  • a group of LEDs could be formed into a pattern and used to irradiate the skin with a pattern. By varying the beam angle of the LED, the pattern size and definition could be changed.
  • a group of LEDs could also be assembled in a lighting fixture with optics to provide focusing or a pattern of light to create the tanning pattern.
  • the optics could also include fiber optics to provide remote access.
  • An LED device could be incorporated into clothing to provide irradiation while the clothing is worn.
  • One especially effective application of ultraviolet irradiation for germicidal effects has been in the control of microbial growth in air handling systems.
  • a UV LED device may be arranged to irradiate an air chamber and or a filtration system within an air handling system to purify the air and/or the handling and/or filtration system.
  • an LED light fixture can be incorporated into automotive dashboard lighting, mirror lighting, or any other area within or outside of the automobile, or for other sign and display applications.
  • Light piping or edge lighting can be combined with phosphorous or luminous materials such that they fluoresce when the LEDs are activated.
  • the luminous material could be applied as a layer to provide surface lighting or it could be applied in a pattern.
  • Plants require light to grow and there are many artificial light sources that are designed to irradiate plants where there is a lack of sunlight. These systems use HID, fluorescent, and incandescent light sources to provide the requisite light. There have been studies of the effect of using red LEDs alone or in combination with fluorescent lighting that shows some positive effects on plant growth. See Light-Emitting Diodes for Plant Growth, W.M. Knott, Ph.D., and R.M. Wheeler, Ph.D., MD-RES, http://technology.ksc.nasa.gov/WWWaccess/techreports/94report/lsf/ls04.html. There have also been studies showing the effects that various ratios of different wavelengths have on plant growth behavior.
  • Lighting can be used to slow or increase plant growth.
  • Systems and methods according to the present invention may also be used for plant growth control. This type of lighting system could be used indoors or outdoors as a plant growth inhibitor or a plant growth aid.
  • the LED device can be arranged with one wavelength LED or several wavelength LEDs covering the ultraviolet, visible or IR.
  • ratios of light could easily be produced and customized for particular uses. For example, if the desired output requires a higher blue-to-green ratio, the intensity of the blue LEDs could be increased and/or the intensity of the green LEDs could be decreased.
  • the lights could also be programmed to change the LED outputs as a function of time or other input. For example, if a photocell is used as a programming device, the lighting device could increase its overall output to compensate for the lack of sunlight at any given time.
  • An LED-based device could be designed to adjust its output if the plant requires more ultraviolet or more IR or a particular ratio of light at a particular time of day or cycled throughout the day. These dynamic color and radiation changing effects can provide for many opportunities for enhanced plant growth or reduced plant growth.
  • the lighting device may be programmed to simulate normal exterior lighting conditions in areas where sunlight is minimal or not available. The simulation could also be adjusted to enhance or reduce growth.
  • the spectra from the system may be modulated and/or the timing of the cycle may be changed.
  • a program may be designed to simulate the daylight cycle over the period of 24 hours and the program may be modified to accelerate the cycle such that more or less simulated cycles are performed in a 24 hour period. Cycling the day's simulation multiple times within a 24 hour period, for example, may enhance the growth of plants.
  • Systems and methods according to the present invention may also be used to provide full spectrum or partial spectrum lighting for general illumination, therapy, treatment, special illumination conditions, tanning, or any other lighting situation where full spectrum or selective spectrum lighting is desired or required. These devices can be made or designed for specific applications or for general applications. Devices made for general applications can also be adjustable to tailor the device to a particular need.
  • the LED device could be made with several different wavelengths producing LEDs or one particular wavelength or wavelength region. Ultraviolet, visible or IR producing LEDs could be employed and several LEDs from each of these spectral regions could be employed. Each of the selected wavelengths or spectral regions or wavelengths within the spectral regions could be varied in intensity by using a greater number of the specific LEDs, or greater intensity LEDs within the desired range, or by controlling all or some of the LEDs to provide variable output control.
  • UV-emitting LED lighting devices or a single device may be used in an office or room or outdoors for the general purpose of providing full or partial spectrum lighting as well as general lighting of the area or objects.
  • the device could also be used in a therapy or medical setting in conjunction with therapy or medical techniques.
