EP1492863B2 - Textilschonendendes textilreinigungsmittel - Google Patents

Textilschonendendes textilreinigungsmittel Download PDF

Info

Publication number
EP1492863B2
EP1492863B2 EP03724940.6A EP03724940A EP1492863B2 EP 1492863 B2 EP1492863 B2 EP 1492863B2 EP 03724940 A EP03724940 A EP 03724940A EP 1492863 B2 EP1492863 B2 EP 1492863B2
Authority
EP
European Patent Office
Prior art keywords
washing agent
agent according
acid
agent
liquid washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03724940.6A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1492863A1 (de
EP1492863B1 (de
Inventor
Dieter Nickel
Konstanze Mayer
Theodor Völkel
Evelyn Langen
Christian Block
Berthold Schreck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=28684850&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1492863(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1492863A1 publication Critical patent/EP1492863A1/de
Publication of EP1492863B1 publication Critical patent/EP1492863B1/de
Application granted granted Critical
Publication of EP1492863B2 publication Critical patent/EP1492863B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • C11D3/3742Nitrogen containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0004Non aqueous liquid compositions comprising insoluble particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones

Definitions

  • the invention relates to a liquid textile cleaning agent, a mild detergent, a liquid detergent and a nonaqueous liquid detergent containing at least one lint reduction component. Furthermore, the invention relates to the use of lint reduction components in liquid laundry detergents and the use of mild detergents, liquid detergents and non-aqueous liquid detergents for reducing the linting and pilling of textile fabrics. Furthermore, the invention relates to a method for reducing the formation of lint.
  • the modern textile cleaning makes high demands on the laundry to be cleaned. For example, the frequent washing of garments in a washing machine and the subsequent drying in a tumble dryer is associated with a high mechanical stress on the fabric. The frictional forces often lead to damage to the textile fabric, recognizable by a fluff and pilling. With each washing or drying cycle, but also by wearing the garments, a further abrasion and / or breakage of tiny fibers takes place on the surface of the textile fabric fabrics. The conventional textile cleaners are unable to reduce this damage to the fabric or try to eliminate only resulting textile damage.
  • the WO 99/16956 A1 describes the elimination of lint or pills through the use of cellulases.
  • the cellulases thereby digest microfibers protruding from the textile fabrics and thus ensure a smooth and therefore pill-free textile surface.
  • WO 03/062361 A1 describes a liquid conditioning agent containing lint reduction components such as celluloses, hydrogels and acrylic acid polymers.
  • the object of the present invention is therefore to reduce the linting and pilling of textile fabrics, in particular the reduction of this formation during textile cleaning.
  • the present invention is therefore in a first embodiment, a liquid textile cleaning agent according to claim 1.
  • the invention in a second embodiment is a mild detergent according to claim 9.
  • the invention in a third embodiment is a liquid detergent according to claim 18.
  • the invention in a fourth embodiment is a nonaqueous liquid detergent according to claim 24.
  • mild detergents are understood as meaning textile cleaners which additionally condition the textile fabrics to be cleaned.
  • conditioning is understood to mean the scavenging treatment of textile fabrics, fabrics, yarns and fabrics.
  • positive properties such as an improved softness, increased gloss and color brilliance, a fragrance refreshment, reducing the creasing and static charge and a facilitated ironing behavior.
  • the conditioning in the context of this invention leads to a textile protection, detectable at a reduced lint and Pillige.
  • Detergents are preferably used for cleaning sensitive textiles, such as linen, wool, silk or cotton.
  • Liquid detergents in the context of this invention are liquid to gel-form textile cleaners at 20 ° C., which can be used universally.
  • Non-aqueous liquid detergents in the context of this invention are liquid to gel-type textile cleaners which have a low water content and can be packed in portions in water-soluble wraps.
  • nonaqueous in the context of the present invention means to understand that contain only small amounts of free, that is not bound as water of crystallization or otherwise, water. Since even nonaqueous solvents and raw materials (especially those of technical qualities) have certain water contents, completely anhydrous compositions can only be produced on an industrial scale with great effort and high costs. In the "nonaqueous" compositions of the present invention, therefore, small amounts of free water are tolerable, which are below 15 wt .-%, preferably below 10 wt .-%, more preferably below 5 wt .-%, each based on the finished agent, lie.
  • the lint reduction components are present in the liquid textile cleaners or mild detergents or liquid detergents or nonaqueous liquid detergents as finely divided polymer particles or polymer emulsions or polymer dispersions which have a substantivity to textile fabrics or textile fibers.
  • the lint reduction component of the present invention is a microcrystalline cellulose. Microcrystalline cellulose, the microcrystalline cellulose, the redesignwaren on 10 April 2002 under the section busbars Arbocel ® BE 600-10, Arbocel ® BE 600-20 and Arbocel® ® BE 600-30 ex Rettenmaier and Cellulon ® ex Kelco.
  • the conditioning agents according to the invention contain the lint reduction components in amounts of from 0.005 to 15% by weight, preferably from 0.01 to 10% by weight, more preferably from 0.1 to 7% by weight and in particular from 0.5 to 5% by weight .-%, in each case based on the total agent.
  • liquid textile cleaners or mild detergents or liquid detergents or nonaqueous liquid detergents according to the invention additionally contain nonionic surfactants.
  • nonionic surfactants not only increases the washing performance of the compositions according to the invention, but additionally supports the dispersion and homogeneous distribution of the lint reduction component (s).
  • nonionic surfactants are preferably alkoxylated, advantageously ethoxylated and / or propoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) and / or 1 to 10 moles of propylene oxide (PO) per mole of alcohol, used.
  • EO ethylene oxide
  • PO propylene oxide
  • C 8 -C 16 -alcohol alkoxylates advantageously ethoxylated and / or propoxylated C 10 -C 15 -alcohol alkoxylates, in particular C 12 -C 14 -alcohol alkoxylates, having a degree of ethoxylation of between 2 and 10, preferably between 3 and 8, and / or a degree of propoxylation between 1 and 6, preferably between 1.5 and 5.
  • the alcohol radical may preferably be linear or more preferably methyl-branched in the 2-position or contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms for example of coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohol with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO , 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the indicated degrees of ethoxylation and propoxylation represent statistical averages which may be an integer or a fractional number for a particular product.
  • Preferred alcohol ethoxylates and propoxylates have a narrow homolog distribution (narrow range ethoxylates / propoxylates, NRE / NRP).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • alkoxylated amines advantageously ethoxylated and / or propoxylated, in particular primary and secondary amines having preferably 1 to 18 carbon atoms per alkyl chain and an average of 1 to 12 moles of ethylene oxide (EO) and / or 1 to 10 moles of propylene oxide (PO) per Mole of amine.
  • EO ethylene oxide
  • PO propylene oxide
  • the end-capped alkoxylated fatty amines and fatty alcohols have proved to be particularly advantageous, in particular for use in the non-aqueous formulations according to the invention.
  • the terminal hydroxy groups of the fatty alcohol alkoxylates and fatty amine alkoxylates are etherified by C 1 -C 20 -alkyl groups, preferably methyl or ethyl groups, in the end-capped fatty alcohol alkoxylates and fatty amine alkoxylates.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x. z. B. as compounds, especially with anionic surfactants, are used, in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol that for a glycose unit having 5 or 6 C atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl esters as they are
  • alkoxylated preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl esters as they are
  • JP 58/217598 are described or preferably according to the in the international patent application WO 90/13533 be prepared described methods.
  • gemini surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups and two hydrophobic groups per molecule. These groups are usually separated by a so-called “spacer”. This spacer is typically a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart to act independently of each other. Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water. In exceptional cases, however, the term gemini surfactants is understood to mean not only dimeric but also trimeric surfactants.
