EP1484504B1 - Fuel supply apparatus - Google Patents
Fuel supply apparatus Download PDFInfo
- Publication number
- EP1484504B1 EP1484504B1 EP04013169A EP04013169A EP1484504B1 EP 1484504 B1 EP1484504 B1 EP 1484504B1 EP 04013169 A EP04013169 A EP 04013169A EP 04013169 A EP04013169 A EP 04013169A EP 1484504 B1 EP1484504 B1 EP 1484504B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- rotor
- fuel
- holes
- supply apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims description 54
- 238000002347 injection Methods 0.000 claims description 14
- 239000007924 injection Substances 0.000 claims description 14
- 238000005086 pumping Methods 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 2
- 206010010904 Convulsion Diseases 0.000 description 7
- 230000002159 abnormal effect Effects 0.000 description 7
- 239000002828 fuel tank Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
- F04B23/08—Combinations of two or more pumps the pumps being of different types
- F04B23/10—Combinations of two or more pumps the pumps being of different types at least one pump being of the reciprocating positive-displacement type
- F04B23/103—Combinations of two or more pumps the pumps being of different types at least one pump being of the reciprocating positive-displacement type being a radial piston pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
- F04B23/08—Combinations of two or more pumps the pumps being of different types
- F04B23/12—Combinations of two or more pumps the pumps being of different types at least one pump being of the rotary-piston positive-displacement type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C11/00—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
- F04C11/005—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
- F04C11/006—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle having complementary function
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0042—Systems for the equilibration of forces acting on the machines or pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/082—Details specially related to intermeshing engagement type machines or pumps
- F04C2/084—Toothed wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/102—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/34—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
- F04C2/344—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2230/00—Manufacture
- F04C2230/60—Assembly methods
- F04C2230/602—Gap; Clearance
Definitions
- This invention relates to a fuel supply apparatus as defined in the preamble of Claim 1.
- a fuel supply apparatus as defined in the preamble of Claim 1.
- Such an apparatus is known from JP-A-07279790 .
- the fuel injection pump is provided with a feed pump for drawing fuel from a fuel tank and feeding the fuel to a main pump of the fuel injection pump.
- the feed pump comprises a pump element 110 to be driven by a cam shaft 100 of a main pump, a pump cover 120 for forming a rotor chamber and housing therein the pump element 110, and a pump plate 130 for closing an opening side of the rotor chamber in a liquid-sealing manner in combination with the pump cover 120, wherein the pump cover 120 is screwed to a side surface of a pump housing 140.
- the pump element 110 is a trochoid type comprising an outer rotor 111 having inner cogs and an inner rotor 112 disposed inside of the outer rotor and having outer cogs, wherein the number of cogs of the outer rotor 111 is larger than that of the inner rotor 112 by one cog, and wherein a rotational center 0a of the outer rotor 111 is eccentric from that 0i of the inner rotor 112.
- the outer rotor 111 is also rotated in conjunction with the inner rotor 112, so that a volume of a working chamber formed by adjacent cogs will be gradually changed to draw fuel from a fuel tank and pumps out the fuel to the main pump.
- a side clearance between the pump cover 120 and the pump element 110 is made smaller to minimize amount of fuel leakage and to increase a fuel feed efficiency. If, however, the side clearance were made too small, there would occur a problem of an abnormal wear, seizure or the like, because variations of parts in manufacturing process may not be absorbed.
- a fuel supply apparatus having the features of the preamble of claim 1.
- a fuel supply apparatus comprising a trochoid type rotary pump being composed of an outer rotor having inner cogs, an inner rotor disposed inside of the outer rotor and having outer cogs, and a pumping chamber formed by the outer and inner rotors, the volume of which is varied in conjunction with rotation of the rotors, for pressurizing fuel sucked into the pumping chamber and discharging the pressurized fuel.
- pressures (thrust pressures) on both sides of the rotor in the axial direction are equalized, since the side clearances formed at both sides of the rotor are communicated with each other through those multiple through-holes formed in the rotor.
- uniform side clearances on both sides of the rotor can be attained.
- the fuel feed efficiency can be increased by making much smaller the side clearance formed at both sides of the rotor in its axial direction, and the problems of the abnormal wear, seizures and the like can be suppressed because metal contacts between the rotor forming the side clearances and other parts can be suppressed.
- the inner rotor Because of the through-holes formed in the inner rotor, which is driven by a cam shaft, the inner rotor can be floated. As a result, metal contacts between the inner rotor and other parts are suppressed during the rotation of the inner rotor, and thereby the problems of the abnormal wear, seizures and the like can be suppressed.
- an outer rotor of the rotary pump is provided with multiple through-holes, which pass through in the axial direction.