  • an application may include an LED device used for lighting an office environment and the color temperature of the light as well as the ultraviolet and infrared components of the emission change to simulate the outdoor conditions corresponding to the hour of the day. This could also be used to artificially simulate the wrong hour of the day such as when people are working night hours and they could be exposed to daylight lighting conditions during the work hours to keep their internal clock in synch with their working hours. Early morning hours could have a relatively low ultraviolet component with a low color temperature and some infrared light while midday light levels would have a higher color temperature with elevated levels of ultraviolet.
  • the ultraviolet, or any other wavelength can be selectively excluded to avoid problems.
  • the ultraviolet spectrum is broken down into three categories, UVA, UVB, and UVC. UVB and UNC are frequently associated with causing skin and eye irritation within relatively short exposure times so these wavelengths could be eliminated or reduced in output to prevent over-exposure. There may also be applications where the deeper ultraviolet wavelengths are desired and could be included or increased in intensity.
  • An LED device could also be very versatile in what wavelengths it emits and at what intensity it emits. Each energy region could be selectable and adjustable to allow a user to make the required or desired adjustments to suit the particular application.
  • the device can also be programmed to go through any cycle. A doctor may prescribe a bright light treatment of 15 minutes where the visible light intensity is high but the ultraviolet light intensity is low followed by a 10-minute period of low visible energy but liigher ultraviolet or IR.
  • the device could also be adjusted through switches, a single switch, transducers, receivers, detectors or any other device to provide an input signal.
  • a full spectrum or partial spectrum LED device could also be used for product testing. Many products are designed to be used outdoors where they are exposed to various lighting conditions. Testing conditions are often difficult to reproduce in the laboratory and specific lighting conditions are some of the effects that are difficult to reproduce. For example, a test could be devised using the LED device to simulate a summer day in Nevada and the product could be tested under that simulated light. The LED device could be used in conjunction with other testing elements to create various conditions. For example, the lighting device could be combined with an oven to simulate the heat and lighting effects of the Nevada summer day. Once these conditions are simulated the user can subject the products to continuous or varying conditions as a way of accelerating the testing.
  • LED devices can also be used to treat or prevent physical illnesses.
  • Psoriasis and Jaundice are two medical conditions that are normally treated with the application of ultraviolet light.
  • Ultraviolet sources are also used to irradiate blood for treatment of disease and other blood borne viruses including HIN.
  • the LED device can also be used for irradiating tissue or organs in a medical setting for identification or therapy.
  • a light-emitting diode based ultraviolet light source could be located in the front of a vehicle. This could be useful in illuminating the lines on the roadway surface. Highway lines, for example, are typically painted white lines and will fluoresce if illuminated with ultraviolet light. The paint could also be enhanced to optimize or increase the fluorescing effect. By providing this type of illumination, the lines on the road would be much more pronounced as compared to the same roadway lit with halogen lamps.
  • the vehicle could be any type of vehicle such as, but not limited to, an automobile, car, motorized vehicle, non-motorized vehicle, bicycle, motorcycle, moped, truck, buggy, or a bus. Optics can also be used to focus the light at a set distance.
  • the beam could be focused to a point or spread over an area.
  • the LED light source could be equipped with LEDs of a single color such as ultraviolet or the light source could have a combination of several colors.
  • a combination of blue and ultraviolet may be appropriate to provide an indicator that the light is on.
  • the blue emitters would indicate that the light was energized while the ultraviolet emitters would illuminate the road to cause the fluorescing effects. Any combination of different wavelength emitters could be used.
  • yellow driving lights have been used in the front of cars as fog lights because the longer wavelength yellow light scatters less in the fog than lights producing a significant blue component.
  • yellow light is near the center of the eye's photopic sensitivity curve, so yellow light is more efficient.
  • ultraviolet emitters could be combined with yellow emitters to provide visibility and fluorescing effects.
  • Single color yellow, white or other colors may also be used in the vehicle to produce desired illumination.
  • UV LEDs as a secondary illumination source on the front of an automobile
  • This device would be relatively simple as compared to the alternative for ultraviolet generation on an automobile.
  • the only other realistic alternative is a discharge light source.
  • These sources use high cost electronics for proper operation and they are generally wide band emitters.
  • the LED device the separate colors used could also be individually controlled to change the radiation output of the device. This may be useful for certain driving conditions, as an aid to people with particular vision impairments, or as a decorative element of the car.