  • Suitable gemini surfactants are, for example, sulfated hydroxy mixed ethers according to the German patent application DE-A-43 21 022 or dimer alcohol bis- and trimer alcohol trissulfates and ether sulfates according to the international patent application WO-A-96/23768 , End-capped dimeric and trimeric mixed ethers according to the German patent application DE-A-195 13 391 They are characterized by their bi- and multi-functionality. Thus, the end-capped surfactants mentioned have good wetting properties and are low foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • polyhydroxy fatty acid amides of the following formula wherein RCO is an aliphatic acyl radical having 6 to 22 carbon atoms, R 5 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the following formula R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 6 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 7 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, with C 1-4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this residue.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be used, for example, according to the teaching of the international application WO-A-95/07331 be converted by conversion with fatty acid methyl esters in the presence of an alkoxide as catalyst into the desired Polyhydroxyfettklaamide.
  • the liquid laundry detergents contain alkoxylated fatty alcohols, more preferably ethoxylated and / or propoxylated fatty alcohols.
  • nonionic surfactants selected from the group of alkoxylated fatty alcohols and / or alkyl glycosides, in particular mixtures of alkoxylated fatty alcohols and alkyl glycosides are used.
  • nonionic surfactants are present in amounts of up to 30% by weight, preferably from 5 to 25% by weight, particularly preferably from 10 to 20% by weight, based in each case on the entire composition ,
  • the liquid detergents according to the invention have nonionic surfactants in amounts of up to 30% by weight, preferably from 5 to 20% by weight, in particular from 10 to 15% by weight, based in each case on the total composition.
  • the nonaqueous liquid detergents according to the invention have nonionic surfactants in an amount of up to 35% by weight, preferably from 15 to 25% by weight, in each case based on the total agent.
  • liquid laundry detergents or mild detergents or liquid laundry detergents or nonaqueous liquid laundry detergents according to the invention may additionally contain anionic surfactants in a preferred embodiment.
  • anionic surfactants Through the use of anionic surfactants, the soil release behavior of the compositions according to the invention during the washing process is significantly increased without significantly impairing the development of the lint reduction components.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • the surfactants of the sulfonate type are preferably C 9-13 -alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as are obtained, for example, from C 12-18 -monoolefins having terminal or internal double bonds by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation products into consideration.
  • alkanesulfonates which are obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids are suitable.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 -C 15 alkyl sulfates are preferred.
  • 2,3-alkyl sulfates which, for example, according to the U.S. Patents 3,234,258 or 5,076,041 are manufactured and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • EO ethylene oxide
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • alk (en) yl-succinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are particularly soaps into consideration.
  • Suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the ammonium salts in particular the salts of organic bases, such as, for example, isopropylamine, are preferred.
  • Ether carboxylic acids are water hardness insensitive and have excellent surfactant properties. Production and use are for example in soaps, Oils, fats, waxes 101, 37 (1975 ); 115, 235 (1989 ) and Surfactants Deterg. 25, 308 (1988 ).
  • the textile cleaners according to the invention contain anionic surfactants, preferably selected from the group of fatty alcohol sulfates and / or fatty alcohol ether sulfates and / or alkylbenzenesulfonates and / or soaps.
  • the fine detergents according to the invention contain in a preferred embodiment anionic surfactants in amounts below 10 wt .-%, preferably below 5 wt .-% and in particular below 1 wt .-%, each based on the total agent.
  • the liquid detergents according to the invention comprise anionic surfactants in amounts of up to 30% by weight, preferably up to 25% by weight, particularly preferably from 5 to 20% by weight, in particular from 8 to 15% by weight. , in each case based on the total mean.
  • the nonaqueous liquid detergents according to the invention contain anionic surfactants in amounts of up to 60% by weight, preferably from 20 to 50% by weight, in particular from 30 to 45% by weight, based in each case on the entire composition.
  • liquid laundry detergents or mild detergents or liquid laundry detergents or nonaqueous liquid laundry detergents according to the invention may additionally contain complexing agents in a preferred embodiment.
  • Complexing agents improve the stability of the agents and protect, for example, from the heavy metals catalyzed decomposition of certain ingredients of washing active formulations.
  • the group of complexing agents includes, for example, the alkali metal salts of nitrilotriacetic acid (NTA) and derivatives thereof, as well as alkali metal salts of anionic polyelectrolytes such as polyacrylates, polymaleates and polysulfonates.
  • NTA nitrilotriacetic acid
  • anionic polyelectrolytes such as polyacrylates, polymaleates and polysulfonates.
  • low molecular weight hydroxycarboxylic acids such as citric acid, tartaric acid, malic acid or gluconic acid and their salts are suitable.
  • organophosphonates such as 1-hydroxyethane-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid) (ATMP), diethylenetriamine penta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-phosphonobutane-1,2 , 4-tricarboxylic acid (PBS-AM), which are used mostly in the form of their ammonium or alkali metal salts.
  • organophosphonates such as 1-hydroxyethane-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid) (ATMP), diethylenetriamine penta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-phosphonobutane-1,2 , 4-tricarboxylic acid (PBS-AM), which are used mostly in the form of their ammonium or alkali metal salts.
  • the complexing agents are present in an amount of up to 10% by weight, preferably from 0.01 to 5% by weight, more preferably from 0.1 to 2 and in particular from 0.3 to 1.0 wt .-%, each based on the total agent before.
  • liquid laundry detergents or mild detergents or liquid laundry detergents or nonaqueous liquid laundry detergents according to the invention may additionally comprise enzymes.
  • Enzymes support the washing processes in a variety of ways, especially in the removal of poorly bleachable contaminants, such as protein stains.
  • Particularly suitable enzymes are those from the classes of hydrolases such as the proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases in the wash contribute to the removal of stains such as proteinaceous, greasy or starchy stains and graying. In addition, cellulases and other glycosyl hydrolases may contribute to color retention and to enhancing the softness of the fabric by removing pilling and microfibrils. Oxireductases can also be used for bleaching or inhibiting color transfer.
  • hydrolases such as the proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases in the wash contribute to the removal of stains such as proteinaceous, greasy or starchy stains and graying.
  • Bacillus subtilis Bacillus licheniformis, Streptomyceus griseus and Humicola insolens derived enzymatic agents.
  • Bacillus subtilis Bacillus subtilis
  • Bacillus licheniformis Bacillus licheniformis
  • Streptomyceus griseus and Humicola insolens derived enzymatic agents.
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • lipolytic enzymes are the known cutinases. Peroxidases or oxidases have also proved suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • As cellulases are preferably cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or Mixtures of these used. Since different cellulase types differ by their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes may be adsorbed as a shaped body to carriers or embedded coated to protect against premature decomposition.
  • the liquid laundry detergents according to the invention contain enzymes, preferably selected from the group of proteases and / or amylases and / or cellulases.
  • the fine detergents according to the invention comprise cellulase, preferably in an amount of 0.005 to 2% by weight, particularly preferably 0.01 to 1% by weight, in particular 0.02 to 0.5% by weight, in each case based on the total mean.
  • liquid detergents according to the invention comprise protease and / or amylase, particularly preferably any mixtures of protease and amylase.
  • the nonaqueous liquid detergents according to the invention contain enzymes, preferably selected from the group of proteases and / or amylases and / or cellulases, more preferably any mixtures of proteases, amylases and cellulases.
  • liquid laundry detergents or mild detergents or liquid laundry detergents or nonaqueous liquid laundry detergents according to the invention advantageously have a viscosity of from 50 to 5000 mPas, more preferably from 50 to 3000 mPas and in particular from 500 to 1500 mPas (measured at 20 ° C. with a rotational viscometer (Brookfield RV, spindle 2). at 20 rpm (rpm: revolutions per minute)).
  • liquid laundry detergents or mild detergents or liquid laundry detergents or nonaqueous liquid laundry detergents according to the invention contain one or more solvents in preferred embodiments.
  • Solvents that can be used in the compositions according to the invention originate, for example, from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers, provided they are miscible with water in the concentration range indicated.
  • the solvents are preferably selected from ethanol, n- or i-propanol, butanols, glycol, propane- or butanediol, glycerol, diglycol, propyl- or butyldiglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol methyl ether , Diethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, butoxy-propoxy-propanol (BPP), dipropylene glycol monomethyl or ethyl ether,
  • glycol ethers are available under the trade name Arcosolv ® (Arco Chemical Co.) or Cellosolve carbitol ® ® or Propasol ® (Union Carbide Corp.); these include, for example, butyl carbitol ®, hexyl carbitol ®, MethylCarbitol® ®, and carbitol ® itself, (2- (2-ethoxy) ethoxy) ethanol.
  • Arcosolv ® Arco Chemical Co.
  • Cellosolve carbitol ® ® or Propasol ® Union Carbide Corp.
  • Pyrrolidone solvents such as N-alkylpyrrolidones, for example N-methyl-2-pyrrolidone or NC 8 -C 12 -alkylpyrrolidone, or 2-pyrrolidone, may also be used.
  • N-alkylpyrrolidones for example N-methyl-2-pyrrolidone or NC 8 -C 12 -alkylpyrrolidone, or 2-pyrrolidone
  • glycerol derivatives in particular glycerol carbonate.
  • Alcohols which may be used as cosolvents in the present invention include low molecular weight liquid polyethylene glycols, for example, polyethylene glycols having a molecular weight of 200, 300, 400, or 600.
  • suitable cosolvents are other alcohols, for example (a) lower Alcohols such as ethanol, propanol, isopropanol and n-butanol, (b) ketones such as acetone and methyl ethyl ketone, (c) C 2 -C 4 polyols such as a diol or a triol, for example ethylene glycol, propylene glycol, glycerol or mixtures thereof.
  • 1,2-octanediol from the class of diols.
  • the agents according to the invention may in one preferred embodiment contain one or more water-soluble organic solvents.
  • Water-soluble is understood to mean that the organic solvent is soluble in the amount contained in an optionally aqueous agent.
  • the conditioning agent according to the invention contains one or more solvents from the group comprising C 1 to C 4 monoalcohols, C 2 to C 6 glycols, C 3 to C 12 glycol ethers and glycerol, in particular ethanol.
  • the C 3 - to C 12 glycol ethers according to the invention contain alkyl or alkenyl groups having less than 10 carbon atoms, preferably up to 8, in particular up to 6, more preferably 1 to 4 and most preferably 2 to 3 carbon atoms.
  • Preferred C 1 to C 4 monohydric alcohols are ethanol, n- propanol, iso- propanol and tert- butanol.
  • Preferred C 2 to C 6 glycols are ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,5-pentanediol, neopentyl glycol and 1,6-hexanediol, in particular ethylene glycol and 1,2-propylene glycol.
  • Preferred C 3 - to C 12 glycol ethers are di-, tri-, tetra- and pentaethylene glycol, di-, tri- and tetrapropylene glycol, propylene glycol monotertiary butyl ether and propylene glycol monoethyl ether and the solvents designated according to INCI butoxydiglycol, butoxyethanol, butoxyisopropanol, butoxypropanol, butyloctanol, ethoxydiglycol, Ethoxyethanol, ethyl hexanediol, isobutoxypropanol, isopentyldiol, 3-methoxybutanol, methoxyethanol, methoxyisopropanol and methoxymethylbutanol.
  • Particularly preferred solvents are ethanol, 1,2-propylene glycol and dipropylene glycol and their Mixtures, in particular ethanol and isopropanol.
  • the mild detergents according to the invention contain in a preferred embodiment up to 95% by weight, particularly preferably 20 to 90% by weight and in particular 50 to 80% by weight of one or more solvents, preferably water-soluble solvents and in particular water.
  • the liquid detergents according to the invention contain in a preferred embodiment up to 90% by weight, particularly preferably 20 to 85% by weight and in particular 50 to 80% by weight of one or more solvents, preferably water-soluble solvents and in particular water.
  • the nonaqueous liquid detergents according to the invention comprise organic solvents in amounts of up to 50% by weight, preferably up to 45% by weight, in particular from 20 to 40% by weight, in each case based on the total agent.
  • Components may contain the inventive liquid laundry detergents or mild detergents or liquid detergents or non-aqueous liquid detergents softener components.
  • additional plasticizer components condition the textile fabrics already in the washing process, so that an additional conditioning rinse cycle is no longer necessary.
  • the plasticizer components facilitate the ironing of the textiles and reduce the static charge of the textile materials.
  • fabric softening components are quaternary ammonium compounds, cationic polymers and emulsifiers, such as those used in hair care products and also in textile saliva.
  • Suitable examples are quaternary ammonium compounds of the formulas (I) and (II, wherein in (I) R and R 1 is an acyclic alkyl radical having 12 to 24 carbon atoms, R 2 is a saturated C 1 -C 4 alkyl or hydroxyalkyl radical, R 3 is either R, R 1 or R 2 or is a aromatic residue stands.
  • X - is either a halide, methosulfate,
  • Methophosphate or phosphate ion as well as mixtures of these.
  • Examples of cationic compounds of the formula (I) are didecyldimethylammonium chloride, ditallowdimethylammonium chloride or dihexadecylammonium chloride.
  • Ester quats are so-called ester quats. Esterquats are characterized by excellent biodegradability.
  • R 4 is an aliphatic alkyl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds
  • R 5 is H, OH or O (CO)
  • R 7 is independently of R 5 is H, OH or O (CO) R 8 , wherein R 7 and R 8 are each independently an aliphatic alkyl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds.
  • m, n and p can each independently be 1, 2 or 3.
  • X - may be either a halide, methosulfate, methophosphate or phosphate ion, as well as mixtures of these.
  • Examples of compounds of the formula (II) are methyl N- (2-hydroxyethyl) -N, N-di (tallowacyl oxyethyl) ammonium methosulfate, bis (palmitoyl) ethyl hydroxyethyl methyl ammonium methosulfate or methyl N , N-bis (acyloxyethyl) -N- (2-hydroxyethyl) ammonium methosulfate.
  • acyl groups whose corresponding fatty acids have an iodine number between 5 and 80, preferably between 10 and 60 and in particular between 15 and 45 and which have a cis / trans isomer ratio are preferred (in wt .-%) of greater than 30: 70, preferably greater than 50: 50 and in particular greater than 70: 30 have.
  • Commercial examples are sold by Stepan under the tradename Stepantex ® methylhydroxyalkyldialkoyloxyalkylammonium or those known under Dehyquart ® Cognis products known under or Rewoquat ® manufactured by Goldschmidt-Witco.
  • diesterquats corresponding to formula (III) which are obtainable under the name Rewoquat ® 3099 W 222 LM or CR and provide in addition to the softness also for stability and color protection.
  • R 21 and R 22 are each independently an aliphatic radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds.
  • quaternary imidazolinium compounds of the formula (IV) where R 9 is H or a saturated alkyl radical having 1 to 4 carbon atoms, R 10 and R 11 are each independently an aliphatic, saturated or unsaturated alkyl radical having 12 to 18 carbon atoms, R 10 may alternatively be O (CO) R 20 wherein R 20 is an aliphatic, saturated or unsaturated alkyl radical having 12 to 18 carbon atoms, and Z is an NH group or oxygen and X - is an anion.
  • q can take integer values between 1 and 4.
  • R 12 , R 13 and R 14 independently represent a C 1-4 alkyl, alkenyl or hydroxyalkyl group, each of R 15 and R 16 independently represents a C 8-28 alkyl group and r is a number between 0 and 5 is.
  • water soluble quaternary ammonium compounds may also be used, such as trihydroxyethylmethylammonium methosulfate or the alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g. Cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldirnethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride.
  • trihydroxyethylmethylammonium methosulfate or the alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g. Cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldirnethylammonium chloride, lauryldimethyl
  • protonated alkylamine compounds which have plasticizing effect, as well as the non-quaternized, protonated precursors of cationic emulsifiers are suitable.
  • cationic compounds which can be used according to the invention are the quaternized protein hydrolysates.
  • Suitable cationic polymers include the polyquaternium polymers as described in the CTFA Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry and Fragrance, Inc., 1997), in particular the Polyquaternium-6, Polyquaternium-7, Polyquaternium, also referred to as Merquats. 10 polymers (Ucare Polymer IR 400, Amerchol), polyquaternium-4 copolymers, such as graft copolymers having a cellulose backbone and quaternary ammonium groups bonded via allyldimethylammonium chloride, cationic cellulose derivatives, such as cationic guar, such as guar hydroxypropyl triammonium chloride, and similar quaternized guar gum.
  • cationic quaternary sugar derivatives for example the commercial product Glucquat ® 100, according to CTFA nomenclature a "lauryl methyl Gluceth-10 hydroxypropyl Dimonium Chloride", copolymers of PVP and dimethylaminomethacrylate, copolymers of vinylimidazole and vinylpyrrolidone, aminosilicone polymers and copolymers.
  • polyquatem for example Luviquat Care from BASF
  • cationic biopolymers based on chitin and derivatives thereof, for example, under the trade designation chitosan ® (manufacturer: Cognis) polymer obtainable.
  • cationic silicone oils such as, for example, the commercially available products Q2-7224 (manufacturer: Dow Coming, a stabilized trimethylsilylamodimethicone), Dowing Coming 929 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicone), SM -2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) Abil ® -Quat 3270 and 3272 (manufacturer: Goldschmidt-Rewo; diquaternary polydimethylsiloxanes, quaternium-80), and Silicone quat Rewoquat ® SQ 1 (Tegopren ® 6922, Manufacturer: Goldschmidt-Rewo).
  • the alkylamidoamines may be in their unquaternized or their quaternized form as shown.
  • R 17 may be an aliphatic alkyl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds. s can take values between 0 and 5.
  • R 18 and R 19 are each independently H, C 1-4 alkyl or hydroxyalkyl.
  • Preferred compounds are fatty acid amidoamines such as Stearylamidopropyldimethylamin available under the name Tego Amid ® S 18 or 3-Talgamidopropyl-trimethylammonium methosulfate available under the name Stepantex ® X 9124, which in addition to a good conditioning effect by color transfer inhibiting effect and especially by their good distinguish biodegradability.
  • alkylated quaternary ammonium compounds of which at least one alkyl chain is interrupted by an ester group and / or amido group, in particular N-methyl-N (2-hydroxyethyl) -N, N- (ditalgacyloxyethyl) ammonium methosulfate and / or N-methyl -N (2-hydroxyethyl) -N, N- (palmitoyloxyethyl) ammonium methosulfate.
  • nonionic plasticizers are especially Polyoxyalkylenglycerolalkanoate, as described in British Patent GB 2,202,244 , Polybutylenes, as described in the British patent specification GB 2,199,855 , long-chain fatty acids, as in the EP 13 780 , ethoxylated fatty acid ethanolamides as described in the EP 43 647 , Alkylpolyglycoside, in particular sorbitan mono-, di- and triester, as described in the EP 698,140 and fatty acid esters of polycarboxylic acids, as described in the German patent DE 2,822,891 to be discribed.
  • the fine detergents according to the invention contain cationic surfactants, preferably alkylated quaternary ammonium compounds, of which at least one alkyl chain is interrupted by an ester group and / or amido group.
  • esterquats of the abovementioned formula II has proved to be particularly advantageous and effective.
  • X - with R linear saturated or unsaturated alkyl radical having 11 to 19, preferably 13 to 17 carbon atoms.
  • the fatty acid residues are tallow fatty acid residues.
  • X - is either a halide, for example chloride or bromide, methophosphate or phosphate ion, preferably from methosulfate, and mixtures of these.
  • the lint-reducing and wrinkle-reducing as well as the pill-reducing action have proven to be particularly intensive, in particular when microcrystalline cellulose, as described above, is used as the lint reduction component.
  • N-methyl-N (2-hydroxyethyl) -N, N- (ditallowacyloxyethyl) ammonium methosulfate or N-methyl-N (2-hydroxyethyl) -N, N- (dipalmitoylethyl) ammonium methosulfate are preferred.
  • the mild detergent according to the invention contain plasticizer component in an amount of up to 15 wt .-%, preferably from 0.1 to 10 wt .-%, particularly preferably from 0.5 to 7 wt .-% and in particular from 1 to 3 wt .-%, each based on the total agent.
  • liquid laundry detergents or mild detergents or liquid laundry detergents or nonaqueous liquid laundry detergents of the invention may contain pearlizing agents. Pearlescing agents give the textiles an extra gloss and are therefore preferably used in the fine detergents according to the invention.
  • suitable pearlescing agents are: alkylene glycol esters, fatty acid alkanolamides; partial glycerides; Esters of polybasic, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms; Ring opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms, fatty acids and / or polyols having 2 to 15 carbon atoms and 2 to 10 hydroxyl groups and mixtures thereof.
  • liquid textile cleaners or mild detergents or liquid detergents or nonaqueous liquid detergents according to the invention may additionally contain thickeners.
  • the use of thickeners in the liquid detergent according to the invention has proved to be particularly advantageous.
  • the use of thickening agents has proven particularly useful in gel-type liquid detergents. The Thickened consistency of the agent simplifies the application of the agent directly to the spots to be treated. A run, as usual with thin liquids, is thereby prevented.
  • Natural-derived polymers used as thickening agents include agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, locust bean gum, starch, dextrins, gelatin and casein.
  • Modified natural products come mainly from the group of modified starches and celluloses, examples being carboxymethyl cellulose and cellulose ethers, hydroxyethyl and - propyl cellulose and Kemmehlether called.
  • a large group of thickeners which find wide use in a variety of applications, are the fully synthetic polymers such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides and polyurethanes.
  • Thickeners from said substance classes are widely available commercially and are sold for example under the trade name Acusol ® -820 (methacrylic acid (stearyl alcohol 20 EO) ester-acrylic acid copolymer, 30% in water, Rohm & Haas), Dapral ® -GT -282-S (alkyl polyglycol ethers, Akzo), DEUTEROL ® polymer-11 (dicarboxylic acid copolymer, Schoner GmbH) deuteron ® -xg (anionic heteropolysaccharide based on ⁇ -D-glucose, D-mannose, D-glucuronic acid, Beautiful GmbH), -XN deuteron ® (non-ionic polysaccharide, Schoner GmbH), DICRYLAN ® -Verdicker-O (ethylene oxide adduct, 50% solution in water / isopropanol, Pfersse Chemie), EMA ® -81 and EMA ® -91 (ethylene maleic
  • a preferred polymeric polysaccharide thickener is xanthan gum, a microbial anionic heteropolysaccharide produced by Xanthomonas campestris and some other species under aerobic conditions and having a molecular weight of from 2 to 15 million g / mole.
  • Xanthan is formed from a chain of ⁇ -1,4-linked glucose (cellulose) with side chains.
  • the structure of the subgroups consists of glucose, mannose, glucuronic acid, acetate and pyruvate, the number of pyruvate units determining the viscosity of the xanthan gum.
  • Xanthan can be described by the following formula:
  • the liquid detergents according to the invention additionally comprise thickeners, preferably in amounts of up to 10% by weight, more preferably up to 5% by weight, in particular from 0.1 to 1% by weight, in each case based on the total Medium.
  • liquid laundry detergents or mild detergents or liquid laundry detergents according to the invention can be used or non-aqueous liquid detergents additionally contain odor absorbers and / or color transfer inhibitors.
  • odor absorbers for the fine and liquid detergents according to the invention, the use of Farbübertragungsinhibtoren has proven.
  • the use of odor absorbers has proven to be very useful for deodorizing foul-smelling constituents of formulations, for example amine-containing components, but also for sustainable deodorization of the laundered textiles.
  • compositions according to the invention optionally contain 0.1% by weight to 2% by weight, preferably 0.2% by weight to 1% by weight, of color transfer inhibitor, which in a preferred embodiment of the invention comprises a polymer of vinylpyrrolidone , Vinylimidazole, vinylpyridine N-oxide or a copolymer of these.
  • enzymatic systems comprising a peroxidase and hydrogen peroxide or a substance which gives hydrogen peroxide in water, as described, for example, in the international patent applications WO 92/18687 and WO 91/05839 are known.
  • a mediator compound for the peroxidase for example one from the international patent application WO 96/10079 known acetosyringone, one from the international patent application WO 96/12845 known phenol derivative or one from the international patent application WO 96/12846 known phenotiazine or phenoxazine, is preferred in this case, whereby also above-mentioned polymeric Farbschreibtragungsinhibitorwirkstoffe can be used.
  • Polyvinylpyrrolidone preferably has an average molecular weight in the range from 10 000 to 60 000, in particular in the range from 25 000 to 50 000, for use in compositions according to the invention.
  • those of vinylpyrrolidone and vinylimidazole in a molar ratio of 5: 1 to 1: 1 having an average molecular weight in the range of 5,000 to 50,000, especially 10,000 to 20,000 are preferred.
  • Preferred deodorizing substances in the context of the invention are one or more metal salts of an unbranched or branched, unsaturated or saturated, mono- or polyhydroxylated fatty acid having at least 16 carbon atoms and / or a rosin acid with the exception of the alkali metal salts and any desired mixtures thereof.
  • a particularly preferred unbranched or branched, unsaturated or saturated, mono- or polyhydroxylated fatty acid having at least 16 carbon atoms is ricinoleic acid.
  • a particularly preferred rosin acid is abietic acid.
  • Preferred metals are the transition metals and the lanthanides, in particular the transition metals of Groups VIIIa, Ib and IIb of the Periodic Table and lanthanum, cerium and
  • Neodymium more preferably cobalt, nickel, copper and zinc, most preferably zinc.
  • the cobalt, nickel and copper salts and the zinc salts are similarly effective, but for toxicological reasons, the zinc salts are to be preferred.
  • one or more metal salts of ricinoleic acid and / or abietic acid preferably zinc ricinoleate and / or zinc abietate, in particular zinc ricinoleate.
  • Cyclodextrins as well as any desired mixtures of the abovementioned metal salts with cyclodextrins, preferably in a weight ratio of from 1:10 to 10: 1, particularly preferably from 1: 5 to 5: 1 and in particular from 1, also prove to be suitable further deodorizing substances : 3 to 3: 1.
  • cyclocodextrin includes all known cyclodextrins, i. both unsubstituted cyclodextrins having 6 to 12 glucose units, in particular alpha-, beta- and gamma-cyclodextrins and mixtures thereof and / or their derivatives and / or mixtures thereof.
  • liquid textile cleaners or mild detergents or liquid detergents or nonaqueous liquid detergents according to the invention may additionally contain further surfactants, for example amphoteric surfactants.
  • amphoteric surfactants which can be used according to the invention include betaines, amine oxides, alkylamidoalkylamines, alkyl-substituted amino acids, acylated amino acids or biosurfactants, of which the betaines are particularly preferred within the scope of the teaching according to the invention.
  • Preferred amphoteric surfactants are the alkylbetaines of the formula (Ia), the alkylamidobetaines of the formula (Ib), the sulfobetaines of the formula (Ic) and the amidosulfobetaines of the formula (Id), R 1 -N + (CH 3 ) 2 -CH 2 COO - (Ia) R 1 -CO-NH- (CH 2 ) 3 -N + (CH 3 ) 2 -CH 2 COO - (Ib) R 1 is -N + (CH 3 ) 2 -CH 2 CH (OH) CH 2 SO 3 - (Ic) R 1 -CO-NH- (CH 2 ) 3 -N + (CH 3 ) 2 -CH 2 CH (OH) CH 2 SO 3 - (Id) in which R 1 has the same meaning as in formula I.
  • amphoteric surfactants are the carbo-betaines, in particular the carbo-betaines of the formula (Ia) and (Ib), most preferably the alkylamido-betaines of the formula (Ib).
  • betaines and sulfobetaines are the following compounds designated as INCI : almondamidopropyl betaines, apricotamidopropyl betaines, avocadamidopropyl betaines, babassuamidopropyl betaines, behenamidopropyl betaines, behenyl betaines, betaines, canolamidopropyl betaines, caprylic / capramidopropyl betaines, carnitines, cetyl betaines, cocamidoethyl betaines, cocamidopropyl Betaines, cocamidopropyl hydroxysultaines, coco-betaines, coco-hydroxysultaines, coco / oleamidopropyl betaines, coco-sultaines, decyl betaines, dihydroxyethyl oleyl glycinates, dihydroxyethyl soy glycinates, dihydroxyethy
  • Suitable amine oxides are the following compounds designated as INCI : Almondamidopropylamine oxides, Babassuamidopropylamine oxides, Behenamine oxides, Cocamidopropyl Amine oxides, Cocamidopropylamine oxides, Cocamine oxides, Coco-Morpholine oxides, Decylamine oxides, Decyltetradecylamine oxides, Diaminopyrimidine oxides, Dihydroxyethyl C8-10 alkoxypropylamines oxides , Dihydroxyethyl C9-11 alkoxypropylamines oxides, dihydroxyethyl C12-15 alkoxypropylamines oxides, dihydroxyethyl cocamine oxides, dihydroxyethyl lauramine oxides, dihydroxyethyl stearamines oxides, dihydroxyethyl tallowamine oxides, hydrogenated palm kernel, amine oxides, hydrogenated tallowamine oxides, hydroxyethyl hydroxypropy
  • alkylamidoalkylamines are the following named according to INCI compounds: Cocoamphodipropionic Acid, Cocobetainamido amphopropionates, DEA-Cocoamphodipropionate, Disodium Caproamphodiacetate, Disodium Caproamphodipropionate, Disodium Capryloamphodiacetate, Disodium Capryloamphodipropionate, Disodium Cocoamphocarboxyethylhydroxypropylsulfonate, Disodium Cocoamphodiacetate, Disodium Cocoamphodipropionate, Disodium Isostearoamphodiacetate, Disodium Isostearoamphodipropionate, Disodium laureth 5 Carboxyamphodiacetates, Disodium Lauroamphodiacetate, Disodium Lauroamphodipropionate, Disodium Oleoamphodipropionate, Disodium PPG-2-Isodeceth-7 Carboxyamphodia
  • alkyl-substituted amino acids are the aminopropionates according to formula (IVa), R 13 -NH-CH 2 CH 2 COOM '(IVa) in which R 13 and M 'have the same meaning as in formula (IV).
  • alkyl-substituted amino acids are the following compounds designated as INCI : aminopropyl laurylglutamine, cocaminobutyric acid, cocaminopropionic acid, DEA-lauraminopropionate, disodium Cocaminopropyl iminodiacetates, disodium dicarboxyethyl Cocopropylenediamine, Disodium Lauriminodipropionate, Disodium Steariminodipropionate, Disodium Tallowiminodipropionate, Lauraminopropionic Acid, Lauryl Aminopropylglycine, lauryl Diethylenediaminoglycine, Myristaminopropionic Acid, Sodium C12-15 alkoxypropyl iminodipropionates, Sodium Cocamincpropionate, Sodium Lauraminopropionate, Sodium Lauriminodipropionate, Sodium Lauroyl Methylaminopropionate, TEA Lauraminoprop
  • Acylated amino acids are amino acids, in particular the 20 natural ⁇ -amino acids which carry on the amino nitrogen the acyl radical R 19 CO of a saturated or unsaturated fatty acid R 19 COOH, where R 19 is a saturated or unsaturated C 6-22 alkyl radical, preferably C 8-18 alkyl radical, preferably a saturated C 10-16 alkyl group, for example a saturated C 12-14 alkyl group is acylated, the amino acids can also be used as alkali metal salt, alkaline earth metal or alkanolammonium, for example mono-, di- or triethanolammonium.
  • acylated amino acids are the acyl derivatives summarized in accordance with INCI under Amino Acids, for example sodium cocoyl glutamate, lauroyl glutamic acid, capryloyl glycine or myristoyl methylalanine.
  • the total surfactant content, without the amount of fatty acid soap is below 55% by weight, preferably below 50% by weight, particularly preferably between 38 and 48% by weight, in each case based on the total agent.
  • the liquid laundry detergents or mild detergents or liquid laundry detergents or nonaqueous liquid laundry detergents according to the invention may additionally contain further laundry detergent additives.
  • further laundry detergent additives for example from the group of builders, bleaches, bleach activators, electrolytes, pH adjusters, fragrances, perfume carriers, fluorescers, dyes, foam inhibitors, grayness inhibitors, wrinkle inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, antistatic agents, ironing aids, UV absorbers, optical brighteners , Anti-redeposition agents, viscosity regulators, anti-shrinkage agents, corrosion inhibitors, preservatives, repellents and impregnating agents.
  • the agents according to the invention may contain builders. All builders conventionally used in detergents and cleaning agents can be incorporated into the compositions according to the invention, in particular zeolites, silicates, carbonates, organic cobuilders and, where there are no ecological prejudices against their use, also the phosphates.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 • H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are.
  • Such crystalline sheet silicates are described, for example, in the European patent application EP-A-0 164 514 described.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred, whereby ⁇ -Natnumdisilikat can be obtained for example by the method described in the international patent application WO-A-91/08171 is described.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which likewise have a dissolution delay compared with the conventional water glasses, are described, for example, in US Pat German patent application DE-A-44 00 024 described. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and zeolite A are cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by the company CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula nNa 2 O • (1-n) K 2 O • Al 2 O 3 • (2 - 2.5) SiO 2 • (3.5-5.5) H 2 O can be described.
  • Suitable zeolites have an average particle size of less than 10 microns (Volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22 wt .-%, in particular 20 to 22 wt .-% of bound water.
  • the zeolites can also be used as overdried zeolites with lower water contents and then, due to their hygroscopicity, are suitable for removing unwanted residual traces of free water.
  • a use of the well-known phosphates as builders is possible, unless such use should not be avoided for environmental reasons.
  • Particularly suitable are the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates.
  • Suitable organic builders useful as co-builders which of course also serve to regulate the viscosity, are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • these are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA) and their derivatives and mixtures thereof.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids also typically have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • Further useable acidulants are known pH regulators, such as sodium bicarbonate and sodium hydrogen sulfate.
  • Other suitable builders are polymeric polycarboxylates, for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are in particular polyacrilates, which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molecular weights of from 2,000 to 10,000 g / mol, and particularly preferably from 3,000 to 5,000 g / mol, may again be preferred from this group.
  • Suitable polymers may also include substances consisting partly or wholly of units of vinyl alcohol or its derivatives.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally from 2,000 to 70,000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as an aqueous solution or, preferably, as a powder.
  • the polymers may also allylsulfonic acids, such as in the EP-B-0 727 448 Allyloxybenzenesulfonic acid and methallylsulfonic acid, as a monomer.
  • biodegradable polymers of more than two different monomer units for example, those according to the DE-A-43 00 772 as monomers, salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or according to the DE-C-42 21 381 as monomers, salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives.
  • copolymers are those described in the German patent applications DE-A-43 03 320 and DE-A-44 17 734 be described and as monomers preferably acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • Particularly preferred are polyaspartic acids or their salts and derivatives, of which in the German patent application DE-A-195 40 086 is disclosed that they also have a bleach-stabilizing effect in addition to Cobuilder properties.
  • polyvinylpyrrolidones polyamine derivatives such as quaternized and / or ethoxylated hexamethylenediamines.
  • polyacetals which are prepared by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups, for example as in the European patent application EP-A-0 280 223 described, can be obtained.
  • Preferred polyacetals are selected from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500 000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • Both maltodextrins with a DE of between 3 and 20 and dry glucose syrups with a DE of between 20 and 37 and also yellow dextrins and white dextrins with relatively high molecular weights in the range from 2 000 to 30 000 g / mol are useful.
  • a preferred dextrin is in the British patent application 94 19 091 described.
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and methods of their preparation are, for example, from the European patent applications EP-A-0 232 202 . EP-A-0 427 349 . EP-A-0 472 042 and EP-A-0 642 496 as well as the international patent applications WO-A-92/18542 . WO-A-93/08261 . WO-A-93/16110 . WO 94/28030 . WO-A-95/07303 . WO 95/12619 and WO 95/20608 known. Also suitable is an oxidized oligosaccharide according to the German patent application DE-A-196 00 018 , A
  • ethylenediamine-N, N'-disuccinate (EDDS) the synthesis of which, for example, in US 3,158,615 is described, preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context.
  • glycerol disuccinates and glycerol trisuccinates as described, for example, in US Pat US 4,524,009 .
  • US 4,639,325 In the European patent application EP-A-0 150 930 and Japanese Patent Application JP-A-931339 896 to be discribed. Suitable amounts are in zeolithumblen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or salts thereof, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such co-builders are used, for example, in the international Patent Application WO 95/20029 described.
  • the agents according to the invention may optionally be builders in amounts of from 1 to 30% by weight, preferably from 10 to 25% by weight.
  • the nonaqueous liquid detergents according to the invention advantageously contain as builders water-soluble builders, preferably from the group of the oligo- and polycarboxylates, the carbonates and the crystalline and / or amorphous silicates.
  • the salts of citric acid have been found to be particularly suitable, with the alkali metal and, in particular, the sodium salts are preferred.
  • compositions according to the invention in particular the nonaqueous liquid detergents according to the invention, may contain bleaching agents.
  • sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, peroxopyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as persulfates or persulfuric acid.
  • the urea peroxohydrate percarbamide which can be described by the formula H 2 N-CO-NH 2 .H 2 O 2 .
  • the means for cleaning hard surfaces for example in automatic dishwashing, they may, if desired, also contain bleaching agents from the group of organic bleaches, although their use is also possible in principle for laundry detergents.
  • Typical organic bleaches are the diacyl peroxides, such as dibenzoyl peroxide.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid (phthalimidoperoxyhexanoic acid, PAP), o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonylamidopersuccinates, and aliphatic and araliphatic peroxydicarboxylic acids such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassic acid, the diperoxyphthalic acids, 2-decyldiperoxybutane-1,4-dia
  • the bleaching agents may be coated to protect against premature degradation.
  • the agents of the invention may contain bleach activators.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, especially triacetin, triethyl acetyl citrate (TEAC), ethylene glycol diacetate, 2,5-diacetoxy-2 ,
  • TAED
  • the agents according to the invention may contain electrolytes.
  • electrolytes from the group of inorganic salts, a wide number of different salts can be used. Preferred cations are the alkali and alkaline earth metals, preferred anions are the halides and sulfates. From a production point of view, the use of NaCl or MgCl 2 in the agents according to the invention is preferred.
  • the proportion of electrolytes in the inventive compositions is usually 0.5 to 5 wt .-%.
  • the agents according to the invention may contain pH adjusting agents.
  • pH adjusting agents may be indicated.
  • Can be used here are all known acids or alkalis, unless their use is not for technical application or environmental reasons or for reasons of consumer protection prohibited. Usually, the amount of these adjusting agents does not exceed 2% by weight of the total formulation.
  • compositions of the invention may contain dyes and perfumes.
  • Dyes and fragrances are added to the compositions according to the invention in order to improve the aesthetics of the products and to provide the consumer with a visually and sensory "typical and unmistakable" product in addition to the washing or cleaning performance.
  • perfume oils or fragrances individual perfume compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, ⁇ -isomethylionone and methyl cedrylketone , the alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrance oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage, chamomile, clove, lemon balm, mint, cinnamon, lime, juniper, vetiver, olibanum, galbanum and labdanum, and orange blossom, neroliol, orange peel and sandalwood.
  • the agents according to the invention may contain UV absorbers.
  • the agents may contain UV absorbers which are applied to the treated fabrics and improve the light fastness of the fibers and / or the lightfastness of the other ingredients of the formulation.
  • Under UV absorber are organic substances (sunscreen) to understand, which are able to absorb ultraviolet rays and the absorbed energy in the form of longer-wave radiation, eg heat to give back.
  • Compounds having these desired properties include, for example, the non-radiative deactivating compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position.
  • substituted benzotriazoles such as the water-soluble benzenesulfonic acid-3- (2H-benzotriazol-2-yl) -4-hydroxy-5- (methylpropyl) monosodium salt (Ciba ® Fast H), phenyl-substituted in the 3-position acrylates (cinnamic acid derivatives) , optionally with cyano groups in the 2-position, salicylates, organic Ni complex and natural substances such as umbelliferone and the body's own urocanic acid suitable.
  • biphenyl and especially Stilbenderivate as described for example in the EP 0728749 A are described and commercially available as Tinosorb FD ® or Tinosorb FR ® are available ex Ciba.
  • IJV-B absorber are 3-Benzylidencampher or 3-Benzylidennorcampher and its derivatives, for example, 3- (4-methylbenzylidene) camphor, as in EP 0693471 B1 described; 4-aminobenzoic acid derivatives, preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoeklareamylester; Esters of cinnamic acid, preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester,
  • EP 0694521 B1 described. Also suitable are 2-phenylbenzimidazole-5-sulfonic acid and its alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and glucammonium salts; Sulfonic acid derivatives of benzophenones, preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its salts; Sulfonic acid derivatives of 3-Benzylidencamphers, such as 4- (2-oxo-3-bomylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) sulfonic acid and salts thereof.
  • UV-A filter in particular derivatives of benzoylmethane are suitable, such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl 4'-methoxydibenzoylmethane (Parsol 1789), 1-phenyl-3- (4'-isopropylphenyl) -propane-1,3-dione, and enamine compounds as described in U.S.P. DE 19712033 A1 (BASF).
  • the UV-A and UV-B filters can also be used in mixtures.
  • insoluble photoprotective pigments namely finely dispersed, preferably nano-metal oxides or salts
  • suitable metal oxides are in particular zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • salts silicates (talc), barium sulfate or zinc stearate can be used.
  • the oxides and salts are already used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments may have a spherical shape, but it is also possible to use those particles which have an ellipsoidal or otherwise deviating shape from the spherical shape.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobized. Typical examples are coated titanium dioxides, such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Suitable hydrophobic coating agents are in particular silicones and in particular trialkoxyoctylsilanes or simethicones. Preferably, micronized zinc oxide is used. Further suitable UV light protection filters can be found in the review by P. Finkel in S ⁇ FW Journal 122, 543 (1996).
  • the UV absorbers are usually used in amounts of from 0.01% by weight to 5% by weight, preferably from 0.03% by weight to 1% by weight.
  • compositions of the invention may contain wrinkle inhibitors. Since fabrics, in particular of rayon, wool, cotton and their blends, may tend to wrinkle because the individual fibers are susceptible to flexing, buckling, squeezing and squeezing across the grain, the compositions may contain synthetic crease inhibitors. These include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, -alkylolestem, -alkylolamiden or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid ester.
  • the agents according to the invention may contain grayness inhibitors.
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example glue, gelatine, salts of ether sulfonic acids or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose. It is also possible to use soluble starch preparations and starch products other than those mentioned above, for example degraded starch, aldehyde starches etc. Polyvinylpyrrolidone is also useful.
  • cellulose ethers such as carboxymethyl cellulose (Na salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methylhydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose.
  • the nonaqueous liquid detergents according to the invention are present as a portion in a completely or partially water-soluble coating.
  • the non-aqueous liquid detergent granules facilitate the dosability of the consumer.
  • the nonaqueous liquid detergents can be packed in foil bags, for example.
  • Film bags made of water-soluble film make it unnecessary for the consumer to tear open the packaging. In this way, a convenient dosing of a single, sized for a wash portion by inserting the bag directly into the washing machine or by inserting the bag into a certain amount of water, for example in a bucket, a bowl or in Handwasch- or - Bushbecken, possible.
  • the film bag surrounding the washing portion dissolves without residue when it reaches a certain temperature.
  • Laundry detergents also packaged in bags of water-soluble film are described in large numbers in the prior art.
  • the older patent application discloses DE 198 31 703 a portioned detergent or cleaner composition in a bag of water-soluble film, in particular in a bag of (optionally acetalized) polyvinyl alcohol (PVAL), wherein at least 70 % By weight of the particles of the detergent or cleaner preparation have particle sizes> 800 ⁇ m.
  • PVAL polyvinyl alcohol
  • a known method for producing water-soluble Spritzgußhohlkörpem containing detergents and / or cleaning agents is, for example, in the WO-A1 01/36290 described.
  • the prior art discloses processes for preparing water-soluble capsules of polyvinyl alcohol or gelatin, which in principle offer the possibility of providing capsules with a high degree of filling.
  • the methods are based on introducing the water-soluble polymer into a shaping cavity.
  • the filling and sealing of the capsules takes place either synchronously or in successive steps, in which case the filling takes place through a small opening in the latter case.
  • Processes in which the filling and sealing is parallel for example, in WO 97/35537 described.
  • the filling of the capsules is carried out by a Befkekeif, which is above two mutually rotating drums having on their surface Kugeihaibschalen arranged.
  • the drums carry polymer bands that cover the ball half-shell cavities.
  • a process for producing water-soluble capsules in which first the filling and then the sealing is carried out in the WO 01/64421 disclosed.
  • the manufacturing process is based on the so-called Bottle-Pack ® method, as for example in the German Offenlegungsschrift DE 14 114 69 is described.
  • a tubular preform is guided into a two-part cavity.
  • the cavity is closed, the lower tube portion is sealed, then the tube is inflated to form the capsule shape in the cavity, filled and finally sealed.
  • the shell material used for the preparation of the water-soluble portion is preferably a water-soluble polymeric thermoplastic, more preferably selected from the group (optionally partially acetalized) polyvinyl alcohol, polyvinyl alcohol copolymers.
  • polyvinyl alcohols described above are commercially available, for example under the trademark Mowiol® ® (Clariant).
  • particularly suitable polyvinyl alcohols are, for example, Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88, Mowiol ® 8-88 and Clariant L648.
  • polyvinyl alcohols ® ELVANOL 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (trademark of Du Pont)
  • ALCOTEX ® 72.5, 78, B72, F80 / 40, F88 / 4, F88 / 26, F88 / 40, F88 / 47 (trademark of Harlow Chemical Co.)
  • Gohsenol ® NK-05, A-300, AH-22, C -500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Trademark of Nippon Gohsei KK ).
  • the water-soluble thermoplastic used to prepare the portion according to the invention may additionally comprise polymers selected from the group comprising acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyethers and / or mixtures of the above polymers.
  • the water-soluble thermoplastic used comprises a polyvinyl alcohol whose degree of hydrolysis makes up 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
  • the water-soluble thermoplastic used comprises a polyvinyl alcohol whose molecular weight is in the range of 10,000 to 100,000 gmol -1 , preferably 11,000 to 90,000 gmol -1 , more preferably 12,000 to 80,000 gmol -1 and especially 13,000 to 70,000 gmol -1 lies.
  • thermoplastics in amounts of at least 50 wt .-%, preferably of at least 70 wt .-%, more preferably of at least 80 wt .-% and in particular of at least 90 wt .-%, each based on the weight the water-soluble polymeric thermoplastic.
  • the polymeric thermoplastics may be plasticized to improve their machinability, i. Plasticizer, included. This may be advantageous in particular if polyvinyl alcohol or partially hydrolyzed polyvinyl acetate has been chosen as the polymer material for the portion. Glycerol, triethanolamine, ethylene glycol, propylene glycol, diethylene or dipropylene glycol, diethanolamine and methyldiethylamine have proved particularly suitable as plasticizing auxiliaries.
  • Another object of the invention is the use according to claim 31.
  • Another object of the invention is the use of a liquid textile cleaning agent or a mild detergent or a liquid detergent according to the invention or a non-aqueous liquid detergent according to the invention to reduce linting and / or reduce the pilling of textile fabrics.
  • Another object of the invention is a method for reducing the linting of textile fabrics by contacting textile sheets with a liquid laundry detergent or a fine detergent or a liquid detergent according to the invention or a nonaqueous liquid detergent according to the invention in a textile cleaning process.
  • compositions of the invention are prepared by simple, familiar to the expert, mixing together and stirring of the individual components.
  • Liquid detergents according to the invention are, for example, E1 whose compositions are reproduced in Table 1. ⁇ b> Table 1 ⁇ / b> raw material E1 E2 E3 APG 600 [a] 1.5 --- --- Defoamers [b] 0.03 0.03 0.03 glycerin 5.0 --- diethylene glycol 0.5 --- Propylene-1,2-glycol --- 5 5 ethanol --- 2.5 2.3 Texapon N70 [c] 5 5 5 Dehydrol LT7 [d] 12 13 12 boric acid 0.25 1 1 sodium 1.5 --- --- Sodium Citrate x 2 H 2 O --- 2 4 sodium hydroxide 0.85 0.85 1.5 lauric acid 3 3 6 oleic acid 1.5 1.5 2.4 ricinoleate 0.5 0.5 --- Acusol 820 [e] 0.2 --- --- Dequest 2066 [f] 0.5 0.5 0.03 polyvinylpyrrolidone 0.1 0.1 0.4 protease 0.4 0.4 0.4 amy
  • Table 2 shows the formulation of the mild detergent E4 according to the invention.
  • Table 2 shows the formulation of the mild detergent E4 according to the invention.
  • Table 2 shows the formulation of the mild detergent E4 according to the invention.
  • Table 2 shows the formulation of the mild detergent E4 according to the invention.
  • Table 2 ⁇ / b> raw material E4 APG 600 2.5 ethylene glycol 0.3 ethanol 0.37 Cetylstearylalkoholsulfat Na salt 0.47 Dehydrol LT7 14.0
  • Table 3 shows a nonaqueous liquid detergent E5 according to the invention.
  • Table 3 ⁇ / b> raw material E5 glycerin 1 ethanol 3.3 C12-14 fatty alcohol + EO + PO 22.5
  • Dequest 2066 0.6
  • Perfume 0.25 dye + Arbocel ® BE 600-10 [9] 5.0 propylene glycol ad 100
  • compositions E1 to E5 showed a reduced linting and pilling compared to non-inventive agents that did not contain lint reduction component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
EP03724940.6A 2002-04-10 2003-04-01 Textilschonendendes textilreinigungsmittel Expired - Lifetime EP1492863B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10215602 2002-04-10
DE10215602A DE10215602A1 (de) 2002-04-10 2002-04-10 Textilschonendes Textilreinigungsmittel
PCT/EP2003/003369 WO2003085074A1 (de) 2002-04-10 2003-04-01 Textilschonendes textilreinigungsmittel

Publications (3)

Publication Number Publication Date
EP1492863A1 EP1492863A1 (de) 2005-01-05
EP1492863B1 EP1492863B1 (de) 2009-11-11
EP1492863B2 true EP1492863B2 (de) 2013-08-21

Family

ID=28684850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03724940.6A Expired - Lifetime EP1492863B2 (de) 2002-04-10 2003-04-01 Textilschonendendes textilreinigungsmittel

Country Status (6)

Country Link
EP (1) EP1492863B2 (es)
AT (1) ATE448288T1 (es)
AU (1) AU2003227554A1 (es)
DE (2) DE10215602A1 (es)
ES (1) ES2334781T5 (es)
WO (1) WO2003085074A1 (es)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448556B2 (en) 2002-08-16 2008-11-11 Henkel Kgaa Dispenser bottle for at least two active fluids
DE602005001353T2 (de) * 2004-05-11 2008-02-21 The Procter & Gamble Company, Cincinnati Portionierte Wasch- und Reinigungsmittelzubereitung enthaltend Silikonöl
EP1595939B1 (en) * 2004-05-11 2007-06-13 The Procter & Gamble Company Unit dose detergent product comprising silicone oil
DE102005062648A1 (de) * 2005-12-23 2007-06-28 Henkel Kgaa Duftstofffixierung aus Wasch- und Reinigungsmitteln an harten und weichen Oberflächen
US8772359B2 (en) 2006-11-08 2014-07-08 Cp Kelco U.S., Inc. Surfactant thickened systems comprising microfibrous cellulose and methods of making same
US9045716B2 (en) * 2006-11-08 2015-06-02 Cp Kelco U.S., Inc. Surfactant thickened systems comprising microfibrous cellulose and methods of making same
US7888308B2 (en) * 2006-12-19 2011-02-15 Cp Kelco U.S., Inc. Cationic surfactant systems comprising microfibrous cellulose
DE102007015214B4 (de) * 2007-03-27 2016-08-04 Evelyne Lieberum Reinigungszusammensetzung für kunststoffverarbeitende Maschinen und Verwendung derselben
CN101514272B (zh) * 2009-03-27 2011-01-26 武汉斯达日用化工有限公司 木地板清洗护理剂
ES2413565B1 (es) * 2011-12-14 2014-06-24 Tecnoquimia Catalunya, S. L. Composición para la limpieza de superficies duras a alta presión
US9745543B2 (en) 2012-09-10 2017-08-29 Ecolab Usa Inc. Stable liquid manual dishwashing compositions containing enzymes
EP3339411B1 (en) 2016-12-22 2019-12-11 The Procter & Gamble Company Fabric softener composition having improved viscosity stability
EP3339409B1 (en) 2016-12-22 2020-04-15 The Procter & Gamble Company Fabric softener composition having improved freeze thaw stability
US10676694B2 (en) 2016-12-22 2020-06-09 The Procter & Gamble Company Fabric softener composition having improved detergent scavenger compatibility
EP3339408B1 (en) 2016-12-22 2020-01-29 The Procter & Gamble Company Fabric softener composition having improved dispensing properties
EP3428259B1 (en) 2017-07-10 2021-02-17 The Procter & Gamble Company Packaged liquid fabric softener composition having improved stability
CN109135958B (zh) * 2018-08-01 2020-11-20 林贵川 一种具有时序性的抗菌洗涤颗粒及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912221A (en) 1994-12-29 1999-06-15 Procter & Gamble Company Laundry detergent composition comprising substantially water-insoluble polymeric dye transfer inhibiting agent

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861870A (en) * 1973-05-04 1975-01-21 Procter & Gamble Fabric softening compositions containing water-insoluble particulate material and method
GB8500958D0 (en) * 1985-01-15 1985-02-20 Unilever Plc Fabric conditioning composition
US5071573A (en) * 1990-07-23 1991-12-10 The Procter & Gamble Company Microemulsified silicones in liquid fabric care compositions containing dye
AU1625792A (en) * 1991-05-20 1992-11-26 Colgate-Palmolive Company, The Wash cycle or rinse cycle fabric conditioning compositions
EP0672105B1 (en) * 1992-12-03 1997-02-12 Unilever Plc Liquid cleaning products
US5789369A (en) * 1995-05-23 1998-08-04 Basf Corporation Modified polyacrylic acid polymers for anti-redeposition performance
US5723426A (en) * 1996-02-29 1998-03-03 Zhen; Yueqian Liquid laundry detergent compositions containing surfactants and silicone emulsions
WO1998028339A1 (en) 1996-12-23 1998-07-02 Ciba Specialty Chemicals Water Treatments Limited Particles having surface properties and methods of making them
US6034045A (en) * 1997-02-25 2000-03-07 Church & Dwight Co., Inc. Liquid laundry detergent composition containing a completely or partially neutralized carboxylic acid-containing polymer
CA2303083C (en) 1997-09-15 2007-04-10 The Procter & Gamble Company Laundry detergent compositions with anionically modified, cyclic amine based polymers
DE19855255A1 (de) * 1998-11-30 2000-05-31 Kaercher Gmbh & Co Alfred Reinigungsmittel
DE19961939A1 (de) * 1999-12-22 2001-06-28 Cognis Deutschland Gmbh Verwendung von nanoskaligen kationischen Verbindungen
DE10060373A1 (de) * 2000-12-05 2002-06-06 Basf Ag Reaktiv modifizierte, teilchenförmige Polymerisate zur Behandlung der Oberflächen textiler und nicht-textiler Materialien
WO2002061199A2 (de) * 2001-01-30 2002-08-08 Henkel Kommanditgesellschaft Auf Aktien Hydrogelmatrixsysteme zur ausstattung von textilien
ATE362513T1 (de) 2002-01-25 2007-06-15 Henkel Kgaa Konditioniermittel zur textilschonung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912221A (en) 1994-12-29 1999-06-15 Procter & Gamble Company Laundry detergent composition comprising substantially water-insoluble polymeric dye transfer inhibiting agent

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Cellulose processing", NATIONAL ORGANIC STANDARDS BOARD TECHNICAL ADVISORY PANEL REVIEW, 28 September 2001 (2001-09-28), pages 1 - 17
"Monsanto performance materials", CELLULON, TECHNICAL BULLETIN, March 1996 (1996-03-01), pages 1 - 13
Email gesendet am 2. August 2010 von Herrn Harald Schlosser (Mitarbeiter der Firma Josef Rettenmaier und Söhne) mit Anlage der Datenblätter zu den Produkten Arbocel BE-600-30, Arbocel 600-10 TG, Arbocel BE 600-20, Heweten 200 und Heweten 101 (alle ohne Veröffentlichungsdatum)
HORIBA SCIENTIFIC: "A guidebook to particle size analysis", 2010, pages: 1 - 29
JRS PHARMA GMBH + CO.: "Arbocel", TECHNICAL NEWSLETTER, 2006, pages 1 - 4
KIRK OTHMER: "Encyclopedia of chemical technology", vol. 5, 1993, JACQUELINE, I, ET AL., CANADA, pages: 482
MISKIEL, FRANK, J.: "Tappi nonwovens conference & trade fair", CELLULON, A NEW FERMENTATION-DERIVED POLYMER, 11 March 1996 (1996-03-11)
Schreiben mit Datum 17.4.2012 von Herrn Didier Viala (Vizepräsident der CP KelcoUS Inc.)

Also Published As

Publication number Publication date
ATE448288T1 (de) 2009-11-15
ES2334781T5 (es) 2013-12-26
WO2003085074A1 (de) 2003-10-16
DE50312109D1 (de) 2009-12-24
AU2003227554A1 (en) 2003-10-20
EP1492863A1 (de) 2005-01-05
EP1492863B1 (de) 2009-11-11
ES2334781T3 (es) 2010-03-16
DE10215602A1 (de) 2003-10-30

Similar Documents

Publication Publication Date Title
US20050119151A1 (en) Textile cleaning agent which is gentle on textiles
EP1737939A1 (de) Textilpflegemittel
WO2005105965A1 (de) Textilpflegemittel mit amingruppenhaltigem celluloseether
EP1492863B2 (de) Textilschonendendes textilreinigungsmittel
US20050215449A1 (en) Textile care product
US7754671B2 (en) Liquid laundry detergent containing an ethoxylated anionic/nonionic surfactant mixture and fabric conditioner
US20070049511A1 (en) Laundry detergent with odor control
US7754669B2 (en) Detergent composition with enhanced whitening power
US20070270324A1 (en) High water content enzymatic heavy duty liquid detergent
WO2003052041A1 (de) Wasch- und/oder reinigungsartikel
WO2009016060A1 (de) Textilpflegemittel mit amingruppenhaltigem celluloseether
DE102005056230A1 (de) Verfahren zur Verbesserung der mechanischen Eigenschaften textiler Fasern oder Flächengebilde
DE10301575A1 (de) Textilschonendes Textilpflegemittel
EP1563046B1 (de) Textilschonendes textilpflegemittel
DE102007038457A1 (de) Textilpflegemittel
WO2008119835A1 (de) Textilpflegemittel
DE102007023805A1 (de) Textilpflegemittel
DE102012220466A1 (de) Textilpflegemittel
US20140162925A1 (en) Cleansing compositions and products including soap flakes and methods for making the same
CA2586458A1 (en) High water content enzymatic heavy duty liquid detergent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHRECK, BERTHOLD

Inventor name: LANGEN, EVELYN

Inventor name: MAYER, KONSTANZE

Inventor name: VOELKEL, THEODOR

Inventor name: NICKEL, DIETER

Inventor name: BLOCK, CHRISTIAN

17Q First examination report despatched

Effective date: 20060206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50312109

Country of ref document: DE

Date of ref document: 20091224

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2334781

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E007399

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100211

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

26 Opposition filed

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20100803

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100212

BERE Be: lapsed

Owner name: HENKEL A.G. & CO. KGAA

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20130821

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50312109

Country of ref document: DE

Effective date: 20130821

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2334781

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20131226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170510

Year of fee payment: 15

Ref country code: IT

Payment date: 20170424

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170419

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180418

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180402

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210420

Year of fee payment: 19

Ref country code: CZ

Payment date: 20210401

Year of fee payment: 19

Ref country code: FR

Payment date: 20210423

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312109

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103