CA2586458A1 - High water content enzymatic heavy duty liquid detergent - Google Patents

High water content enzymatic heavy duty liquid detergent Download PDF

Info

Publication number
CA2586458A1
CA2586458A1 CA 2586458 CA2586458A CA2586458A1 CA 2586458 A1 CA2586458 A1 CA 2586458A1 CA 2586458 CA2586458 CA 2586458 CA 2586458 A CA2586458 A CA 2586458A CA 2586458 A1 CA2586458 A1 CA 2586458A1
Authority
CA
Canada
Prior art keywords
composition
acid
weight
present
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2586458
Other languages
French (fr)
Inventor
Thorsten Bastigkeit
Bin Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dial Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2586458A1 publication Critical patent/CA2586458A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Abstract

The present invention generally relates to enzymatic detergent compositions having high water content, and more particularly to highly aqueous detergent compositions comprising an amylase enzyme and one or more surfactants. In accordance with an exemplary embodiment of the present invention, a HDL laundry detergent composition is provided. The detergent composition includes an amylase enzyme component, a nonionic surfactant component, an anionic surfactant component and a liquid carrier. In accordance with various aspects of the invention, an enzymatic liquid laundry detergent is provided with improved storage stability and enhanced cleaning performance.

Description

I x Y .

TITLE: HIGH WATER CONTENT ENZYMATIC HEAVY DUTY LIQUID
DETERGENT

FIELD OF INVENTION

100021 The present invention generally relates to enzymatic detergent compositions having high water content, and more particularly to highly aqueous detergent compositions comprising an amylase enzyme and one or more surfactants.

BACKGROUND OF THE INVENTION

[0003] Heavy duty liquid (HDL) laundry detergent compositions of various formulas are well-known. Many HDL formulations contain surfactants to promote and facilitate the removal of soils and stains from fabrics. Often, such detergents contain relatively low levels of nonionic and anionic surfactant components and have a relatively high water content.

100041 Frequently, one or more enzymes are added to the composition to enhance the stain-fighting capability of the detergent. The storage stability of amylases in detergents depends on the composition and the consistency of the detergent, together with the enzyme preparation. In liquid formulations, the stability of the amylases is considerably more strongly dependent on the detergent composition. One disadvantage of the high water content compositions of the prior art is that it is generally difficult and expensive to stabilize the enzymes, resulting in an undesirable precipitate, which decreases consumer performance perception. It is often necessary to manipulate the surfactant combination I

(i.e., species and the relative amount, etc.) and detergent physical properties (i.e., pH
andlor others) so that surfactants and enzyme in the formula show good compatibility and stability.

[0005] As such, what is needed in the art is a cost-effective, high water content, enzymatic heavy duty liquid laundry detergent composition with improved storage compatibility and stability characteristics (i.e., reduced phase separation and precipitation) that enhances cleaning performance.

SUMMARY OF THE INVENTION

[0006] This. summary of the invention is intended to introduce the reader to various exemplary aspects of the invention. Particular aspects of the invention are pointed out in other sections hereinbelow.

[0007] In accordance with an exemplary embodiment of the present invention, a HDL
laundry detergent composition is provided. The detergent composition includes an amylase enzyme component, a nonionic surfactant component, an anionic surfactant component and a liquid carrier. The amylase enzyme component is preferably an a-amylase and is present in an amount of from about 0.01% to about 0.4% by weight of the composition. The nonionic surfactant component preferably is present in an amount of from about 0.5% to about 10.0% by weight of the composition, and more preferably in about 0.5% to about 5.0% by weight. The anionic surfactant component preferably is present in an amount of from about 0.5% to about 15.0% by weight of the composition, and more preferably in about 0.5% to about 10.0% by weight. The liquid carrier component preferably is present in an amount from 80% to about 95% by weight of the composition. In some aspects of the present invention, the pH of the composition is adjusted to be around 8 to around 8.5 so as to provide decent cleaning and at the same time to make it more enzyme friendly.
100081 In a preferred embodiment, the detergent composition also comprises one or more optional additives, such as, for example, a phase stabilizer/co-solvent, a cationic surfactant, an amphoteric surfactant, an optical brightener, a coloring agent, a fragrance, a builder, an electrolyte, a UV absorber, a pH adjustor, a bleach, a chelating agent, a preservative, a redeposition inhibitor, an odor absorber, a dye transfer inhibitor, a thickener, a crease control agent, a pearl luster agent, a fabric softener, and the like.

[00091 In accordance with another exemplary embodiment of the present invention, an HDL detergent composition is provided that further comprises calcium chloride to further stabilize the composition, preferably present in an amount from about 0.02% to about 0.10% by w/w of the composition.

[0010] In accordance with an aspect of the invention, an enzymatic liquid laundry detergent is provided with improved storage stability.

100111 In accordance with an aspect of the invention an enzymatic liquid laundry detergent is provided with enhanced cleaning performance.

DETAILED DESCRIPTION

[0012] The following descriptions are of exemplary embodiments of the invention only, and are not intended to limit the scope or applicability of the invention in any way. Rather, the following description is intended to provide convenient illustrations for implementing various embodiments of the invention. As will become apparent, various changes may be made without departing from the spirit and scope of the invention as set forth in the appended claims.

[0013) In accordance with an exemplary embodiment of the invention, a enzymatic detergent composition is provided that generally comprises an amylase enzyme, a non-ionic surfactant, an anionic surfactant, and a liquid carrier with the balance of the invention incorporating the normal materials that would be found in a typical laundry detergent.
Amvlase Enzyme Component 100141 In accordance with an exemplary embodiment of the present invention, a detergent composition of the present invention comprises at least an amylase enzyme component, which acts as a stain-fighter by catalyzing the hydrolysis of stains, for example, carbohydrate-based stains, without phase separating and/or precipitating out of the composition. The amylase will generally comprise from about 0.01% to 0.4% by weight of the composition herein, and more preferably from about 0.05% to about 0.25% by weight.

[0015] In accordance with an exemplary embodiment, the amylase enzyme component will comprise an a-amylase. Suitable x-amylase enzymes that are commercially available include, but are not limited to,, those sold under the tradenames STAINZYME
and DiJRAMYL 300L by Novozymes, A/S (Denmark), and VISCOAT from Genencor (United States). However, it will be appreciated by one of skill in the art that the a-amylase component may be any subtilisin origin, such as animal, fungal bacterial, vegetable, and/or yeast origin.

[0016] In addition to the amylase enzyme component, the detergent composition of the present invention may also optionally include one or more additional enzymes.
The additional enzyme may comprise any agent that aids in breaking down and removing soils and stains, especially proteins such as grass and blood. The amount of additional enzyme(s) may range from about 0.01% to about 5% by weight, preferably from about 0.12% to about 2.5% by weight, each percentage being based on the entire composition.

[0017) Useful enzymes include, but are not limited to, 0-amylases, the class of the t-ydrolases such as the proteases, esterases, lipases or lipolytically acting enzymes, cellulases or other glycosyl hydrolases, hemicellulases, cutinases, 0-glucanases, oxidases, peroxidases, perhydrolases or laccases and mixtures thereof. All these hydrolases contribute in the wash to the removal of stains such as proteinaceous, greasy or starchy stains and grayness. Cellulases and other glycosyl hydrolases may in addition, through the removal of pilling and microfibrils, contribute to textile color preservation and softness enhancement. Similarly, oxyreductases can be used for bleaching or for inhibiting dye transfer. Enzymatic actives obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus and Humicola insolens are particularly useful. Preference is given to proteases of the subtilisin type and especially proteases obtained from Bacillus lentus. Enzyme mixtures, for example of protease and amylase or of protease and lipase or lipolytically acting enzymes or of protease and cellulase or of cellulase and lipase or lipolytically acting enzymes or of protease, amylase and lipase or of lipolytically acting enzymes or protease, lipase or lipolytically acting enzymes and cellulase, but especially protease and/or lipase-containing mixtures or mixtures with lipolytically acting enzymes are of particular interest. The familiar cutinases are examples of such lipolytically acting enzymes. Similarly, peroxidases or oxidases will be found useful in some cases. Useful amylases include especially, isoamylases, pullulanases and pectinases. Cellulases used are preferably cellobiohydrolases, endoglucanases and P-glucosidases, also known as cellobiases, and mixtures thereof. Since the various cellulase types differ in CMCase and Avicelase activity, desired activities can be achieved through specific mixtures of the cellulases.
Nonionic Surfactant Component [0018] In accordance with an exemplary embodiment of the present invention, a detergent composition of the present invention comprises a nonionic surfactant. The nonionic surfactant will generally comprise from about 0.5% to 10% by weight of the composition herein, and more preferably from about 0.5% to about 5.0% by weight.

[0019] A suitable nonionic surfactant can be selected from the class of alcohol ethoxylates, preferably an alkyl ethoxylate having a carbon chain length of about 12 to about 18 carbon atoms with an average degree of ethoxylation of about 5 to about 9 moles of ethylene oxide (EO), and most preferably, an alkyl ethoxylate having a carbon chain length of about 14-15 carbon atoms with an average degree of ethoxylation of about 7 moles of EO.