  • the lights could also be dimmed and color tuned to make the car more attractive.
  • the UN emitters may only be activated once the vehicle has achieved a predetermined speed.
  • An LED lighting device on an auto could also be used as a communication device.
  • the LEDs respond almost instantaneously to the application of power and provide for an excellent communications device.
  • IR LEDs are typically used in remote control devices because of these properties.
  • the LED device could also be used in tollbooths, gasoline stations, service stations, convenience stores, or other venues in the identification of automobiles or other application.
  • An ultraviolet LED system can also be used for pasteurization. Normally, a thermal process is used to accomplish pasteurization but the thermal processing units are large and expensive to purchase. There are many fruit juice producers and milk producers that operate small businesses or limited production. These operators could benefit by using an LED device which could be smaller, lower cost and easy to operate. Ultraviolet radiation has proven to be an effective method for reducing or nearly eliminating the bacteria E. coli in fruit juices and ciders. See www.sciencedaily.com/releases/1998/01/980127065910.htm Pasteurized via Ultraviolet Light could Zap Bacterial Contamination of Fresh Cider and Fruit Juices.
  • UV irradiation device examples include, but are not limited to, drinking water, waste water, beverages, spring water, cooling towers, hydroponics, waterfalls and fountains, swimming pools, hydrotherapy, pools, spas, hospital or laboratory water, pharmaceutical manufacturing, pre reverse osmosis water disinfection, food and drink processing, aquarium and fish hatcheries, purification of oysters, any optically transparent liquid, white vinegar, apple cider, organic cutting oils, warm water loops, fish farming, agriculture, and aquariums.
  • Another use in the pharmaceutical manufacturing process is to cure the coatings on tablets.
  • Ultraviolet light is also used in laboratories as a method of breaking the bonds of chelating agents. To facilitate this reaction an LED ultraviolet device according to the present invention can be provided.
  • the device could be much like a swizzle stick, as indicated in Figure 6, where at least one ultraviolet producing LED 102 could be included in the end of the stick that is dipped into the liquid.
  • This style of ultraviolet device can also be used for purification of individual containers of liquid.
  • Several LEDs could be included to increase the ultraviolet radiation or add color to the liquid or container.
  • the UN device may be in the shape, or have a housing in the shape, of an ice cube.
  • the LED can be driven with control signals from a processor or the LED can be driven with passive circuitry.
  • the LED circuitry can simply turn the LED on and off or power regulation of the different LEDs could be employed. If regulation is desired, it can be accomplished through passive circuitry or controlled through pulse width modulation current control or any other control method.
  • Spectrophotometers are analytical tools used to determine the transmission and absorption properties of materials. Typical spectrophotometers will produce spectra from 200 to 800 nm although different ranges are available. A spectrophotometer with a range of 200 to 800 nm is referred to as a UN/NIS spectrophotometer. There are also IR units. These devices may have a single light source or several light sources to radiate the material with the desired range of wavelengths. An LED light source could be provided to supply all or a portion of the required radiation. The LED light source could include an array of LEDs covering a wide spectral region including the ultraviolet and the infrared.
  • An ultraviolet or blue LED device may be used as a bug light to attract insects to be trapped or electrocuted.
  • Insect control devices are typically constructed with fluorescent lamps and in some applications carbon dioxide emitters are also used. Insects have a photopic response curve that is sensitive to blue and ultraviolet light. They are also attracted to carbon dioxide.
  • bug killing devices predominantly used today: blue or black fluorescent light and carbon dioxide devices. These devices are designed to attract the insects and then kill them by electricity or physically trapping them.
  • the fluorescent lamp can be replaced with the LED device and can be tailored to the particular insects' photopic response or the physical surroundings in which the device is used.
  • the LED is a coherent light source, emitting light over a narrow wavelength range, and can be arranged to provide ultraviolet or deep blue light without providing visible light or if visible light is desirable, visible LEDs can be provided.
  • a phosphor may be added to the LED or LED package to broaden the spectral emission if desired.
  • a bird's photopic response also includes the near ultraviolet region.
  • objects may appear quite different to birds with many objects fluorescing. Birds may also use the ultraviolet to help them navigate. Birds, like many mammals and reptiles, also need ultraviolet light to produce vitamin D and without exposure to ultraviolet light they will suffer a variety of calcium deficient maladies. See www.users.mis.net/ ⁇ pthrush lighting/uvmyth.html The Ultraviolet Myth: Lighting and Proper Diet by Patrick R. Thrush, 1999. LED lights as described herein can be provided to aid the health of birds kept in captivity as well as be used to deter them from certain areas.
