EP1488077B1 - Aube de turbine refroidie - Google Patents

Aube de turbine refroidie Download PDF

Info

Publication number
EP1488077B1
EP1488077B1 EP03702263A EP03702263A EP1488077B1 EP 1488077 B1 EP1488077 B1 EP 1488077B1 EP 03702263 A EP03702263 A EP 03702263A EP 03702263 A EP03702263 A EP 03702263A EP 1488077 B1 EP1488077 B1 EP 1488077B1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
cooling gas
shell
rib
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03702263A
Other languages
German (de)
English (en)
Other versions
EP1488077A1 (fr
Inventor
Reinhard Fried
Hans Wettstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1488077A1 publication Critical patent/EP1488077A1/fr
Application granted granted Critical
Publication of EP1488077B1 publication Critical patent/EP1488077B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the invention relates to a turbine blade having the features of the preamble of claim 1.
  • Such a turbine blade which has a flow-around and aerodynamically shaped jacket.
  • This jacket has a first sidewall and a second sidewall joined together at an upstream leading edge and an outflow trailing edge extending longitudinally from a blade root to a blade tip and interconnected between leading and trailing edges by a plurality of inner ribs , These ribs form inside the turbine blade or inside the shell two cooling gas paths, each leading a flow of cooling gas from the foot to the tip of the turbine blade and thereby redirect the cooling gas flow serpentine multiple from outside to inside and from the inside out.
  • Such a serpentine cooling gas path thus consists of a series of 180 ° return bends.
  • the ribs are arranged so that they protrude in the one cooling gas path in the region of the leading edge and in the other cooling gas path in the region of the trailing edge of the jacket inwards and at an angle of about 45 ° to the blade root. This results in an intensive deceleration of the cooling gas flow, which improves the cooling effect.
  • Each cooling gas path begins in the blade root and ends at the blade tip, where the cooling gas can escape through a cover plate arranged at the tip approximately centrally into a hot gas path surrounding the turbine blade.
  • the invention aims to remedy this situation.
  • the invention as characterized in the claims, deals with the problem of providing an improved embodiment for a turbine blade of the type mentioned, in particular, the required cooling capacity can be guaranteed longer and / or at the risk of deposits in the cooling gas path is reduced.
  • the invention is based on the general idea of providing an alternative flow path in areas of extreme cooling gas deflection for the particles entrained in the cooling gas flow with the aid of bypass openings and possibly outlet openings, which particles can follow the particles more easily than the cooling gas path due to the inertial forces acting.
  • a discharge of the particles from these areas allows and thus prevents their accumulation in these deflection. Since the invention thus prevents or at least inhibits the formation of a deposit layer, the cooling effect of the cooling gas flow can be ensured considerably longer, which increases the service life of the turbine blade.
  • the proposed bypass openings penetrate the jacket of one of the ribs, so that the resulting bypass flow remains in the cooling gas path.
  • the bypass opening on the jacket can penetrate a top plate arranged on the top, in which case the bypass flow exits into the hot gas path.
  • the According to the invention proposed outlet openings penetrate the jacket in the region of a rib, so that the cooling gas exits through these outlet openings in the hot gas path. With a corresponding dimensioning of the outlet openings, a cooling gas film applied to the outside of the jacket can thereby be formed at the same time, so that the outlet openings can also function as film cooling openings.
  • the bypass openings penetrate the respective rib or the cover plate parallel to the jacket and in particular along the inside of the jacket.
  • At least one of the outlet openings can have a bevelled or rounded edge at its inlet at least on the side arranged closer to the blade tip.
  • at least one of the outlet openings at its inlet on the side closer to the blade root can have a nose projecting inwards from the jacket.
  • a turbine blade 1 which can be designed as a blade or as a vane, has a jacket 2, which is aerodynamically shaped on its outer side 3. With this jacket 2, the turbine blade 1 extends in a hot gas path 4 of a turbine, not shown otherwise.
  • the hot gas flow in the hot gas path 4 is shown symbolically by an arrow 5.
  • the jacket 2 extends longitudinally from a blade tip 6, ie in its longitudinal direction, to a blade root 7 with which the blade 1 is anchored in a conventional manner in a rotor (blade) or in a housing (guide blade).
  • the jacket 2 consists of two side walls 8 and 9, wherein the first side wall 8 is arranged on the side facing away from the viewer side of the blade 1, so that only the inside thereof is visible, and wherein the second side wall 9 faces the viewer, but through the selected section is not recognizable.
  • the two side walls 8, 9 are connected to each other at an upstream side edge 10 of the blade 1 and at a downstream trailing edge 11 of the blade 1 and thereby enclose an interior 12 of the turbine blade 1.