[0020] Other suitable nonionic surfactants include, but are not limited to, diethanolamides, alkylphenol ethoxylates, alkylpolyglycosides, alkoxylated amines, advantageously ethoxylated and/or propoxylated, especially primary and secondary amines having preferably I to 18 carbon atoms per alkyl chain and on average I to 12 mol of ethylene oxide (EO) and/or 1 to 10 mol of propylene oxide (PO) per mole of amine.

[0021] Useful nonionic surfactants further include alkylglycosides of the general formula RO(G)x, for example as compounds, particularly with anionic surfactants, where R is a primary straight-chain or methyl-branched (in the 2-position especially) aliphatic radical having about 8 to about 22 carbon atoms and preferably about 12 to about 18 carbon atoms and G represents a glycose unit having 5 or 6 carbon atoms, preferably glucose.
The degree of oligomerization x, which indicates the distribution of monoglycosides and oligoglycosides, is any desired number between 1 and 10; preferably, x is in the range from about 1.2 to about 1.4.

100221 Other nonionic surfactants that may be added include alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably having I
to 4 carbon atoms in the alkyl chain, especially fatty acid methyl esters.

[0023] Further suitable surfactants include those known as "gemini surfactants." This term is used generally to refer to those compounds possessing two hydrophilic and two hydrophobic groups per molecule. These groups are generally separated from one another by what is known as a spacer. This spacer is generally a carbon chain, which should be long enough to keep the hydrophilic groups at a distance sufficient to allow them to act I x F

independently of one another. Surfactants of this kind are generally notable for an unusually low critical micelle concentration and the ability to reduce greatly the surface tension of water. In exceptional cases, however, the expression gemini surfactants is used to embrace not only dimeric but also trimeric surfactants.

100241 Examples of suitable gemini surfactants are sulfated hydroxy mixed ethers, dimer alcohol bis- and trimer alcohol tris-sulfates and ether sulfates. Tipped dimeric and trimeric mixed ethers are notable in particular for their bi- and multifunctionality. These capped surfactants possess good wetting properties and are low-sudsing, making them particularly suitable for use in machine washing or cleaning processes.
However, it is also possible to use gemini-polyhydroxy fatty acid amides or polypolyhydroxy fatty acid amides.

[0025] Further suitable non-ionic surfactants are polyhydroxy fatty acid amides of the formula I
R-CO-N-[Z]
where RCO is an aliphatic acyl radical having 6 to 22 carbon atoms, R5 is hydrogen or an alkyl or hydroxyalkyl radical having I to 4 carbon atoms, and [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups. The polyhydroxy fatty acid amides are known materials, typically obtainable by reduction amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.

[0026] The group of the polyhydroxy fatty acid amides also includes compounds of the formula 16.1 R6-O-R?
I
R-CO-N-[Z]
where R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R6 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R7 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, preference being given to CI-4-alkyl radicals or phenyl radicals, and [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated, derivatives of said radical.

[0027] [Z] is preferably obtained by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose, or xylose. The N-alkoxy- or N-aryloxy-substituted compounds may then be converted to the desired polyhydroxy fatty acid amides, for example, in accordance with the teaching of international patent application WO 95/07331 by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.

Anionic Surf'actant Component [0028] In accordance with an exemplary embodiment of the present invention, a detergent composition of the present invention comprises one or more anionic surfactants. The anionic surfactant will generally comprise from about 0.5% to 15.0% by weight of the composition herein, preferably from about 0.5% to about 10.0% by weight.
However, the anionic surfactant may comprise any percent of the composition herein, sufficient to provide cleaning, to build up detergent viscosity, and to provide reasonable low-temperature stability (i.e., no phase separation and no precipitation), while not hurting the enzyme activity stability.

[0029] Suitable anionic surfactants include sodium dodecylbenzenesulfonate (NaDDBS), alkylbenzene sulfonates (LAS), fatty alcohol ether sulfates (FAEOS), methyl ester sulfonates (MES), and fatty alcohol sulfates (FAS), fatty acids andlor any combination thereof.

[0030] In accordance with an exemplary embodiment, the anionic surfactant component comprises sodium alkyl ether sulfate (AES) having an average carbon chain length of about 12 to about 18 carbon atoms with an average degree of ethoxylation of about 2 to about 9 moles of ethylene oxide (EO). For example, the composition may comprise AES
having a carbon chain length of about 14-15 carbon atoms with an average degree of ethoxylation of about 7 moles of EO.

[0031] In accordance with an exemplary embodiment, the anionic surfactant component comprises a binary mixture of fatty alcohol ether sulfate and alkylbenzene sulfonate in a weight ratio of 2:4.

100321 Further suitable anionic surfactants are sulfated fatty acid glycerol esters which are the monoesters, diesters and triesters, and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with from 1 to 3 mol of fatty acid or in the transesterification of triglycerides with from 0.3 to 2 mol of glycerol.
Preferred sulfated fatty acid glyceryl esters are sulfation products of saturated fatty acids of 6 to 22 carbon atoms, e.g., of capric acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.

[0033] In accordance with one aspect of an exemplary embodiment of the invention, the composition comprises sodium linear alkyl benzene sulfonate, available from Klaven Chemicals, Ltd. Other useful anionic surfactants include, but are not limited to, those of the sulfonate type and of the sulfate type. Preferred surfactants of the sulfonate type are C9-13-alkylbenzenesulfonates, olefinsulfonates, i.e. mixtures of alkenesulfonates and h . A

hydroxyalkanesulfonates and also disulfonates, as are obtained, for example, from C12-18-monoolefins having a terminal or internal double bond by sulfonating with gaseous sulfur trioxide followed by alkaline or acidic hydrolysis of the sulfonation products. Also suitable are alkanesulfonates, which are obtained from C12-18-alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization, respectively. Likewise suitable, in addition, are the esters of a-sulfo fatty acids (ester sulfonates), e.g. the a-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.

100341 Preferred alk(en)yl sulfates are the alkali metal salts, and especially the sodium salts, of the sulfuric monoesters of C12-C18 fatty alcohols, examples being those of coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol, or of C10-C20 oxo alcohols, and those monoesters of secondary alcohols of this chain length.
Preference is also given to alk(en)yl sulfates of said chain length which contain a synthetic straight-chain alkyl radical prepared on a petrochemical basis, these sulfates possessing degradation properties similar to those of the corresponding compounds based on fatty-chemical raw materials. From a detergents standpoint, C12-C16-alkyl sulfates and C 12-C 15-alkyl sulfates, and also C 14-C 15 alkyl sulfates, are preferred. In addition, 2,3-alkyl sulfates, which may for example be obtained as commercial products from Shell Oil Company under the name DANO, are suitable anionic surfactants.

[00351 Also suitable are the sulfuric monoesters of the straight-chain or branched C7-21 alcohols ethoxylated with from I to 6 mol of ethylene oxide, such as 2-methyl-branched C9-l 1 alcohols containing on average 3.5 mol of ethylene oxide (EO) or C12-18 fatty alcohols containing from 1 to 4 EO which are known as fatty alcohol ether sulfates.

[00361 Anionic surfactants further include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic esters and which constitute the monoesters and/or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols. Preferred sulfosuccinates comprise C8-18 fatty alcohol radicals or mixtures thereof. Especially preferred sulfosuccinates contain a fatty alcohol radical derived from ethoxylated fatty alcohols. Particular preference is given in turn to sulfosuccinates whose fatty alcohol radicals are derived from ethoxylated fatty alcohols having a narrowed homolog distribution. Similarly, it is also possible to use alk(en)ylsuccinic acid containing preferably 8 to 18 carbon atoms in the alk(en)yl chain, or salts thereof.

[0037] Further suitable anionic surfactants are, in particular, soaps.
Suitable soaps include saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and, in particular, mixtures of soaps derived from natural fatty acids, e.g., coconut, palm kernel, or tallow fatty acids.

[0038] The anionic surfactants, including the soaps, may be present in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine. Preferably, the anionic surfactants are in the form of their sodium or potassium salts, in particular in the form of the sodium salts. The nonaqueous liquid laundry detergent compositions of the present invention, however, preferably utilize the ammonium salts, especially the salts of organic bases, as for example of isopropylamine.

[0039] A further class of anionic surfactants is the class of ether carboxylic acids which is obtainable by reacting fatty alcohol ethoxylates with sodium chloroacetate in the presence of basic catalysts. Ether carboxylic acids have the general formula: RIO O-(CH2-CH2-O)p-CH2-COOH where R10 = C1-C18 and p = 0.1 to 20. Ether carboxylic acids are water hardness insensitive and have excellent surfactant properties.

[0040] In accordance with an exemplary embodiment, the detergent composition comprises an anionic:anionic:nonionic surfactant ratio of about 1:2:1. For example, the composition may comprise sodium dodecylbenzene sulfonate (NaDDBS), sodium alkyl ether sulfate (AES), alcohol ethoxylate (AO) as the anionic:anionic:nonionic surfactant components in a ratio of about 1:2:1.