  • the study also showed the birds ate $19,700 less feed per 50,000 chickens, laid 8.5% more eggs, cracked 2% fewer eggs, while laying larger eggs. Further, the birds did not need to be debeaked, because there was no cannibalism. This calculated into a total of $91,300 more profit for the farmer. See www.users.mis.net/ ⁇ pthrush/lighting/ott.html Plain Common Sense vs. Scientific Theoretical Irrationality, By Dr. John N. Ott, also appeared in the International Journal of Biosocial Research, Special Subject Issue Volume 7, 1985.
  • full spectrum lighting is not only healthy for humans but birds, reptiles, and other animals as well.
  • a full spectrum or partial spectrum light made with LEDs can be provided for these applications as well as for human habitats.
  • a full spectrum lighting device according to the present invention may be used for these applications and can be fixed on a particular color or the color can change with respect to time or other indicator. The amount of ultraviolet or IR can change throughout the day to simulate natural lighting conditions.
  • An ultraviolet lighting system may also be used to deter birds from living or feeding in certain areas.
  • Birds are generally considered a hazard around airports because they can fly into the planes' path causing damage to the aircraft and death to the bird.
  • the impact of a bird striking a highspeed aircraft can be dramatic when one considers that an aircraft flying at 500 kts. striking a large bird suffers an impact of nearly 1,500,000 ft.lbs. of energy. See ht ⁇ ://www.tc.gc.ca/aviation/aerodrme irdstke/info/hazard.htm, Bird Hazards, Transportation of Canada.
  • investigators To alleviate the problems associated with bird strikes, investigators have been searching for new methods of keeping birds away from aircraft.
  • One such method is to use ultraviolet light in the area where the birds are a hazard. Birds can see ultraviolet light and use it for vision and navigation. It is not understood if the deterring effect of the ultraviolet light is from the way things appear under the artificial irradiation or if it interferes with their navigation system.
  • the ultraviolet devices could be set up in the airport as ground coverage lighting or the lighting could be used in the aircraft itself. The lighting could be irradiating in a constant direction or be movable. A beacon arrangement could also be used. Pulsing or wavelength shifting can easily be achieved with the LED based lighting device and this may serve as another method of deterring the birds. An ultraviolet light flashing in the area may annoy the birds, but the human occupation would not notice or be bothered by the invisible light show.
  • the lighting device could also be used with other devices such as audio devices to provide noise with the lighting effects.
  • the output of the LED(s) in a device may be controlled through an external signal such as that provided from a sensor, transducer, user interface or other signal generator.
  • the signal generator may communicate a signal to a processor, or other circuit designed to receive the external signal and generate and / or communicate LED control signals in response thereto.
  • the user interface may be of any type, e.g., a button, switch, dial or the like or it may be software controlled such that a computing device may be used to generate an external signal to control the output of the LED(s). It should be appreciated that there are many user interfaces and other signal generators that may be used to provide external signals to a device according to the principles of the present invention, and the present invention is not limited to use with any particular type of user interface or signal generator.
  • the term “ultraviolet” or “ultraviolet light” shall include the ultraviolet spectrum and the deep blue region of the visible spectrum.
  • the term “LED” should be understood to include light emitting diodes of all types, light emitting polymers, semiconductor dies that produce light in response to current, organic LEDs, electro-luminescent strips, and other such systems.
  • An “LED” may refer to a single light emitting diode having multiple semiconductor dies that are individually controlled. It should also be understood that the term “LED” does not restrict the package type of the LED.
  • the term “LED” includes packaged LEDs, non-packaged LEDs, surface mount LEDs, chip on board LEDs and LEDs of all other configurations.
  • the term “LED” also includes LEDs packaged or associated with material (e.g., a phosphor) wherein the material may convert energy from the LED to a different wavelength.
  • a purification device comprising: a purification chamber; and at least one LED that produces ultraviolet light wherein the at least one LED is arranged to irradiate the inside of the chamber.
  • the device of claim 1 wherein the chamber is arranged to contain at least one of vapor and liquid.
  • the chamber further comprises a material that allows for the transmission of ultraviolet light.
  • the device of claim 1 further comprising a handheld housing wherein the at least one LED and chamber are substantially enclosed.
  • a handheld device comprising: a handheld housing; and at least one LED that produces ultraviolet light wherein the at least one LED is arranged to irradiate from the housing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Led Device Packages (AREA)
  • Cultivation Of Plants (AREA)
  • Catching Or Destruction (AREA)
  • Physical Water Treatments (AREA)