  • the side walls 8, 9 are connected to each other in the interior 12 by internal or internal ribs 13.
  • approximately half of the ribs 13 extend from the leading edge 10 and from the trailing edge 11, respectively, while the other half of the ribs 13 (inner rib 13) extend from a central web 14 which extends extends here over the entire length of the blade 1.
  • the ribs 13 in the interior 12 of the blade 1 form two parallel-flowing cooling gas paths 15, which are identified in FIG. 1 by flow arrows.
  • Each of these cooling gas paths 15 carries a flow of cooling gas from the foot 7 to the tip 6 and thereby repeatedly causes a serpentine deflection directed from outside to inside and subsequently from the inside outwards.
  • the ribs 13 beginning at the front edge 10 or at the trailing edge 11 extend from the casing 2 on the one hand inwards and on the other hand toward the base 7, wherein these ribs 13 enclose an acute angle ⁇ with the casing 2 on the side facing the foot 7 which is about 45 ° in the present case.
  • This orientation of the outer ribs 13 in the region of the acute angle ⁇ is a very strong deflection of the Cooling gas flow, which can achieve an intense heat transfer between the jacket 2 and the cooling gas.
  • the turbine blade 1 has a cover plate 16 which contains for each cooling gas path 15 at least one outlet opening 17 through which the cooling gas exits into the hot gas path 4.
  • the turbine blade 1 has in its region of the cooling gas flow from the outside inwardly deflecting ribs 13, ie in the region of their on the leading edge 10 and at the trailing edge 11 beginning outer ribs 13 bypass openings 18 and outlet openings 19.
  • the bypass openings 18 are arranged in that they penetrate the respective rib 13 on the casing 2.
  • the outlet openings 19 are arranged in the region of the respective rib 13 so that they penetrate the jacket 2 in this rib 13.
  • At least one bypass opening 20 is provided here for each cooling gas path 15 and in the cover plate 16 at least, which penetrates the cover plate 16 on the jacket 2.
  • these bypass openings 18, 20 and the outlet openings 19 are each formed in the region of the front edge 10 or in the region of the rear edge 11 in the ribs 13 or in the cover plate 16 or in the casing 2.
  • bypass openings 18 and 20 are arranged so that they penetrate as in Fig. 2, the respective rib 13 and the cover plate 16 parallel to the jacket and in particular along an inner side 30 of the shell 2.
  • the cooling gas path 15 shown on the right in Fig. 1 the along the shell 2 successive outer ribs 13 each equipped with such a bypass opening 18, so that a plurality, in particular all the bypass openings 18 and 19 are arranged in alignment with each other in this particular embodiment.
  • bypass openings 18 and outlet openings 19 are arranged alternately in the case of the outer ribs 13 following one another along the wall 2.
  • the outlet openings 19 expediently penetrate the jacket 2 parallel to the respective outer rib 13.
  • the outlet openings 19 are positioned so that they are substantially aligned with an inflow side 21 of the respective rib 13.
  • a side 22 of the outlet opening 19 arranged closer to the tip 6 is aligned with this inflow side 21.
  • This relationship is illustrated by way of example in FIG. 1 in the cooling gas path 15 at the lowermost outer rib 13 shown on the right.
  • a special embodiment for the outlet opening 19 is also shown, which has a widening from the inside to the outside cross-section. Due to the cross-sectional geometry of the throttle resistance of the outlet opening 19 can be configured in a suitable manner.
  • At least one of the outlet openings 19 may be formed at its inlet 23 by special measures such that larger particles 24 entrained in the cooling gas flow are prevented from entering the outlet opening 19.
  • the inlet 23 may have a bevelled or rounded edge 25 at least at the side 22 arranged closer to the tip 6, which makes it more difficult for larger particles 24 to enter the outlet opening 19.
  • a nose 27 may be formed, which protrudes inwardly from the jacket 2 and so causes an aerodynamic repulsion of the particles 24. This measure also prevents larger particles 24 from being able to enter the outlet opening 19.
  • the bypass openings 18 suitably have a larger cross-section than the outlet openings 19th
  • bypass openings 18 on the one hand and the outlet openings 19 on the other hand are dimensioned so that still a sufficiently large flow of cooling gas through the or the cooling gas paths 15 can be ensured.
  • the turbine blade 1 functions as follows:
  • the cooling gas flow comes from the blade root 7 and follows for the most part the cooling gas path 15 along the flow-guiding ribs 13.
  • the cooling gas flow leads small particles, eg with a diameter of less than 0.5 mm, as well as larger particles, eg with a diameter of about 0, 5 mm to about 3 mm, with it.
  • the particles 24 entrained in the flow can not easily follow this strong deflection, since they basically follow a straight path due to the inertial forces.
  • This realization uses the invention in which the bypass openings 18, 20 or the outlet openings 19 are arranged there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (12)