- the through-holes are formed in the outer rotor in addition to the through-holes in the inner rotor, thrust pressures to the outer rotor can be likewise equalized. As a result, the outer rotor can be positively floated together with the inner rotor.
- the rotary pump is used as a feed pump of a fuel injection pump for diesel engines, wherein the feed pump is formed with a circular rotor chamber and comprises a pump cover for housing the pump element of the inner and the outer rotors in the rotor chamber, and a pump plate for closing an open end of the rotor chamber in a liquid-sealing manner together with the pump cover.
- the pump plate is formed with fuel ports to be communicated to the rotor chamber, and the pump cover is screwed to a side surface of a housing of the fuel injection pump, so that the pump plate is pressed against the side surface.
- the side clearance between the pump element and the pump cover as well as the side clearance between the pump element and the pump plate can be made smaller to increase the fuel feed efficiency and thereby increase a pump performance as the feed pump.
- a fuel supply apparatus of the invention is used in a fuel injection pump of a common rail fuel injection system for diesel engines.
- Fig. 1 is a cross-sectional view of a feed pump
- Fig. 2 is a front view of a pump element
- Fig. 3 is a cross-sectional view of a fuel injection pump.
- the fuel injection pump 1 is provided with a main pump 2 for pressurizing and pumping out fuel and a feed pump 3 (See Fig. 1 ) for drawing the fuel from a fuel tank (not shown) and feeding the fuel to the main pump 2.
- the main pump 2 comprises a cam shaft 4 to be rotated being driven by a diesel engine (not shown), a pump housing 5 for rotationally supporting the cam shaft 4, a plunger 7 being driven by the cam shaft 4 for reciprocally moving in a cylinder 6, and so on.
- a cam 8 which has a circular cross-sectional configuration is fixed to the cam shaft 4, wherein a rotational center thereof is eccentric to that of the cam shaft.
- a cam ring 10 is rotationally supported at an outer periphery of the cam 8 over a bush 9.
- a pair of flat surfaces are formed in the cam ring 10, wherein the flat surfaces are opposing to each other in a radial direction of the cam 8.
- a pair of cylinder heads 11 is assembled to the pump housing 5 in a liquid-sealing manner, wherein the cylinder heads 11 are opposing to each other in the radial direction of the cam shaft 4.
- the cylinder head 11 is formed with a cylinder 6, into which the plunger 7 is inserted, a pump-out port 12 to be communicated with the cylinder 6, and so on.
- a check valve 13 is assembled to the cylinder head at an opposite side of the cylinder 6.
- a pipe joint 15 is screwed into the cylinder head at an outlet side of the pump-out port 12 for connecting to a fuel pipe 14.
- the check valve 13 is disposed between a fuel passage (not shown) to be communicated with a feed pump and the cylinder 6.
- the check valve 13 will be opened during a suction stroke at which the plunger 7 will be downwardly moved in the cylinder 6 (inwardly moved), to introduce fuel fed from the feed pump 3 into the inside of the cylinder 6, whereas the check valve 13 will be closed during a pumping out stroke at which the plunger 7 will be upwardly moved in the cylinder 6 (outwardly moved) so that the fuel introduced into the cylinder 6 is prevented from flowing back to the feed pump 3.
- the pump-out port 12 is formed with a small diameter port and a large diameter port.
- a seat surface of a circular conic is formed between the small and large diameter ports (See Fig. 3 ).
- a ball valve 17 is disposed in the pump-out port 12 and is urged by a spring 16 towards the seat surface, so that the small and large diameter ports are blocked by this ball valve 17.
- the ball valve 17 will be lifted from the seat surface when a pressure of fuel, which is pressurized by the plunger 7 during the pumping out stroke, becomes higher than the urging force of the spring 16, and thereby the small and large diameter ports are communicated with each other.
- the plunger 7 has a plunger head 7a at its inner side end and the plunger head 7a is urged by a spring 18 and pressed against an outer surface (flat surface) of the cam ring 10.
- the cam ring 10 moves with an orbital motion along its orbit which is displaced from the rotational center of the cam shaft 4 by a certain distance, while the cam ring 10 is keeping its orientation (The cam ring 10 is not rotated on its axis and on an axis of the cam 8).
- the plunger 7 pressed against the flat surface of the cam ring 10 is reciprocally moved in the cylinder 6.
- the feed pump 3 comprises a pump element PE, a pump cover 19 and a pump plate 20, as explained below.
- the feed pump 3 is fixed to a side surface of the pump housing 5 by bolts 21, as shown in Fig. 3 .
- the pump element PE is a well known trochoid type pump, comprising an outer rotor 22 having inner cogs and an inner rotor 23 disposed inside of the outer rotor 22 and having outer cogs, wherein the inner rotor is connected to the cam shaft 4 via a key so that the inner rotor will be rotated by the cam shaft 4.
- the outer rotor 22 has cogs, the number of which is larger than that of the inner rotor 23 by one cog, and the rotational center 0a of the outer rotor 22 is eccentrically displaced from the rotational center 0i of the inner rotor 23 (See Fig. 2 ). Accordingly, when the inner rotor 23 is rotated by the cam shaft 4, the outer rotor 22 is rotated in conjunction with the inner rotor 23, so that the volume of working chambers formed by the cogs will be changed to pump out the fuel drawn from the fuel tank to the main pump 2.
- through-holes 22a and 23a which pass through the outer and inner rotors 22 and 23 in an axial direction, are respectively formed in the outer rotor 22 and the inner rotor 23.
- the pump cover 19 is formed with a circular rotor chamber 19a for housing therein the pump element PE, as shown in Fig. 1 .
- An inner diameter of the rotor chamber 19a is made slightly larger than an outer diameter of the pump element PE (namely, an outer diameter of the outer rotor 23), so that the outer rotor 23 may be rotated therein.
- Awidth of the rotor chamber 19a is made slightly larger than a width of the pump element PE (a thickness in a longitudinal direction), so that side clearances of a certain distance between the pump element PE and inner surfaces of the pump chamber are kept.
- the pump plate 20 is assembled to the pump cover 19 in a liquid-sealing manner to close an opening of the rotor chamber 19a.
- the pump plate 20 is formed with a center bore, through which the cam shaft 4 passes, and fuel ports 20a (an inlet port and an outlet port) around the center bore (See Fig. 1 ).
- the fuel ports 20a are communicated to the working chambers 24 formed between the outer rotor 22 and the inner rotor 23.
- the multiple through-holes 22a and 23a are respectively formed in the outer and inner rotors 22 and 23 and furthermore those multiple through-holes 22a and 23a are arranged at equal distance in the circumferential direction of the rotors 22 and 23. Since the side clearances formed on the both sides of the rotors 22 and 23 in the axial direction are communicated with each other through those multiple through-holes 22a and 23a, the pressures in the thrust direction at the both sides of the rotors 22 and 23 will be equalized. As a result, uniform side clearances can be obtained at both sides of the rotors 22 and 23.
- the outer and inner rotors 22 and 23 can be floated without contacting with the pump cover 19 and the pump plate 20.
- the through-holes 23a are formed at every cog top portions of the inner rotor 23, which correspond to an outer periphery of the inner rotor, an inclination of the inner rotor 23 can be effectively suppressed and thereby the uniform side clearances at both of the longitudinal sides along the peripheries of the inner rotor 23 can be obtained.
- the problems of the abnormal wear and seizures and the like can be suppressed by preventing the metal contacts between the pump element PE and the pump cover 19 and the pump plate 20, to finally increase the performance of the feed pump 3, even when the side clearances between the pump element PE and the pump cover 19 are made smaller to increase the fuel feed efficiency.
- the through-holes 22a and 23a are formed in the both outer and inner rotors 22 and 23. It is, however, possible to obtain a sufficient effect (suppress of the abnormal wear and seizures, or the like), when the through-holes 23a are formed only in the inner rotor 23 which is directly driven by the cam shaft 4.
- Fig. 4 is a front view of pump element PE according to an embodiment of the present invention.
- the multiple through-holes 22a and 23a are formed in the outer and inner rotors 22 and 23 at equal distance in the circumferential direction. It is, however, not necessary to arrange the through-holes at equal distance. As shown in Fig. 4 , the through-holes 23a can be formed in the inner rotor 23 at non-equivalent distances in the circumferential direction. Although only the through-holes for the inner rotor 23 are shown in Fig. 4 , the through-holes 22a can be formed in the outer rotor 22 at non-equivalent distances in the circumferential direction, as in the same manner for the inner rotor 23.
- Fig. 5 is a front view of a rotor 25 according to a further example not covered by the claims of the present invention.
- the vane type pump has, as shown in Fig. 5 , a rotor 25 formed with multiple vane grooves 25a at its outer periphery at equal distance in the circumferential direction, and vanes 26 respectively and movably inserted into the vane grooves 25a.
- the through-holes 25b are formed at both sides to the respective vanes 26 and the circumferential distance of the through-holes 25b between the respective vanes 26 is arranged to be equal to each other.
- the circumferential distance of the through-holes 25b is not necessary to be equal but to be non-equivalent.
- the fuel supply apparatus of the invention is used in the fuel injection pump of the common rail fuel injection system for diesel engines.
- the present invention is not limited to these embodiments, and the present invention can be used for a fuel pump for a gasoline engine.
- a fuel feed pump according to the present invention improves its pump performance by making smaller side clearances in an axial direction at both sides of a pump element PE.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Description
- This invention relates to a fuel supply apparatus as defined in the preamble of Claim 1. Such an apparatus is known from
JP-A-07279790 - As one of prior art fuel injection pump, for example shown in US Patent Application Publication No.
US 2003/0044288 A1 , it is known to us that the fuel injection pump is provided with a feed pump for drawing fuel from a fuel tank and feeding the fuel to a main pump of the fuel injection pump. - As shown in
Fig. 6 , the feed pump comprises apump element 110 to be driven by acam shaft 100 of a main pump, apump cover 120 for forming a rotor chamber and housing therein thepump element 110, and apump plate 130 for closing an opening side of the rotor chamber in a liquid-sealing manner in combination with thepump cover 120, wherein thepump cover 120 is screwed to a side surface of apump housing 140. - Furthermore, as shown in
Fig. 7 , thepump element 110 is a trochoid type comprising anouter rotor 111 having inner cogs and aninner rotor 112 disposed inside of the outer rotor and having outer cogs, wherein the number of cogs of theouter rotor 111 is larger than that of theinner rotor 112 by one cog, and wherein a rotational center 0a of theouter rotor 111 is eccentric from that 0i of theinner rotor 112. As a result, when theinner rotor 112 is driven by thecam shaft 100 and rotated, theouter rotor 111 is also rotated in conjunction with theinner rotor 112, so that a volume of a working chamber formed by adjacent cogs will be gradually changed to draw fuel from a fuel tank and pumps out the fuel to the main pump. - In the above described feed pump, as shown in
Fig. 6 , a side clearance between thepump cover 120 and thepump element 110 is made smaller to minimize amount of fuel leakage and to increase a fuel feed efficiency. If, however, the side clearance were made too small, there would occur a problem of an abnormal wear, seizure or the like, because variations of parts in manufacturing process may not be absorbed. - Document
JP 7279790 - It is the object of the present invention to provide an improved fuel supply apparatus comprising a trochoid type rotary pump.
- This object is solved by a fuel supply apparatus comprising the features of claim 1. Further developments are stated in the dependent claims.
- According to the structure of claim 1, pressures (thrust pressures) on both sides of the rotor in the axial direction are equalized, since the side clearances formed at both sides of the rotor are communicated with each other through those multiple through-holes formed in the rotor. As a result, uniform side clearances on both sides of the rotor can be attained. In other words, it has become possible to float the rotor. Accordingly, the fuel feed efficiency can be increased by making much smaller the side clearance formed at both sides of the rotor in its axial direction, and the problems of the abnormal wear, seizures and the like can be suppressed because metal contacts between the rotor forming the side clearances and other parts can be suppressed.
- Because of the through-holes formed in the inner rotor, which is driven by a cam shaft, the inner rotor can be floated. As a result, metal contacts between the inner rotor and other parts are suppressed during the rotation of the inner rotor, and thereby the problems of the abnormal wear, seizures and the like can be suppressed.
- According to claim 2, an outer rotor of the rotary pump is provided with multiple through-holes, which pass through in the axial direction.
- Since the through-holes are formed in the outer rotor in addition to the through-holes in the inner rotor, thrust pressures to the outer rotor can be likewise equalized. As a result, the outer rotor can be positively floated together with the inner rotor.
- According to
claim 3, the rotary pump is used as a feed pump of a fuel injection pump for diesel engines, wherein the feed pump is formed with a circular rotor chamber and comprises a pump cover for housing the pump element of the inner and the outer rotors in the rotor chamber, and a pump plate for closing an open end of the rotor chamber in a liquid-sealing manner together with the pump cover. The pump plate is formed with fuel ports to be communicated to the rotor chamber, and the pump cover is screwed to a side surface of a housing of the fuel injection pump, so that the pump plate is pressed against the side surface. - According to the above structure, the side clearance between the pump element and the pump cover as well as the side clearance between the pump element and the pump plate can be made smaller to increase the fuel feed efficiency and thereby increase a pump performance as the feed pump.
- The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
-
Fig. 1 is a cross-sectional view of a feed pump according to an example not covered by the claims of the present invention; -
Fig. 2 is a front view of a pump element of the feed pump shown inFig. 1 ; -
Fig. 3 is a cross-sectional view of a fuel injection pump to which the feed pump offigure 1 is applied; -
Fig. 4 is a front view of a pump element according to an embodiment of the present invention; -
Fig. 5 is a front view of a pump rotor according to an example not covered by the claims of the present invention; -
Fig. 6 is a cross-sectional view of a prior art feed pump; and -
Fig. 7 is a front view of a pump element of the feed pump shown inFig. 6 . - The present invention will be explained below with reference to the embodiments.
- In an example not covered by the claims of the present invention a fuel supply apparatus of the invention is used in a fuel injection pump of a common rail fuel injection system for diesel engines.
-
Fig. 1 is a cross-sectional view of a feed pump,Fig. 2 is a front view of a pump element, andFig. 3 is a cross-sectional view of a fuel injection pump. - As shown in
Fig. 3 , the fuel injection pump 1 is provided with a main pump 2 for pressurizing and pumping out fuel and a feed pump 3 (SeeFig. 1 ) for drawing the fuel from a fuel tank (not shown) and feeding the fuel to the main pump 2. - The main pump 2 comprises a
cam shaft 4 to be rotated being driven by a diesel engine (not shown), apump housing 5 for rotationally supporting thecam shaft 4, aplunger 7 being driven by thecam shaft 4 for reciprocally moving in acylinder 6, and so on. - A
cam 8 which has a circular cross-sectional configuration is fixed to thecam shaft 4, wherein a rotational center thereof is eccentric to that of the cam shaft. Acam ring 10 is rotationally supported at an outer periphery of thecam 8 over abush 9. A pair of flat surfaces are formed in thecam ring 10, wherein the flat surfaces are opposing to each other in a radial direction of thecam 8. - A pair of
cylinder heads 11 is assembled to thepump housing 5 in a liquid-sealing manner, wherein thecylinder heads 11 are opposing to each other in the radial direction of thecam shaft 4. - The
cylinder head 11 is formed with acylinder 6, into which theplunger 7 is inserted, a pump-outport 12 to be communicated with thecylinder 6, and so on. Acheck valve 13 is assembled to the cylinder head at an opposite side of thecylinder 6. Apipe joint 15 is screwed into the cylinder head at an outlet side of the pump-outport 12 for connecting to afuel pipe 14. - The
check valve 13 is disposed between a fuel passage (not shown) to be communicated with a feed pump and thecylinder 6. Thecheck valve 13 will be opened during a suction stroke at which theplunger 7 will be downwardly moved in the cylinder 6 (inwardly moved), to introduce fuel fed from thefeed pump 3 into the inside of thecylinder 6, whereas thecheck valve 13 will be closed during a pumping out stroke at which theplunger 7 will be upwardly moved in the cylinder 6 (outwardly moved) so that the fuel introduced into thecylinder 6 is prevented from flowing back to thefeed pump 3. - The pump-out
port 12 is formed with a small diameter port and a large diameter port. A seat surface of a circular conic is formed between the small and large diameter ports (SeeFig. 3 ). Aball valve 17 is disposed in the pump-outport 12 and is urged by aspring 16 towards the seat surface, so that the small and large diameter ports are blocked by thisball valve 17. - The
ball valve 17 will be lifted from the seat surface when a pressure of fuel, which is pressurized by theplunger 7 during the pumping out stroke, becomes higher than the urging force of thespring 16, and thereby the small and large diameter ports are communicated with each other. - The
plunger 7 has aplunger head 7a at its inner side end and theplunger head 7a is urged by aspring 18 and pressed against an outer surface (flat surface) of thecam ring 10. When the rotation of thecam shaft 4 is transmitted to thecam ring 10 via thecam 8, thecam ring 10 moves with an orbital motion along its orbit which is displaced from the rotational center of thecam shaft 4 by a certain distance, while thecam ring 10 is keeping its orientation (Thecam ring 10 is not rotated on its axis and on an axis of the cam 8). As a result, theplunger 7 pressed against the flat surface of thecam ring 10 is reciprocally moved in thecylinder 6. - The
feed pump 3 comprises a pump element PE, apump cover 19 and apump plate 20, as explained below. Thefeed pump 3 is fixed to a side surface of thepump housing 5 bybolts 21, as shown inFig. 3 . - The pump element PE is a well known trochoid type pump, comprising an
outer rotor 22 having inner cogs and aninner rotor 23 disposed inside of theouter rotor 22 and having outer cogs, wherein the inner rotor is connected to thecam shaft 4 via a key so that the inner rotor will be rotated by thecam shaft 4. - The
outer rotor 22 has cogs, the number of which is larger than that of theinner rotor 23 by one cog, and the rotational center 0a of theouter rotor 22 is eccentrically displaced from the rotational center 0i of the inner rotor 23 (SeeFig. 2 ). Accordingly, when theinner rotor 23 is rotated by thecam shaft 4, theouter rotor 22 is rotated in conjunction with theinner rotor 23, so that the volume of working chambers formed by the cogs will be changed to pump out the fuel drawn from the fuel tank to the main pump 2. - As shown in
Fig. 2 , through-holes inner rotors outer rotor 22 and theinner rotor 23. There are provided with multiple through-holes inner rotors inner rotors 22 and 23) . - The
pump cover 19 is formed with a circular rotor chamber 19a for housing therein the pump element PE, as shown inFig. 1 . An inner diameter of the rotor chamber 19a is made slightly larger than an outer diameter of the pump element PE (namely, an outer diameter of the outer rotor 23), so that theouter rotor 23 may be rotated therein. Awidth of the rotor chamber 19a is made slightly larger than a width of the pump element PE (a thickness in a longitudinal direction), so that side clearances of a certain distance between the pump element PE and inner surfaces of the pump chamber are kept. - The
pump plate 20 is assembled to thepump cover 19 in a liquid-sealing manner to close an opening of the rotor chamber 19a. Thepump plate 20 is formed with a center bore, through which thecam shaft 4 passes, andfuel ports 20a (an inlet port and an outlet port) around the center bore (SeeFig. 1 ). Thefuel ports 20a are communicated to the workingchambers 24 formed between theouter rotor 22 and theinner rotor 23. - An operation of the above example will be explained. In the
above feed pump 3, the multiple through-holes inner rotors holes rotors rotors holes rotors rotors - According to the above structure, the outer and
inner rotors pump cover 19 and thepump plate 20. In particular, since the through-holes 23a are formed at every cog top portions of theinner rotor 23, which correspond to an outer periphery of the inner rotor, an inclination of theinner rotor 23 can be effectively suppressed and thereby the uniform side clearances at both of the longitudinal sides along the peripheries of theinner rotor 23 can be obtained. - Accordingly, the problems of the abnormal wear and seizures and the like can be suppressed by preventing the metal contacts between the pump element PE and the
pump cover 19 and thepump plate 20, to finally increase the performance of thefeed pump 3, even when the side clearances between the pump element PE and thepump cover 19 are made smaller to increase the fuel feed efficiency. - In the above example, the through-
holes inner rotors holes 23a are formed only in theinner rotor 23 which is directly driven by thecam shaft 4. -
Fig. 4 is a front view of pump element PE according to an embodiment of the present invention. - In this embodiment, the multiple through-
holes inner rotors Fig. 4 , the through-holes 23a can be formed in theinner rotor 23 at non-equivalent distances in the circumferential direction. Although only the through-holes for theinner rotor 23 are shown inFig. 4 , the through-holes 22a can be formed in theouter rotor 22 at non-equivalent distances in the circumferential direction, as in the same manner for theinner rotor 23. -
Fig. 5 is a front view of arotor 25 according to a further example not covered by the claims of the present invention, - in which the rotary pump is applied to a vane type pump.
- The vane type pump has, as shown in
Fig. 5 , arotor 25 formed withmultiple vane grooves 25a at its outer periphery at equal distance in the circumferential direction, andvanes 26 respectively and movably inserted into thevane grooves 25a. - When the multiple through-
holes 25b are formed in therotor 25 and therotor 25 is floated, as in the same manner to the first embodiment, metal contacts with other parts can be prevented and thereby the problems of the abnormal wear and seizures and the like can be suppressed. - In this example as shown in
Fig. 5 , the through-holes 25b are formed at both sides to therespective vanes 26 and the circumferential distance of the through-holes 25b between therespective vanes 26 is arranged to be equal to each other. However, the circumferential distance of the through-holes 25b is not necessary to be equal but to be non-equivalent. - The above embodiment of the invention the fuel supply apparatus of the invention is used in the fuel injection pump of the common rail fuel injection system for diesel engines. The present invention is not limited to these embodiments, and the present invention can be used for a fuel pump for a gasoline engine.
- A fuel feed pump according to the present invention improves its pump performance by making smaller side clearances in an axial direction at both sides of a pump element PE.
- Multiple through-holes (22a and 23a) passing through in an axial direction are respectively formed at top portions of cogs of the outer rotor (22) and the inner rotor (23), which form a pump element (PE) of a feed pump (3). Accordingly, pressures in the thrust direction at both axial sides of the rotors (22 and 23) can be equalized, since the side clearance formed at both axial sides of the rotors (22 and 23) are communicated with each other. As a result, since the rotors (22 and 23) can be floated, without contacting with the pump cover (19) and the pump plate (20), the abnormal wear and seizures can be suppressed, even when side clearance between the pump cover (19) and the pump element (PE) is made smaller.
Claims (3)
- A fuel supply apparatus comprising:a trochoid type rotary pump (3) being composed of- an outer rotor (22) having inner cogs- an inner rotor (23) disposed inside of the outer rotor (22) and having outer cogs, the inner rotor (23) being connected to a cam shaft (4) by means of a key member, and- a pumping chamber (24) formed by the outer and inner rotors (22, 23), volume of which is varied in conjunction with rotation of the rotors (22, 23), for pressurizing fuel sucked into the pumping chamber (24) and discharging the pressurized fuel, and side clearances are formed at both sides of the inner rotor (23) are communicated with each other through those through holes (23a)wherein multiple through-holes (23a) are formed in the outer cogs of the inner rotor (23) in its axial direction,wherein the rotary pump (3) ischaracterized in thatsaid multiple through-holes (23a) are arranged at non-equal distances in the circumferential direction such that the outer clog which is closest to the said key-member and the outer clog which is diametrically opposed to the said key-member do not contain a through-hole.
- A fuel supply apparatus according to claim 1, wherein
the outer rotor (22) is provided with multiple through-holes (22a), which pass through in the axial direction, one through-hole (22a) at every cogs of the outer rotor (22). - A fuel supply apparatus according to claim 1, wherein the fuel supply apparatus is a fuel injection pump (1) for a diesel engine for which the rotary pump (3) is used as a feed pump,
wherein the feed pump (3) comprises:a circular rotor chamber (19a);a pump cover (19) for housing a pump element (PE) of the inner and the outer rotors (22 and 23) in the rotor chamber (19a) in a liquid-sealing manner together with the pump cover (19),wherein the pump plate (20) is formed with fuel ports (20a) to be communicated to the rotor chamber (19a), and the pump cover (19) is screwed to a side surface of a housing (5) of the fuel injection pump (1), so that the pump plate (20) is pressed against the side surface.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003159280 | 2003-06-04 | ||
JP2003159280 | 2003-06-04 | ||
JP2004125490A JP2005016514A (en) | 2003-06-04 | 2004-04-21 | Fuel supply device |
JP2004125490 | 2004-04-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1484504A1 EP1484504A1 (en) | 2004-12-08 |
EP1484504B1 true EP1484504B1 (en) | 2012-04-04 |
Family
ID=33161584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04013169A Expired - Lifetime EP1484504B1 (en) | 2003-06-04 | 2004-06-03 | Fuel supply apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US20040247464A1 (en) |
EP (1) | EP1484504B1 (en) |
JP (1) | JP2005016514A (en) |
CN (1) | CN100374723C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101558617B1 (en) | 2010-11-12 | 2015-10-07 | 현대자동차주식회사 | Opening Structure of Fuel Tank for Vehicle |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4832042B2 (en) * | 2005-09-22 | 2011-12-07 | 住友電工焼結合金株式会社 | Internal gear pump |
JP4832041B2 (en) * | 2005-09-22 | 2011-12-07 | 住友電工焼結合金株式会社 | Internal gear pump |
DE102008000700A1 (en) * | 2008-03-17 | 2009-09-24 | Robert Bosch Gmbh | fuel pump |
JP5803171B2 (en) * | 2011-03-15 | 2015-11-04 | 株式会社ジェイテクト | pump |
CN102678541B (en) * | 2012-05-25 | 2014-08-06 | 山东鑫亚工业股份有限公司 | Fuel delivery pump with floated cycloid rotor |
CN103925209B (en) * | 2014-04-26 | 2016-03-30 | 山东科润机械股份有限公司 | Use for diesel engine Split high pressure common rail oil transfer pump assembly |
US9897056B1 (en) * | 2016-11-22 | 2018-02-20 | GM Global Technology Operations LLC | Protective cover assembly for a fuel pump |
CN108412650A (en) * | 2018-05-12 | 2018-08-17 | 广东德力柴油机有限公司 | A kind of oil transfer pump of the automatically controlled injection diesel of single cylinder |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR606708A (en) * | 1924-11-21 | 1926-06-18 | Improvements to rotary centrifugal pumps | |
US3320898A (en) * | 1963-12-05 | 1967-05-23 | Eickmann Karl | Power producing, power transforming, power transmitting and/or fluid machine |
US3416460A (en) * | 1963-12-05 | 1968-12-17 | Eickmann Karl | Fluid handling device including endwalls on a trochoid curved body |
US4357133A (en) * | 1978-05-26 | 1982-11-02 | White Hollis Newcomb Jun | Rotary gerotor hydraulic device with fluid control passageways through the rotor |
US4872819A (en) * | 1978-05-26 | 1989-10-10 | White Hollis Newcomb Jun | Rotary gerotor hydraulic device with fluid control passageways through the rotor |
US4219313A (en) * | 1978-07-28 | 1980-08-26 | Trw Inc. | Commutator valve construction |
US4411606A (en) * | 1980-12-15 | 1983-10-25 | Trw, Inc. | Gerotor gear set device with integral rotor and commutator |
US4367714A (en) * | 1981-01-19 | 1983-01-11 | Ambac Industries Incorporated | Fuel injection pump |
DE3148664A1 (en) * | 1981-12-09 | 1983-06-23 | Alfred Teves Gmbh, 6000 Frankfurt | ARRANGEMENT FOR AXIAL POSITIONING OF A ROTOR OF A HYDRAULIC DISPLACEMENT MACHINE |
DE8516658U1 (en) * | 1985-06-07 | 1986-11-27 | Mannesmann Rexroth GmbH, 8770 Lohr | Gear machine |
JPH07279790A (en) * | 1994-04-08 | 1995-10-27 | Aisan Ind Co Ltd | Trochoid pump |
DE19630975A1 (en) * | 1995-07-31 | 1997-11-20 | Andreas Voulgaris | Hydraulic machine with toothed ring for pumps |
US6036462A (en) * | 1997-07-02 | 2000-03-14 | Mallen Research Ltd. Partnership | Rotary-linear vane guidance in a rotary vane machine |
JP3685317B2 (en) * | 2000-02-18 | 2005-08-17 | 株式会社デンソー | Fuel injection pump |
US6460504B1 (en) * | 2001-03-26 | 2002-10-08 | Brunswick Corporation | Compact liquid lubrication circuit within an internal combustion engine |
JP3849928B2 (en) * | 2001-09-03 | 2006-11-22 | 株式会社デンソー | Fuel injection pump |
US6783340B2 (en) * | 2002-09-13 | 2004-08-31 | Parker-Hannifin Corporation | Rotor with a hydraulic overbalancing recess |
US7559754B2 (en) * | 2005-06-23 | 2009-07-14 | Kawasaki Jukogyo Kabushiki Kaisha | Internal gear pump in combustion engine |
-
2004
- 2004-04-21 JP JP2004125490A patent/JP2005016514A/en active Pending
- 2004-06-01 US US10/856,792 patent/US20040247464A1/en not_active Abandoned
- 2004-06-03 CN CNB200410046300XA patent/CN100374723C/en not_active Expired - Fee Related
- 2004-06-03 EP EP04013169A patent/EP1484504B1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101558617B1 (en) | 2010-11-12 | 2015-10-07 | 현대자동차주식회사 | Opening Structure of Fuel Tank for Vehicle |
Also Published As
Publication number | Publication date |
---|---|
US20040247464A1 (en) | 2004-12-09 |
EP1484504A1 (en) | 2004-12-08 |
CN100374723C (en) | 2008-03-12 |
JP2005016514A (en) | 2005-01-20 |
CN1573110A (en) | 2005-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1609984B1 (en) | Fuel injection pump | |
US7152518B2 (en) | Structure of fuel injection pump for extending service life | |
US7207783B2 (en) | Variable displacement pump | |
US7780144B2 (en) | Valve, in particular for a high-pressure pump of a fuel injection system for an internal combustion engine | |
EP1544462B1 (en) | Fuel supply pump having lubricating groove | |
JP4428327B2 (en) | High pressure fuel supply pump | |
JPH1172014A (en) | Fuel pressurizing pump | |
JP3852756B2 (en) | Fuel injection pump | |
EP1484504B1 (en) | Fuel supply apparatus | |
JP4872684B2 (en) | Fuel supply pump | |
JP2008163826A (en) | Fuel injection pump | |
US20020189436A1 (en) | High-pressure fuel pump for internal combustion engine with improved partial-load performance | |
US20180209417A1 (en) | Rotary piston pump comprising radial bearings on only one housing part | |
JP5533740B2 (en) | High pressure fuel pump | |
JP2002509224A (en) | Radial piston pump for high pressure fuel supply | |
JP3861835B2 (en) | Fuel injection pump | |
WO2003078822A1 (en) | Pump components and method | |
JP3851999B2 (en) | Variable displacement pump | |
US7048516B2 (en) | High pressure fuel pump with multiple radial plungers | |
US20030026711A1 (en) | Internal gear wheel pump | |
JP2619727B2 (en) | Radial piston pump for low viscosity fuel oil | |
JP3700866B2 (en) | Hydraulic timer device for fuel injection pump | |
JPH0331580A (en) | Radial plunger pump | |
EP1156207A1 (en) | Pump for feeding fuel to an internal combustion engine | |
JPH085342Y2 (en) | Radial piston pump for low viscosity fuel oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20041206 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004037157 Country of ref document: DE Effective date: 20120531 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20121206 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 602004037157 Country of ref document: DE Effective date: 20121129 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130107 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004037157 Country of ref document: DE Effective date: 20130107 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140618 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140619 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140619 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004037157 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160101 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |