EP1488077B1 - Cooled turbine blade - Google Patents

Cooled turbine blade Download PDF

Info

Publication number
EP1488077B1
EP1488077B1 EP03702263A EP03702263A EP1488077B1 EP 1488077 B1 EP1488077 B1 EP 1488077B1 EP 03702263 A EP03702263 A EP 03702263A EP 03702263 A EP03702263 A EP 03702263A EP 1488077 B1 EP1488077 B1 EP 1488077B1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
cooling gas
shell
rib
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03702263A
Other languages
German (de)
French (fr)
Other versions
EP1488077A1 (en
Inventor
Reinhard Fried
Hans Wettstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1488077A1 publication Critical patent/EP1488077A1/en
Application granted granted Critical
Publication of EP1488077B1 publication Critical patent/EP1488077B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the invention relates to a turbine blade having the features of the preamble of claim 1.
  • Such a turbine blade which has a flow-around and aerodynamically shaped jacket.
  • This jacket has a first sidewall and a second sidewall joined together at an upstream leading edge and an outflow trailing edge extending longitudinally from a blade root to a blade tip and interconnected between leading and trailing edges by a plurality of inner ribs , These ribs form inside the turbine blade or inside the shell two cooling gas paths, each leading a flow of cooling gas from the foot to the tip of the turbine blade and thereby redirect the cooling gas flow serpentine multiple from outside to inside and from the inside out.
  • Such a serpentine cooling gas path thus consists of a series of 180 ° return bends.
  • the ribs are arranged so that they protrude in the one cooling gas path in the region of the leading edge and in the other cooling gas path in the region of the trailing edge of the jacket inwards and at an angle of about 45 ° to the blade root. This results in an intensive deceleration of the cooling gas flow, which improves the cooling effect.
  • Each cooling gas path begins in the blade root and ends at the blade tip, where the cooling gas can escape through a cover plate arranged at the tip approximately centrally into a hot gas path surrounding the turbine blade.
  • the invention aims to remedy this situation.
  • the invention as characterized in the claims, deals with the problem of providing an improved embodiment for a turbine blade of the type mentioned, in particular, the required cooling capacity can be guaranteed longer and / or at the risk of deposits in the cooling gas path is reduced.
  • the invention is based on the general idea of providing an alternative flow path in areas of extreme cooling gas deflection for the particles entrained in the cooling gas flow with the aid of bypass openings and possibly outlet openings, which particles can follow the particles more easily than the cooling gas path due to the inertial forces acting.
  • a discharge of the particles from these areas allows and thus prevents their accumulation in these deflection. Since the invention thus prevents or at least inhibits the formation of a deposit layer, the cooling effect of the cooling gas flow can be ensured considerably longer, which increases the service life of the turbine blade.
  • the proposed bypass openings penetrate the jacket of one of the ribs, so that the resulting bypass flow remains in the cooling gas path.
  • the bypass opening on the jacket can penetrate a top plate arranged on the top, in which case the bypass flow exits into the hot gas path.
  • the According to the invention proposed outlet openings penetrate the jacket in the region of a rib, so that the cooling gas exits through these outlet openings in the hot gas path. With a corresponding dimensioning of the outlet openings, a cooling gas film applied to the outside of the jacket can thereby be formed at the same time, so that the outlet openings can also function as film cooling openings.
  • the bypass openings penetrate the respective rib or the cover plate parallel to the jacket and in particular along the inside of the jacket.
  • At least one of the outlet openings can have a bevelled or rounded edge at its inlet at least on the side arranged closer to the blade tip.
  • at least one of the outlet openings at its inlet on the side closer to the blade root can have a nose projecting inwards from the jacket.
  • a turbine blade 1 which can be designed as a blade or as a vane, has a jacket 2, which is aerodynamically shaped on its outer side 3. With this jacket 2, the turbine blade 1 extends in a hot gas path 4 of a turbine, not shown otherwise.
  • the hot gas flow in the hot gas path 4 is shown symbolically by an arrow 5.
  • the jacket 2 extends longitudinally from a blade tip 6, ie in its longitudinal direction, to a blade root 7 with which the blade 1 is anchored in a conventional manner in a rotor (blade) or in a housing (guide blade).
  • the jacket 2 consists of two side walls 8 and 9, wherein the first side wall 8 is arranged on the side facing away from the viewer side of the blade 1, so that only the inside thereof is visible, and wherein the second side wall 9 faces the viewer, but through the selected section is not recognizable.
  • the two side walls 8, 9 are connected to each other at an upstream side edge 10 of the blade 1 and at a downstream trailing edge 11 of the blade 1 and thereby enclose an interior 12 of the turbine blade 1.
  • the side walls 8, 9 are connected to each other in the interior 12 by internal or internal ribs 13.
  • approximately half of the ribs 13 extend from the leading edge 10 and from the trailing edge 11, respectively, while the other half of the ribs 13 (inner rib 13) extend from a central web 14 which extends extends here over the entire length of the blade 1.
  • the ribs 13 in the interior 12 of the blade 1 form two parallel-flowing cooling gas paths 15, which are identified in FIG. 1 by flow arrows.
  • Each of these cooling gas paths 15 carries a flow of cooling gas from the foot 7 to the tip 6 and thereby repeatedly causes a serpentine deflection directed from outside to inside and subsequently from the inside outwards.
  • the ribs 13 beginning at the front edge 10 or at the trailing edge 11 extend from the casing 2 on the one hand inwards and on the other hand toward the base 7, wherein these ribs 13 enclose an acute angle ⁇ with the casing 2 on the side facing the foot 7 which is about 45 ° in the present case.
  • This orientation of the outer ribs 13 in the region of the acute angle ⁇ is a very strong deflection of the Cooling gas flow, which can achieve an intense heat transfer between the jacket 2 and the cooling gas.
  • the turbine blade 1 has a cover plate 16 which contains for each cooling gas path 15 at least one outlet opening 17 through which the cooling gas exits into the hot gas path 4.
  • the turbine blade 1 has in its region of the cooling gas flow from the outside inwardly deflecting ribs 13, ie in the region of their on the leading edge 10 and at the trailing edge 11 beginning outer ribs 13 bypass openings 18 and outlet openings 19.
  • the bypass openings 18 are arranged in that they penetrate the respective rib 13 on the casing 2.
  • the outlet openings 19 are arranged in the region of the respective rib 13 so that they penetrate the jacket 2 in this rib 13.
  • At least one bypass opening 20 is provided here for each cooling gas path 15 and in the cover plate 16 at least, which penetrates the cover plate 16 on the jacket 2.
  • these bypass openings 18, 20 and the outlet openings 19 are each formed in the region of the front edge 10 or in the region of the rear edge 11 in the ribs 13 or in the cover plate 16 or in the casing 2.
  • bypass openings 18 and 20 are arranged so that they penetrate as in Fig. 2, the respective rib 13 and the cover plate 16 parallel to the jacket and in particular along an inner side 30 of the shell 2.
  • the cooling gas path 15 shown on the right in Fig. 1 the along the shell 2 successive outer ribs 13 each equipped with such a bypass opening 18, so that a plurality, in particular all the bypass openings 18 and 19 are arranged in alignment with each other in this particular embodiment.
  • bypass openings 18 and outlet openings 19 are arranged alternately in the case of the outer ribs 13 following one another along the wall 2.
  • the outlet openings 19 expediently penetrate the jacket 2 parallel to the respective outer rib 13.
  • the outlet openings 19 are positioned so that they are substantially aligned with an inflow side 21 of the respective rib 13.
  • a side 22 of the outlet opening 19 arranged closer to the tip 6 is aligned with this inflow side 21.
  • This relationship is illustrated by way of example in FIG. 1 in the cooling gas path 15 at the lowermost outer rib 13 shown on the right.
  • a special embodiment for the outlet opening 19 is also shown, which has a widening from the inside to the outside cross-section. Due to the cross-sectional geometry of the throttle resistance of the outlet opening 19 can be configured in a suitable manner.
  • At least one of the outlet openings 19 may be formed at its inlet 23 by special measures such that larger particles 24 entrained in the cooling gas flow are prevented from entering the outlet opening 19.
  • the inlet 23 may have a bevelled or rounded edge 25 at least at the side 22 arranged closer to the tip 6, which makes it more difficult for larger particles 24 to enter the outlet opening 19.
  • a nose 27 may be formed, which protrudes inwardly from the jacket 2 and so causes an aerodynamic repulsion of the particles 24. This measure also prevents larger particles 24 from being able to enter the outlet opening 19.
  • the bypass openings 18 suitably have a larger cross-section than the outlet openings 19th
  • bypass openings 18 on the one hand and the outlet openings 19 on the other hand are dimensioned so that still a sufficiently large flow of cooling gas through the or the cooling gas paths 15 can be ensured.
  • the turbine blade 1 functions as follows:
  • the cooling gas flow comes from the blade root 7 and follows for the most part the cooling gas path 15 along the flow-guiding ribs 13.
  • the cooling gas flow leads small particles, eg with a diameter of less than 0.5 mm, as well as larger particles, eg with a diameter of about 0, 5 mm to about 3 mm, with it.
  • the particles 24 entrained in the flow can not easily follow this strong deflection, since they basically follow a straight path due to the inertial forces.
  • This realization uses the invention in which the bypass openings 18, 20 or the outlet openings 19 are arranged there.

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Turbinenschaufel mit den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a turbine blade having the features of the preamble of claim 1.

Stand der TechnikState of the art

Aus der DE 198 59 787 A1 ist eine derartige Turbinenschaufel bekannt, die einen umströmten und aerodynamisch geformten Mantel besitzt. Dieser Mantel weist eine erste Seitenwand und eine zweite Seitenwand auf, die an einer anströmseitigen Vorderkante und an einer abströmseitigen Hinterkante miteinander verbunden sind, die sich longitudinal von einem Schaufelfuß bis zu einer Schaufelspitze erstrecken und die zwischen Vorderkante und Hinterkante durch mehrere innere Rippen miteinander verbunden sind. Diese Rippen bilden im Inneren der Turbinenschaufel bzw. im Inneren des Mantels zwei Kühlgaspfade, die jeweils eine Kühlgasströmung vom Fuß zur Spitze der Turbinenschaufel führen und die Kühlgasströmung dabei mehrfach von außen nach innen und von innen nach außen serpentinenförmig umlenken.From DE 198 59 787 A1, such a turbine blade is known, which has a flow-around and aerodynamically shaped jacket. This jacket has a first sidewall and a second sidewall joined together at an upstream leading edge and an outflow trailing edge extending longitudinally from a blade root to a blade tip and interconnected between leading and trailing edges by a plurality of inner ribs , These ribs form inside the turbine blade or inside the shell two cooling gas paths, each leading a flow of cooling gas from the foot to the tip of the turbine blade and thereby redirect the cooling gas flow serpentine multiple from outside to inside and from the inside out.

Ein derartiger serpentinenförmiger Kühlgaspfad besteht somit aus einer Aneinanderreihung von 180°-Umkehrbögen. Die Rippen sind dabei so angeordnet, dass sie in dem einen Kühlgaspfad im Bereich der Vorderkante und im anderen Kühlgaspfad im Bereich der Hinterkante vom Mantel nach innen und mit einem Winkel von etwa 45° zum Schaufelfuß hin abstehen. Hierdurch ergibt sich eine intensive Abbremsung der Kühlgasströmung, was die Kühlwirkung verbessert.Such a serpentine cooling gas path thus consists of a series of 180 ° return bends. The ribs are arranged so that they protrude in the one cooling gas path in the region of the leading edge and in the other cooling gas path in the region of the trailing edge of the jacket inwards and at an angle of about 45 ° to the blade root. This results in an intensive deceleration of the cooling gas flow, which improves the cooling effect.

Jeder Kühlgaspfad beginnt im Schaufelfuß und endet an der Schaufelspitze, wo das Kühlgas durch eine an der Spitze angeordnete Deckplatte etwa mittig in einen die Turbinenschaufel umgebenden Heißgaspfad austreten kann.Each cooling gas path begins in the blade root and ends at the blade tip, where the cooling gas can escape through a cover plate arranged at the tip approximately centrally into a hot gas path surrounding the turbine blade.

Sofern im Kühlgas feinere und gröbere Partikel mitgeführt werden, können sich diese in den die Kühlgasströmung in Richtung Schaufelfuß ablenkenden Umlenkbereichen ansammeln und ablagern. Hierdurch kann sich eine mit der Zeit anwachsende Ablagerungsschicht ausbilden, die in der Regel aus Oxiden besteht. Diese Ablagerungsschicht besitzt regelmäßig eine geringere Wärmeleitfähigkeit als der Mantel und die Rippen, so dass sich die Kühlwirkung der Kühlgasströmung in diesem Ablagerungsbereich reduziert. In den davon betroffenen Bereichen der Turbinenschaufel kann es daher zu örtlichen Überhitzungen kommen, mit der Folge, dass in den gefährdeten Bereichen der Schaufel Risse, Anschmelzungen und Gefügeveränderungen auftreten können. Durch die aufgrund von Ablagerungen verschlechterte Kühlung verkürzt sich somit die Lebenszeit der Turbinenschaufel.If finer and coarser particles are entrained in the cooling gas, these can accumulate and deposit in the deflecting regions which deflect the cooling gas flow in the direction of the blade root. As a result, a deposition layer which increases over time can form, which as a rule consists of oxides. This deposition layer regularly has a lower thermal conductivity than the shell and the ribs, so that the cooling effect of the cooling gas flow is reduced in this deposition area. In the affected areas of the turbine blade, it may therefore come to local overheating, with the result that in the vulnerable areas of the blade cracks, melting and microstructural changes can occur. Due to the deterioration due to deposits cooling thus shortens the life of the turbine blade.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Turbinenschaufel der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, bei der insbesondere die geforderte Kühlleistung länger gewährleistet werden kann und/oder bei der die Gefahr von Ablagerungen im Kühlgaspfad reduziert ist.The invention aims to remedy this situation. The invention, as characterized in the claims, deals with the problem of providing an improved embodiment for a turbine blade of the type mentioned, in particular, the required cooling capacity can be guaranteed longer and / or at the risk of deposits in the cooling gas path is reduced.

Erfindungsgemäß wird dieses Problem durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.According to the invention, this problem is solved by the subject matter of the independent claim. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung beruht auf dem allgemeinen Gedanken, in Bereichen einer extremen Kühlgasumlenkung für die in der Kühlgasströmung mitgeführten Partikel mit Hilfe von Bypassöffnungen und gegebenenfalls Austrittsöffnungen einen alternativen Strömungspfad bereitzustellen, dem die Partikel aufgrund der wirkenden Trägheitskräfte leichter folgen können als dem Kühlgaspfad. Mit anderen Worten, genau in den Bereichen des Kühlgaspfads, in denen es zu einer Partikelanlagerung kommen könnte, wird mittels der Bypassöffnungen und gegebenenfalls Austrittsöffnungen ein Austrag der Partikel aus diesen Bereichen ermöglicht und so deren Anlagerung in diesen Umlenkbereichen verhindert. Da die Erfindung somit die Ausbildung einer Ablagerungsschicht verhindert oder zumindest hemmt, kann die Kühlwirkung der Kühlgasströmung erheblich länger gewährleistet werden, wodurch sich die Lebensdauer der Turbinenschaufel erhöht.The invention is based on the general idea of providing an alternative flow path in areas of extreme cooling gas deflection for the particles entrained in the cooling gas flow with the aid of bypass openings and possibly outlet openings, which particles can follow the particles more easily than the cooling gas path due to the inertial forces acting. In other words, exactly in the areas of the cooling gas path in which it could come to a particle accumulation, by means of the bypass openings and optionally outlet openings, a discharge of the particles from these areas allows and thus prevents their accumulation in these deflection. Since the invention thus prevents or at least inhibits the formation of a deposit layer, the cooling effect of the cooling gas flow can be ensured considerably longer, which increases the service life of the turbine blade.

Erfindungsgemäß durchdringen die vorgeschlagenen Bypassöffnungen am Mantel eine der Rippen, so dass die so entstehende Bypassströmung im Kühlgaspfad verbleibt. Im Bereich einer an der Spitze angeordneten Rippe kann die Bypassöffnung am Mantel eine an der Spitze angeordnete Deckplatte durchdringen, wobei dann die Bypassströmung in den Heißgaspfad austritt. Die erfindungsgemäß vorgeschlagenen Austrittsöffnungen durchdringen im Bereich einer Rippe den Mantel, so dass das Kühlgas durch diese Austrittsöffnungen in den Heißgaspfad austritt. Bei einer entsprechenden Dimensionierung der Austrittsöffnungen kann dadurch gleichzeitig ein sich an der Außenseite des Mantels anlegender Kühlgasfilm ausgebildet werden, so dass die Austrittsöffnungen auch als Filmkühlöffnungen arbeiten können.According to the invention, the proposed bypass openings penetrate the jacket of one of the ribs, so that the resulting bypass flow remains in the cooling gas path. In the region of a rib arranged at the tip, the bypass opening on the jacket can penetrate a top plate arranged on the top, in which case the bypass flow exits into the hot gas path. The According to the invention proposed outlet openings penetrate the jacket in the region of a rib, so that the cooling gas exits through these outlet openings in the hot gas path. With a corresponding dimensioning of the outlet openings, a cooling gas film applied to the outside of the jacket can thereby be formed at the same time, so that the outlet openings can also function as film cooling openings.

Entsprechend einer bevorzugten Ausführungsform durchdringen die Bypassöffnungen die jeweilige Rippe bzw. die Deckplatte parallel zum Mantel und insbesondere entlang der Innenseite des Mantels. Durch diese Merkmale ergibt sich für den Partikelweg keine oder nur eine minimale Umlenkung, so daß die Partikel diesem alternativen Strömungspfad trägheitsbedingt einfach folgen können.According to a preferred embodiment, the bypass openings penetrate the respective rib or the cover plate parallel to the jacket and in particular along the inside of the jacket. As a result of these features, there is no or only minimal deflection for the particle path, so that the particles can easily follow this alternative flow path as a result of inertia.

Entsprechendes gilt für die Austrittsöffnung.en, wenn diese den Mantel im Bereich der jeweiligen Rippe parallel zu dieser Rippe durchdringen und insbesondere im wesentlichen mit einer Anströmseite der jeweiligen Rippe fluchten.The same applies to the Austrittsöffnung.en, if they penetrate the jacket in the region of the respective rib parallel to this rib and in particular substantially aligned with an inflow side of the respective rib.

Entsprechend einer besonderen Weiterbildung kann zumindest eine der Austrittsöffnungen an ihrem Eingang wenigstens an der näher an der Schaufelspitze angeordneten Seite eine abgeschrägte oder abgerundete Kante aufweisen. Alternativ oder zusätzlich kann wenigstens eine der Austrittsöffnungen an ihrem Eingang an der näher am Schaufelfuß angeordneten Seite eine vom Mantel nach innen vorstehenden Nase aufweisen. Die aufgezeigten Maßnahmen verhindern ein Verstopfen der jeweiligen Austrittsöffnung durch zu große Partikel, in dem durch geometrische und/oder aerodynamische Maßnahmen verhindert wird, dass zu große Partikel in die jeweilige Austrittsöffnung eintreten können.According to a particular refinement, at least one of the outlet openings can have a bevelled or rounded edge at its inlet at least on the side arranged closer to the blade tip. Alternatively or additionally, at least one of the outlet openings at its inlet on the side closer to the blade root can have a nose projecting inwards from the jacket. The measures indicated prevent clogging of the respective outlet opening due to particles which are too large, in which it is prevented by geometric and / or aerodynamic measures that particles which are too large can enter the respective outlet opening.

Weitere wichtige Merkmale und Vorteile der erfindungsgemäßen Turbinenschaufel ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Other important features and advantages of the turbine blade according to the invention will become apparent from the subclaims, from the drawings and from the associated description of the figures with reference to the drawings.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ein bevorzugtes Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird in der nachfolgenden Beschreibung näher erläutert wobei sich gleiche Bezugszeichen auf gleiche oder funktional gleiche oder ähnliche Bauteile beziehen. Es zeigen, jeweils schematisch,

Fig. 1
einen Längsschnitt durch eine erfindungsgemäße Turbinenschaufel,
Fig. 2
eine vergrößerte Ansicht auf ein Detail II aus Fig. 1.
A preferred embodiment of the invention is illustrated in the drawings and will be explained in more detail in the following description wherein like reference numerals refer to identical or functionally identical or similar components. Show, in each case schematically,
Fig. 1
a longitudinal section through a turbine blade according to the invention,
Fig. 2
an enlarged view of a detail II of FIG. 1.

Wege zur Ausführung der ErfindungWays to carry out the invention

Entsprechend Fig. 1 besitzt eine erfindungsgemäße Turbinenschaufel 1, die als Laufschaufel oder als Leitschaufel ausgebildet sein kann, einen Mantel 2, der an seiner Außenseite 3 aerodynamisch geformt ist. Mit diesem Mantel 2 erstreckt sich die Turbinenschaufel 1 in einen Heißgaspfad 4 einer im übrigen nicht gezeigten Turbine. Die Heißgasströmung im Heißgaspfad 4 ist durch einen Pfeil 5 symbolisch dargestellt. Der Mantel 2 erstreckt sich von einer Schaufelspitze 6 longitudinal, also in ihrer Längsrichtung bis zu einem Schaufelfuß 7, mit dem die Schaufel 1 in einem Rotor (Laufschaufel) oder in einem Gehäuse (Leitschaufel) in üblicher Weise verankert ist.1, a turbine blade 1 according to the invention, which can be designed as a blade or as a vane, has a jacket 2, which is aerodynamically shaped on its outer side 3. With this jacket 2, the turbine blade 1 extends in a hot gas path 4 of a turbine, not shown otherwise. The hot gas flow in the hot gas path 4 is shown symbolically by an arrow 5. The jacket 2 extends longitudinally from a blade tip 6, ie in its longitudinal direction, to a blade root 7 with which the blade 1 is anchored in a conventional manner in a rotor (blade) or in a housing (guide blade).

Der Mantel 2 besteht aus zwei Seitenwänden 8 und 9, wobei die erste Seitenwand 8 auf der vom Betrachter abgewandten Seite der Schaufel 1 angeordnet ist, so dass nur deren Innenseite erkennbar ist, und wobei die zweite Seitenwand 9 dem Betrachter zugewandt ist, jedoch durch den gewählten Schnitt nicht erkennbar ist. Die beiden Seitenwände 8, 9 sind an einer anströmseitigen Vorderkante 10 der Schaufel 1 sowie an einer abströmseitigen Hinterkante 11 der Schaufel 1 miteinander verbunden und umhüllen dabei ein Inneres 12 der Turbinenschaufel 1.The jacket 2 consists of two side walls 8 and 9, wherein the first side wall 8 is arranged on the side facing away from the viewer side of the blade 1, so that only the inside thereof is visible, and wherein the second side wall 9 faces the viewer, but through the selected section is not recognizable. The two side walls 8, 9 are connected to each other at an upstream side edge 10 of the blade 1 and at a downstream trailing edge 11 of the blade 1 and thereby enclose an interior 12 of the turbine blade 1.

Die Seitenwände 8, 9 sind im Inneren 12 durch innenliegende oder innere Rippen 13 miteinander verbunden. Bei der hier gezeigten speziellen Ausführungsform geht etwa die Hälfte der Rippen 13 (äußere Rippe 13) von der Vorderkante 10 bzw. von der Hinterkante 11 aus, während die andere Hälfte der Rippen 13 (innere Rippe 13) von einem Mittelsteg 14 ausgeht, der sich hier über die gesamte Länge der Schaufel 1 erstreckt. Durch diese Bauweise bilden die Rippen 13 im Inneren 12 der Schaufel 1 zwei parallel durchströmte Kühlgaspfade 15 aus, die in Fig. 1 durch Strömungspfeile gekennzeichnet sind. Jeder dieser Kühlgaspfade 15 führt eine Kühlgasströmung vom Fuß 7 zur Spitze 6 und bewirkt dabei mehrfach eine von außen nach innen und nachfolgend von innen nach außen gerichtete, serpentinenförmige Umlenkung.The side walls 8, 9 are connected to each other in the interior 12 by internal or internal ribs 13. In the particular embodiment shown here, approximately half of the ribs 13 (outer rib 13) extend from the leading edge 10 and from the trailing edge 11, respectively, while the other half of the ribs 13 (inner rib 13) extend from a central web 14 which extends extends here over the entire length of the blade 1. As a result of this design, the ribs 13 in the interior 12 of the blade 1 form two parallel-flowing cooling gas paths 15, which are identified in FIG. 1 by flow arrows. Each of these cooling gas paths 15 carries a flow of cooling gas from the foot 7 to the tip 6 and thereby repeatedly causes a serpentine deflection directed from outside to inside and subsequently from the inside outwards.

Die an der Vorderkante 10 bzw. an der Hinterkante 11 beginnenden Rippen 13 erstrecken sich dabei vom Mantel 2 einerseits nach innen und anderseits zum Fuß 7 hin, wobei diese Rippen 13 mit dem Mantel 2 auf der dem Fuß 7 zugewandten Seite einen spitzen Winkel α einschließen, der im vorliegenden Fall etwa 45° beträgt. Durch diese Orientierung der äußeren Rippen 13 erfolgt im Bereich des spitzen Winkels α eine sehr starke Umlenkung der Kühlgasströmung, wodurch sich eine intensive Wärmeübertragung zwischen Mantel 2 und Kühlgas erzielen läßt.The ribs 13 beginning at the front edge 10 or at the trailing edge 11 extend from the casing 2 on the one hand inwards and on the other hand toward the base 7, wherein these ribs 13 enclose an acute angle α with the casing 2 on the side facing the foot 7 which is about 45 ° in the present case. By this orientation of the outer ribs 13 in the region of the acute angle α is a very strong deflection of the Cooling gas flow, which can achieve an intense heat transfer between the jacket 2 and the cooling gas.

Im Bereich ihrer Spitze 6 weist die Turbinenschaufel 1 eine Deckplatte 16 auf, die für jeden Kühlgaspfad 15 wenigstens eine Auslassöffnung 17 enthält, durch die das Kühlgas in den Heißgaspfad 4 austritt.In the region of its tip 6, the turbine blade 1 has a cover plate 16 which contains for each cooling gas path 15 at least one outlet opening 17 through which the cooling gas exits into the hot gas path 4.

Erfindungsgemäß besitzt die Turbinenschaufel 1 im Bereich ihrer die Kühlgasströmung von außen nach innen umlenkenden Rippen 13, also im Bereich ihrer, an der Vorderkante 10 bzw. an der Hinterkante 11 beginnenden äußeren Rippen 13 Bypassöffnungen 18 und Austrittsöffnungen 19. Die Bypassöffnungen 18 sind dabei so angeordnet, dass sie die jeweilige Rippe 13 am Mantel 2 durchdringen. Im Unterschied dazu sind die Austrittsöffnungen 19 im Bereich der jeweiligen Rippe 13 so angeordnet, dass sie bei dieser Rippe 13 den Mantel 2 durchdringen.According to the invention, the turbine blade 1 has in its region of the cooling gas flow from the outside inwardly deflecting ribs 13, ie in the region of their on the leading edge 10 and at the trailing edge 11 beginning outer ribs 13 bypass openings 18 and outlet openings 19. The bypass openings 18 are arranged in that they penetrate the respective rib 13 on the casing 2. In contrast, the outlet openings 19 are arranged in the region of the respective rib 13 so that they penetrate the jacket 2 in this rib 13.

Außerdem ist hier für jeden Kühlgaspfad 15 auch in der Deckplatte 16 wenigstens jeweils eine Bypassöffnung 20 vorgesehen, welche die Deckplatte 16 am Mantel 2 durchdringt.In addition, at least one bypass opening 20 is provided here for each cooling gas path 15 and in the cover plate 16 at least, which penetrates the cover plate 16 on the jacket 2.

Bei der hier gezeigten Ausführungsform sind diese Bypassöffnungen 18, 20 und die Austrittsöffnungen 19 jeweils im Bereich der Vorderkante 10 bzw. im Bereich der Hinterkante 11 in den Rippen 13 bzw. in der Deckplatte 16 bzw. im Mantel 2 ausgebildet.In the embodiment shown here, these bypass openings 18, 20 and the outlet openings 19 are each formed in the region of the front edge 10 or in the region of the rear edge 11 in the ribs 13 or in the cover plate 16 or in the casing 2.

Zweckmäßig sind die Bypassöffnungen 18 bzw. 20 so angeordnet, dass sie wie in Fig. 2 die jeweilige Rippe 13 bzw. die Deckplatte 16 parallel zum Mantel und insbesondere entlang einer Innenseite 30 des Mantels 2 durchdringen. Bei dem in Fig. 1 rechts dargestellten Kühlgaspfad 15 sind die entlang des Mantels 2 aufeinander folgenden äußeren Rippen 13 jeweils mit einer derartigen Bypassöffnung 18 ausgestattet, so dass mehrere, insbesondere sämtliche Bypassöffnungen 18 bzw. 19 bei dieser speziellen Ausführungsform zueinander fluchtend angeordnet sind. Im Unterschied dazu sind bei dem in Fig. 1 links dargestellten Strömungspfad 15 bei den entlang der Wand 2 aufeinander folgenden äußeren Rippen 13 Bypassöffnungen 18 und Austrittsöffnungen 19 wechselweise angeordnet.Suitably, the bypass openings 18 and 20 are arranged so that they penetrate as in Fig. 2, the respective rib 13 and the cover plate 16 parallel to the jacket and in particular along an inner side 30 of the shell 2. In the cooling gas path 15 shown on the right in Fig. 1, the along the shell 2 successive outer ribs 13 each equipped with such a bypass opening 18, so that a plurality, in particular all the bypass openings 18 and 19 are arranged in alignment with each other in this particular embodiment. In contrast to this, in the flow path 15 shown on the left in FIG. 1, bypass openings 18 and outlet openings 19 are arranged alternately in the case of the outer ribs 13 following one another along the wall 2.

Die Austrittsöffnungen 19 durchdringen den Mantel 2 zweckmäßig parallel zur jeweiligen äußeren Rippe 13. Entsprechend der hier gezeigten vorteilhaften Ausführungsform sind die Austrittsöffnungen 19 dabei so positioniert, dass sie im wesentlichen mit einer Anströmseite 21 der jeweiligen Rippe 13 fluchten. Im vorliegenden Fall fluchtet dabei eine näher an der Spitze 6 angeordnete Seite 22 der Austrittsöffnung 19 mit dieser Anströmseite 21. Dieser Zusammenhang ist in Fig. 1 exemplarisch im rechts dargestellten Kühlgaspfad 15 bei der untersten äußeren Rippe 13 näher bezeichnet. Bei dieser unteren äußeren Rippe 13 ist außerdem eine spezielle Ausführungsform für die Austrittsöffnung 19 dargestellt, die einen sich von innen nach außen erweiternden Querschnitt besitzt. Durch die Querschnittsgeometrie kann der Drosselwiderstand der Austrittsöffnung 19 in geeigneter Weise ausgestaltet werden.The outlet openings 19 expediently penetrate the jacket 2 parallel to the respective outer rib 13. According to the advantageous embodiment shown here, the outlet openings 19 are positioned so that they are substantially aligned with an inflow side 21 of the respective rib 13. In the present case, a side 22 of the outlet opening 19 arranged closer to the tip 6 is aligned with this inflow side 21. This relationship is illustrated by way of example in FIG. 1 in the cooling gas path 15 at the lowermost outer rib 13 shown on the right. In this lower outer rib 13, a special embodiment for the outlet opening 19 is also shown, which has a widening from the inside to the outside cross-section. Due to the cross-sectional geometry of the throttle resistance of the outlet opening 19 can be configured in a suitable manner.

Entsprechend Fig. 2 kann wenigstens eine der Austrittsöffnungen 19 an ihrem Eingang 23 durch spezielle Maßnahmen so ausgebildet sein, dass größere Partikel 24, die von der Kühlgasströmung mitgeführt werden, daran gehindert werden, in die Austrittsöffnung 19 einzutreten. Hierdurch kann ein Verstopfen der Austrittsöffnung 19 durch zu große Partikel 24 vermieden werden. Beispielhaft kann der Eingang 23 zumindest an der näher an der Spitze 6 angeordneten Seite 22 eine abgeschrägte oder abgerundete Kante 25 aufweisen, die es größeren Partikeln 24 erschwert, in die Austrittsöffnung 19 einzutreten. Zusätzlich oder alternativ kann am Eingang 23 an einer näher am Fuß 7 angeordneten Seite 26 der Austrittsöffnung 19 eine Nase 27 ausgebildet sein, die vom Mantel 2 nach innen vorsteht und so eine aerodynamische Abweisung der Partikel 24 bewirkt. Auch diese Maßnahme hindert größere Partikel 24 daran, in die Austrittsöffnung 19 eintreten zu können. Die Bypassöffnungen 18 besitzen zweckmäßig einen größeren Querschnitt als die Austrittsöffnungen 19.According to FIG. 2, at least one of the outlet openings 19 may be formed at its inlet 23 by special measures such that larger particles 24 entrained in the cooling gas flow are prevented from entering the outlet opening 19. As a result, clogging of the outlet opening 19 by particles 24 that are too large can be avoided. By way of example, the inlet 23 may have a bevelled or rounded edge 25 at least at the side 22 arranged closer to the tip 6, which makes it more difficult for larger particles 24 to enter the outlet opening 19. Additionally or Alternatively, at the entrance 23 at a closer to the foot 7 arranged side 26 of the outlet opening 19 a nose 27 may be formed, which protrudes inwardly from the jacket 2 and so causes an aerodynamic repulsion of the particles 24. This measure also prevents larger particles 24 from being able to enter the outlet opening 19. The bypass openings 18 suitably have a larger cross-section than the outlet openings 19th

Es ist klar, dass die Bypassöffnungen 18 einerseits und die Austrittsöffnungen 19 andererseits so dimensioniert sind, dass nach wie vor ein hinreichend großer Kühlgasstrom durch den oder die Kühlgaspfade 15 gewährleistet werden kann.It is clear that the bypass openings 18 on the one hand and the outlet openings 19 on the other hand are dimensioned so that still a sufficiently large flow of cooling gas through the or the cooling gas paths 15 can be ensured.

Die erfindungsgemäße Turbinenschaufel 1 funktioniert wie folgt:The turbine blade 1 according to the invention functions as follows:

Die Kühlgasströmung kommt vom Schaufelfuß 7 und folgt zum überwiegenden Teil dem Kühlgaspfad 15 entlang den strömungsführenden Rippen 13. Der Kühlgasstrom führt kleine Partikel, z.B. mit einem Durchmesser von weniger als 0,5 mm, sowie größere Partikel, z.B. mit einem Durchmesser von etwa 0,5 mm bis etwa 3 mm, mit sich. Im Bereich einer Strömungsumlenkung zwischen einer äußeren Rippe 13 und dem Mantel 2 können die in der Strömung mitgeführten Partikel 24 dieser starken Umlenkung nicht ohne weiteres folgen, da sie aufgrund der Trägheitskräfte grundsätzlich einer geraden Bahn folgen. Diese Erkenntnis nutzt die Erfindung, in dem gerade dort die Bypassöffnungen 18, 20 bzw. die Austrittsöffnungen 19 angeordnet sind. Dementsprechend können vor allem schwerere gröbere Partikel 24 entsprechend einem mit unterbrochener Linie dargestellten Pfeil 28 durch die Bypassöffnung 18 die jeweilige Rippe 13 durchströmen. Kleiner Partikel 24 können ebenso durch die Bypassöffnung 18 strömen. Des weiteren können kleinere Partikel 24 auch entsprechend einem mit gepunkteter Linie gezeichneten Pfeil 29 durch die Austrittsöffnung 19 strömen und durch den Mantel 2 hindurch in den Heißgaspfad 4 eintreten. Das Druckgefälle an der Austrittsöffnung 19 begünstigt dabei den Eintritt leichterer Partikel 24 in die Austrittsöffnung 19 während schwerere Partikel 24 eher die Bypassöffnung 18 durchströmen. Entsprechendes gilt für die Bypassöffnung 20 in der Deckplatte 16, die im Bereich dieser Bypassöffnung 20 die Funktion der äußeren Rippe 13, also die Strömungsumleitung übernimmt. Durch die Bypassöffnung 20 gelangen die Partikel 24 ebenfalls in den Heißgaspfad 4.The cooling gas flow comes from the blade root 7 and follows for the most part the cooling gas path 15 along the flow-guiding ribs 13. The cooling gas flow leads small particles, eg with a diameter of less than 0.5 mm, as well as larger particles, eg with a diameter of about 0, 5 mm to about 3 mm, with it. In the area of a flow deflection between an outer rib 13 and the jacket 2, the particles 24 entrained in the flow can not easily follow this strong deflection, since they basically follow a straight path due to the inertial forces. This realization uses the invention in which the bypass openings 18, 20 or the outlet openings 19 are arranged there. Accordingly, especially heavier coarser particles 24 can flow through the respective rib 13 in accordance with an arrow 28 shown by a broken line through the bypass opening 18. Small particles 24 may also flow through the bypass port 18. Furthermore, smaller particles 24 may also flow through the exit opening 19 in accordance with a dotted line arrow 29 and enter through the jacket 2 into the hot gas path 4. The Pressure gradient at the outlet opening 19 thereby promotes the entry of lighter particles 24 into the outlet opening 19 while heavier particles 24 rather flow through the bypass opening 18. The same applies to the bypass opening 20 in the cover plate 16, which assumes the function of the outer rib 13, so the flow diversion in the region of this bypass opening 20. Through the bypass opening 20, the particles 24 also enter the hot gas path. 4

Mit Hilfe der Bypassöffnungen 18, 20 sowie der Austrittsöffnungen 19 wird effektiv eine Ablagerung im Umlenkbereich zwischen Rippe 13 und Mantel 2 sowie zwischen Deckplatte 16 und Mantel 2 verhindert. Da somit bei der erfindungsgemäßen Turbinenschaufel 1 innerhalb der Kühlgaspfade 15 Materialablagerungen vermieden oder gehemmt werden, kann für eine lange Zeit die geforderte Kühlwirkung gewährleistet werden, was mit einer erhöhten Lebensdauer für die Turbinenschaufel 1 einhergeht.With the help of the bypass openings 18, 20 and the outlet openings 19 effectively a deposit in the deflection between the rib 13 and shell 2 and between the cover plate 16 and casing 2 is prevented. Since 15 material deposits are thus avoided or inhibited in the turbine blade 1 according to the invention within the cooling gas paths, the required cooling effect can be ensured for a long time, which is associated with an increased service life for the turbine blade 1.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Turbinenschaufelturbine blade
22
Mantelcoat
33
Außenseite von 2Outside of 2
44
HeißgaspfadHot gas path
55
HeißgasströmungHot gas flow
66
Spitze von 1Tip of 1
77
Fuß von 1Foot of 1
88th
erste Seitenwand von 2first side wall of 2
99
zweite Seitenwand von 2second side wall of 2
1010
Vorderkante von 1 bzw. 2Leading edge of 1 or 2
1111
Hinterkante von 1 bzw. 2Trailing edge of 1 or 2
1212
Inneres von 1Inside of 1
1313
Ripperib
1414
Mittelstegcenter web
1515
KühlgaspfadCooling gas path
1616
Deckplattecover plate
1717
Auslassöffnung in 16Outlet opening in 16
1818
Bypassöffnung in 13Bypass opening in 13
1919
Austrittsöffnung in 2Outlet opening in 2
2020
Bypassöffnung in 16Bypass opening in 16
2121
Anströmseite von 13Upstream side of 13
2222
6 zugewandte Seite von 196 facing side of 19
2323
Eingang von 19Entrance from 19
2424
Partikelparticle
2525
abgerundete Kante bei 23rounded edge at 23
2626
7 zugewandte Seite von 197 facing side of 19
2727
Nase bei 23Nose at 23
2828
Strömung durch 18, 20Flow through 18, 20
2929
Strömung durch 19Flow through 19
3030
Innenseite von 2Inside of 2

Claims (12)

  1. Turbine blade/vane with a shell (2), which has a first side wall (8) and a second side wall (9), which are connected together at a leading edge (10) at the incident flow end and at a trailing edge (11) at the departing flow end, which extend longitudinally from a root (7) to a tip (6) and which are connected together between leading edge (10) and trailing edge (11) by a plurality of inner ribs (13), which form at least one cooling gas path (15) on the inside (12) of the turbine blade/vane (1), which cooling gas path (15) guides a cooling gas flow from the root (7) to the tip (6) and, in the process, deflects it several times in serpentine shape from the outside to the inside and from the inside to the outside, where, optionally, in the region of at least one rib (13) deflecting the cooling gas flow from the outside to the inside, at least one outlet opening penetrating the shell (2) is arranged, characterized in that, in the region of at least one rib (13) deflecting the cooling gas flow from the outside to the inside, at least one bypass opening (18) penetrating the rib (13) at the shell (2) is arranged.
  2. Turbine blade/vane according to Claim 1, characterized in that, in a cover plate (16) arranged at the tip (6), at least one bypass opening (20) penetrating the cover plate (16) at the shell (2) is also arranged.
  3. Turbine blade/vane according to Claim 1 or 2, characterized in that the bypass opening (18) the rib (13) and/or the cover plate (16) penetrates parallel to the shell (2).
  4. Turbine blade/vane according to one of Claims 1 to 3, characterized in that the bypass opening (18, 20) penetrates the rib (13) and/or the cover plate (16) along an inner surface (30) of the shell (2).
  5. Turbine blade/vane according to one of Claims 1 to 4, characterized in that the outlet opening (19) penetrates the shell (2) parallel to the rib (13).
  6. Turbine blade/vane according to one of Claims 1 to 5, characterized in that the outlet opening (19) has a cross section which widens from the inside to the outside.
  7. Turbine blade/vane according to one of Claims 1 to 6, characterized in that the outlet opening (19) is essentially aligned with an incident flow side (21) of the rib (13).
  8. Turbine blade/vane according to one of Claims 1 to 7, characterized in that the outlet opening (19) has, at its inlet (23), a chamfered or rounded edge (25) at least on a side (22) arranged nearer to the tip (6) and/or has a nose (27) protruding inwards from the shell (2) on a side (26) arranged closer to the root (7).
  9. Turbine blade/vane according to one of Claims 1 to 8, characterized in that a plurality of bypass openings (18, 20) are arranged so that they are aligned with one another.
  10. Turbine blade/vane according to one of Claims 1 to 9, characterized in that, in the case of sequential ribs (13), the bypass openings (18) and the outlet openings (19) are arranged to alternate with one another.
  11. Turbine blade/vane according to one of Claims 1 to 10, characterized in that the bypass openings (18, 20) and/or the outlet openings (19) are arranged in the region of the leading edge (10) and/or of the trailing edge (11).
  12. Turbine blade/vane according to one of Claims 1 to 11, characterized in that the bypass openings (18,20) and/or the outlet openings (19) are arranged at ribs (13), which protrude from the shell (2) towards the inside and towards the root (7).
EP03702263A 2002-03-25 2003-02-21 Cooled turbine blade Expired - Fee Related EP1488077B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH507022002 2002-03-25
CH5072002 2002-03-25
PCT/CH2003/000134 WO2003080998A1 (en) 2002-03-25 2003-02-21 Cooled turbine blade

Publications (2)

Publication Number Publication Date
EP1488077A1 EP1488077A1 (en) 2004-12-22
EP1488077B1 true EP1488077B1 (en) 2006-07-12

Family

ID=28048290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03702263A Expired - Fee Related EP1488077B1 (en) 2002-03-25 2003-02-21 Cooled turbine blade

Country Status (5)

Country Link
US (1) US7293962B2 (en)
EP (1) EP1488077B1 (en)
AU (1) AU2003205491A1 (en)
DE (1) DE50304226D1 (en)
WO (1) WO2003080998A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080998A1 (en) 2002-03-25 2003-10-02 Alstom Technology Ltd Cooled turbine blade
GB0524735D0 (en) 2005-12-03 2006-01-11 Rolls Royce Plc Turbine blade
US7549843B2 (en) * 2006-08-24 2009-06-23 Siemens Energy, Inc. Turbine airfoil cooling system with axial flowing serpentine cooling chambers
US20090003987A1 (en) * 2006-12-21 2009-01-01 Jack Raul Zausner Airfoil with improved cooling slot arrangement
US7967567B2 (en) * 2007-03-27 2011-06-28 Siemens Energy, Inc. Multi-pass cooling for turbine airfoils
US7785070B2 (en) * 2007-03-27 2010-08-31 Siemens Energy, Inc. Wavy flow cooling concept for turbine airfoils
US8047788B1 (en) * 2007-10-19 2011-11-01 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall serpentine cooling
US10286407B2 (en) 2007-11-29 2019-05-14 General Electric Company Inertial separator
US8105033B2 (en) * 2008-06-05 2012-01-31 United Technologies Corporation Particle resistant in-wall cooling passage inlet
US8167558B2 (en) * 2009-01-19 2012-05-01 Siemens Energy, Inc. Modular serpentine cooling systems for turbine engine components
US8096772B2 (en) * 2009-03-20 2012-01-17 Siemens Energy, Inc. Turbine vane for a gas turbine engine having serpentine cooling channels within the inner endwall
JP2011085084A (en) * 2009-10-16 2011-04-28 Ihi Corp Turbine blade
US8616834B2 (en) * 2010-04-30 2013-12-31 General Electric Company Gas turbine engine airfoil integrated heat exchanger
US9074482B2 (en) 2012-04-24 2015-07-07 United Technologies Corporation Airfoil support method and apparatus
CA2949547A1 (en) 2014-05-29 2016-02-18 General Electric Company Turbine engine and particle separators therefore
EP3149310A2 (en) 2014-05-29 2017-04-05 General Electric Company Turbine engine, components, and methods of cooling same
US11033845B2 (en) 2014-05-29 2021-06-15 General Electric Company Turbine engine and particle separators therefore
US9915176B2 (en) 2014-05-29 2018-03-13 General Electric Company Shroud assembly for turbine engine
US10167725B2 (en) 2014-10-31 2019-01-01 General Electric Company Engine component for a turbine engine
US10036319B2 (en) 2014-10-31 2018-07-31 General Electric Company Separator assembly for a gas turbine engine
US10156157B2 (en) * 2015-02-13 2018-12-18 United Technologies Corporation S-shaped trip strips in internally cooled components
US10704397B2 (en) 2015-04-03 2020-07-07 Siemens Aktiengesellschaft Turbine blade trailing edge with low flow framing channel
US10174620B2 (en) 2015-10-15 2019-01-08 General Electric Company Turbine blade
US10428664B2 (en) 2015-10-15 2019-10-01 General Electric Company Nozzle for a gas turbine engine
US9988936B2 (en) 2015-10-15 2018-06-05 General Electric Company Shroud assembly for a gas turbine engine
US10704425B2 (en) 2016-07-14 2020-07-07 General Electric Company Assembly for a gas turbine engine
EP3473808B1 (en) * 2017-10-19 2020-06-17 Siemens Aktiengesellschaft Blade for an internally cooled turbine blade and method for producing same
US10669896B2 (en) * 2018-01-17 2020-06-02 Raytheon Technologies Corporation Dirt separator for internally cooled components

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527543A (en) * 1965-08-26 1970-09-08 Gen Electric Cooling of structural members particularly for gas turbine engines
US3533712A (en) * 1966-02-26 1970-10-13 Gen Electric Cooled vane structure for high temperature turbines
US3533711A (en) * 1966-02-26 1970-10-13 Gen Electric Cooled vane structure for high temperature turbines
GB2165315B (en) * 1984-10-04 1987-12-31 Rolls Royce Improvements in or relating to hollow fluid cooled turbine blades
US4753575A (en) * 1987-08-06 1988-06-28 United Technologies Corporation Airfoil with nested cooling channels
US4820123A (en) * 1988-04-25 1989-04-11 United Technologies Corporation Dirt removal means for air cooled blades
DE68906594T2 (en) 1988-04-25 1993-08-26 United Technologies Corp DUST SEPARATOR FOR AN AIR COOLED SHOVEL.
US5700131A (en) * 1988-08-24 1997-12-23 United Technologies Corporation Cooled blades for a gas turbine engine
GB2262314A (en) * 1991-12-10 1993-06-16 Rolls Royce Plc Air cooled gas turbine engine aerofoil.
US5368441A (en) * 1992-11-24 1994-11-29 United Technologies Corporation Turbine airfoil including diffusing trailing edge pedestals
US5611662A (en) * 1995-08-01 1997-03-18 General Electric Co. Impingement cooling for turbine stator vane trailing edge
US5842829A (en) * 1996-09-26 1998-12-01 General Electric Co. Cooling circuits for trailing edge cavities in airfoils
US5997251A (en) * 1997-11-17 1999-12-07 General Electric Company Ribbed turbine blade tip
US6220817B1 (en) 1997-11-17 2001-04-24 General Electric Company AFT flowing multi-tier airfoil cooling circuit
US5971708A (en) * 1997-12-31 1999-10-26 General Electric Company Branch cooled turbine airfoil
US5967752A (en) * 1997-12-31 1999-10-19 General Electric Company Slant-tier turbine airfoil
DE19921644B4 (en) * 1999-05-10 2012-01-05 Alstom Coolable blade for a gas turbine
GB2350867B (en) * 1999-06-09 2003-03-19 Rolls Royce Plc Gas turbine airfoil internal air system
US6186741B1 (en) * 1999-07-22 2001-02-13 General Electric Company Airfoil component having internal cooling and method of cooling
DE10064269A1 (en) * 2000-12-22 2002-07-04 Alstom Switzerland Ltd Component of a turbomachine with an inspection opening
WO2003080998A1 (en) 2002-03-25 2003-10-02 Alstom Technology Ltd Cooled turbine blade

Also Published As

Publication number Publication date
EP1488077A1 (en) 2004-12-22
US7293962B2 (en) 2007-11-13
AU2003205491A1 (en) 2003-10-08
US20050129508A1 (en) 2005-06-16
DE50304226D1 (en) 2006-08-24
WO2003080998A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
EP1488077B1 (en) Cooled turbine blade
EP0902167B1 (en) Cooling device for gas turbine components
DE60020007T2 (en) Internal air cooling system for turbine blades
DE4119216C2 (en) Droplet separator
EP0126399B1 (en) Fluid duct presenting a reduced construction
EP1853800B1 (en) Honeycomb body with fissured front sides
DE102015213090A1 (en) Blade for a turbomachine and method for its production
DE3341553A1 (en) GAS TURBINE ENGINE WITH A PARTICULATE SEPARATOR
WO2010069816A1 (en) Plate-shaped separator for separating liquids from a gas flow
DE102010051638A1 (en) Gas turbine combustor with a cooling air supply device
EP1646848A2 (en) Device for determining at least one parameter of a medium flowing in a conduit
DE112015001576T5 (en) liquid separation
EP1292760B1 (en) Configuration of a coolable turbine blade
WO2012069618A1 (en) Self-cleaning screw-type centrifugal wheel pump with recirculation behind the impeller
WO2013083509A1 (en) Screen device for screening a fibrous-material suspension
EP3034782A1 (en) Film cooled turbine blade
EP3473808A1 (en) Blade for an internally cooled turbine blade and method for producing same
DE2726709C2 (en) Headbox of a paper machine
EP2700791A1 (en) Oil separation assembly and cylinder head cover for a combustion engine
DE4014574A1 (en) EXHAUST GAUGE JOINT
DE102011086205A1 (en) Wing for fiber mass sorter used for manufacturing e.g. paper, has adjustable fins that are arranged at end portions of wing, to prevent ejection of fiber mass over ends of wing
DE102004034151A1 (en) particle
AT517463B1 (en) Guide device of a separation device
DE3406425A1 (en) Demister for removing droplets from a gas stream
DE102010010790A1 (en) Fluidic oscillator for use in aircraft, has flow guide oscillating deflection of fluid upcoming from inlet opening to flow channels, and additional flow channel arranged for formation of reciprocating fluid flow at flow channels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50304226

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304226

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304226

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180219

Year of fee payment: 16

Ref country code: GB

Payment date: 20180216

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304226

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221