  1. Aube de turbine comprenant une enveloppe (2) qui présente une première paroi latérale (8) et une deuxième paroi latérale (9), qui sont assemblées l'une à l'autre au niveau d'un bord avant côté d'afflux (10) et d'un bord arrière côté de sortie (11), qui s'étendent longitudinalement depuis une base (7) vers une pointe (6) et qui sont assemblées l'une à l'autre entre le bord avant (10) et le bord arrière (11) par plusieurs nervures intérieures (13), qui forment à l'intérieur (12) de l'aube de turbine (1) au moins un chemin de gaz de refroidissement (15), qui conduit un écoulement de gaz de refroidissement depuis la base (7) jusqu'à la pointe (6) et qui le dévie ce faisant plusieurs fois de l'extérieur vers l'intérieur et de l'intérieur vers l'extérieur en forme de serpentin, au moins une ouverture de sortie traversant au moins l'enveloppe (2) étant optionnellement disposée dans la région d'au moins une nervure (13) déviant l'écoulement de gaz de refroidissement de l'extérieur vers l'intérieur,
    caractérisée en ce que
    dans la région d'au moins une nervure (13) déviant l'écoulement de gaz de refroidissement de l'extérieur vers l'intérieur est disposée au moins une ouverture de dérivation (18) traversant la nervure (13) au niveau de l'enveloppe (2).
  2. Aube de turbine selon la revendication 1,
    caractérisée en ce que
    dans une plaque de recouvrement (16) disposée au niveau de la pointe (6) est également disposée au moins une ouverture de dérivation (20) traversant la plaque de recouvrement (16) au niveau de l'enveloppe (2).
  3. Aube de turbine selon la revendication 1 ou 2,
    caractérisée en ce que
    l'ouverture de dérivation (18) traverse la nervure (13) et/ou la plaque de recouvrement (16) parallèlement à l'enveloppe (2).
  4. Aube de turbine selon l'une quelconque des revendications 1 à 3,
    caractérisée en ce que
    l'ouverture de dérivation (18, 20) traverse la nervure (13) et/ou la plaque de recouvrement (16) le long d'un côté intérieur (30) de l'enveloppe (2).
  5. Aube de turbine selon l'une quelconque des revendications 1 à 4,
    caractérisée en ce que
    l'ouverture de sortie (19) traverse l'enveloppe (2) parallèlement à la nervure (13).
  6. Aube de turbine selon l'une quelconque des revendications 1 à 5,
    caractérisée en ce que
    l'ouverture de sortie (19) présente une section transversale s'élargissant depuis l'intérieur vers l'extérieur.
  7. Aube de turbine selon l'une quelconque des revendications 1 à 6,
    caractérisée en ce que
    l'ouverture de sortie (19) est essentiellement en affleurement avec un côté d'afflux (21) de la nervure (13).
  8. Aube de turbine selon l'une quelconque des revendications 1 à 7,
    caractérisée en ce que
    l'ouverture de sortie (19) présente au niveau de son entrée (23) au moins au niveau d'un côté (22) disposé plus près de la pointe (6), un bord biseauté ou arrondi (25) et/ou au niveau d'un côté (26) disposé plus près de la base (7) un nez (27) saillant vers l'intérieur depuis l'enveloppe (2).
  9. Aube de turbine selon l'une quelconque des revendications 1 à 8,
    caractérisée en ce que
    plusieurs ouvertures de dérivation (18, 20) sont disposées en affleurement l'une avec l'autre.
  10. Aube de turbine selon l'une quelconque des revendications 1 à 9,
    caractérisée en ce que
    dans le cas de nervures successives (13), les ouvertures de dérivation (18) et les ouvertures de sortie (19) sont disposées en alternance les unes avec les autres.
  11. Aube de turbine selon l'une quelconque des revendications 1 à 10,
    caractérisée en ce que
    les ouvertures de dérivation (18, 20) et/ou les ouvertures de sortie (19) sont disposées dans la région du bord avant (10) et/ou du bord arrière (11).
  12. Aube de turbine selon l'une quelconque des revendications 1 à 11,
    caractérisée en ce que
    les ouvertures de dérivation (18, 20) et/ou les ouvertures de sortie (19) sont disposées au niveau des nervures (13) qui dépassent vers l'intérieur et vers la base (7) depuis l'enveloppe (2).
EP03702263A 2002-03-25 2003-02-21 Aube de turbine refroidie Expired - Fee Related EP1488077B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH5072002 2002-03-25
CH507022002 2002-03-25
PCT/CH2003/000134 WO2003080998A1 (fr) 2002-03-25 2003-02-21 Aube de turbine refroidie

Publications (2)

Publication Number Publication Date
EP1488077A1 EP1488077A1 (fr) 2004-12-22
EP1488077B1 true EP1488077B1 (fr) 2006-07-12

Family

ID=28048290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03702263A Expired - Fee Related EP1488077B1 (fr) 2002-03-25 2003-02-21 Aube de turbine refroidie

Country Status (5)

Country Link
US (1) US7293962B2 (fr)
EP (1) EP1488077B1 (fr)
AU (1) AU2003205491A1 (fr)
DE (1) DE50304226D1 (fr)
WO (1) WO2003080998A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003205491A1 (en) 2002-03-25 2003-10-08 Alstom Technology Ltd Cooled turbine blade
GB0524735D0 (en) 2005-12-03 2006-01-11 Rolls Royce Plc Turbine blade
US7549843B2 (en) * 2006-08-24 2009-06-23 Siemens Energy, Inc. Turbine airfoil cooling system with axial flowing serpentine cooling chambers
US20090003987A1 (en) * 2006-12-21 2009-01-01 Jack Raul Zausner Airfoil with improved cooling slot arrangement
US7967567B2 (en) * 2007-03-27 2011-06-28 Siemens Energy, Inc. Multi-pass cooling for turbine airfoils
US7785070B2 (en) * 2007-03-27 2010-08-31 Siemens Energy, Inc. Wavy flow cooling concept for turbine airfoils
US8047788B1 (en) * 2007-10-19 2011-11-01 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall serpentine cooling
US10286407B2 (en) 2007-11-29 2019-05-14 General Electric Company Inertial separator
US8105033B2 (en) * 2008-06-05 2012-01-31 United Technologies Corporation Particle resistant in-wall cooling passage inlet
US8167558B2 (en) * 2009-01-19 2012-05-01 Siemens Energy, Inc. Modular serpentine cooling systems for turbine engine components
US8096772B2 (en) * 2009-03-20 2012-01-17 Siemens Energy, Inc. Turbine vane for a gas turbine engine having serpentine cooling channels within the inner endwall
JP2011085084A (ja) * 2009-10-16 2011-04-28 Ihi Corp タービン翼
US8616834B2 (en) * 2010-04-30 2013-12-31 General Electric Company Gas turbine engine airfoil integrated heat exchanger
US9074482B2 (en) 2012-04-24 2015-07-07 United Technologies Corporation Airfoil support method and apparatus
EP3149310A2 (fr) 2014-05-29 2017-04-05 General Electric Company Moteur à turbine, composants et leurs procédés de refroidissement
US9915176B2 (en) 2014-05-29 2018-03-13 General Electric Company Shroud assembly for turbine engine
US11033845B2 (en) 2014-05-29 2021-06-15 General Electric Company Turbine engine and particle separators therefore
EP3149311A2 (fr) 2014-05-29 2017-04-05 General Electric Company Moteur de turbine, et épurateurs de particules pour celui-ci
US10036319B2 (en) 2014-10-31 2018-07-31 General Electric Company Separator assembly for a gas turbine engine
US10167725B2 (en) 2014-10-31 2019-01-01 General Electric Company Engine component for a turbine engine
US10156157B2 (en) * 2015-02-13 2018-12-18 United Technologies Corporation S-shaped trip strips in internally cooled components
WO2016160029A1 (fr) 2015-04-03 2016-10-06 Siemens Aktiengesellschaft Bord de fuite de pale de turbine à canal d'armature à faible écoulement
US10428664B2 (en) 2015-10-15 2019-10-01 General Electric Company Nozzle for a gas turbine engine
US10174620B2 (en) 2015-10-15 2019-01-08 General Electric Company Turbine blade
US9988936B2 (en) 2015-10-15 2018-06-05 General Electric Company Shroud assembly for a gas turbine engine
US10704425B2 (en) 2016-07-14 2020-07-07 General Electric Company Assembly for a gas turbine engine
EP3473808B1 (fr) * 2017-10-19 2020-06-17 Siemens Aktiengesellschaft Pale d'aube pour une aube mobile de turbine à refroidissement intérieur ainsi que procédé de fabrication d'une telle pale
US10669896B2 (en) * 2018-01-17 2020-06-02 Raytheon Technologies Corporation Dirt separator for internally cooled components

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527543A (en) * 1965-08-26 1970-09-08 Gen Electric Cooling of structural members particularly for gas turbine engines
US3533712A (en) * 1966-02-26 1970-10-13 Gen Electric Cooled vane structure for high temperature turbines
US3533711A (en) * 1966-02-26 1970-10-13 Gen Electric Cooled vane structure for high temperature turbines
GB2165315B (en) 1984-10-04 1987-12-31 Rolls Royce Improvements in or relating to hollow fluid cooled turbine blades
US4753575A (en) * 1987-08-06 1988-06-28 United Technologies Corporation Airfoil with nested cooling channels
EP0340149B1 (fr) 1988-04-25 1993-05-19 United Technologies Corporation Moyens de dépoussiérage pour une aube refroidie par de l'air
US4820123A (en) * 1988-04-25 1989-04-11 United Technologies Corporation Dirt removal means for air cooled blades
US5700131A (en) 1988-08-24 1997-12-23 United Technologies Corporation Cooled blades for a gas turbine engine
GB2262314A (en) * 1991-12-10 1993-06-16 Rolls Royce Plc Air cooled gas turbine engine aerofoil.
US5368441A (en) * 1992-11-24 1994-11-29 United Technologies Corporation Turbine airfoil including diffusing trailing edge pedestals
US5611662A (en) * 1995-08-01 1997-03-18 General Electric Co. Impingement cooling for turbine stator vane trailing edge
US5842829A (en) * 1996-09-26 1998-12-01 General Electric Co. Cooling circuits for trailing edge cavities in airfoils
US5997251A (en) * 1997-11-17 1999-12-07 General Electric Company Ribbed turbine blade tip
US6220817B1 (en) 1997-11-17 2001-04-24 General Electric Company AFT flowing multi-tier airfoil cooling circuit
US5971708A (en) * 1997-12-31 1999-10-26 General Electric Company Branch cooled turbine airfoil
US5967752A (en) * 1997-12-31 1999-10-19 General Electric Company Slant-tier turbine airfoil
DE19921644B4 (de) 1999-05-10 2012-01-05 Alstom Kühlbare Schaufel für eine Gasturbine
GB2350867B (en) * 1999-06-09 2003-03-19 Rolls Royce Plc Gas turbine airfoil internal air system
US6186741B1 (en) * 1999-07-22 2001-02-13 General Electric Company Airfoil component having internal cooling and method of cooling
DE10064269A1 (de) * 2000-12-22 2002-07-04 Alstom Switzerland Ltd Komponente einer Strömungsmaschine mit Inspektionsöffnung
AU2003205491A1 (en) 2002-03-25 2003-10-08 Alstom Technology Ltd Cooled turbine blade

Also Published As

Publication number Publication date
EP1488077A1 (fr) 2004-12-22
US20050129508A1 (en) 2005-06-16
WO2003080998A1 (fr) 2003-10-02
US7293962B2 (en) 2007-11-13
DE50304226D1 (de) 2006-08-24
AU2003205491A1 (en) 2003-10-08

Similar Documents

Publication Publication Date Title
EP1488077B1 (fr) Aube de turbine refroidie
EP0902167B1 (fr) Dispositif de refroidissement pour les éléments d'une turbine à gas
DE60020007T2 (de) Internes Luftkühlungssystem für Turbinenschaufeln
DE69916368T2 (de) Partikelfalle im Kühlsystem von Gasturbinen
DE4119216C2 (de) Tropfenabscheider
EP0126399B1 (fr) Conduit de fluide présentant une construction réduite
EP1853800B1 (fr) Corps alveolaire a faces fissurees
DE102015213090A1 (de) Schaufel für eine Strömungskraftmaschine und Verfahren zu deren Herstellung
DE3341553A1 (de) Gasturbinentriebwerk mit einem teilchenabscheider
DE3539604C1 (de) Axialgeblaese
EP2367610A1 (fr) Séparateur en forme de plaque servant à extraire des liquides d'un flux de gaz
DE102010051638A1 (de) Gasturbinenbrennkammer mit einer Kühlluftzuführvorrichtung
WO2005008186A2 (fr) Dispositif pour determiner au moins un parametre d'une substance en ecoulement dans un conduit
DE112015001576T5 (de) Flüssigkeitsabscheidevorrichtung
EP1292760B1 (fr) Configuration d'une aube de turbine pouvant etre refroidie
WO2013083509A1 (fr) Dispositif de tamisage pour le tamisage d'une suspension fibreuse
EP2643595A1 (fr) Pompe à roue hélicocentrifuge autonettoyante présentant recirculation en aval de la roue à aubes
EP3473808A1 (fr) Pale d'aube pour une aube mobile de turbine à refroidissement intérieur ainsi que procédé de fabrication d'une telle pale
DE2726709C2 (de) Stoffauflaufvorrichtung einer Papiermaschine
EP2700791A1 (fr) Agencement séparateur d'huile et coiffe de tête de cylindre pour un moteur à combustion
DE4014574A1 (de) Abgasduesengelenk
DE1279538B (de) Zentrifugalabscheider
DE102011086205A1 (de) Flügel für einen Fasermassensortierer, Fasermassensortierer und Verfahren zur Sichtung von Fasermasse
DE102010010790A1 (de) Fluidischer Oszillator
DE102004034151A1 (de) Partikelabscheider

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50304226

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304226

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304226

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180219

Year of fee payment: 16

Ref country code: GB

Payment date: 20180216

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304226

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221