EP1488077A1 - Cooled turbine blade - Google Patents

Cooled turbine blade

Info

Publication number
EP1488077A1
EP1488077A1 EP03702263A EP03702263A EP1488077A1 EP 1488077 A1 EP1488077 A1 EP 1488077A1 EP 03702263 A EP03702263 A EP 03702263A EP 03702263 A EP03702263 A EP 03702263A EP 1488077 A1 EP1488077 A1 EP 1488077A1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
blade according
bypass
rib
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03702263A
Other languages
German (de)
French (fr)
Other versions
EP1488077B1 (en
Inventor
Reinhard Fried
Hans Wettstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1488077A1 publication Critical patent/EP1488077A1/en
Application granted granted Critical
Publication of EP1488077B1 publication Critical patent/EP1488077B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the invention relates to a turbine blade with the features of the preamble of claim 1.
  • Such a turbine blade is known from DE 198 59 787 A1, which has a flow-around and aerodynamically shaped jacket.
  • This jacket has a first side wall and a second side wall which are connected to one another on an upstream front edge and on a downstream side edge, which extend longitudinally from a blade root to a blade tip and which are connected to one another between the front edge and the rear edge by a plurality of inner ribs ,
  • These ribs form two cooling gas paths in the interior of the turbine blade or in the interior of the jacket, each of which leads a cooling gas flow from the foot to the tip of the turbine blade and thereby deflect the cooling gas flow several times from outside to inside and from inside to outside in a serpentine shape.
  • Such a serpentine cooling gas path thus consists of a series of 180 ° reversing arches.
  • the ribs are arranged in such a way that in one cooling gas path in the area of the front edge and in the other cooling gas path in the area of the rear edge they protrude inwards from the jacket and at an angle of approximately 45 ° to the blade root. This results in an intensive braking of the cooling gas flow, which improves the cooling effect.
  • Each cooling gas path begins in the blade root and ends at the tip of the blade, where the cooling gas can exit through a cover plate arranged at the tip approximately centrally in a hot gas path surrounding the turbine blade.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, deals with the problem of specifying an improved embodiment for a turbine blade of the type mentioned in the introduction, in which in particular the required cooling capacity can be guaranteed for a longer time and / or in which the risk of deposits in the cooling gas path is reduced.
  • the invention is based on the general idea of using bypass openings and / or outlet openings in areas of extreme cooling gas deflection for the particles carried in the cooling gas flow. to provide an alternative flow path that the particles can follow more easily than the cooling gas path due to the acting inertial forces.
  • the bypass openings and / or outlet openings enable the particles to be removed from these areas and thus prevent their accumulation in these deflection areas. Since the invention thus prevents or at least inhibits the formation of a deposit layer, the cooling effect of the cooling gas flow can be ensured for considerably longer, which increases the service life of the turbine blade.
  • the proposed bypass openings on the jacket penetrate one of the ribs, so that the bypass flow thus created remains in the cooling gas path.
  • the bypass opening on the jacket can penetrate a cover plate arranged at the tip, the bypass flow then escaping into the hot gas path.
  • the Outlet openings proposed according to the invention penetrate the jacket in the region of a rib, so that the cooling gas exits through these outlet openings into the hot gas path. With a corresponding dimensioning of the outlet openings, a cooling gas film which lies against the outside of the jacket can be formed at the same time, so that the outlet openings can also work as film cooling openings.
  • bypass openings penetrate the respective rib or the cover plate parallel to the jacket and in particular along the inside of the jacket.
  • outlet openings if they penetrate the jacket in the region of the respective rib parallel to this rib and in particular are essentially aligned with an upstream side of the respective rib.
  • At least one of the outlet openings can have a chamfered or rounded edge at its entrance, at least on the side closer to the blade tip.
  • at least one of the outlet openings at its entrance on the side closer to the blade root can have a nose projecting inwards from the jacket.
  • FIG. 2 is an enlarged view of a detail II from FIG. 1.
  • a turbine blade 1 which can be designed as a moving blade or as a guide blade, has a casing 2 which is aerodynamically shaped on its outside 3.
  • the turbine blade 1 extends into a hot gas path 4 of a turbine, which is otherwise not shown.
  • the hot gas flow in the hot gas path 4 is symbolically represented by an arrow 5.
  • the jacket 2 extends longitudinally from a blade tip 6, that is to say in its longitudinal direction, to a blade root 7, with which the blade 1 is anchored in a rotor (rotor blade) or in a housing (guide blade) in the usual way.
  • the jacket 2 consists of two side walls 8 and 9, the first side wall 8 being arranged on the side of the blade 1 facing away from the viewer, so that only the inside thereof can be seen, and the second side wall 9 facing the viewer, but through the selected section is not recognizable.
  • the two side walls 8, 9 are connected to one another on an upstream front edge 10 of the blade 1 and on an outflow side rear edge 11 of the blade 1 and thereby envelop an interior 12 of the turbine blade 1.
  • the side walls 8, 9 are connected to one another in the interior 12 by internal or internal ribs 13.
  • approximately half of the ribs 13 originate from the front edge 10 or from the rear edge 11, while the other half of the ribs 13 (inner rib 13) originate from a central web 14 which extends here extends over the entire length of the blade 1.
  • the ribs 13 form two parallel cooling gas paths 15 in the interior 12 of the blade 1, which cooling paths 15 are identified in FIG. 1 by flow arrows.
  • Each of these cooling gas paths 15 leads a cooling gas flow from the foot 7 to the tip 6 and thereby repeatedly causes a serpentine deflection directed from outside to inside and subsequently from inside to outside.
  • the ribs 13 beginning at the front edge 10 and at the rear edge 11 extend from the jacket 2 on the one hand inwards and on the other hand to the foot 7, these ribs 13 enclosing an acute angle ⁇ with the jacket 2 on the side facing the foot 7 , which in the present case is approximately 45 °.
  • This orientation of the outer ribs 13 results in a very strong deflection in the area of the acute angle ⁇ degasströmu ⁇ g, whereby an intensive heat transfer between jacket 2 and cooling gas can be achieved.
  • the turbine blade 1 In the area of its tip 6, the turbine blade 1 has a cover plate 16 which contains at least one outlet opening 17 for each cooling gas path 15, through which the cooling gas exits into the hot gas path 4.
  • the turbine blade 1 has bypass openings 18 and outlet openings 19 in the region of its ribs 13 that deflect the cooling gas flow from the outside inwards, that is to say in the region of its outer ribs 13 that begin at the front edge 10 or at the rear edge 11.
  • the bypass openings 18 are arranged in this way that they penetrate the respective rib 13 on the jacket 2.
  • the outlet openings 19 are arranged in the region of the respective rib 13 in such a way that they penetrate the jacket 2 at this rib 13.
  • each cooling gas path 15 there is at least one bypass opening 20 in the cover plate 16, which penetrates the cover plate 16 on the jacket 2.
  • these bypass openings 18, 20 and the outlet openings 19 are each formed in the region of the front edge 10 or in the region of the rear edge 11 in the ribs 13 or in the cover plate 16 or in the jacket 2.
  • bypass openings 18 and 20 are expediently arranged such that, as in FIG. 2, they penetrate the respective rib 13 or the cover plate 16 parallel to the jacket and in particular along an inner side 30 of the jacket 2.
  • successive outer ribs 13 are each equipped with such a bypass opening 18, so that several, in particular all, bypass openings 18 and 19 are arranged in alignment with one another in this special embodiment.
  • bypass openings 18 and outlet openings 19 are alternately arranged in the outer ribs 13 following one another along the wall 2.
  • the outlet openings 19 penetrate the jacket 2 expediently parallel to the respective outer rib 13.
  • the outlet openings 19 are positioned such that they are essentially aligned with an inflow side 21 of the respective rib 13.
  • a side 22 of the outlet opening 19 arranged closer to the tip 6 is aligned with this inflow side 21.
  • This relationship is shown in more detail in FIG.
  • This lower outer rib 13 also shows a special embodiment for the outlet opening 19, which has a cross section which widens from the inside to the outside.
  • the throttle resistance of the outlet opening 19 can be configured in a suitable manner by the cross-sectional geometry.
  • At least one of the outlet openings 19 can be designed at its entrance 23 by special measures such that larger particles 24, which are carried along by the cooling gas flow, are prevented from entering the outlet opening 19. In this way, clogging of the outlet opening 19 by particles 24 that are too large can be avoided.
  • the inlet 23 can have a beveled or rounded edge 25, at least on the side 22 arranged closer to the tip 6, which makes it difficult for larger particles 24 to enter the outlet opening 19.
  • a nose 27 can be formed at the entrance 23 on a side 26 of the outlet opening 19 arranged closer to the foot 7, which protrudes inwards from the jacket 2 and thus causes the particles 24 to be aerodynamically repelled. This measure also prevents larger particles 24 from being able to enter the outlet opening 19.
  • the bypass openings 18 expediently have a larger cross section than the outlet openings 19.
  • bypass openings 18 on the one hand and the outlet openings 19 on the other hand are dimensioned such that a sufficiently large cooling gas flow through the cooling gas path or paths 15 can still be ensured.
  • the turbine blade 1 functions as follows:
  • the cooling gas flow comes from the blade root 7 and for the most part follows the cooling gas path 15 along the flow-guiding ribs 13.
  • the cooling gas flow carries small particles, for example with a diameter of less than 0.5 mm, and larger particles, for example with a diameter of about 0, 5 mm to about 3 mm, with itself.
  • the particles 24 carried along in the flow cannot readily follow this strong deflection, since they basically follow a straight path due to the inertial forces. This finding is used by the invention, in which the bypass openings 18, 20 and the outlet openings 19 are arranged precisely there.
  • heavier coarser particles 24 in particular can flow through the respective rib 13 through the bypass opening 18 in accordance with an arrow 28 shown with a broken line.
  • Small particles 24 can also flow through the bypass opening 18.
  • smaller particles 24 can also flow through the outlet opening 19 in accordance with an arrow 29 drawn with a dotted line and enter the hot gas path 4 through the jacket 2.
  • the Pressure drop at the outlet opening 19 favors the entry of lighter particles 24 into the outlet opening 19, while heavier particles 24 tend to flow through the bypass opening 18.
  • the particles 24 likewise reach the hot gas path 4 through the bypass opening 20.
  • bypass openings 18, 20 and the outlet openings 19 effectively prevent deposits in the deflection area between the rib 13 and the jacket 2 and between the cover plate 16 and jacket 2. Since material deposits within the cooling gas paths 15 are thus avoided or inhibited in the turbine blade 1 according to the invention, the required cooling effect can be ensured for a long time, which is associated with an increased service life for the turbine blade 1.

Abstract

The invention relates to a turbine blade (1) with a shell (2), comprising a first lateral wall (8) and a second lateral wall (9) connected to each other at a front edge (10) and a rear edge (11), running from a root (7) to a tip (6) and also connected to each other by several internal ribs (13) between the front edge (10) and the rear edge (11). The ribs (13) form at least one cooling gas path (15) within the interior (12) of the turbine blade (1), which leads a cooling gas flow from the root (7) to the tip (6) and which diverts the same from the inside to the outside and the outside to the inside in a convoluted manner. At least one bypass opening (18) and/or at least one outlet opening (19) are arranged in the vicinity of at least one of the ribs (13) diverting the flow from the outside to the inside, whereby the bypass opening (18) passes through the rib (13) on the shell (2) and the outlet opening (19) passes through the shell (2).

Description

Gekühlte Turbinenschaufel Cooled turbine blade
Technisches GebietTechnical field
Die Erfindung betrifft eine Turbinenschaufel mit den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a turbine blade with the features of the preamble of claim 1.
Stand der TechnikState of the art
Aus der DE 198 59 787 A1 ist eine derartige Turbinenschaufel bekannt, die einen umströmten und aerodynamisch geformten Mantel besitzt. Dieser Mantel weist eine erste Seitenwand und eine zweite Seitenwand auf, die an einer anströmseitigen Vorderkante und an einer abströmseitigen Hinterkante miteinander verbunden sind, die sich longitudinal von einem Schaufelfuß bis zu einer Schaufelspitze erstrecken und die zwischen Vorderkante und Hinterkante durch mehrere innere Rippen miteinander verbunden sind. Diese Rippen bilden im Inneren der Turbinenschaufel bzw. im Inneren des Mantels zwei Kühlgaspfade, die jeweils eine Kühlgasströmung vom Fuß zur Spitze der Turbinenschaufel führen und die Kühlgasströmung dabei mehrfach von außen nach innen und von innen nach außen serpentinenförmig umlenken. Ein derartiger serpentinenförmiger Kühlgaspfad besteht somit aus einer Aneinanderreihung von 180°-Umkehrbögen. Die Rippen sind dabei so angeordnet, dass sie in dem einen Kühlgaspfad im Bereich der Vorderkante und im anderen Kühlgaspfad im Bereich der Hinterkante vom Mantel nach innen und mit einem Winkel von etwa 45° zum Schaufelfuß hin abstehen. Hierdurch ergibt sich eine intensive Abbremsung der Kühlgasströmung, was die Kühlwirkung verbessert.Such a turbine blade is known from DE 198 59 787 A1, which has a flow-around and aerodynamically shaped jacket. This jacket has a first side wall and a second side wall which are connected to one another on an upstream front edge and on a downstream side edge, which extend longitudinally from a blade root to a blade tip and which are connected to one another between the front edge and the rear edge by a plurality of inner ribs , These ribs form two cooling gas paths in the interior of the turbine blade or in the interior of the jacket, each of which leads a cooling gas flow from the foot to the tip of the turbine blade and thereby deflect the cooling gas flow several times from outside to inside and from inside to outside in a serpentine shape. Such a serpentine cooling gas path thus consists of a series of 180 ° reversing arches. The ribs are arranged in such a way that in one cooling gas path in the area of the front edge and in the other cooling gas path in the area of the rear edge they protrude inwards from the jacket and at an angle of approximately 45 ° to the blade root. This results in an intensive braking of the cooling gas flow, which improves the cooling effect.
Jeder Kühlgaspfad beginnt im Schaufelfuß und endet an der Schaufelspitze, wo das Kühlgas durch eine an der Spitze angeordnete Deckplatte etwa mittig in einen die Turbinenschaufel umgebenden Heißgaspfad austreten kann.Each cooling gas path begins in the blade root and ends at the tip of the blade, where the cooling gas can exit through a cover plate arranged at the tip approximately centrally in a hot gas path surrounding the turbine blade.
Sofern im Kühlgas feinere und gröbere Partikel mitgeführt werden, können sich diese in den die Kühlgasströmung in Richtung Schaufelfuß ablenkenden Umlenkbereichen ansammeln und ablagern. Hierdurch kann sich eine mit der Zeit anwachsende Ablagerungsschicht ausbilden, die in der Regel aus Oxiden besteht. Diese Ablagerungsschicht besitzt regelmäßig eine geringere Wärmeleitfähigkeit als der Mantel und die Rippen, so dass sich die Kühlwirkung der Kühlgasströmung in diesem Ablagerungsbereich reduziert. In den davon betroffenen Bereichen der Turbinenschaufel kann es daher zu örtlichen Überhitzungen kommen, mit der Folge, dass in den gefährdeten Bereichen der Schaufel Risse, Anschmelzungen und Gefügeveränderungen auftreten können. Durch die aufgrund von Ablagerungen verschlechterte Kühlung verkürzt sich somit die Lebenszeit der Turbinenschaufel. Darstellung der ErfindungIf finer and coarser particles are carried in the cooling gas, they can accumulate and deposit in the deflection areas that deflect the cooling gas flow in the direction of the blade root. As a result, a deposition layer that grows over time and that generally consists of oxides can form. This deposition layer regularly has a lower thermal conductivity than the jacket and the ribs, so that the cooling effect of the cooling gas flow is reduced in this deposition area. Local overheating can therefore occur in the affected areas of the turbine blade, with the result that cracks, melting and structural changes can occur in the endangered areas of the blade. Due to the deterioration in cooling due to deposits, the lifespan of the turbine blade is shortened. Presentation of the invention
Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Turbinenschaufel der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, bei der insbesondere die geforderte Kühlleistung länger gewährleistet werden kann und/oder bei der die Gefahr von Ablagerungen im Kühlgaspfad reduziert ist.The invention seeks to remedy this. The invention, as characterized in the claims, deals with the problem of specifying an improved embodiment for a turbine blade of the type mentioned in the introduction, in which in particular the required cooling capacity can be guaranteed for a longer time and / or in which the risk of deposits in the cooling gas path is reduced.
Erfindungsgemäß wird dieses Problem durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.According to the invention, this problem is solved by the subject matter of the independent claim. Advantageous embodiments are the subject of the dependent claims.
Die Erfindung beruht auf dem allgemeinen Gedanken, in Bereichen einer extremen Kühlgasumlenkung für die in der Kühlgasströmung mitgeführten Partikel mit Hilfe von Bypassöffnungen und/oder Austrittsöffnungen einen . alternativen Strömungspfad bereitzustellen, dem die Partikel aufgrund der wirkenden Trägheitskräfte leichter folgen können als dem Kühlgaspfad. Mit anderen Worten, genau in den Bereichen des Kühlgaspfads, in denen es zu einer Partikelanlagerung kommen könnte, wird mittels der Bypassöffnungen und/oder Austrittsöffnungen ein Austrag der Partikel aus diesen Bereichen ermöglicht und so deren Anlagerung in diesen Umlenkbereichen verhindert. Da die Erfindung somit die Ausbildung einer Ablagerungsschicht verhindert oder zumindest hemmt, kann die Kühlwirkuπg der Kühlgasströmung erheblich länger gewährleistet werden, wodurch sich die Lebensdauer'der Turbinenschaufel erhöht.The invention is based on the general idea of using bypass openings and / or outlet openings in areas of extreme cooling gas deflection for the particles carried in the cooling gas flow. to provide an alternative flow path that the particles can follow more easily than the cooling gas path due to the acting inertial forces. In other words, precisely in the areas of the cooling gas path in which particle accumulation could occur, the bypass openings and / or outlet openings enable the particles to be removed from these areas and thus prevent their accumulation in these deflection areas. Since the invention thus prevents or at least inhibits the formation of a deposit layer, the cooling effect of the cooling gas flow can be ensured for considerably longer, which increases the service life of the turbine blade.
Erfindungsgemäß durchdringen die vorgeschlagenen Bypassöffnungen am Mantel eine der Rippen, so dass die so entstehende Bypassströmung im Kühlgaspfad verbleibt. Im Bereich einer an der Spitze angeordneten Rippe kann die Bypassöffnung am Mantel eine an der Spitze angeordnete Deckplatte durchdringen, wobei dann die Bypassströmung in den Heißgaspfad austritt. Die erfindungsgemäß vorgeschlagenen Austrittsöffnungen durchdringen im Bereich einer Rippe den Mantel, so dass das Kühlgas durch diese Austrittsöffnungen in den Heißgaspfad austritt. Bei einer entsprechenden Dimensionierung der Austrittsöffnungen kann dadurch gleichzeitig ein sich an der Außenseite des Mantels anlegender Kühlgasfilm ausgebildet werden, so dass die Austrittsöffnungen auch als Filmkühlöffnungen arbeiten können.According to the invention, the proposed bypass openings on the jacket penetrate one of the ribs, so that the bypass flow thus created remains in the cooling gas path. In the area of a rib arranged at the tip, the bypass opening on the jacket can penetrate a cover plate arranged at the tip, the bypass flow then escaping into the hot gas path. The Outlet openings proposed according to the invention penetrate the jacket in the region of a rib, so that the cooling gas exits through these outlet openings into the hot gas path. With a corresponding dimensioning of the outlet openings, a cooling gas film which lies against the outside of the jacket can be formed at the same time, so that the outlet openings can also work as film cooling openings.
Entsprechend einer bevorzugten Ausführungsform durchdringen die Bypassöffnungen die jeweilige Rippe bzw. die Deckplatte parallel zum Mantel und insbesondere entlang der Innenseite des Mantels. Durch diese Merkmale ergibt sich für den Partikelweg keine oder nur eine minimale Umlenkung, so daß die Partikel diesem alternativen Strömungspfad trägheitsbedingt einfach folgen können.According to a preferred embodiment, the bypass openings penetrate the respective rib or the cover plate parallel to the jacket and in particular along the inside of the jacket. These features result in no or only a minimal deflection for the particle path, so that the particles can simply follow this alternative flow path due to inertia.
Entsprechendes gilt für die Austrittsöffnungen, wenn diese den Mantel im Bereich der jeweiligen Rippe parallel zu dieser Rippe durchdringen und insbesondere im wesentlichen mit einer Anströmseite der jeweiligen Rippe fluchten.The same applies to the outlet openings if they penetrate the jacket in the region of the respective rib parallel to this rib and in particular are essentially aligned with an upstream side of the respective rib.
Entsprechend einer besonderen Weiterbildung kann zumindest eine der Austrittsöffnungen an ihrem Eingang wenigstens an der näher an der Schaufelspitze angeordneten Seite eine abgeschrägte oder abgerundete Kante aufweisen. Alternativ oder zusätzlich kann wenigstens eine der Austrittsöffnung an ihrem Eingang an der näher am Schaufelfuß angeordneten Seite eine vom Mantel nach innen vorstehenden Nase aufweisen. Die aufgezeigten Maßnahmen verhindern ein Verstopfen der jeweiligen Austrittsöffnung durch zu große Partikel, in dem durch geometrische und/oder aerodynamische Maßnahmen verhindert wird, dass zu große Partikel in die jeweilige Austrittsöffnung eintreten können. Weitere wichtige Merkmale und Vorteile der erfindungsgemäßen Turbinenschaufel ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.According to a special development, at least one of the outlet openings can have a chamfered or rounded edge at its entrance, at least on the side closer to the blade tip. Alternatively or additionally, at least one of the outlet openings at its entrance on the side closer to the blade root can have a nose projecting inwards from the jacket. The measures shown prevent the respective outlet opening from becoming blocked by particles that are too large, in that geometric and / or aerodynamic measures prevent particles that are too large from entering the respective outlet opening. Further important features and advantages of the turbine blade according to the invention result from the subclaims, from the drawings and from the associated description of the figures on the basis of the drawings.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Ein bevorzugtes Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird in der nachfolgenden Beschreibung näher erläutert wobei sich gleiche Bezugszeichen auf gleiche oder funktional gleiche oder ähnliche Bauteile beziehen. Es zeigen, jeweils schematisch,A preferred embodiment of the invention is shown in the drawings and is explained in more detail in the following description, wherein the same reference numerals refer to the same or functionally identical or similar components. Each shows schematically
Fig. 1 einen Längsschnitt durch eine erfindungsgemäße Turbinenschaufel,1 shows a longitudinal section through a turbine blade according to the invention,
Fig. 2 eine vergrößerte Ansicht auf ein Detail II aus Fig. 1.FIG. 2 is an enlarged view of a detail II from FIG. 1.
Wege zur Ausführung der ErfindungWays of Carrying Out the Invention
Entsprechend Fig. 1 besitzt eine erfindungsgemäße Turbinenschaufel 1 , die als Laufschaufel oder als Leitschaufel ausgebildet sein kann, einen Mantel 2, der an seiner Außenseite 3 aerodynamisch geformt ist. Mit diesem Mantel 2 erstreckt sich die Turbinenschaufel 1 in einen Heißgaspfad 4 einer im übrigen nicht gezeigten Turbine. Die Heißgasströmung im Heißgaspfad 4 ist durch einen Pfeil 5 symbolisch dargestellt. Der Mantel 2 erstreckt sich von einer Schaufelspitze 6 longitudinal, also in ihrer Längsrichtung bis zu einem Schaufelfuß 7, mit dem die Schaufel 1 in einem Rotor (Laufschaufel) oder in einem Gehäuse (Leitschaufel) in üblicher Weise verankert ist. Der Mantel 2 besteht aus zwei Seitenwänden 8 und 9, wobei die erste Seitenwand 8 auf der vom Betrachter abgewandten Seite der Schaufel 1 angeordnet ist, so dass nur deren Innenseite erkennbar ist, und wobei die zweite Seitenwand 9 dem Betrachter zugewandt ist, jedoch durch den gewählten Schnitt nicht erkennbar ist. Die beiden Seitenwände 8, 9 sind an einer anströmseitigen Vorderkante 10 der Schaufel 1 sowie an einer abströmseitigen Hinterkante 11 der Schaufel 1 miteinander verbunden und umhüllen dabei ein Inneres 12 der Turbinenschaufel 1.1, a turbine blade 1 according to the invention, which can be designed as a moving blade or as a guide blade, has a casing 2 which is aerodynamically shaped on its outside 3. With this jacket 2, the turbine blade 1 extends into a hot gas path 4 of a turbine, which is otherwise not shown. The hot gas flow in the hot gas path 4 is symbolically represented by an arrow 5. The jacket 2 extends longitudinally from a blade tip 6, that is to say in its longitudinal direction, to a blade root 7, with which the blade 1 is anchored in a rotor (rotor blade) or in a housing (guide blade) in the usual way. The jacket 2 consists of two side walls 8 and 9, the first side wall 8 being arranged on the side of the blade 1 facing away from the viewer, so that only the inside thereof can be seen, and the second side wall 9 facing the viewer, but through the selected section is not recognizable. The two side walls 8, 9 are connected to one another on an upstream front edge 10 of the blade 1 and on an outflow side rear edge 11 of the blade 1 and thereby envelop an interior 12 of the turbine blade 1.
Die Seitenwände 8, 9 sind im Inneren 12 durch innenliegende oder innere Rippen 13 miteinander verbunden. Bei der hier gezeigten speziellen Ausführungsform geht etwa die Hälfte der Rippen 13 (äußere Rippe 13) von der Vorderkante 10 bzw. von der Hinterkante 11 aus, während die andere Hälfte der Rippen 13 (innere Rippe 13) von einem Mittelsteg 14 ausgeht, der sich hier über die gesamte Länge der Schaufel 1 erstreckt. Durch diese Bauweise bilden die Rippen 13 im Inneren 12 der Schaufel 1 zwei parallel durchströmte Kühlgaspfade 15 aus, die in Fig. 1 durch Strömungspfeile gekennzeichnet sind. Jeder dieser Kühlgaspfade 15 führt eine Kühlgasströmung vom Fuß 7 zur Spitze 6 und bewirkt dabei mehrfach eine von außen nach innen und nachfolgend von innen nach außen gerichtete, serpentinenförmige Umlenkung.The side walls 8, 9 are connected to one another in the interior 12 by internal or internal ribs 13. In the specific embodiment shown here, approximately half of the ribs 13 (outer rib 13) originate from the front edge 10 or from the rear edge 11, while the other half of the ribs 13 (inner rib 13) originate from a central web 14 which extends here extends over the entire length of the blade 1. As a result of this design, the ribs 13 form two parallel cooling gas paths 15 in the interior 12 of the blade 1, which cooling paths 15 are identified in FIG. 1 by flow arrows. Each of these cooling gas paths 15 leads a cooling gas flow from the foot 7 to the tip 6 and thereby repeatedly causes a serpentine deflection directed from outside to inside and subsequently from inside to outside.
Die an der Vorderkante 10 bzw. an der Hinterkante 11 beginnenden Rippen 13 erstrecken sich dabei vom Mantel 2 einerseits nach innen und anderseits zum Fuß 7 hin, wobei diese Rippen 13 mit dem Mantel 2 auf der dem Fuß 7 zugewandten Seite einen spitzen Winkel α einschließen, der im vorliegenden Fall etwa 45° beträgt. Durch diese Orientierung der äußeren Rippen 13 erfolgt im Bereich des spitzen Winkels α eine sehr starke Umlenkung der Kühlgasströmuπg, wodurch sich eine intensive Wärmeübertragung zwischen Mantel 2 und Kühlgas erzielen läßt.The ribs 13 beginning at the front edge 10 and at the rear edge 11 extend from the jacket 2 on the one hand inwards and on the other hand to the foot 7, these ribs 13 enclosing an acute angle α with the jacket 2 on the side facing the foot 7 , which in the present case is approximately 45 °. This orientation of the outer ribs 13 results in a very strong deflection in the area of the acute angle α Kühlgasströmuπg, whereby an intensive heat transfer between jacket 2 and cooling gas can be achieved.
Im Bereich ihrer Spitze 6 weist die Turbinenschaufel 1 eine Deckplatte 16 auf, die für jeden Kühlgaspfad 15 wenigstens eine Auslassöffnung 17 enthält, durch die das Kühlgas in den Heißgaspfad 4 austritt.In the area of its tip 6, the turbine blade 1 has a cover plate 16 which contains at least one outlet opening 17 for each cooling gas path 15, through which the cooling gas exits into the hot gas path 4.
Erfindungsgemäß besitzt die Turbinenschaufel 1 im Bereich ihrer die Kühlgasströmung von außen nach innen umlenkenden Rippen 13, also im Bereich ihrer, an der Vorderkante 10 bzw. an der Hinterkante 11 beginnenden äußeren Rippen 13 Bypassöffnungen 18 und Austrittsöffnungen 19. Die Bypassöffnungen 18 sind dabei so angeordnet, dass sie die jeweilige Rippe 13 am Mantel 2 durchdringen. Im Unterschied dazu sind die Austrittsöffnungen 19 im Bereich der jeweiligen Rippe 13 so angeordnet, dass sie bei dieser Rippe 13 den Mantel 2 durchdringen.According to the invention, the turbine blade 1 has bypass openings 18 and outlet openings 19 in the region of its ribs 13 that deflect the cooling gas flow from the outside inwards, that is to say in the region of its outer ribs 13 that begin at the front edge 10 or at the rear edge 11. The bypass openings 18 are arranged in this way that they penetrate the respective rib 13 on the jacket 2. In contrast to this, the outlet openings 19 are arranged in the region of the respective rib 13 in such a way that they penetrate the jacket 2 at this rib 13.
Außerdem ist hier für jeden Kühlgaspfad 15 auch in der Deckplatte 16 wenigstens jeweils eine Bypassöffnung 20 vorgesehen, welche die Deckplatte 16 am Mantel 2 durchdringt.In addition, for each cooling gas path 15 there is at least one bypass opening 20 in the cover plate 16, which penetrates the cover plate 16 on the jacket 2.
Bei der hier gezeigten Ausführungsform sind diese Bypassöffnungen 18, 20 und die Austrittsöffnungen 19 jeweils im Bereich der Vorderkante 10 bzw. im Bereich der Hinterkante 11 in den Rippen 13 bzw. in der Deckplatte 16 bzw. im Mantel 2 ausgebildet.In the embodiment shown here, these bypass openings 18, 20 and the outlet openings 19 are each formed in the region of the front edge 10 or in the region of the rear edge 11 in the ribs 13 or in the cover plate 16 or in the jacket 2.
Zweckmäßig sind die Bypassöffnungen 18 bzw. 20 so angeordnet, dass sie wie in Fig. 2 die jeweilige Rippe 13 bzw. die Deckplatte 16 parallel zum Mantel und insbesondere entlang einer Innenseite 30 des Mantels 2 durchdringen. Bei dem in Fig. 1 rechts dargestellten Kühlgaspfad 15 sind die entlang des Mantels 2 aufeinander folgenden äußeren Rippen 13 jeweils mit einer derartigen Bypassöffnung 18 ausgestattet, so dass mehrere, insbesondere sämtliche Bypassöffnungen 18 bzw. 19 bei dieser speziellen Ausführungsform zueinander fluchtend angeordnet sind. Im Unterschied dazu sind bei dem in Fig. 1 links dargestellten Strömungspfad 15 bei den entlang der Wand 2 aufeinander folgenden äußeren Rippen 13 Bypassöffnungen 18 und Austrittsöffnungen 19 wechselweise angeordnet.The bypass openings 18 and 20 are expediently arranged such that, as in FIG. 2, they penetrate the respective rib 13 or the cover plate 16 parallel to the jacket and in particular along an inner side 30 of the jacket 2. In the cooling gas path 15 shown on the right in FIG. 1, they are along the jacket 2 successive outer ribs 13 are each equipped with such a bypass opening 18, so that several, in particular all, bypass openings 18 and 19 are arranged in alignment with one another in this special embodiment. In contrast to this, in the flow path 15 shown on the left in FIG. 1, bypass openings 18 and outlet openings 19 are alternately arranged in the outer ribs 13 following one another along the wall 2.
Die Austrittsöffnungen 19 durchdringen den Mantel 2 zweckmäßig parallel zur jeweiligen äußeren Rippe 13. Entsprechend der hier gezeigten vorteilhaften Ausführungsform sind die Austrittsöffnungen 19 dabei so positioniert, dass sie im wesentlichen mit einer Anströmseite 21 der jeweiligen Rippe 13 fluchten. Im vorliegenden Fall fluchtet dabei eine näher an der Spitze 6 angeordnete Seite 22 der Austrittsöffnung 19 mit dieser Anströmseite 21. Dieser Zusammenhang ist in Fig. 1 exemplarisch im rechts dargestellten Kühlgaspfad 15 bei der untersten äußeren Rippe 13 näher bezeichnet. Bei dieser unteren äußeren Rippe 13 ist außerdem eine spezielle Ausführungsform für die Austrittsöffnung 19 dargestellt, die einen sich von innen nach außen erweiternden Querschnitt besitzt. Durch die Querschnittsgeometrie kann der Drosselwiderstand der Austrittsöffnung 19 in geeigneter Weise ausgestaltet werden.The outlet openings 19 penetrate the jacket 2 expediently parallel to the respective outer rib 13. According to the advantageous embodiment shown here, the outlet openings 19 are positioned such that they are essentially aligned with an inflow side 21 of the respective rib 13. In the present case, a side 22 of the outlet opening 19 arranged closer to the tip 6 is aligned with this inflow side 21. This relationship is shown in more detail in FIG. This lower outer rib 13 also shows a special embodiment for the outlet opening 19, which has a cross section which widens from the inside to the outside. The throttle resistance of the outlet opening 19 can be configured in a suitable manner by the cross-sectional geometry.
Entsprechend Fig. 2 kann wenigstens eine der Austrittsöffnungen 19 an ihrem Eingang 23 durch spezielle Maßnahmen so ausgebildet sein, dass größere Partikel 24, die von der Kühlgasströmung mitgeführt werden, daran gehindert werden, in die Austrittsöffnung 19 einzutreten. Hierdurch kann ein Verstopfen der Austrittsöffnung 19 durch zu große Partikel 24 vermieden werden. Beispielhaft kann der Eingang 23 zumindest an der näher an der Spitze 6 angeordneten Seite 22 eine abgeschrägte oder abgerundete Kante 25 aufweisen, die es größeren Partikeln 24 erschwert, in die Austrittsöffnung 19 einzutreten. Zusätzlich oder alternativ kann am Eingang 23 an einer näher am Fuß 7 angeordneten Seite 26 der Austrittsöffnung 19 eine Nase 27 ausgebildet sein, die vom Mantel 2 nach innen vorsteht und so eine aerodynamische Abweisung der Partikel 24 bewirkt. Auch diese Maßnahme hindert größere Partikel 24 daran, in die Austrittsöffnung 19 eintreten zu können. Die Bypassöffnungen 18 besitzen zweckmäßig einen größeren Querschnitt als die Austrittsöffnungen 19.According to FIG. 2, at least one of the outlet openings 19 can be designed at its entrance 23 by special measures such that larger particles 24, which are carried along by the cooling gas flow, are prevented from entering the outlet opening 19. In this way, clogging of the outlet opening 19 by particles 24 that are too large can be avoided. As an example, the inlet 23 can have a beveled or rounded edge 25, at least on the side 22 arranged closer to the tip 6, which makes it difficult for larger particles 24 to enter the outlet opening 19. In addition or alternatively, a nose 27 can be formed at the entrance 23 on a side 26 of the outlet opening 19 arranged closer to the foot 7, which protrudes inwards from the jacket 2 and thus causes the particles 24 to be aerodynamically repelled. This measure also prevents larger particles 24 from being able to enter the outlet opening 19. The bypass openings 18 expediently have a larger cross section than the outlet openings 19.
Es ist klar, dass die Bypassöffnungen 18 einerseits und die Austrittsöffnungen 19 andererseits so dimensioniert sind, dass nach wie vor ein hinreichend großer Kühlgasstrom durch den oder die Kühlgaspfade 15 gewährleistet werden kann.It is clear that the bypass openings 18 on the one hand and the outlet openings 19 on the other hand are dimensioned such that a sufficiently large cooling gas flow through the cooling gas path or paths 15 can still be ensured.
Die erfindungsgemäße Turbinenschaufel 1 funktioniert wie folgt:The turbine blade 1 according to the invention functions as follows:
Die Kühlgasströmung kommt vom Schaufelfuß 7 und folgt zum überwiegenden Teil dem Kühlgaspfad 15 entlang den strömungsführenden Rippen 13. Der Kühlgasstrom führt kleine Partikel, z.B. mit einem Durchmesser von weniger als 0,5 mm, sowie größere Partikel, z.B. mit einem Durchmesser von etwa 0,5 mm bis etwa 3 mm, mit sich. Im Bereich einer Strömungsumlenkung zwischen einer äußeren Rippe 13 und dem Mantel 2 können die in der Strömung mitgeführten Partikel 24 dieser starken Umlenkung nicht ohne weiteres folgen, da sie aufgrund der Trägheitskräfte grundsätzlich einer geraden Bahn folgen. Diese Erkenntnis nutzt die Erfindung, in dem gerade dort die Bypassöffnungen 18, 20 bzw. die Austrittsöffnungen 19 angeordnet sind. Dementsprechend können vor allem schwerere gröbere Partikel 24 entsprechend einem mit unterbrochener Linie dargestellten Pfeil 28 durch die Bypassöffnung 18 die jeweilige Rippe 13 durchströmen. Kleiner Partikel 24 können ebenso durch die Bypassöffnung 18 strömen. Des weiteren können kleinere Partikel 24 auch entsprechend einem mit gepunkteter Linie gezeichneten Pfeil 29 durch die Austrittsöffnung 19 strömen und durch den Mantel 2 hindurch in den Heißgaspfad 4 eintreten. Das Druckgefälle an der Austrittsöffnung 19 begünstigt dabei den Eintritt leichterer Partikel 24 in die Austrittsöffnung 19 während schwerere Partikel 24 eher die Bypassöffnung 18 durchströmen. Entsprechendes gilt für die Bypassöffnung 20 in der Deckplatte 16, die im Bereich dieser Bypassöffnung 20 die Funktion der äußeren Rippe 13, also die Strömungsumleitung übernimmt. Durch die Bypassöffnung 20 gelangen die Partikel 24 ebenfalls in den Heißgaspfad 4.The cooling gas flow comes from the blade root 7 and for the most part follows the cooling gas path 15 along the flow-guiding ribs 13. The cooling gas flow carries small particles, for example with a diameter of less than 0.5 mm, and larger particles, for example with a diameter of about 0, 5 mm to about 3 mm, with itself. In the area of a flow deflection between an outer rib 13 and the jacket 2, the particles 24 carried along in the flow cannot readily follow this strong deflection, since they basically follow a straight path due to the inertial forces. This finding is used by the invention, in which the bypass openings 18, 20 and the outlet openings 19 are arranged precisely there. Accordingly, heavier coarser particles 24 in particular can flow through the respective rib 13 through the bypass opening 18 in accordance with an arrow 28 shown with a broken line. Small particles 24 can also flow through the bypass opening 18. Furthermore, smaller particles 24 can also flow through the outlet opening 19 in accordance with an arrow 29 drawn with a dotted line and enter the hot gas path 4 through the jacket 2. The Pressure drop at the outlet opening 19 favors the entry of lighter particles 24 into the outlet opening 19, while heavier particles 24 tend to flow through the bypass opening 18. The same applies to the bypass opening 20 in the cover plate 16, which takes over the function of the outer rib 13, that is to say the flow diversion, in the region of this bypass opening 20. The particles 24 likewise reach the hot gas path 4 through the bypass opening 20.
Mit Hilfe der Bypassöffnungen 18, 20 sowie der Austrittsöffnungen 19 wird effektiv eine Ablagerung im Umlenkbereich zwischen Rippe 13 und Mantel 2 sowie zwischen Deckplatte 16 und Mantel 2 verhindert. Da somit bei der erfindungsgemäßen Turbinenschaufel 1 innerhalb der Kühlgaspfade 15 Materialablagerungen vermieden oder gehemmt werden, kann für eine lange Zeit die geforderte Kühlwirkung gewährleistet werden, was mit einer erhöhten Lebensdauer für die Turbinenschaufel 1 einhergeht. The bypass openings 18, 20 and the outlet openings 19 effectively prevent deposits in the deflection area between the rib 13 and the jacket 2 and between the cover plate 16 and jacket 2. Since material deposits within the cooling gas paths 15 are thus avoided or inhibited in the turbine blade 1 according to the invention, the required cooling effect can be ensured for a long time, which is associated with an increased service life for the turbine blade 1.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Turbinenschaufelturbine blade
Mantelcoat
Außenseite von 2Outside of 2
HeißgaspfadHot gas path
HeißgasströmungHot gas flow
Spitze von 1Top of 1
Fuß von 1 erste Seitenwand von 2 zweite Seitenwand von 2Foot of 1 first side wall of 2 second side wall of 2
Vorderkante von 1 bzw. 2Leading edge of 1 or 2
Hinterkante von 1 bzw. 2Trailing edge of 1 or 2
Inneres von 1Inside of 1
Ripperib
Mittelstegcenter web
KühlgaspfadCooling gas path
Deckplattecover plate
Auslassöffnung in 16Outlet opening in 16
Bypassöffnung in 13Bypass opening in 13
Austrittsöffnung in 2Exit opening in 2nd
Bypassöffnung in 16Bypass opening in 16th
Anströmseite von 13Upstream side of 13
6 zugewandte Seite von 196 facing side of 19
Eingang von 19 Partikel abgerundete Kante bei 23 7 zugewandte Seite von 19 Nase bei 23 Strömung durch 18, 20 Strömung durch 19 Innenseite von 2 Entrance from 19th Particle rounded edge at 23 7 facing side of 19 nose at 23 flow through 18, 20 flow through 19 inside of 2

Claims

Patentansprüche claims
1. Turbinenschaufel mit einem Mantel (2), der eine erste Seitenwand (8) und eine zweite Seitenwand (9) aufweist, die an einer anströmseitigen Vorderkante (10) und an einer abströmseitigen Hinterkante (11) miteinander verbunden sind, die sich longitudinal von einem Fuß (7) zu einer Spitze (6) erstrecken und die zwischen Vorderkante (10) und Hinterkante (11) durch mehrere innere Rippen (13) miteinander verbunden sind, die im Inneren (12) der Turbinenschaufel (1) mindestens einen Kühlgaspfad (15) bilden, der eine Kühlgasströmung vom Fuß (7) zur Spitze (6) führt und dabei mehrfach von außen nach innen und von innen nach außen serpentinenförmig umlenkt, dadurch gekennzeichnet, dass im Bereich wenigstens einer die Kühlgasströmung von außen nach innen umlenkenden Rippe (13) wenigstens eine die Rippe (13) am Mantel (2) durchdringende Bypassöffnung (18) und/oder wenigstens eine den Mantel (2) durchdringende Austrittsöffnung (19) angeordnet ist/sind.1. Turbine blade with a jacket (2) having a first side wall (8) and a second side wall (9) which are connected to one another on an upstream front edge (10) and on a downstream end edge (11) which extend longitudinally from a foot (7) to a tip (6) and which are connected to one another between the front edge (10) and the rear edge (11) by a plurality of inner ribs (13) which have at least one cooling gas path (12) in the interior (12) of the turbine blade (1) 15), which leads a cooling gas flow from the foot (7) to the tip (6) and thereby deflects several times from outside to inside and from inside to outside in a serpentine shape, characterized in that in the area at least one rib deflecting the cooling gas flow from outside to inside 13) at least one bypass opening (18) penetrating the rib (13) on the casing (2) and / or at least one outlet opening (19) penetrating the casing (2) is / are arranged.
2. Turbinenschaufel nach Anspruch 1, dadurch gekennzeichnet, dass auch in einer an der Spitze (6) angeordneten Deckplatte (16) wenigstens eine die Deckplatte (16) am Mantel (2) durchdringende Bypassöffnung (20) angeordnet ist.2. A turbine blade according to claim 1, characterized in that at least one bypass opening (20) penetrating the cover plate (16) on the casing (2) is also arranged in a cover plate (16) arranged at the tip (6).
3. Turbinenschaufel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Bypassöffnung (18), die Rippe (13) und/oder die Deckplatte (16) parallel zum Mantel (2) durchdringt.3. Turbine blade according to claim 1 or 2, characterized in that that the bypass opening (18), the rib (13) and / or the cover plate (16) penetrates parallel to the casing (2).
4. Turbinenschaufel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Bypassöffnung (18, 20) die Rippe (13) und/oder die Deckplatte (16) entlang einer Innenseite (30) des Mantels (2) durchdringt.4. Turbine blade according to one of claims 1 to 3, characterized in that the bypass opening (18, 20) penetrates the rib (13) and / or the cover plate (16) along an inner side (30) of the casing (2).
5. Turbinenschaufel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Austrittsöffnung (19) den Mantel (2) parallel zur Rippe (13) durchdringt.5. Turbine blade according to one of claims 1 to 4, characterized in that the outlet opening (19) penetrates the casing (2) parallel to the rib (13).
6. Turbinenschaufel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Austrittsöffnung (19) einen sich von innen nach außen erweiternden Querschnitt aufweist.6. Turbine blade according to one of claims 1 to 5, characterized in that the outlet opening (19) has a cross-section widening from the inside to the outside.
7. Turbinenschaufel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Austrittsöffnung (19) im wesentlichen mit einer Anströmseite (21) der Rippe (13) fluchtet.7. Turbine blade according to one of claims 1 to 6, characterized in that the outlet opening (19) is substantially aligned with an inflow side (21) of the rib (13).
8. Turbinenschaufel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Austrittsöffnung (19) an ihrem Eingang (23) wenigstens an einer näher an der Spitze (6) angeordneten Seite (22) eine abgeschrägte oder abgerundete Kante (25) und/oder an einer näher am Fuß (7) angeordneten Seite (26) eine vom Mantel (2) nach innen vorstehende Nase (27) aufweist. 8. Turbine blade according to one of claims 1 to 7, characterized in that the outlet opening (19) at its entrance (23) at least on a closer to the tip (6) arranged side (22) has a chamfered or rounded edge (25) and / or on a side (26) arranged closer to the foot (7) has a nose (27) projecting inwards from the casing (2).
9. Turbinenschaufel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mehrere Bypassöffnungen (18, 20) zueinander fluchtend angeordnet sind.9. Turbine blade according to one of claims 1 to 8, characterized in that a plurality of bypass openings (18, 20) are arranged in alignment with one another.
10. Turbinenschaufel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass bei aufeinanderfolgenden Rippen (13) die Bypassöffnungen (18) und die Austrittsöffnungen (19) einander abwechselnd angeordnet sind.10. Turbine blade according to one of claims 1 to 9, characterized in that the bypass openings (18) and the outlet openings (19) are arranged alternately with successive ribs (13).
11. Turbinenschaufel nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Bypassöffnungen (18, 20) und/oder die. Austrittsöffnungen (19) im Bereich der Vorderkante (10) und/oder der Hinterkante (11) angeordnet sind.11. Turbine blade according to one of claims 1 to 10, characterized in that the bypass openings (18, 20) and / or the. Outlet openings (19) are arranged in the region of the front edge (10) and / or the rear edge (11).
12. Turbinenschaufel nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Bypassöffnungen (18, 20) und/oder die Austrittsöffnungen (19) bei Rippen (13) angeordnet sind, die nach innen und zum Fuß (7) hin vom Mantel (2) abstehen. 12. Turbine blade according to one of claims 1 to 11, characterized in that the bypass openings (18, 20) and / or the outlet openings (19) are arranged at ribs (13) which inwards and towards the foot (7) from the jacket (2) stick out.
EP03702263A 2002-03-25 2003-02-21 Cooled turbine blade Expired - Fee Related EP1488077B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH507022002 2002-03-25
CH5072002 2002-03-25
PCT/CH2003/000134 WO2003080998A1 (en) 2002-03-25 2003-02-21 Cooled turbine blade

Publications (2)

Publication Number Publication Date
EP1488077A1 true EP1488077A1 (en) 2004-12-22
EP1488077B1 EP1488077B1 (en) 2006-07-12

Family

ID=28048290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03702263A Expired - Fee Related EP1488077B1 (en) 2002-03-25 2003-02-21 Cooled turbine blade

Country Status (5)

Country Link
US (1) US7293962B2 (en)
EP (1) EP1488077B1 (en)
AU (1) AU2003205491A1 (en)
DE (1) DE50304226D1 (en)
WO (1) WO2003080998A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080998A1 (en) 2002-03-25 2003-10-02 Alstom Technology Ltd Cooled turbine blade
GB0524735D0 (en) 2005-12-03 2006-01-11 Rolls Royce Plc Turbine blade
US7549843B2 (en) * 2006-08-24 2009-06-23 Siemens Energy, Inc. Turbine airfoil cooling system with axial flowing serpentine cooling chambers
US20090003987A1 (en) * 2006-12-21 2009-01-01 Jack Raul Zausner Airfoil with improved cooling slot arrangement
US7785070B2 (en) * 2007-03-27 2010-08-31 Siemens Energy, Inc. Wavy flow cooling concept for turbine airfoils
US7967567B2 (en) * 2007-03-27 2011-06-28 Siemens Energy, Inc. Multi-pass cooling for turbine airfoils
US8047788B1 (en) * 2007-10-19 2011-11-01 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall serpentine cooling
US10286407B2 (en) 2007-11-29 2019-05-14 General Electric Company Inertial separator
US8105033B2 (en) * 2008-06-05 2012-01-31 United Technologies Corporation Particle resistant in-wall cooling passage inlet
US8167558B2 (en) * 2009-01-19 2012-05-01 Siemens Energy, Inc. Modular serpentine cooling systems for turbine engine components
US8096772B2 (en) * 2009-03-20 2012-01-17 Siemens Energy, Inc. Turbine vane for a gas turbine engine having serpentine cooling channels within the inner endwall
JP2011085084A (en) * 2009-10-16 2011-04-28 Ihi Corp Turbine blade
US8616834B2 (en) * 2010-04-30 2013-12-31 General Electric Company Gas turbine engine airfoil integrated heat exchanger
US9074482B2 (en) 2012-04-24 2015-07-07 United Technologies Corporation Airfoil support method and apparatus
US11033845B2 (en) 2014-05-29 2021-06-15 General Electric Company Turbine engine and particle separators therefore
EP3149310A2 (en) 2014-05-29 2017-04-05 General Electric Company Turbine engine, components, and methods of cooling same
CA2949547A1 (en) 2014-05-29 2016-02-18 General Electric Company Turbine engine and particle separators therefore
US9915176B2 (en) 2014-05-29 2018-03-13 General Electric Company Shroud assembly for turbine engine
US10036319B2 (en) 2014-10-31 2018-07-31 General Electric Company Separator assembly for a gas turbine engine
US10167725B2 (en) 2014-10-31 2019-01-01 General Electric Company Engine component for a turbine engine
US10156157B2 (en) * 2015-02-13 2018-12-18 United Technologies Corporation S-shaped trip strips in internally cooled components
CN107429569B (en) 2015-04-03 2019-09-24 西门子公司 Turbine rotor blade rear with low flowing frame-type channel
US9988936B2 (en) 2015-10-15 2018-06-05 General Electric Company Shroud assembly for a gas turbine engine
US10174620B2 (en) 2015-10-15 2019-01-08 General Electric Company Turbine blade
US10428664B2 (en) 2015-10-15 2019-10-01 General Electric Company Nozzle for a gas turbine engine
US10704425B2 (en) 2016-07-14 2020-07-07 General Electric Company Assembly for a gas turbine engine
EP3473808B1 (en) * 2017-10-19 2020-06-17 Siemens Aktiengesellschaft Blade for an internally cooled turbine blade and method for producing same
US10669896B2 (en) * 2018-01-17 2020-06-02 Raytheon Technologies Corporation Dirt separator for internally cooled components

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527543A (en) * 1965-08-26 1970-09-08 Gen Electric Cooling of structural members particularly for gas turbine engines
US3533712A (en) * 1966-02-26 1970-10-13 Gen Electric Cooled vane structure for high temperature turbines
US3533711A (en) * 1966-02-26 1970-10-13 Gen Electric Cooled vane structure for high temperature turbines
GB2165315B (en) * 1984-10-04 1987-12-31 Rolls Royce Improvements in or relating to hollow fluid cooled turbine blades
US4753575A (en) * 1987-08-06 1988-06-28 United Technologies Corporation Airfoil with nested cooling channels
EP0340149B1 (en) 1988-04-25 1993-05-19 United Technologies Corporation Dirt removal means for air cooled blades
US4820123A (en) * 1988-04-25 1989-04-11 United Technologies Corporation Dirt removal means for air cooled blades
US5700131A (en) * 1988-08-24 1997-12-23 United Technologies Corporation Cooled blades for a gas turbine engine
GB2262314A (en) * 1991-12-10 1993-06-16 Rolls Royce Plc Air cooled gas turbine engine aerofoil.
US5368441A (en) * 1992-11-24 1994-11-29 United Technologies Corporation Turbine airfoil including diffusing trailing edge pedestals
US5611662A (en) * 1995-08-01 1997-03-18 General Electric Co. Impingement cooling for turbine stator vane trailing edge
US5842829A (en) * 1996-09-26 1998-12-01 General Electric Co. Cooling circuits for trailing edge cavities in airfoils
US5997251A (en) * 1997-11-17 1999-12-07 General Electric Company Ribbed turbine blade tip
US6220817B1 (en) 1997-11-17 2001-04-24 General Electric Company AFT flowing multi-tier airfoil cooling circuit
US5967752A (en) * 1997-12-31 1999-10-19 General Electric Company Slant-tier turbine airfoil
US5971708A (en) * 1997-12-31 1999-10-26 General Electric Company Branch cooled turbine airfoil
DE19921644B4 (en) * 1999-05-10 2012-01-05 Alstom Coolable blade for a gas turbine
GB2350867B (en) * 1999-06-09 2003-03-19 Rolls Royce Plc Gas turbine airfoil internal air system
US6186741B1 (en) * 1999-07-22 2001-02-13 General Electric Company Airfoil component having internal cooling and method of cooling
DE10064269A1 (en) * 2000-12-22 2002-07-04 Alstom Switzerland Ltd Component of a turbomachine with an inspection opening
WO2003080998A1 (en) 2002-03-25 2003-10-02 Alstom Technology Ltd Cooled turbine blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03080998A1 *

Also Published As

Publication number Publication date
EP1488077B1 (en) 2006-07-12
DE50304226D1 (en) 2006-08-24
AU2003205491A1 (en) 2003-10-08
US7293962B2 (en) 2007-11-13
US20050129508A1 (en) 2005-06-16
WO2003080998A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
EP1488077B1 (en) Cooled turbine blade
EP0902167B1 (en) Cooling device for gas turbine components
DE60020007T2 (en) Internal air cooling system for turbine blades
EP0126399B1 (en) Fluid duct presenting a reduced construction
DE4119216C2 (en) Droplet separator
DE4126907C2 (en)
DE4000248C2 (en)
DE10330471A1 (en) Device for separating foreign particles from the cooling air that can be fed to the moving blades of a turbine
DE10248410A1 (en) Device for filtering out particles from a flow
DE2847814A1 (en) GAS TURBINE
DE2202858B1 (en) COOLED GUIDE VANE FOR GAS TURBINES
DE102010051638A1 (en) Gas turbine combustor with a cooling air supply device
WO2009109462A1 (en) Vane for a gas turbine
DE112015001576T5 (en) liquid separation
DE3322578C2 (en) Sorting device
EP1292760B1 (en) Configuration of a coolable turbine blade
WO2012069618A1 (en) Self-cleaning screw-type centrifugal wheel pump with recirculation behind the impeller
DE3333261C2 (en) Device for pneumatic or hydraulic conveying of bulk material
DE2543878A1 (en) AIR CONVEYING DUCT
EP1219779B1 (en) Turbomachine component with inspection hole, and method for inspecting and cleaning such a component
EP3473808A1 (en) Blade for an internally cooled turbine blade and method for producing same
EP2963243B1 (en) Flow engine with blades having blade tips lowering towards the trailing edge
DE102017118583B4 (en) Arrangement of support struts in a downstream annulus of a gas turbine
DE4014574A1 (en) EXHAUST GAUGE JOINT
DE1279538B (en) Centrifugal separator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50304226

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304226

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304226

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50304226

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180219

Year of fee payment: 16

Ref country code: GB

Payment date: 20180216

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304226

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221