Abstract

Cette invention concerne un dispositif à diodes électroluminescentes produisant un rayonnement ultraviolet. Selon un mode de réalisation, l'invention porte sur un dispositif de purification. Ce dispositif de purification peut comprendre une chambre de purification et au moins une DEL qui produit un rayonnement ultraviolet, laquelle DEL est agencée de manière à irradier l'intérieur de la chambre de purification. L'invention concerne également d'autres systèmes à DEL.
EP01964558A 2000-08-04 2001-08-06 Dispositifs et procedes de production de rayons ultraviolets au moyen de diodes electroluminescentes Withdrawn EP1501763A2 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US22284700P 2000-08-04 2000-08-04
US222847P 2000-08-04
US23567800P 2000-09-27 2000-09-27
US235678P 2000-09-27
PCT/US2001/041569 WO2002012127A2 (fr) 2000-08-04 2001-08-06 Dispositifs et procedes de production de rayons ultraviolets au moyen de diodes electroluminescentes

Publications (1)

Publication Number Publication Date
EP1501763A2 true EP1501763A2 (fr) 2005-02-02

Family

ID=26917205

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01964558A Withdrawn EP1501763A2 (fr) 2000-08-04 2001-08-06 Dispositifs et procedes de production de rayons ultraviolets au moyen de diodes electroluminescentes

Country Status (4)

Country Link
EP (1) EP1501763A2 (fr)
JP (1) JP2004508162A (fr)
AU (1) AU2001285398A1 (fr)
WO (1) WO2002012127A2 (fr)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0115373A (pt) * 2000-10-26 2004-02-03 Atlantium Laser Ltd Desinfecção através de embalagem
US6680200B2 (en) * 2002-02-22 2004-01-20 Biolex, Inc. Led array for illuminating cell well plates and automated rack system for handling the same
CA2499683C (fr) 2002-09-26 2012-06-19 Hydro-Photon, Inc. Module de purification d'eau base sur une diode electroluminescente (del) a uv pour systemes d'hydratation a recirculation d'eau intermittente
US8828222B2 (en) 2002-09-26 2014-09-09 Hydro-Photon, Inc. Photocatalytic intermittent flow-through purification module
JP4303582B2 (ja) 2003-06-04 2009-07-29 株式会社キーエンス 紫外線照射装置
DE10331272A1 (de) * 2003-07-10 2005-02-10 Steag Hamatech Ag Vorrichtung und Verfahren zum Behandeln einer Substanz mit UV-Strahlung
DE10337378B4 (de) * 2003-08-13 2017-11-16 Xylem Ip Holdings Llc Elektronisches Vorschaltgerät
WO2005031881A2 (fr) * 2003-09-30 2005-04-07 Philips Intellectual Property & Standards Gmbh Lampe de desinfection a diodes electroluminescentes
DE10350020B3 (de) 2003-10-27 2005-05-04 Atlas Material Testing Technology Gmbh UV-Lichtemissionsdioden als Strahlungsquelle in einer Vorrichtung zur künstlichen Bewitterung von Proben
US7122799B2 (en) 2003-12-18 2006-10-17 Palo Alto Research Center Incorporated LED or laser enabled real-time PCR system and spectrophotometer
JP3964863B2 (ja) * 2003-12-22 2007-08-22 株式会社キーエンス 紫外線照射装置
JP2006142187A (ja) * 2004-11-18 2006-06-08 Kenwood Corp 紫外線照射装置
JP4414866B2 (ja) * 2004-11-19 2010-02-10 九州ナノテック光学株式会社 紫外線露光機
US8109981B2 (en) 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
US7520978B2 (en) * 2005-06-17 2009-04-21 Philips Lumileds Lighting Co., Llc Fluid purification system with ultra violet light emitters
US20070131872A1 (en) * 2005-12-09 2007-06-14 Shearer Jon D Water-purification device for a potable water system
JP3876365B2 (ja) * 2006-02-18 2007-01-31 株式会社キーエンス 紫外線照射装置
GB0606604D0 (en) 2006-04-01 2006-05-10 P W Circuts Ltd Treatment apparatus
EP3406969A1 (fr) 2006-11-28 2018-11-28 Hayward Industries, Inc. Système d'éclairage sous-marin programmable
GB0714363D0 (en) * 2007-07-24 2007-09-05 P W Circuits Ltd Treatment apparatus
JP2010214241A (ja) * 2009-03-13 2010-09-30 Panasonic Electric Works Co Ltd 浄水器
JP5767775B2 (ja) * 2009-07-06 2015-08-19 富士フイルム株式会社 内視鏡装置
US8872130B1 (en) 2012-03-19 2014-10-28 Meridian Design, Inc. UVC water purifier system and method
US20110267834A1 (en) 2010-04-28 2011-11-03 Hayward Industries, Inc. Underwater Light Having A Sealed Polymer Housing and Method of Manufacture Therefor
JP5486391B2 (ja) * 2010-04-30 2014-05-07 パナソニック デバイスSunx株式会社 紫外線照射装置
WO2012103158A2 (fr) * 2011-01-24 2012-08-02 Jenkins Walter P Appareil, système et procédé de vaporisation d'un mélange de carburant
JP5450527B2 (ja) 2011-08-10 2014-03-26 富士フイルム株式会社 内視鏡装置
JP5469142B2 (ja) * 2011-09-20 2014-04-09 パナソニック株式会社 浄水装置
KR101273580B1 (ko) 2011-10-05 2013-06-11 전북대학교산학협력단 Led 광원을 이용한 배추좀나방의 유인방법 및 장치
EP2773591A4 (fr) * 2011-11-02 2015-08-19 Univ Syddansk Dispositif de traitement de forme toroïdale pour la désinfection d'un fluide tel que l'air ou l'eau
WO2013181455A1 (fr) 2012-05-30 2013-12-05 Robert Gellibolian Bouteille d'eau à débitmètre
EP2682737B1 (fr) 2012-07-05 2024-05-01 Atlas Material Testing Technology GmbH Dispositif de simulation d'une caractéristique spectrale UV par des diodes électroluminescentes UV
EP2682739A1 (fr) * 2012-07-05 2014-01-08 Atlas Material Testing Technology GmbH Test climatique pour diverses longueurs d'onde uv de diodes eléctroluminescentes uv
US8975596B1 (en) 2012-07-20 2015-03-10 Meridian Design, Inc. Water purifying drink containers
AT513795A1 (de) * 2012-12-20 2014-07-15 Fachhochschule Technikum Wien Geregeltes Flüssigkeits- und Oberflächendesinfektionsgerät mit Impulssteuerung
CA2900244C (fr) 2013-03-01 2021-11-09 Arthropod Biosciences, Llc Dispositif de piege a insectes et procede d'utilisation
USD780285S1 (en) 2013-03-15 2017-02-28 The Procter & Gamble Company Insect trap cartridge
ES2900654T3 (es) 2013-03-15 2022-03-17 Hayward Ind Inc Sistema de control modular de piscina/hidromasaje
USD780284S1 (en) 2013-03-15 2017-02-28 The Procter & Gamble Company Insect trap
JP6153109B2 (ja) * 2013-04-05 2017-06-28 パナソニックIpマネジメント株式会社 害虫駆除用照明装置
JP5495216B1 (ja) * 2013-07-26 2014-05-21 スガ試験機株式会社 耐候性試験機および固体発光素子システム
ES2952696T3 (es) 2013-11-27 2023-11-03 Procter & Gamble Dispositivo para atrapar insectos
CN103803675B (zh) * 2014-02-19 2015-04-15 北京碧水源净水科技有限公司 一种流体用紫外led杀菌装置
BR112016025055B1 (pt) 2014-04-26 2021-01-05 The Procter & Gamble Company armadilha para insetos
ES2916082T3 (es) 2015-01-12 2022-06-28 Procter & Gamble Trampa para insectos
CN104803445B (zh) * 2015-04-09 2016-08-17 国家海洋技术中心 水下紫外线杀菌器
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
US11720085B2 (en) 2016-01-22 2023-08-08 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US11096862B2 (en) 2016-01-22 2021-08-24 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
USD878512S1 (en) 2017-03-03 2020-03-17 The Procter & Gamble Company Insect trap cartridge
CN107734791A (zh) * 2017-11-22 2018-02-23 广东工业大学 Led灯组控制方法、装置、led广告灯箱及控制系统
US11168876B2 (en) 2019-03-06 2021-11-09 Hayward Industries, Inc. Underwater light having programmable controller and replaceable light-emitting diode (LED) assembly
US20220240838A1 (en) * 2019-07-09 2022-08-04 Henry Ford Health System System and method for testing the effects of ultraviolet and visible light on skin
US10738446B1 (en) * 2019-08-12 2020-08-11 Sterilumen, Inc. Drain disinfecting device and method of installing the same
US10806100B1 (en) 2019-10-18 2020-10-20 Mendel Systems, Inc. Grow cabinet and system for growing plants
KR102252218B1 (ko) * 2019-11-01 2021-05-14 김진왕 친환경 스마트 혈액 모듈레이션 장치
EP3878522A1 (fr) * 2020-03-09 2021-09-15 Markus Bindhammer Masque respiratoire
US11433154B2 (en) 2020-05-18 2022-09-06 Wangs Alliance Corporation Germicidal lighting
US11027038B1 (en) 2020-05-22 2021-06-08 Delta T, Llc Fan for improving air quality
JP7303514B2 (ja) * 2020-11-10 2023-07-05 ナイトライド・セミコンダクター株式会社 深紫外線殺菌装置
WO2022123175A1 (fr) * 2020-12-09 2022-06-16 Prodose Lampe a longueurs d'ondes differenciees, mobilier et vehicule utilisant une telle lampe et procede d'utilisation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU599099B2 (en) * 1986-03-26 1990-07-12 Hoshin Kagaku Sangyosho Co., Ltd. Sanitary device
US4876014A (en) 1988-03-21 1989-10-24 Water Systems Development Corporation Method and apparatus for producing ultrapure water
US5024766A (en) 1988-11-09 1991-06-18 Shahzad Mahmud Point of use deionized water purification unit
US5190659A (en) 1990-07-06 1993-03-02 International Environmental Systems Inc. Contamination removal system employing filtration and plural ultraviolet and chemical treatment steps and treatment mode controller
US5529689A (en) 1994-09-23 1996-06-25 Korin; Amos Replaceable integrated water filtration and sterilization cartridge and assembly therefor
US5573666A (en) 1994-09-23 1996-11-12 Korin; Amon Replaceable integrated water filtration and sterilization cartridge and assembly therefor
JP3912806B2 (ja) * 1995-06-19 2007-05-09 豊田合成株式会社 光触媒装置
JPH09940A (ja) * 1995-06-19 1997-01-07 Toyoda Gosei Co Ltd 光触媒装置及びその応用装置
US5919422A (en) * 1995-07-28 1999-07-06 Toyoda Gosei Co., Ltd. Titanium dioxide photo-catalyzer
EP0780103A3 (fr) * 1995-12-22 1997-12-03 Heraeus Kulzer GmbH Appareil d'irradiation
JPH10233532A (ja) * 1997-02-21 1998-09-02 Houshin Kagaku Sangiyoushiyo:Kk 発光ダイオード
EP0907970B1 (fr) 1997-03-03 2007-11-07 Koninklijke Philips Electronics N.V. Diode emettant une lumiere blanche
US6016038A (en) 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6080313A (en) 1997-08-29 2000-06-27 Kelada; Maher I. Point-of-use water purification system with a cascade ion exchange option
JPH11155932A (ja) * 1997-12-02 1999-06-15 Sanyo Electric Co Ltd 発光手段付ノズル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0212127A2 *

Also Published As

Publication number Publication date
AU2001285398A1 (en) 2002-02-18
JP2004508162A (ja) 2004-03-18
WO2002012127A2 (fr) 2002-02-14
WO2002012127A3 (fr) 2004-12-09

Similar Documents

Publication Publication Date Title
US20020074559A1 (en) Ultraviolet light emitting diode systems and methods
US20070086912A1 (en) Ultraviolet light emitting diode systems and methods
WO2002012127A2 (fr) Dispositifs et procedes de production de rayons ultraviolets au moyen de diodes electroluminescentes
CN1296104C (zh) 控制受验人警觉性的方法及用于该方法的光源
US7485883B2 (en) Variable wavelength radiation source
WO2009029575A1 (fr) Lampe à diode électroluminescente sans rayonnement supprimant la mélatonine
JP2009200046A (ja) デジタル制御される照明方法およびシステム
US20150252979A1 (en) Beam shaping spectrally filtering optics and lighting devices therefor
CN109561655A (zh) 创建叶片颜色图案
CN103109127A (zh) 用于宽带和窄带照射的外科手术灯
CN111494660A (zh) 一种基于智能感知的紫外线广谱灭菌装置
CN109198979A (zh) 紫外光和白光陈列柜
WO2018130750A1 (fr) Structure de del et luminaire pour désinfection continue
EP1024327A1 (fr) Dispositif d'exposition a une energie rayonnante
US20200344858A1 (en) Temporally modulated lighting system and method
US11708951B2 (en) Beam shaping spectrally filtering optics and lighting devices using high-intensity narrow-spectrum light output
US20210356150A1 (en) Hvac air treatment system and method
CN107218528A (zh) 一种带有驱蚊杀菌功能的照明装置
JP2000262624A (ja) 視覚療法装置及びその駆動方法
RU2278408C2 (ru) Универсальный полихроматический облучатель
US20200288548A1 (en) Lights composed of narrow band light emitting diodes with variable intensity
RU2054139C1 (ru) Световой прибор
JP2011096602A (ja) バックライト付き観賞用水槽
Braun Photobiology: The biological impact of sunlight on health & infection control
EP4190367A1 (fr) Dispositif de photo-neutralisation d'agents biologiques pathogènes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030219

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS SOLID-STATE LIGHTING SOLUTIONS, INC.

17Q First examination report despatched

Effective date: 20100318

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100907