Liquid Carrier Component [0041] The preferred liquid caffier for use in accordance with an exemplary embodiment of the present invention is water, which can be distilled, deionized, or unrefined tap water.
However, it will be appreciated by one skilled in the art that other types of water-miscible liquids, such as ethers, diols, polyols, amines and/or the like may be used.

[0042] In a preferred aspect an exemplary embodiment, the liquid carrier comprises from about 80% to about 95% by weight of water; however, so long as sufficient water is present in the composition to effectively solubilize and/or disperse the other components of the composition, less water may be used.

,4dditional Optional Additives [0043] In other exemplary embodiments of the present invention, the composition may further comprise one or more other conventional additives such as a phase stabilizer/co-solvent, a cationic surfactant, an amphoteric surfactant, an optical brightener, a coloring agent, a fragrance, a builder, an electrolyte, a UV absorber, a pH adjustor, a bleach, a chelating agent, a preservative, a redeposition inhibitor, an odor absorber, a dye transfer inhibitor, a thickener, a crease control agent, a pearl luster agent, a fabric softener, and/or mixtures thereof. One or more of such additives may be present in any amount suitable to achieve a particular objective. In a preferred embodiment of the invention, these additives, alone or combined, are not present in an amount that is greater than about 12%
by weight of the composition. More preferably, these additives, alone or combined, are 1 k 1 present in an amount that is less than about 8-9% by weight of the composition.
However, any effective amount of additional additives, alone or combined may be utilized in accordance with the present invention insofar as such additives do not detrimentally affect the desired properties of the detergent composition.

Phase Stabilizer/Co-Solvent Component [0044] In accordance with an exemplary embodiment, the detergent composition may also optionally contain further phase-stabilizing components. For example, the detergent composition may contain calcium chloride (CaCIZ), preferably comprising 0.02%
to 0.1%
by weight. For example, the enzyme residual activity in those example formulations keeps above 90% after 8 weeks at 30 C, which demonstrates great enzyme storage stability. Other suitable phase stabilizers include hydrotropes such as methanol, ethanol, propanol, sodium xylene sulfate, and/or any combination of the above.

Cationic Surfactant Component [0045] In another embodiment, one or more cationic surfactants may be added to the detergent composition. Cationic surfactants are any agent that functions as detergency booster, for example, any suitable quaternary ammonium cationic surfactant, cationic polymer, and/or emulsifier may be used in the present invention. If cationic surfactants are used, they are present in the detergents in small quantities of preferably on the order of about 0.01 to about 10% by weight, and more preferably in the range from 0.5%
to 7% by weight and especially in the range from 1% to 3% by weight, each percentage being based on the entire composition.

[0046] Suitable examples are quaternary ammonium compounds of the formulae (I) and (II) R' C~
R-- IN'--R2 X' (I); R4(CO)-----(CF12)m-- 'N' ~CHz)n""~ X' (11);
[0047] rr~ tCH~p-Rs where, in (1), R and R1 each represent an acyclic alkyl radical of 12 to 24 carbon atoms, R2 represents a saturated C 1-C4-alkyl or hydroxyalkyl radical, R3 is either the same as R, RI or R2 or represents an aromatic radical. X- represents either a halide, methosulfate, methophosphate or phosphate ion and also mixtures thereof. Examples of cationic compounds of the formula (1) are didecyldimethylammonium chloride, ditallowdimethylammonium chloride or dihexadecylammonium chloride.

100481 Compounds of the formula (II) are known as ester quats. Ester quats are notable for excellent biodegradability. In the formula (II), R4 represents an aliphatic alkyl radical of 12 to 22 carbon atoms which has 0, 1, 2 or 3 double bonds; R5 represents H, OH
or O(CO)R7, R6 represents H, OH or O(CO)R8 independently of R5, with R7 and R8 each being independently an aliphatic alkyl radical of 12 to 22 carbon atoms which has 0, 1, 2 or 3 double bonds. m, n and p are each independently 1, 2 or 3. X- may be either a halide, methosulfate, methophosphate or phosphate ion and also mixtures thereof.
Preference is given to compounds where R5 is O(CO)R7 and R4 and R7 are alkyl radicals having 16 to 18 carbon atoms. Particular preference is given to compounds wherein R6 also represents OH. Examples of compounds of the formula (II) are methyl-N-(2-hydroxyethyl)-N,N-di-(tallowacyloxyethy l)ammonium methosulfate, bis-(palmitoyl)ethylhydroxyethylmethylammonium methosulfate or methyl-N,N-bis(acyloxyethy l)-N-(2-hydroxyethyl)ammonium methosulfate. In quaternized compounds of the formula (II) which comprise unsaturated alkyl chains, preference is given to acyl groups whose corresponding fatty acids have an iodine number between 5 and 80, preferably between 10 and 60 and especially between 15 and 45 and also a cis/trans isomer ratio (in % by weight) of greater than 30:70, preferably greater than 50:50 and especially greater than 70:30. Commercially available examples are the methylhydroxyalkyldialkoyloxyalkylammonium methosulfates marketed by Stepan under II I N Y

the Stepantex brand or the Cognis products appearing under Dehyquart or the Goldschmidt-Witco products appearing under RewoquatO. Preferred compounds further include the diester quats of the formula (III) which are obtainable under the name RewoquatO W 222 LM or CR 3099 and provide stability and color protection as well as softness.

R21.. 101 o D~ lRZ2 1 /N~ l X~ (111);

[00491 [00501 where R21 and R22 each independently represent an aliphatic radical of 12 to 22 carbon atoms which has 0, 1, 2 or 3 double bonds.

[0051] As well as the quaternary compounds described above it is also possible to use other known compounds, for example quaternary imidazolinium compounds of the formula (IV) =
l'h~qc~R11 X' ~[~;
R~ 11 RID O
[00521 where R9 represents H or a saturated alkyl radical having I to 4 carbon atoms, R10 and R11 are each independently an aliphatic, saturated or unsaturated alkyl radical having 12 to 18 carbon atoms, R10 may alternatively also represent O(CO)R20, R20 being an aliphatic, saturated or unsaturated alkyl radical of 12 to 18 carbon atoms, Z
is an NH
group or oxygen, X- is an anion and q can assume integral values between 1 and 4.

[0053] Useful quatemary compounds are further described by the formula (V) II 14 Ir Rt2-- 1N=--{CH2ar--C----O(CO)Rt5 X- (1/)~
R14 CH2---O(CU)R16 where R12, R13 and R14 independently represent a CI-4-alkyl, alkenyt or hydroxyalkyl group, R15 and R16 each independently represent a C8-28-alkyl group and r is a number between 0 and 5.

100541 As well as compounds of the formulae (I) and (II) it is also possible to use short-chain, water-soluble quaternary ammonium compounds, such as trihydroxyethyl-methylammonium methosulfate or alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, for example cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride.

[0055] Similarly, protonated alkylamine compounds, which have a softening effect, and also the nonquatemized, protonated precursors of cationic emulsifiers are suitable.

[0056] Cationic compounds useful in the present invention further include quatemized protein hydrolyzates.

[0057] Suitable cationic polymers include the polyquaternium polymers, as in the CTFA
Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry and Fragrance, Inc.
1997), in particular the polyquatemium-6, polyquatemium-7, polyquaternium-10 polymers (Ucare Polymer IR 400; Amerchol), also referred to as merquats, polyquatemium-4 copolymers, such as graft copolymers with a cellulose backbone and quaternary ammonium groups which are bonded via allyldimethylammonium chloride, cationic cellulose derivatives, such as cationic guar, such as guar hydroxypropyltriammonium chloride, and similar quaternized guar derivatives (e.g. Cosmedia Guar, manufacturer: Cognis GmbH), cationic II IkI'l quaternary sugar derivatives (cationic alkyl polyglucosides), e.g. the commercial product Glucquat 100, according to CTFA nomenclature a "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride", copolymers of PVP and dimethyl-aminomethacrylate, copolymers of vinylimidazole and vinylpyrrolidone, aminosilicone polymers and copolymers.

[0058] It is likewise possible to use polyquaternized polymers (e.g. Luviquat Care from BASF) and also cationic biopolymers based on chitin and derivatives thereof, for example the polymer obtainable under the trade name Chitosan (manufacturer: Cognis).

[0059] Likewise suitable according to the invention are cationic silicone oils, such as, for example, the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized trimethylsilylamodimethicone), Dow Corning 929 emulsion (comprising a hydroxyl-amino-modified silicone, which is also referred to as amodimethicone), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) Abil -Quat 3270 and 3272 (manufacturer: Goldschmidt-Rewo; diquaternary polydimethyisiloxanes, quaternium-80) and Siliconquat Rewoquat SQ 1(Tegopren 6922, manufacturer:
Goldschmidt-Rewo).

[0060] It is likewise possible to use compounds of the formula (VI) ~CI ~ CH2\ (CH2)S /"CH~ N a ~8 X- (17 ~/[
R ~ );
[0061] H H3C

which may be alkylamidoamines in their nonquaternized or, as shown, their quaternized form. R17 may be an aliphatic alkyl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds. can assume values between 0 and 5. R18 and R19 are, independently of one another, each H, C1-4-alkyl or hydroxyalkyl. Preferred compounds are fatty acid arnidoamines, such as the stearylamidopropyldimethylamine obtainable under the name Tego Amid S 18, or the 3-tallowamidopropyltrimethylammonium methosulfate obtainable under the name Stepantex X 9124, which are characterized not only by a good conditioning effect, but also by color-transfer-inhibiting effect and in particular by their good biodegradability. Particular preference is given to alkylated quaternary ammonium compounds in which at least one alkyl chain is interrupted by an ester group and/or amido. group, in particular N-methyl-N-(2-hydroxyethyl)-N,N-(ditallowacyloxyethyl)arnmonium methosulfate and/or N-methyl-N-(2-hydroxyethyl)-N, N-(palmitoyloxyethyl) ammonium methosulfate.

[0062] Nonionic softeners are primarily polyoxyalkylene glycerol alkanoates, polybutylenes, long-chain fatty acids, ethoxylated fatty acid ethanolamides, alkyl polyglycosides, in particular sorbitan mono-, di- and triesters, and fatty acid esters of polycarboxylic acids.

[0063] In a preferred embodiment the liquid laundry detergent compositions of the present invention comprise cationic surfactants, preferably alkylated quaternary ammonium compounds where at least one alkyl chain is interrupted by an ester group andJor amido group.

[00641 The use of ester quats of the abovementioned formula lI will be found particularly advantageous and effective. Especially ester quats of the formula [0065] [(CH3)2N+(CH2CH2OC(O)-R)2] X-[0066] or [0067] [(HOCH2CH2)(CH3)N+(CH2CH2OC(O)-R)2] X-where R = linear saturated or unsaturated alkyl radical of 11 to 19 and preferably 13 to 17 carbon atoms. In a particularly preferred embodiment the fatty acid residues are tallow fatty acid residues. X- represents either a halide, for example chloride or bromide, methophosphate or phosphate ion, preferably from methosulfate ion, and also mixtures thereof.

[0068] Quaternary ammonium compounds of the aforementioned formula V are further preferable.

[0069] Specifically, N-methyl-N-(2-hydroxyethyl)-N,N-(ditallowacyloxyethyl)ammonium methosulfate or N-methyl-N-(2-hydroxyethyl)-N,N-(dipalmitoylethyl)ammonium methosulfate are preferred.

Amyhoteric Surfactant Component [0070] Optionally, the detergent composition of the present invention may additionally comprise one or more amphoteric surfactants. Amphoteric surfactants may be present in an amount of from about 0.5% to about 5% by weight of the composition.

[0071] Preferred amphoteric surfactants are the alkylbetaines of the formula (Ia), the alkylamidobetaines of the formula (Ib), the sulfobetaines of the formula (Ic) and the amidosulfobetaines of the formula (Id), [0072] RI-N+(CH3)2-CH2COO- (la) 100731 R1-CO-NH-(CH2)3-N+(CH3)2-CH2COO- (Ib) [0074] RI-N+(CH3)2-CH2CH(OH)CH2SO3- (Ic) [0075] R1-CO-NH-(CH2)3-N+(CH3)2-CH2CH(OH)CH2SO3- (Id) in which Ri is a saturated or unsaturated C6-22-alkyl radical, preferably C8-18-alkyl radical, in particular a saturated CI0-16-alkyl radical, for example a saturated C 12-14-alkyl radical, [0076] Particularly preferred amphoteric surfactants are the carbobetaines, in particular the carbobetaines of the formula (Ia) and (Ib), most preferably the alkylamidobetaines of the formula (Ib).

w, [0077] Examples of suitable betaines and sulfobetaines are the following compounds named according to INCI: Almondamidopropyl Betaine, Apricotamidopropyl Betaine, Avocadamidopropyl Betaine, Babassuamidopropyl Betaine, Behenamidopropyl Betaine, Behenyl Betaine, Betaine, Canolamidopropyl Betaine, Capryl/Capramidopropyl Betaine, Carnitine, Cetyl Betaine, Cocamidoethyl Betaine, Cocamidopropyl Betaine, Cocamidopropyl Hydroxysultaine, Coco-Betaine, Coco-Hydroxysultaine, Coco/Oleamidopropyl Betaine, Coco-Sultaine, Decyl Betaine, Dihydroxyethyl Oleyl Glycinate, Dihydroxyethyl Soy Glycinate, Dihydroxyethyl Stearyl Glycinate, Dihydroxyethyl Tallow Glycinate, Dimethicone Propyl PG-Betaine, Erucamidopropyl Hydroxysultaine, Hydrogenated Tallow Betaine, Isostearamidopropyl Betaine, Lauramidopropyl Betaine, Lauryl Betaine, Lauryl Hydroxysultaine, Lauryl Sultaine, Milkamidopropyl Betaine, Minkamidopropyl Betaine, Myristamidopropyl Betaine, Myristyl Betaine, Oleamidopropyl Betaine, Oleamidopropyl Hydroxysultaine, Oleyl Betaine, Olivamidopropyl Betaine, Palmamidopropyl Betaine, Palmitamidopropyl Betaine, Palmitoyl Carnitine, Palm Kernelamiodopropyl Betaine, Polytetrafluoroethylene Acetoxypropyl Betaine, Ricinoleamidopropyl Betaine, Sesamidopropyl Betaine, Soyamidopropyl Betaine, Stearamidopropyl Betaine, Stearyl Betaine, Tallowamidopropyl Betaine, Tallowamidopropyl Hydroxysultaine, Tallow Betaine, Tallow Dihydroxyethyl Betaine, Undecylenamidopropyl Betaine and Wheat Germamidopropyl Betaine. Other suitable amphoteric surfactants may also be employed.

Optical Brightener Component [0078) In one aspect of an exemplary embodiment of the invention, an optical brightener component, (so-called "whitening agent") may be present in an amount from about 0.01 to about 1% by weight, based on the finished product. The optical brightener agent can comprise virtually any brightener that is capable of eliminating graying and yellowing of 1 II I-A1 .

fabrics. Typically, these substances attach to the fibers and bring about a brightening and simulated bleaching action by converting invisible ultraviolet radiation into visible longer-wave length light, the ultraviolet light absorbed from sunlight being irradiated as a pale bluish fluorescence and, together with the yellow shade of the grayed or yellowed laundry, producing pure white.

[0079] In one embodiment, the preferred optical brightener is 0.06% by weight of Tinopal UNPA, which is commercially available through the Ciba Geigy Corporation located in Switzerland.

100801 Additional optical brighteners useful in accordance with a preferred embodiment of the present invention include, but are not limited to, the classes of substance of 4,4'-diamino-2,2'-stilbenedisulfonic acids (flavonic acids), 4,4'-distyrylbiphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1,3 -diary lpyrazolines, naphthal-imides, benzoxazol, benzisoxazol and benzimidazol systems, and pyrene derivatives substituted by heterocycles, and the like.

Colorine Agent Component [0081] In accordance with another aspect of an exemplary embodiment of the invention, coloring agents and dyes, especially bluing agents, may be added to increase aesthetic appeal and consumer performance impression of the composition. When present, such coloring agents and/or dyes are preferably used at very low levels such as from about 0.0001 to 0.001% by weight of the composition, to avoid staining or marking surfaces on which the compositions may be used, such as fabrics.

[00821 In accordance with a preferred aspect of an exemplary embodiment of the invention, the composition comprises Liquitint Blue HP, available from Milliken Chemical Company.

100831 However, a wide variety of coloring agents and dyes suitable for use in accordance with the present invention are well known to those skilled in the art. Other non-limiting examples of suitable dyes are, Liquitint Blue HPĀ®, Liquitint Blue 65Ā®, Liquitint Patent BlueĀ®, Liquitint Royal BlueĀ®, Liquitint Experimental Yellow 43Ā®, Liquitint Green HMCĀ®, Liquitint Yellow IIĀ®, and mixtures thereof, preferably Liquitint Blue HPĀ®, Liquitint Blue 65Ā®, Liquitint Patent BlueĀ®, Liquitint Royal BlueĀ®, Liquitint Experimental Yellow 8949-43Ā®, and mixtures thereof.

Fragrance Component 100841 In another aspect of an exemplary embodiment of the invention, a fragrance component may be present in an amount of from about 0.01 to about 0.5% by weight.
The fragrance component may comprise any agent that is capable of covering the chemical odor of the composition and the odor of soils in the washing solution, imparting a pleasant scent to fabrics, and/or contributing an identifying scent to the product.
Additionally, a variety of fragrance components are available that employ any number of rnalodor-neutralizing mechanisms in addition to malodor masking agents are suitable for use in connection with the various embodiments of the present invention.

100851 Fragrance components useful in the present invention are known in the art and are available from any number of sources. For example, in accordance with a preferred aspect of an exemplary embodiment of the invention, the composition comprises a Mountain Breeze scent, which is commercially available from the Lebermuth Company located in South Bend, Indiana. However, it will be appreciated that any known or hereafter devised scent, such as for example, baby powder or lemon may be used in accordance with the present invention.

w w [0086] For example, the fragrance component may comprise the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon types. Preference, however, is given to using mixtures of different odorants, which together produce an appealing fragrance note. Such perfume oils may also contain natural odorant mixtures, as are obtainable from plant sources.

Builder Component 100871 Optionally, the composition of the present invention may comprise builders. As is known in the art, water hardness ions may interact with negatively charged surfactants and inhibit soil removal and decreasing the overall efficiency of the surfactant system. As such, it may be desirable to include a builder to soften water by tying up water hardness, prevents redeposition of soils, and provides a desirable level of alkalinity, which aids in cleaning. The compositions of the present invention may, if appropriate, comprise builders in amounts of from about 1% to about 30% by weight, preferably about 2 to about 15%, and more preferably about 2 to about 5%.

[0088] Any builder customarily used in washing and cleaning compositions may be incorporated in the compositions of the present invention, including especially zeolites, silicates, carbonates, organic cobuilders and where there are no ecological prejudices against their use, phosphates.

[0089] In one embodiment of the present invention, a precipitating builder, such as sodium carbonate or sodium silicate is used to remove water hardness ions by forming an insoluble substance or precipitant. Addition of a builder such as sodium carbonate is especially preferable when the water hardness is due to calcium ions.

[0090] Useful crystalline, sheet-shaped sodium silicates have the general formula NaMSixO2x+l=H2O, where M is sodium or hydrogen, x is from 1.9 to 4, y is from 0 to 20 and x is preferably 2, 3 or 4. Such crystalline sheet silicates. Preferred crystalline sheet silicates of the stated formula are those in which M is sodium and x is 2 or 3. In particular, not only [i- but also S-sodium disilicates Na2Si2O5=yH2O are preferred.

[00911 The finely crystalline synthetic zeolite used, containing bound water, is preferably zeolite A and/or P. Zeolite P is particularly preferably Zeolite MAPS
(commercial product from Crosfield). Also suitable, however, are zeolite X, and mixtures of A, X
and/or P. A co-crystallizate of zeolite X and zeolite A (about 80% by weight of zeolite X), which is sold by CONDEA Augusta S.p.A. under the trade name VEGOBOND AX
Useful zeolites have an average particle size of less than 10 m (volume distribution;
method of measurement: Coulter Counter) and have a bound-water content which is preferably in the range from about 18% to about 22% by weight and especially in the range from about 20% to about 22% by weight. The zeolites can also be used as over-dried zeolites having lower water contents and then are by virtue of their hygroscopicity useful to remove unwanted trace residues of free water.

[0092] It will be appreciated that the well-known phosphates can likewise be used as builder substances, unless such a use is to be avoided for ecological reasons.
Useful phosphates include in particular the sodium salts of the orthophosphates, of the pyrophosphates and especially of the tripolyphosphates.

[0093] Organic builder substances useful as cobuilders and also as viscosity regulators include for example the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids referring to carboxylic acids having more than one acid fiunction. Examples thereof are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, amino carboxylic acids, nitrilotriacetic acid (NTA) and derivatives thereof and also mixtures of these. Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.

x a [0094] The acids themselves can be used as well. As well as their builder action, the acids typically also have the property of an acidifying component and thus also serve to impart a lower and milder pH to washing or cleaning compositions. Particularly used for this are citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these. Useful acidifying agents further include known pH regulators such as sodium bicarbonate and sodium hydrogensulfate.

[0095] Useful builders further include polymeric poly carboxylates, i.e., for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass in the range from 500 to 70,000 g/mol.

[0096] Useful polymers are in particular polyacrylates which preferably have a molecular mass in the range from about 2000 to about 20,000 g/mol. Owing to their superior solubility, preference in this group may be given in turn to the short-chain polyacrylates which have molar masses in the range from 2000 to 10,000 g/mol and more preferably in the range from 3000 to 5000 g/mol.

[0097] Useful polymers may further include substances which partly or wholly consist of units of vinyl alcohol or its derivatives.

100981 Useful polymeric polycarboxylates further include copolymeric polycarboxylates, especially those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Of particular usefulness are copolymers of acrylic acid with maleic acid which comprise from about 50% to about 90% by weight of acrylic acid and from about 10% to about 50% by weight of maleic acid. Their relative molecular mass based on free acids is generally in the range from 2000 to 70,000 g/mol, preferably in the range from 20,000 to 50,000 g/mol and especially in the range from 30,000 to 40,000 g/mol.
(Co)polymeric polycarboxylates can be used either as an aqueuous solution or preferably as a powder.

[0099] To improve solubility in water, polymers may further comprise allylsulfonic acids, such as allyloxybenzenesulfonic acid and methallylsulfonic acid, as a monomer.

[00100] Preference is also given in particular to biodegradable polymers composed of more than two different monomer units, for example those which comprise salts of acrylic acid and of maleic acid and also vinyl alcohol or vinyl alcohol derivatives as monomers or comprise salts of acrylic acid and of 2-alkylallylsulfonic acid and also sugar derivatives as monomers.

[00101] Preferred copolymers further include those which as monomers preferably comprise acrolein and acrylic acid/acrylic acid salts or acrolein and vinyl acetate.

[00102] Preferred builder substances further include polymeric amino dicarboxylic acids, their salts or their precursor substances. Particular preference is given to polyaspartic acids or salts and derivatives thereof, of which it is known that they have a bleach-stabilizing effect as well as cobuilder properties. It is further possible to use polyvinylpyrrolidones, polyamine derivatives such as quatemized and/or ethoxylated hexamethylenediamines.

[00103] Useful builder substances further include polyacetals which can be obtained by reacting dialdehydes with polycarboxylic acids having 5 to 7 carbon atoms and 3 or more hydroxyl groups. Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polycarboxylic acids such as gluconic acid andlor glucoheptonic acid.

[00104] Useful organic builder substances further include dextrins, for example oligomers or polymers of carbohydrates obtainable by partial hydrolysis of starches. The hydrolysis can be carried out by customary, for example acid- or enzyme-catalyzed, processes. The hydrolysis products preferably have average molar masses in the range from 400 to 500,000 g/mol. Preference here is given to a polysaccharide having a dextrose equivalent x w~

(DE) in the range from 0.5 to 40 and especially from 2 to 30, DE being a common measure of the reducing effect of a polysaccharide compared with dextrose, which has a DE of 100. It is also possible to use maltodextrins having a DE between 3 and 10 and dried glucose syrups having a DE between 20 and 37, and also so-called yellow dextrins and white dextrins having relatively higher molar masses in the range from 2000 to 30,000 g/mol.

[00105] The oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are able to oxidize at least one alcohol function of the saccharide ring to the carboxylic acid function. It is likewise possible to use an oxidized oligosaccharide. A
product oxidized on the C6 of the saccharide ring may be particularly advantageous.

[00106] Useful cobuilders further include oxydisuccinates and other derivatives of disuccinates, preferably ethylenediaminedisuccinate. Here, ethylenediamine-N,N'-di-succinate (EDDS), is used in the form of its sodium or magnesium salts. Also preferable in this connection are glycerol disuccinates and glycerol trisuccinates.
Suitable use levels in zeolite-containing and/or silicate-containing formulations range from 3% to 15% by weight.

[001071 Useful organic cobuilders further include for example acetylated hydroxycarboxylic acids and salts thereof, which may if desired also be present in lactone form and which comprise at least 4 carbon atoms and at least one hydroxyl group and also not more than two acid groups.

Electrolyte Component [00108] Optionally, the compositions of the present invention may comprise electrolytes. A
large number of various salts can be used as electrolytes from the group of the inorganic salts. Preferred cations are the alkali and alkaline earth metals and preferred anions are the halides and sulfates. From the point of view of manufacturing convenience, the use of NaCI or MgC12 in the compositions of the present invention is preferred. The amount of electrolytes in the compositions of the present invention is typically in the range from 0.5% to 5% by weight.

UVAbsorber Component [00109] The compositions of the present invention may further comprise UV
absorbers.
UV absorbers may comprise any agent which improves the light stability of the fibers and/or the light stability of the other formula components. UV absorbers should be understood to mean organic substances (light filters) which are capable of absorbing ultraviolet rays and reemitting the absorbed energy in the form of longer-wave radiation, e.g. heat. UV absorbers are typically used in amounts ranging from about 0.01%
by weight to about 5% by weight, and preferably from 0.03% by weight to 1 1o by weight.

[00110] Examples of compounds which have these desired properties include, but are not limited to, the compounds active through non-radiative deactivation and derivatives of benzophenone with substituents in the 2- and/or 4-position. Further, substituted benzotriazoles, such as for example the water-soluble benzenesulfonic acid-3-(2H-benzotriazol-2-yl)-4-hydroxy-5-(methylpropyl)-monosodium salt (Cibafast H), acrylates phenyl-substituted in the 3-position (cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the endogenous urocanic acid are suitable. Of particular importance are biphenyl derivatives and, above all, stilbene derivatives and are commercially available from Ciba as Tinosorb FD or Tinosorb FR.

[00111] As UV-B absorbers, mention can be made of 3-benzylidenecamphor and 3-benzylidene-norcamphor and derivatives thereof, e.g. 3-(4-methylbenzylidene)camphor, 4-aminobenzoic acid derivatives, preferably 4-(dimethylamino)benzoic acid 2-ethylhexyl ester, 4-(dimethylamino)benzoic acid 2-octyl ester and 4-(dimethylamino)benzoic acid IM,I

amyl ester, esters of cinnamic acid, preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester and 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (Octocrylene), esters of salicylic acid, preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenzyl ester and salicylic acid homomenthyl ester, derivatives of benzophenone, preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone and 2,2'-dihydroxy-4-methoxy-benzophenone, esters of benzalmalonic acid, preferably 4-methoxybenzmalonic acid di-2-ethylhexyl ester, triazine derivatives such as for example 2,4,6-trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazine and octyl triazone, or dioctyl butamido triazone (Uvasorb HEB), propane-1,3-diones such as for example 1-(4-tert-butylphenyl)-3-(4'-methoxyphenyl)propane-1,3-dione and ketotricyclo-(5.2.1.0)-decane derivatives. Also suitable are 2-phenylbenzimidazole-5-sulfonic acid and alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and glucammonium salts thereof, sulfonic acid derivatives of benzophenones, preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and salts thereof, sulfonic acid derivatives of 3-benzylidenecamphor, such as for example 4-(2-oxo-3-bomylidenemethyl)benzene-sulfonic acid and 2-methyl-5-(2-oxo-3-bornylidene)-sulfonic acid and salts thereof.

[001121 Typical UV-A filters are in particular derivatives of benzoylmethane, such as for example 1-(4'-tert-butyl-phenyl)-3-(4'-methoxyphenyl)propane-1,3-dione, 4-tert-butyl-4'-methoxydibenzoylmethane (Parsol 1789), 1-phenyl-3-(4'-isopropylphenyl)-propane-1,3-dione and also enamine compounds. The UV-A and UV-B filters can of course also be used as mixtures. In addition to the stated soluble substances, insoluble light-protective pigments, that is finely dispersed preferably nanoized metal oxides or salts, are also possible for this. Examples of suitable metal oxides are in particular zinc oxide and titanium dioxide and also oxides of iron, zirconium, silicon, manganese, aluminum and cerium and also mixtures thereof. As salts, silicates (talc), barium sulfate or zinc stearate can be used. The oxides and salts are already used in the form of the pigments for skincare and skin protection emulsions and decorative cosmetics. The particles here should have a mean diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can be spherical in shape, but particles having an ellipsoidal shape or a shape deviating in other ways from the spherical form can also be used. The pigments can also be surface-treated, i.e. hydrophobized or hydrophilized.
Typical examples are coated titanium dioxides, such as for example titanium dioxide T
805 (Degussa) or Eusolex T2000 (Merck). Possible hydrophobic coating agents here are above all silicones and specifically trialkoxyoctyl-silanes or simethicones.
Preferably, micronized zinc oxide is used.

t?H AdustingaAgent Component [00113] For optimum efficiency, it is preferable that the pH of the composition be adjusted to a range of about 7 to about 10, preferably about 8 to about 8.5. In some aspects of the present invention, the pH of the composition is adjusted so as to provide decent cleaning and at the same time to make it more enzyme friendly. As such, the detergent composition of the present invention may further comprise pH adjusting agents.
Various pH-adjusting agents as are known in the art or hereafter devised suitably may be used to bring the pH of the composition of the instant invention to within the preferred range.
Useful pH standardizers include all known acids and alkalis unless their use is ruled out by performance or ecological concerns or by consumer protection concerns.
Typically, the amount of these pH adjusting agents does not exceed 5% by weight of the total formulation.

Bleach Agent Component [00114] A detergent composition of the present invention may further comprise a bleaching agent. Various bleaching agents are known in the art and include any agent which makes the fabric whiter or lighter especially by physical or chemical removal of color. The amount of bleaching agent in the compositions of the present invention is typically in the range from about 0.5% to about 10% by weight.

[00115] Among compounds which serve as bleaches in that they liberate H202 in water, sodium percarbonate, sodium perborate tetrahydrate, sodium perborate monohydrate .
Useful bleaches further include for example peroxypyrophosphates, citrate perhydrates and also H202-supplying peracidic salts or peracids, such persulfates and persulfuric acid. It is also possible to use urea peroxohydrate, i.e., percarbamide, which is described by the formula H2N-CO-NH2-H2O2. Especially when the compositions are used for cleaning hard surfaces, for example in dishwashers, they can if desired also include bleaches from the group of organic bleaches, although their use is in principle also possible in textile-washing compositions. Typical organic bleaches include diacyl peroxides, for example dibenzoyl peroxide. Typical organic bleaches further include peroxyacids, examples being in particular alkylperoxyacids and arylperoxy-acids.
Preferred representatives are peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy-a-naphthoic acid and magnesium rnonoperphthalate, aliphatic or substitutedly aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, s-phthalimidoperoxycaproic acid (phthalimidoperoxyhexanoic acid, PAP), o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinates, and alipahtic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxy carboxylic acid, 1,9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassylic acid, diperoxyphthalic acids, 2-decyldiperoxybutane-1,4-diacid, N,N-II I

terephthaloyldi(6-aminopercaproic acid). More preferably, the compositions of the present invention may comprise phthalimidoperoxyhexanoic acid (PAP).

[00116] The compositions of the present invention may further comprise bleach activators.
Compounds used as bleach activators produce aliphatic peroxo carboxylic acids having preferably 1 to 10 carbon atoms and especially 2 to 4 carbon atoms and/or as the case may be substituted perbenzoic acid under perhydrolysis conditions. Substances which bear 0-and/or N-acyl groups of the stated number of carbon atoms and/or substituted or unsubstituted benzoyl groups are suitable. Preference is given to multiply acylated alkylenediamines, especially tetraacetylethylenediamine (TAED), acylated triazine derivatives, especially 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-tri-azine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl-or isononanoyloxybenzenesulfonate (n- and iso-NOBS respectively), carboxylic anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetin, triethyl acetylcitrate (TEAC), ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran and the enol esters and also acetylated sorbitol and mannitol or to be more precise their SORMAN mixtures, acylated sugar derivatives, especially pentaacetylglucose (PAG), pentaacetylfructose, tetraacetylxylose and octaacetyllactose and also acylated, optionally N-alkylated glucamine and gluconolactone, and/or N-acylated lactams, for example N-benzoylcaprolactam. The hydrophilically substituted aceylacetals and the acyllactams are likewise preferred. Similarly, the combinations of conventional bleach activators can likewise be used.

Chelating A-aent Component [00117] The present invention's detergent compositions may also comprise suitable chelating agents. Chelating agents may include any agents used to deactivate hard water IN

minerals such as calcium and magnesium and to reduce the effects of other dissolved metals, such as manganese.

1001181 In a preferred embodiment of the present invention, the chelating agents are present in an amount preferably from about 0.001 % to about 5% by weight, more preferably from 0.001% to 1% by weight and especially from 0.001% to 0.5% by weight, each percentage being based on the entire composition.

[00119] In one embodiment, ethylenediaminetetraacetic acid (EDTA) is used as the chelating agent. Other preferred chelants according to the present invention can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof, all as hereinafter defined and all preferably in their acidic form. Amino carboxylates useful as chelating agents herein include ethylenediaminetetraacetic acid (EDTA), N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates (NTA), ethylenediamine tetraproprionates, ethylenediamine-N, N'-diglutamates, 2-hydroxypropylenediamine-N, N'-disuccinates, triethylenetetraaminehexacetates, diethylenetriaminepentacetates I;DTPA) and ethanoldiglycines,, including their water-soluble salts such as the alkali metal, ammonium, and substituted ammonium salts thereof and mixtures thereof.

Preservative Component [00120] Optionally, a solubilized preservative may be added to the composition of the present invention. Preferred levels of the preservative, when present, are from about 0.01% to about 0.5% by weight of the composition, and more preferably from about 0.02 to about 0.2% by weight of the composition, and most preferably from about 0.05% to about 0.1% by weight of the composition.

[00121] It is preferable to utilize a preservative that is effective to inhibit and/or control both bacteria and fungi. In accordance with an aspect of an exemplary embodiment of the I I I N 4~

present invention, an effective amount of Dantogard preservative, available from Lonza Group of Switzerland, is utilized. Additional suitable preservatives may include any organic preservative that will not adversely affect or damage fabric articles.
Preferred water-soluble preservatives include, for example, halogenated compounds, hydantoin compounds, organic sulfur compounds, low molecular weight aldehydes, benzalkonium chlorides, alkylarylsulfonates, halophenols, cyclic organic nitrogen compounds, quatemary compounds, dehydroacetic acid, phenyl and phenoxy compounds.

Redeposition Inhibitor Component [001221 A redeposition inhibitor ("grayness inhibitor") may also be added to the composition of the present invention. Typically, the amount of these redeposition inhibitors does not exceed about 2% by weight of the total formulation.
Redeposition inhibitors are any agent designed to keep the soil detached from the fiber suspended in the liquor and to prevent its redeposition on the fiber.

[001231 Useful redeposition inhibitors may include water-soluble colloids mostly organic in nature, for example glue, gelatin, salts of ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric esters of cellulose or of starch. Similarly, water-soluble polyamides 'which comprise acidic groups are suitable for this purpose. It is also possible to use soluble starch preparations and starch products other than those mentioned above, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone can be used as well. However, preference is given to cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methyl-carboxymethylcellulose.

[00124] Suitable anti-redeposition agents, which are also referred to as soil repellants, also include, for example, nonionic cellulose ethers, such as methylcellulose and I

methylhydroxypropylcellulose with a content of methoxy groups of from 15 to 30% by weight and of hydroxypropyl groups of from I to 15% by weight, in each case based on the nonionic cellulose ethers, and the polymers, known from the prior art, of phthalic acid and/or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and/or polyethylene glycol terephthalates or anionically and/or nonionically modified derivatives of these. Of these, particular preference is given to the sulfonated derivatives of phthalic acid and terephthalic acid polymers.

Odor Absorber Component [00125] Furthermore, the compositions of the present invention may further comprise odor absorbers. The use of odor absorbers will prove very helpful to deodorize malodorous formulating constituents, such as amine-containing components for example, but also for sustained deodorization of washed textiles.

[00126] Preferred deodorizing substances for the purposes of the present invention include one or more metal salts of a branched or unbranched, saturated or unsaturated, singly or multiply hydroxylated fatty acid having 16 or more carbon atoms and/or a resin acid except for the alkali metal salts and also any desired mixtures thereof.

[00127] Deodorizing substances which are advantageous and therefore particularly preferable for use include one or more metal salts of ricinoleic acid and/or of abietic acid, preferably zinc ricinoleate and/or zinc abietate, especially zinc ricinoleate.
Ricinoleic acid is a particularly preferred branched or unbranched, saturated or unsaturated, singly or multiply hydroxylated fatty acid having 16 or more carbon atoms. Abietic acid is a particularly preferred resin acid.

[00128] Useful deodorizing substances for the purposes of the present invention further include cyclodextrins and also any desired mixtures of the aforementioned metal salts with cyclodextrins. The term "cyclodextrin" as used herein comprehends all known r H, cyclodextrins, i.e., not only unsubstituted cyclodextrins having about 6 to 12 glucose units, especially alpha- beta-and gamma-yclodextrins and their mixtures and/or their derivatives and/or their mixtures.

[00129] Preferred metals are the transition metals and the lanthanoids, especially the transition metals of groups VIIIa, Ib and IIb of the periodic table and also lanthanum, cerium and neodymium, more preferably cobalt, nickel, copper and zinc and extremely preferably zinc. The cobalt, nickel and copper salts and the zinc salts are similarly effective. However, zinc salts are preferable for toxicological reasons.

L)ye Transfer Inhibitor Component 1001301 Optionally, dye transfer inhibitors may also be added to the present invention. Dye transfer inhibitors include any agent that is capable of preventing redeposition of free dyes onto textile. As a result, textiles keep their original color and whites stay white, even after multiple washes. Preferred levels of dye transfer inhibitors, when present are from about 0.01% to about 0.5% by weight of composition.

[00131] Useful dye transfer inhibitors include not only the polyvinylpyrrolidones of molecular weights in the range from about 15,000 to about 50,000, but also the polyvinyl-pyrrolidones having molar weights above about 1,000,000, especially from about 1,500,000 to about 4,000,000, the N-vinylimidazole-N-vinylpyrrolidone copolymers, the polyvinyloxazolidones, the copolymers based on vinyl monomers and carboxamides, the polyesters and polyamides containing pyrrolidone groups, the grafted polyamidoamines and polyethyleneimines, the polymers with amide groups from secondary amines, the polyamine N-oxide polymers, the polyvinyl alcohols, and the copolymers based on acrylamidoalkenylsulfonic acids. However, it is also possible to use enzymatic systems, comprising a peroxidase and hydrogen peroxide or a substance which in water provides hydrogen peroxide. The addition of a mediator compound for the peroxidase, for 1 li I N CA 02586458 2007-04-27 example, an acetosyringone, a phenol derivative, or a phenothiazine or phenoxazine, is preferred in this case, it being also possible to use abovementioned active polymeric dye transfer inhibitor substances as well. Polyvinylpyrrolidone for use in compositions of the invention preferably has an average molar mass in the range from 10,000 to 60,000, in particular in the range from 25,000 to 50,000. Among the copolymers, preference is given to those of vinylpyrrolidone and vinylimidazole in a molar ratio of 5:1 to 1:1 having an average molar mass in the range from 5,000 to 50,000, in particular from 10,000 to 20,000.

Thickener Component 1001321 Furthermore, the present invention's liquid laundry detergent compositions may further comprise thickeners preferably in amounts up to about 10% by weight, more preferably up to 5% by weight and especially in the range from about 0.1% to about 1%
by weight, each based on the entire composition.

[00133] The use of thickeners in the liquid laundry detergent compositions of the present invention will be particularly advantageous. The use of thickeners in particular in gel-like liquid laundry detergent compositions will boost consumer acceptance. The thickened consistency of the composition simplifies the application of the compositions directly to the stains to be treated. The kind of run-off familiar from thin liquid compositions is prevented as a result. In a preferred embodiment, the thickener comprises Acusol 430, available from Axo Chemical, Inc. Other suitable polymers include, but are not limited to, polymers originating in nature such as, agar-agar, carrageen, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, carob seed flour, starch, dextrins, gelatins and casein.

[001341 Modified natural substances originate primarily from the group of modified starches and celluloses, examples which may be mentioned here being carboxymethyl-cellulose and cellulose ethers, hydroxyethylcellulose and hydroxypropylcellulose, and carob flour ether.

1001351 A large group of thickeners which is used widely in very diverse fields of application are the completely synthetic polymers, such as polyacrylic and poly-methacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides and polyurethanes.

1001361 Thickeners from said classes of substance are commercially widely available and are offered, for example, under the trade names Acusol0-820 (methacrylic acid (stearyl alcohol-20-EO) ester-acrylic acid copolymer, 30% strength in water, Rohm &
Haas), Polygel , such as Polygel DA (3V Sigma), Carbopol (B.F. Goodrich), such as Carbopol 940 (molecular weight approximately 4.000.000), Carbopol 941 (molecular weight approximately. 1.250.000), Carbopol 934 (molecular weight approximately 3.
000.000), Carbopol ETD 2623, Carbopol 1382 (INCI Acrylates/C10-30 Alkyl Acrylate Crosspolymer) and Carbopol Aqua 30, Aculyn and Acusol (Rohm & Haas), Tego(t Degussa-Goldschmidt), DapralO-GT-282-S (alkyl polyglycol ether, Akzo), Deuterol0-Polymer-11 (dicarboxylic acid copolymer, Schoner GmbH), Deuteron0-XG (anionic heteropolysaccharide based on (3-D-glucose, D-manose, D-glucuronic acid, SchSner GmbH), Deuteron0-XN (nonionogenic polysaccharide, Schbner GmbH), Dicrylan0-Verdicker-O (ethylene oxide adduct, 50% strength in water/isopropanol, Pfersse Chemie), EMAO-81 and EMAO-91 (ethylene-maleic anhydride copolymer, Monsanto), Verdicker-QR-1001 (polyurethane emulsion, 19-21% strength in water/diglycol ether, Rohm &
Haas), MiroxO-AM (anionic acrylic acid-acrylic ester copolymer dispersion, 25%
strength in water, Stockhausen), SER-AD-FX-1100 (hydrophobic urethane polymer, Servo Delden), Shellflo0-S (high molecular weight polysaccharide, stabilized with formaldehyde, Shell), and Shellflo -XA (xanthan biopolymer, stabilized with formaldehyde, Shell).

[00137] A preferred polymeric polysaccharide thickener is xanthan, a microbial anionic heteropolysaccharide produced by Xanthomonas campestris and other species under aerobic conditions and has a molar mass in the range from 2 to 15 million g/mol. Xanthan is formed from a chain of 0-1,4-bound glucose (cellulose) having side chains.
The structure of the subgroups consists of glucose, mannose, glucuronic acid, acetate and pyruvate, the number of pyruvate units determining the viscosity of the xanthan.

Crease Control Component [00138] The compositions of the present invention may comprise crease control agents.
Since textile fabrics, especially those composed of rayon, wool, cotton and blends thereof, may tend to crease because the individual fibers are sensitive to bending, kinking, pressing and squashing transversely to the fiber direction, the compositions may comprise synthetic anticrease agents. Suitable crease control agents include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, fatty acid alkylolesters, fatty acid alkylolamides or fatty alcohols, which have mostly been reacted with ethylene oxide, or products based on lecithin or modified phosphoric esters.

Pearl Luster Component [00139] As well as the aforementioned components, the present invention's liquid laundry detergent compositions may comprise pearl luster agents. Pearl luster components include any agent which endow textiles with an additional luster.

[001401 Examples of useful pearl luster agents include, but are not limited to: alkylene glycol esters; fatty acid alkanolamides; partial glycerides; esters of polybasic carboxylic acids with or without hydroxyl substitution with fatty alcohols having 6 to 22 carbon atoms; fatty materials, for example fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates which together have at least 24 carbon atoms; ring-opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms, fatty acids and/or polyols having 2 to 15 carbon atoms and 2 to 10 hydroxyl groups and also mixtures thereof.

Formaila Examples 1001411 The following are three non-limiting embodiments of the detergent composition of the present invention. It should be appreciated that while Formulations 1-3 are set forth in an illustrative manner herein, other detergent formulations having similar compositions are within the scope of the present invention.

Component Formulation I Formulation 2 Formulation 3 Wei ht % (Weight %) (Weight %) NaDDBS 1.40 1.45 2.50 AES, 23-2s 3.30 -- --AES, 45-7s -- 2.40 6.00 AO, 45-7 1.50 1.50 3.00 Al ha-am lase 0.10 0.10 0.20 CaC12 0.05 0.05 0.05 Dye 0.0018 0.0018 0.0018 Fluorescent whitener 0.05 0.05 0.10 Fragrance 0.17 0.17 0.34 Preservative 0.05 0.05 0.05 Sodium carbonate 0.20 -- --Borax -- 0.40 --Anti-redep polymer 0.25 0.25 0.50 Sodium chloride 2.50 3.50 2.00 Water Balance Balance Balance NaDDBS: Sodium Dodecylbenzenesulfonate AES, 23-2s:Sodium alkyl ether sulfate, average C12 -C13 / 2-EO
AES, 45-7s: Sodium alkyl ether sulfate, average C14 -C15 / 7-EO
AO, 45-7: Alcohol ethoxylate, average C14 -CI5 / 7-EO

1001421 In the above exemplary embodiments, the components are mixed to form a homogenous composition. Mixing may be performed by any convenient method, such as, for example, by rapidly stirring with a mechanical stirrer or by agitating with a mechanical agitator.

I M 1=

[001431 The inventors of the present invention have found that detergents made in accordance with the present invention evidence enhanced cleaning performance on targeted stains (such as starch, soil, chicken noodle soup, baby food, tomato bisque etc.).

[00144] To evidence the improved performance characteristics of the detergent compositions according to the present invention, tests have been conducted to determine the enhanced soil removal characteristics.. For example, as shown in the following diagram, the detergent composition performs better targeted stain removal than the leading-brand detergent, which contains more than 3 times the active ingredients and multiple enzymes.

Base Lead Base + Eimine M. Foiiinula Detezgent Formula R _........
60 ----------------------- -------------------- ::::::::::::::::::::::

..~.~:. :.~.~:::....
E
Q
.........
:.~.~:.~.:;...... :: :::.:..:.:.:.:.:.:.
ZO :,.......,; ..._: .............

cotton polycotton

Claims (19)

1. A stable, enzymatic detergent composition comprising:

an amylase enzyme component present in an amount of from about 0.01%
to about 0.4% by weight of the composition;

a nonionic surfactant component present in an amount of from about 0.5%
to about 10.0% by weight of the composition;

an anionic surfactant component present in an amount of from about 0.5%
to about 15.0% by weight of the composition; and a liquid carrier present in an amount of from about 80.0% to about 95.0%
by weight of the composition.
2. The composition of claim 1, wherein said amylase enzyme component is present in an amount of from about 0.05% to about 0.25% by weight of the composition.
3. The composition of claim 1, wherein said amylase enzyme component comprises .alpha.-amylase.
4. The composition of claim 1, wherein said nonionic surfactant component is present in an amount of from about 0.5% to about 5.0% by weight of the composition.
5. The composition of claim 1, wherein said nonionic surfactant component comprises alkyl ethoxylate.
6. The composition of claim 5, wherein said alkyl ethoxylate comprises a carbon chain length of about 12 to about 18 carbon atoms with an average degree of ethoxylation of about 5 to about 9 moles of ethylene oxide.
7. The composition of claim 6, wherein said alkyl ethoxylate comprises a carbon chain length of about 14 to about 15 carbon atoms with an average degree of ethoxylation of about 7 moles of ethylene oxide.
8. The composition of claim 1, wherein said anionic surfactant component is present in an amount of from about 0.5% to about 10.0% by weight of the composition.
9. The composition of claim 1, wherein said anionic surfactant component comprises sodium dodecylbenzene sulfonate.
10. The composition of claim 1, wherein said anionic surfactant component comprises sodium alkyl ether sulfate.
11. The composition of claim 10, wherein said sodium alkyl ether sulfate comprises an average carbon chain length of about 12 to about 18 carbon atoms with an average degree of ethoxylation of about 2 to about 9 moles of ethylene oxide.
12. The composition of claim 11, wherein said sodium alkyl ether sulfate comprises an average carbon chain length of about 14 to about 15 carbon atoms with an average degree of ethoxylation of about 7 moles of ethylene oxide.
13. The composition of claim 1, wherein said anionic surfactant component comprises a binary mixture of fatty alcohol ether sulfate and alkylbenzene sulfonate.
14. The composition of claim 14, wherein said binary mixture of fatty alcohol ether sulfate and alkylbenzene sulfonate is in a weight ratio of 2:4.
15. The composition of claim 1, comprising sodium dodecylbenzene sulfonate, sodium alkyl ether sulfate, and alcohol ethoxylate in a ratio of about 1:2:1.
16. The composition of claim 1, further comprising one or more of a phase stabilizer/co-solvent, a cationic surfactant, an amphoteric surfactant, an optical brightener, a coloring agent, a fragrance, a builder, an electrolyte, a UV
absorber, a pH adjustor, a bleach, a chelating agent, a preservative, a redeposition inhibitor, an odor absorber, a dye transfer inhibitor, a thickener, a crease control agent, a pearl luster agent, and a fabric softener.
17. The composition of claim 1, further comprising calcium chloride.
18. The composition of claim 17, wherein said calcium chloride is present in an amount of from about 0.02% to about 0.10% by w/w of the composition.
19. The detergent composition of claim 1, wherein the pH of the composition is adjusted to be about 8 to about 8.5.
CA 2586458 2006-04-28 2007-04-27 High water content enzymatic heavy duty liquid detergent Abandoned CA2586458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74597106P 2006-04-28 2006-04-28
US60/745,971 2006-04-28

Publications (1)

Publication Number Publication Date
CA2586458A1 true CA2586458A1 (en) 2007-10-28

Family

ID=38653194

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2586458 Abandoned CA2586458A1 (en) 2006-04-28 2007-04-27 High water content enzymatic heavy duty liquid detergent

Country Status (2)

Country Link
CA (1) CA2586458A1 (en)
MX (1) MX2007005138A (en)

Also Published As

Publication number Publication date
MX2007005138A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US20070270324A1 (en) High water content enzymatic heavy duty liquid detergent
US7754669B2 (en) Detergent composition with enhanced whitening power
US20070049511A1 (en) Laundry detergent with odor control
US7754671B2 (en) Liquid laundry detergent containing an ethoxylated anionic/nonionic surfactant mixture and fabric conditioner
WO2014105366A1 (en) Laundry detergents and methods for making laundry detergents containing methyl ester ethoxylates
US20050119151A1 (en) Textile cleaning agent which is gentle on textiles
US20070136954A1 (en) Fabric care product containing a cellulose ether comprising amine groups
US20070089244A1 (en) Textile care product
EP1492863B1 (en) Textile cleaning agent which is gentle on textiles
DE10338070A1 (en) Agent on substrate surfaces
EP2173844B1 (en) Textile care agent having cellulose ether comprising amine groups
WO2007107191A1 (en) Multiphase laundry detergent, dishwasher detergent or cleaning composition with vertical phase boundaries
DE102005056230A1 (en) Procedure to improve the mechanical characteristics of textile fiber or textile fabric surface comprises contacting the textile fiber or textile fabric surface with a bifunctional monomer compound
US20140162925A1 (en) Cleansing compositions and products including soap flakes and methods for making the same
CA2586458A1 (en) High water content enzymatic heavy duty liquid detergent
EP1563046B1 (en) Textile care product
DE102023135175A1 (en) Process for the preparation of amino acid esters and organic sulfonic acid salts as well as amino acid esters and their salts
DE102007038457A1 (en) Textile care agent comprises polycarbonate, polyurethane and/or polyurea polyorganosiloxane compounds comprising carbonyl structural element
WO2008119835A1 (en) Textile care product
WO2001074981A1 (en) Liquid washing agent containing alkylene glycol carboxylic acid ester
DE102007040326A1 (en) Laundry pre-treatment agent and method
DE102007023805A1 (en) Textile care agent comprises polycarbonate, polyurethane and/or polyurea polyorganosiloxane compounds comprising carbonyl structural element
WO2002086046A2 (en) Multi-phase conditioning agent
WO2007079849A1 (en) Multiphase washing, rinsing or cleaning composition with vertical phase boundary

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead