EP1479635B1 - Überwachungsverfahren und Überwachungssystem zum Überwachen der Beleuchtung einer Aufzugskabine - Google Patents

Überwachungsverfahren und Überwachungssystem zum Überwachen der Beleuchtung einer Aufzugskabine Download PDF

Info

Publication number
EP1479635B1
EP1479635B1 EP04011227A EP04011227A EP1479635B1 EP 1479635 B1 EP1479635 B1 EP 1479635B1 EP 04011227 A EP04011227 A EP 04011227A EP 04011227 A EP04011227 A EP 04011227A EP 1479635 B1 EP1479635 B1 EP 1479635B1
Authority
EP
European Patent Office
Prior art keywords
light
sensor
signal
test
influencing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04011227A
Other languages
English (en)
French (fr)
Other versions
EP1479635A1 (de
Inventor
Lukas El. Ing. Schauber
Peter El. Ing. Lebenyi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP1479635A1 publication Critical patent/EP1479635A1/de
Application granted granted Critical
Publication of EP1479635B1 publication Critical patent/EP1479635B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system

Definitions

  • the invention relates to a monitoring method for monitoring the lighting of an elevator car according to the preamble of claim 1, and to a monitoring system for carrying out these methods according to the preamble of claim 5.
  • Elevator cabs in particular those provided only or even for the transport of persons, generally have a lighting device with which they can be illuminated. In some countries / lighting for lift cabs is even compulsory. To make sure that the lighting equipment works properly, always check that the elevator car is lit. In order to carry out such a check of the lighting efficiently, it is advantageous if an automatic monitoring system is available for this, which permits remote monitoring. This saves regular on-site inspections.
  • One possible monitoring system has a light sensor which detects whether illumination light is present in the elevator car.
  • a surveillance is in This monitoring system realized in that the light in the elevator car is turned off from time to time. Then the reaction of the light sensor is observed. It can then be made a statement about whether the lighting fixture and the sensor work together. It is a disadvantage of this monitoring system that the cabin light must be turned off. However, a shutdown of the cabin light can preferably be made only when the elevator is currently not occupied. A malfunctioning cabin lighting or a defective sensor may be detected with some delay.
  • the monitoring system described above has a serious disadvantage. If the sensor at the output shows that no light signal has been detected, it can not be concluded from this that the lighting device for the elevator car is actually defective. It is possible that the lighting device of the elevator car is defective or does not work as intended. But it is also possible that the lighting device is intact and works properly, but that there is a defect in one of the components of the monitoring system, in particular the light sensor itself. In order to detect such defects, it is unavoidable for this monitoring system to undertake a round-robin inspection to verify on-site that, in fact, the lighting equipment or a component of the monitoring system is not functioning properly.
  • the monitoring system according to the invention is a monitoring system which allows real remote monitoring.
  • This monitoring system like the previously known monitoring system, has a light sensor.
  • the monitoring system has an influencing unit, which in the broadest sense can be called a modulator.
  • the influencing unit can be controlled by means of a control signal in such a way that, in particular, it can carry out a change in the illumination light which changes in short time intervals, In other words, the characteristic of this illumination light to be detected by the light sensor may change.
  • This influencing takes place before the illumination light or a part of the rays of the illumination light is detected by the light sensor. Since the light detected by the light sensor has been previously affected, the sensor signal provided by the light sensor is correlated with that part of the rays that were affected.
  • the monitoring system further comprises a processing unit.
  • the processing unit processes the sensor signal of the light sensor together with the control signal, such that it can be determined whether the sensor signal of the light sensor has a characteristic which corresponds to that of the control signal, or is correlated with the control signal. In this case, the sensor signal is considered "valid".
  • the processing unit finally provides an information signal determined by the result of the processing of the control signal and the sensor signal.
  • the information signal indicates that the sensor signal of the light sensor corresponds to the control signal for the influencing unit, or is correlated with the control signal, then it can be concluded that there is neither a malfunction of any component of the monitoring system nor a failure of the light source.
  • the information signal indicates that the sensor signal of the light sensor does not correspond to the control signal for the influencing unit, or is not correlated with the control signal, then it can be concluded that a malfunction of a component of the monitoring system is present, but that the illumination of the elevator car still works, because if the lighting fails, the light sensor would not be able to provide a sensor signal.
  • a variant of the new monitoring system has, in addition to the illumination device or light source for the illumination of the elevator car, a test light source which can be activated temporarily at any time independently of the operation of the elevator system.
  • the test light source emits, for purposes of a self-test, a test light which, like the illumination light, can be influenced by the influencing unit before it is detected by the light sensor.
  • the light sensor then provides a test sensor signal as described above with respect to the illumination light.
  • This test sensor signal is processed by the processing unit together with the control signal for the influencing unit. If the test sensor signal and the control signal correspond, respectively the two signals are correlated with each other, then the monitoring system has no defect (the test sensor signal is designated as valid).
  • the test sensor signal is designated as valid.
  • the information signals can be used to trigger an optical or audible alarm, which can. If necessary. Also be switched to a mobile device an operator. A service call can also be made. Other reactions can also be triggered, for example to comply with the requirements of a standard.
  • the light sensor is preferably arranged so that it is sensitive only to light emitted by the illumination device (or the test light source) of the elevator car.
  • Other light for example, temporary ambient light, briefly caused by a passenger of the elevator car light, for example when lighting a smoking article, or light below a certain intensity should not be detected by the sensor as possible, to avoid interference.
  • the light sensor can also be preceded by corresponding filters in order to suppress stray light.
  • the light sensor it is further advantageous to arrange the light sensor so that it can not be arbitrarily or involuntarily shielded so that no light hits him.
  • the light sensor is designed such that it only provides a signal when the intensity of the detected light is within certain limits.
  • the influencing unit can, as already mentioned, be designed as a modulator.
  • the modulator can be designed as LCD modulator.
  • the control signal for the influencing unit is advantageously provided by the processing unit.
  • test light source can also be controlled by or via the processing unit
  • FIG. 1A shows a first overall system with an illumination system 1 to be monitored and a monitoring system 10 designed according to the invention.
  • the illumination system 1 has a light source 2, which serves to illuminate an elevator car (not shown).
  • the illustrated illumination system 1, or the light source 2 is monitored by means of the monitoring system 10.
  • the monitoring system 10 comprises a detection unit in the form of a light sensor 12, an influencing unit 14 and a processing unit 16, as well as electrical conductor arrangements 20.1, 20.2 and 20.3, which may for example also be designed as light guides.
  • a processing unit 16 is connected to the influencing unit 14 via the first conductor arrangement 20.1 and to the light sensor 12 via the second conductor arrangement 20.2. Via a third conductor arrangement 20.3 an information signal IS is provided.
  • the light source 2 emits during the illumination of the elevator car illumination light 22 with first optical properties. Specifically, only a certain portion of the beams emitted by the light source 2, also designated 22, is used for the monitoring process.
  • the influencing unit 14, or their function is controlled by a control signal CS.
  • the control signal CS originates in the present embodiment of the processing unit 16, but this is not necessarily the case. What is important is that the control signal CS, or information about the control signal CS, is available to the processing unit 16, since the control signal CS, or information about the control signal CS, is required for evaluation / processing of the signal SS, as described below becomes.
  • the influencing unit 14 is designed so that lighting light 22 striking it is influenced such that the emergent light 23 is changed from the illuminating light 22, this change preferably being a periodic change.
  • the exiting light 23 may change, for example, in short time intervals.
  • the duration of change in the emergent light 23 depends on the nature of the influencing unit 14 and may be a temporal, spatial or other type of change.
  • the influencing unit 14 is a modulator that modulates the illuminating light 22 by, for example, a light-dark keying.
  • the influencing unit 14 thus influences the illumination light 22 or changes its properties.
  • the influenced or modified light is referred to as emergent light or as influenced light 23.
  • This influenced light 23 is detected by the light sensor 12.
  • the light sensor 12 now sets the processing unit 16, a sensor signal SS, which is correlated with the light 23 and the properties of the light 23.
  • the processing unit 16 processes the two signals available to it, namely the control signal CS and the sensor signal SS, and it provides an information signal IS based on the processed signals CS and SS, which indicates any malfunctioning of the illumination device 1 or light source 2 and / or the monitoring system 10 information.
  • the information signal IS enables a statement as to whether illuminating light 22 is present and whether the sensor signal SS is a valid signal.
  • the mode of operation of the monitoring system is shown in FIG. 1B, in each case as a function of time t.
  • the course of the not yet influenced light 22 is shown.
  • light 22 is emitted, which for simplicity is assumed to have a constant intensity.
  • no light 22 will be emitted, either because the elevator car is no longer in use or because the light source 2 is defective.
  • a control signal CS for controlling the influencing unit 14 a square-wave signal is used in the example shown. This is independent of whether light 22 is emitted.
  • the control signal CS causes the influencing unit 14 to modify the light 22 so that the light 23 results.
  • Characteristic is uniquely influenced by the control signal CS. As soon as no light 22 reaches the influencing unit, no light 23 is obtained. The light 23 reaches the light sensor 12, which in response provides the sensor signal SS. When the light sensor 12 operates properly, there is a correlation between the light 23 and the sensor signal SS.
  • a liquid crystal system can be used as the influencing unit 14, which either passes or blocks the light 22, depending on the control by the control signal CS.
  • a square wave signal is assumed as the control signal CS for the influencing unit 14.
  • the influencing unit 14 thereby alternately darkens or transparent during a time unit. So there is temporarily no or substantially less light 23.
  • light 23 is only available if the influencing unit 14 acts transparently, and of course only on condition that the light source 2 emits light 22.
  • the light 23 thus also forms a kind of rectangular function, which can be shifted in time relative to the control signal CS, but is correlated with this.
  • the course of the sensor signal SS, which is correlated with the light 23, also corresponds to a kind of rectangular function, in a case in which no malfunctions occur.
  • the information signal IS allows a 'yes' statement if everything is functioning properly, otherwise the information signal allows a 'no' statement.
  • the 'yes statement' is indicated in FIG. 1B with a logical '1' and the 'no statement' with a logical '0'.
  • FIG. 2 shows a further arrangement according to the invention, which is suitable for monitoring, in addition to the function described in connection with FIG. 1, also the entire system consisting of the illumination system 1 and the monitoring system 10.
  • the monitoring system 10 has, in addition to the components shown in FIG. 1, a test light source 102.
  • the test light source 102 is independent of the light source 2 and connected in the present embodiment via a conductor arrangement 20.4 with the processing unit 16, which is not absolutely necessary.
  • the test light source 102 emits test light 122, which is influenced by the influencing unit 14 and changed to light 23 in the same way as the illumination light 22.
  • the operation of the arrangement according to FIG. 2 is as follows: With the aid of the test light source 102, it is determined whether the monitoring system 10 is operating properly, irrespective of the function of the light source 2. If the monitoring system 10 is found to be functioning properly, so it can be used for continuous remote monitoring of the lighting system 1, as above is described. In this case, the signal SS provided by the sensor 12 is then the usual sensor signal, not the test information signal TSS, and the signal provided by the processing unit 16 is the usual information signal IS, not the test information signal TIS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Description

  • Die Erfindung betrifft ein Überwachungsverfahren zum Überwachen der Beleuchtung einer Aufzugskabine nach dem Oberbegriff des Anspruchs 1, und ein Überwachungssystem zur Durchführung dieser Verfahren nach dem Oberbegriff des Anspruchs 5.
  • Aufzugskabinen, insbesondere solche, die nur oder auch für den Transport von Personen vorgesehen sind, weisen im Allgemeinen eine Beleuchtungseinrichtung auf, mit welcher sie beleuchtbar sind. In einigen Ländern/ist eine Beleuchtung für Aufzugskabinen sogar zwingend vorgeschrieben. Um sicher zu stellen, dass die Beleuchtungseinrichtung ordnungsgemäss funktioniert, muss stets überprüft werden, ob die Aufzugskabine beleuchtet ist. Um eine solche Überprüfung der Beleuchtung rationell durchzuführen, ist es von Vorteil, wenn dafür ein selbsttätiges Überwachungssystem zur Verfügung steht, welches eine Fernüberwachung zulässt. Dadurch erspart man sich regelmässige Kontrollen vor Ort.
  • Ein gutes Beispiel eines solchen Überwachungsverfahrens, ist aus der US 6147620 bekannt.
  • In einigen Ländern, so zum Beispiel in Deutschland, gibt es Normen, die gewisse Vorgaben für die Überwachung der Beleuchtung einer Aufzugskabine machen.
  • Ein mögliches Überwachungssystem weist einen Lichtsensor auf, der detektiert, ob in der Aufzugskabine Beleuchtungslicht vorhanden ist. Eine Überwachung wird in diesem Überwachungssystem dadurch realisiert, dass das Licht in der Aufzugskabine von Zeit zu Zeit ausgeschaltet wird. Dann wird die Reaktion des Lichtsensors beobachtet. Es kann dann eine Aussage darüber gemacht werden, ob der Beleuchtungskörper und der Sensor gemeinsam funktionieren. Es ist ein Nachteil dieses Überwachungssystems, dass das Kabinenlicht ausgeschaltet werden muss. Eine Abschaltung des Kabinenlichts kann vorzugsweise jedoch nur dann vorgenommen werden, wenn der Aufzug gerade nicht besetzt ist. Eine nicht funktionierende Kabinenbeleuchtung oder ein defekter Sensor kann unter Umständen erst mit einiger Verzögerung festgestellt werden.
  • Das oben beschriebene Überwachungssystem weist aber einen gravierenden Nachteil auf. Zeigt der Sensor am Ausgang, dass kein Lichtsignal detektiert wurde, so kann daraus nicht geschlossen werden, ob die Beleuchtungseinrichtung für die Aufzugskabine tatsächlich defekt ist. Es ist zwar möglich, dass die Beleuchtungseinrichtung der Aufzugskabine defekt ist oder nicht wie beabsichtigt funktioniert. Es ist aber auch möglich, dass die Beleuchtungseinrichtung intakt ist und ordnungsgemäss funktioniert, dass aber ein Defekt an einer der Komponenten des Überwachungssystems, insbesondere am Lichtsensor selbst, vorliegt. Um solche Defekte festzustellen, ist es bei diesem Überwachungssystem nicht zu vermeiden, einen Kontrollgang zu unternehmen, um vor Ort abzuklären, ob tatsächlich die Beleuchtungseinrichtung oder eine Komponente des Überwachungssystems nicht ordnungsgemäss funktioniert.
  • Es ist nun Aufgabe der vorliegenden Erfindung, ein Überwachungsverfahren zur Überwachung der Beleuchtung einer Aufzugskabine, ein Überwachungsverfahren zur Selbstüberwachung und ein Überwachungssystem zur Durchführung dieser Verfahren vorzuschlagen, mit welchen eine einwandfreie Fernüberwachung durchgeführt werden kann.
  • Es ist eine weitere Aufgabe der vorliegenden Erfindung, ein Überwachungsschema bereitzustellen, dass die entsprechenden Normen erfüllt.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäss für das eingangs genannte Überwachungsverfahren gemäss den Merkmalen des kennzeichnenden Teils des Anspruchs 1 und für das eingangs genannte Überwachungssystem gemäss den Merkmalen des kennzeichnenden Teils des Anspruchs 5.
  • Vorteilhafte Weiterbildungen sind durch die jeweiligen abhängigen Ansprüche definiert.
  • Bei dem Überwachungssystem nach der Erfindung handelt es sich um.ein Überwachungssystem, das eine echte Fernüberwachung gestattet. Dieses Überwachungssystem weist, wie das vorbekannte Überwachungssystem, einen Lichtsensor auf. Zusätzlich weist das Überwachungssystem eine Beeinflussungseinheit auf, die im weitesten Sinne als Modulator bezeichnet werden kann. Die Beeinflussungseinheit ist mittels eines Steuersignals so steuerbar, dass sie insbesondere eine in kurzen Zeitintervallen wechselnde Beeinflussung des Beleuchtungslichtes durchführen kann, bzw. in anderen Worten, die Charakteristik dieses Beleuchtungslichtes, das vom Lichtsensor zu detektieren ist, verändern kann. Diese Beeinflussung findet statt, bevor das Beleuchtungslicht bzw. ein Teil der Strahlen des Beleuchtungslichtes vom Lichtsensor detektiert wird. Da das vom Lichtsensor detektierte Licht zuvor beeinflusst wurde, ist das Sensorsignal, welches der Lichtsensor zur Verfügung stellt, mit demjenigen Teil der Strahlen korreliert, die beeinflusst wurden. Das Überwachungssystem weist im Weiteren eine Verarbeitungseinheit auf. Die Verarbeitungseinheit verarbeitet das Sensorsignal des Lichtsensors zusammen mit dem Steuersignal, derart, dass festgestellt werden kann, ob das Sensorsignal des Lichtsensors eine Charakteristik aufweist, welche derjenigen des Steuersignals entspricht, respektive mit dem Steuersignal korreliert ist. In diesem Fall wird das Sensorsignal als "gültig" betrachtet.
  • Die Verarbeitungseinheit stellt schliesslich ein Informationssignal bereit, das durch das Ergebnis der Verarbeitung des Steuersignals und des Sensorsignals bestimmt ist.
  • Wenn das Informationssignal angibt, dass das Sensorsignal des Lichtsensors dem Steuersignal für die Beeinflussungseinheit entspricht, respektive mit dem Steuersignal korreliert ist, so kann daraus geschlossen werden, dass weder eine Fehlfunktion irgend einer Komponente des Überwachungssystems noch ein Ausfall der Lichtquelle vorliegt.
  • Wenn das Informationssignal angibt, dass das Sensorsignal des Lichtsensors nicht dem Steuersignal für die Beeinflussungseinheit entspricht, respektive nicht mit dem Steuersignal korreliert ist, so kann daraus geschlossen werden, dass eine Fehlfunktion einer Komponente des Überwachungssystems vorliegt, dass aber die Beleuchtung der Aufzugskabine noch funktioniert, denn bei einem Ausfall der Beleuchtung würde der Lichtsensor kein Sensorsignal zur Verfügung stellen können.
  • Eine Variante des neuen Überwachungssystems weist zusätzlich zur Beleuchtungseinrichtung bzw. Lichtquelle für die Beleuchtung der Aufzugskabine eine Test-Lichtquelle auf, die jederzeit unabhängig vom Betrieb des Aufzugssystem temporär aktivierbar ist. Die Test-Lichtquelle emittiert zu Zwecken eines Selbsttests ein Test-Licht, das wie das Beleuchtungslicht durch die Beeinflussungseinheit beeinflussbar ist, bevor es vom Lichtsensor detektiert wird. Der Lichtsensor stellt hierauf, wie oben mit Bezug auf das Beleuchtungslicht beschrieben, ein Test-Sensorsignal zur Verfügung. Dieses Test-Sensorsignal wird von der Verarbeitungseinheit zusammen mit dem Steuersignal für die Beeinflussungseinheit verarbeitet. Entsprechen sich das Test-Sensorsignal und das Steuersignal, respektive sind die beiden Signale miteinander korreliert, so weist das Überwachungssystem keinen Defekt auf (Das Test-Sensorsignal wird als gültig bezeichnet). Durch Hinzunahme des Test-Lichts erhält man also ein Überwachungssystem, das in der Lage ist, den Lichtsensor selbst zu testen. Ergibt sich daraus, dass das der Lichtsensor in Ordnung ist, so kann das Überwachungssystem die Beleuchtung der Aufzugskabine in der weiter oben beschriebenen Weise durchführen.
  • Die Informationssignale können dazu benutzt werden, einen optischen oder akustischen Alarm auszulösen, der ggfs. auch auf ein mobiles Gerät einer Bedienungsperson aufgeschaltet werden kann. Es kann auch ein Serviceruf vorgenommen werden. Es können auch andere Reaktionen ausgelöst werden, um zum Beispiel den Vorgaben einer Norm zu entsprechen.
  • Um falsche Sensorsignale zu vermeiden, wird der Lichtsensor vorzugsweise so angeordnet, dass er nur auf Licht sensibel ist, das von der Beleuchtungseinrichtung (oder der Test-Lichtquelle) der Aufzugskabine emittiert wird. Anderes Licht, zum Beispiel temporäres Umgebungslicht, kurzzeitig von einem Passagier der Aufzugskabine verursachtes Licht, zum Beispiel beim Anzünden eines Rauchartikels, oder Licht unterhalb einer bestimmten Intensität soll vom Sensor möglichst nicht detektiert werden, um Störungen zu vermeiden.
  • Es können dem Lichtsensor auch entsprechende Filter vorgeschaltet werden, um Störlicht zu unterdrücken.
  • Es ist im Weiteren vorteilhaft, den Lichtsensor so anzuordnen, dass er nicht willkürlich oder unwillkürlich so abgeschirmt werden kann, dass kein Licht mehr auf ihn auftrifft.
  • Ferner ist es vorteilhaft, wenn der Lichtsensor so ausgebildet ist, dass er nur dann ein Signal zur Verfügung stellt, wenn die Intensität des detektierten Lichtes innerhalb bestimmter Grenzwerte liegt.
  • Die Beeinflussungseinheit kann, wie schon erwähnt, als Modulator ausgebildet sein.
  • Der Modulator kann als LCD Modulator ausgebildet sein.
  • Das Steuersignal für die Beeinflussungseinheit wird vorteilhafter Weise von der Verarbeitungseinheit zur Verfügung gestellt.
  • Die Test-Lichtquelle kann ebenfalls von der oder über die Verarbeitungseinheit kontrolliert werden
  • Die Erfindung ist im Folgenden anhand in den Zeichnungen dargestellter Ausführungsbeispiele ausführlich beschrieben.
    Es zeigen
  • Figur 1A
    ein Überwachungssystem nach der Erfindung, in schematischer Darstellung;
    Fig.1B
    die Wirkungsweise des in Fig. 1A gezeigten Überwachungssystems, dargestellt in fünf Graphen; und
    Figur 2
    ein weiteres Überwachungssystem nach der Erfindung.
  • Gleiche, beziehungsweise gleich wirkende, konstruktive Elemente sind in allen Figuren mit gleichen Bezugszeichen versehen, auch wenn sie in Einzelheiten nicht gleich ausgeführt sind.
  • Figur 1A zeigt ein erstes Gesamtsystem, mit einem zu überwachenden Beleuchtungssystem 1 und einem nach der Erfindung konzipierten Überwachungssystem 10. Das Beleuchtungssystem 1 weist eine Lichtquelle 2 auf, welche zur Beleuchtung einer nicht dargestellten Aufzugskabine dient. Das dargestellte Beleuchtungssystem 1, bzw. die Lichtquelle 2, wird mit Hilfe des Überwachungssystems 10 überwacht. Das Überwachungssystem 10 umfasst eine Detektionseinheit in Form eines Lichtsensors 12, eine Beeinflussungseinheit 14 und eine Verarbeitungseinheit 16, sowie elektrische Leiteranordnungen 20.1, 20.2 und 20.3, welche zum Beispiel auch als Lichtleiter ausgeführt sein können.
  • Eine Verarbeitungseinheit 16 ist über die erste Leiteranordnung 20.1 mit der Beeinflussungseinheit 14 und über die zweite Leiteranordnung 20.2 mit dem Lichtsensor 12 verbunden. Über eine dritte Leiteranordnung 20.3 wird ein Informationssignal IS zur Verfügung gestellt.
  • Die Lichtquelle 2 emittiert während der Beleuchtung der Aufzugskabine Beleuchtungslicht 22 mit ersten optischen Eigenschaften. Genau gesagt wird nur ein gewisser Teil der von der Lichtquelle 2 emittierten Strahlen, der ebenfalls mit 22 bezeichnet ist, für das Überwachungsverfahren benutzt. Die Beeinflussungseinheit 14, bzw. ihre Funktion wird von einem Steuersignal CS gesteuert. Das Steuersignal CS stammt im vorliegenden Ausführungsbeispiel von der Verarbeitungseinheit 16, dies ist aber nicht zwingend der Fall. Wichtig ist nur, dass das Steuersignal CS, oder Information über das Steuersignal CS, der Verarbeitungseinheit 16 zur Verfügung steht, da das Steuersignal CS, oder Information über das Steuersignal CS, für eine Auswertung/Verarbeitung des Signals SS benötigt wird, wie weiter unten beschrieben wird.
  • Die Beeinflussungseinheit 14 ist so beschaffen bzw. gesteuert, dass auf sie treffendes Beleuchtungslicht 22 derart beeinflusst wird, dass das austretende Licht 23 gegenüber dem Beleuchtungslicht 22 verändert ist, wobei diese Veränderung vorzugsweise eine periodische Veränderung ist. Das austretende Licht 23 kann sich zum Beispiel in kurzen Zeitintervallen verändern.
  • Die Dauer Veränderung des austretenden Lichts 23 hängt von der Art der Beeinflussungseinheit 14 ab und kann eine zeitliche, räumliche oder andere Art der Änderung sein. Vorzugsweise handelt es sich bei der Beeinflussungseinheit 14 um einen Modulator, der das Beleuchtungslicht 22 zum Beispiel durch eine Hell-Dunkel-Tastung moduliert.
  • Durch die Beeinflussungseinheit 14 wird somit das Beleuchtungslicht 22 beeinflusst, bzw. es werden seine Eigenschaften verändert. Das beeinflusste, bzw. veränderte Licht wird als austretendes Licht oder als beeinflusstes Licht 23 bezeichnet. Dieses beeinflusste Licht 23 wird vom Lichtsensor 12 detektiert. Der Lichtsensor 12 stellt nun der Verarbeitungseinheit 16 ein Sensorsignal SS zur Verfügung, das mit dem Licht 23 bzw. den Eigenschaften des Lichtes 23 korreliert ist. Die Verarbeitungseinheit 16 verarbeitet die beiden ihr zur Verfügung stehenden Signale, nämlich das Steuersignal CS und das Sensorsignal SS, und sie stellt auf Grund der verarbeiteten Signale CS und SS ein Informationssignal IS bereit, das über eventuell vorhandene Fehlfunktionen der Beleuchtungseinrichtung 1 bzw. Lichtquelle 2 und/oder des Überwachungssystems 10 Auskunft gibt.
  • Das Informationssignal IS ermöglicht eine Aussage darüber, ob Beleuchtungslicht 22 vorhanden ist und ob es sich bei dem Sensorsignal SS um ein gültiges Signal handelt.
  • Die Wirkungsweise des Überwachungssystems ist in Fig. 1B, jeweils in Abhängigkeit von der Zeit t, dargestellt. Zuoberst ist der Verlauf des noch nicht beeinflussten Lichtes 22 dargestellt. Anfänglich wird Licht 22 emittiert, von welchem vereinfachend angenommen wird, dass es eine konstante Intensität hat. Nach einer gewissen Zeitdauer wird kein Licht 22 mehr emittiert, entweder, weil die Aufzugskabine nicht mehr benutzt ist, oder weil die Lichtquelle 2 defekt ist. Als Steuersignal CS zur Steuerung der Beeinflussungseinheit 14 wird in dem gezeigten Beispiel ein Rechtecksignal benutzt. Dieses ist unabhängig davon, ob Licht 22 emittiert wird. Das Steuersignal CS verursacht, dass die Beeinflussungseinheit 14 das Licht 22 so modifiziert, dass das Licht 23 resultiert. Solange Licht 22 zur Beeinflussungseinheit 14 gelangt, erhält man, ausgehend von der Beeinflussungseinheit 14, Licht 23, dessen Charakteristik in eindeutiger Weise vom Steuersignal CS beeinflusst ist. Sobald kein Licht 22 mehr zur Beeinflussungseinheit gelangt, erhält man auch kein Licht 23. Das Licht 23 erreicht den Lichtsensor 12, der in Reaktion darauf das Sensorsignal SS zur Verfügung stellt. Wenn der Lichtsensor 12 ordnungsgemäss arbeitet, besteht eine Korrelation zwischen dem Licht 23 und dem Sensorsignal SS.
  • Es kann zum Beispiel ein Flüssigkristallsystem (LCD) als Beeinflussungseinheit 14 eingesetzt werden, das je nach Ansteuerung durch das Steuersignal CS entweder das Licht 22 durchlässt oder blockiert. Als Steuersignal CS für die Beeinflussungseinheit 14 wird, wie schon erwähnt, zum Beispiel ein Rechtecksignal angenommen. Die Beeinflussungseinheit 14 wirkt dadurch abwechselnd während einer Zeiteinheit verdunkelnd bzw. transparent. Es tritt also zeitweise kein oder wesentlich weniger Licht 23 aus.
  • Für den Lichtsensor 12 steht nur dann Licht 23 zur Verfügung, wenn die Beeinflussungseinheit 14 transparent wirkt, und natürlich nur unter der Voraussetzung, dass die Lichtquelle 2 Licht 22 emittiert. Das Licht 23 bildet somit ebenfalls eine Art Rechteckfunktion, die gegenüber dem Steuersignal CS zeitlich verschoben sein kann, aber mit diesem korreliert ist.
  • Der Verlauf des Sensorsignals SS, das mit dem Licht 23 korreliert ist, entspricht ebenfalls einer Art Rechteckfunktion, in einem Fall, in dem keine Fehlfunktionen auftreten.
  • Das Informationssignal IS erlaubt eine 'Ja-Aussage', wenn alles ordnungsgemäss funktioniert, andernfalls erlaubt das Informationssignal eine ,nein-Aussage'. Die 'Ja-Aussage' ist in Fig. 1B mit einer logischen ,1' und die 'nein-Aussage' mit einer logischen ,0' angedeutet.
  • Fig. 2 zeigt eine weitere Anordnung nach der Erfindung, die dazu geeignet ist, zusätzlich zu der im Zusammenhang mit Fig. 1 beschriebenen Funktion auch das Gesamtsystem bestehend aus dem Beleuchtungssystem 1 und dem Überwachungssystem 10 zu überwachen. Hierzu weist das Überwachungssystem 10, zusätzlich zu den in Fig. 1 gezeigten Komponenten, eine Test-Lichtquelle 102 auf. Die Test-Lichtquelle 102 ist von der Lichtquelle 2 unabhängig und im vorliegenden Ausführungsbeispiel über eine Leiteranordnung 20.4 mit der Verarbeitungseinheit 16 verbunden, was aber nicht zwingend notwendig ist. Die Test-Lichtquelle 102 emittiert Test-Licht 122, das in gleicher Weise wie das Beleuchtungslicht 22 von der Beeinflussungseinheit 14 beeinflusst und zu Licht 23 verändert wird.
  • Die Wirkungsweise der Anordnung gemäss Fig. 2 ist die Folgende: Mit Hilfe der Test-Lichtquelle 102 wird festgestellt, ob das Überwachungssystem 10 ordnungsgemäss arbeitet, und zwar unabhängig von der Funktion der Lichtquelle 2. Wird hierbei befunden, dass das Überwachungssystem 10 ordnungsgemäss funktioniert, so kann es zur kontinuierlichen Fernüberwachung des Beleuchtungssystems 1 benutzt werden, wie weiter oben beschrieben ist. In diesem Falle ist dann das vom Sensor 12 zur Verfügung gestellte Signal SS das übliche Sensorsignal, nicht das Test-Informationssignal TSS, und das von der Verarbeitungseinheit 16 zur Verfügung gestellte Signal das übliche Informationssignal IS, nicht das Test-Informationssignal TIS.

Claims (10)

  1. Überwachungsverfahren zum Überwachen eines Beleuchtungssystems einer Aufzugskabine, wobei ein Lichtsensor (12) zum Empfangen von Beleuchtungslicht (22) in der Aufzugskabine eingesetzt wird, der ein Sensorsignal (SS) zur Verfügung stellt, welches auswertbar ist, um festzustellen, ob Beleuchtungslicht (22) detektiert wurde, dadurch gekennzeichnet,
    - dass das vom Lichtsensor (12) zu empfangende Beleuchtungslicht (22) einer, durch ein Steuersignal (CS) gesteuerten, Beeinflussung unterworfen wird,
    - dass eine Verarbeitung des Sensorsignals (SS) und des Steuersignals (CS) durchgeführt wird, und
    - dass auf Grund der Verarbeitung ein Informationssignal (IS) bereitgestellt wird, das eine Aussage ermöglicht, ob Beleuchtungslicht (22) detektiert wurde und ob es sich bei dem Sensorsignal (SS) um ein gültiges Signal handelt.
  2. Überwachungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Selbsttest durchgeführt wird, der folgende Schritte umfasst;
    - Einschalten einer Test-Lichtquelle (102), die ein Test-Licht (122) emittiert,
    - Unterwerfen des Test-Lichts (122) der, durch ein Steuersignal (CS) gesteuerten, Beeinflussung, bevor es von dem Lichtsensor (12) empfangen wird,
    - Bereitstellen eines Test-Sensorsignals (TSS),
    - Verarbeitung des Test-Sensorsignals (TSS) und des Steuersignals (CS), um ein Test-Informationssignal (TIS) bereitzustellen, das eine Aussage ermöglicht, ob die gesteuerte Beeinflussung und der Lichtsensor (12) funktionieren.
  3. Überwachungsverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass durch das Steuersignal (CS) ein Modulator angesteuert wird, der das Beleuchtungslicht (22) und/oder das Test-Licht (122) moduliert.
  4. Überwachungsverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Reaktion ausgelöst wird, falls es sich bei dem Sensorsignal (SS) nicht um ein gültiges Signal handelt.
  5. Überwachungssystem (10) zum Überwachen der Beleuchtung einer Aufzugskabine, mit einem Lichtsensor (12), welcher dazu ausgebildet ist, Beleuchtungslicht (22) zu empfangen und ein mit dem empfangenen Beleuchtungslicht (22) korreliertes Sensorsignal (SS) zur Verfügung zu stellen, das auswertbar ist, um festzustellen, ob Beleuchtungslicht (22) empfangen wurde, dadurch gekennzeichnet, dass das Überwachungssystem (10) aufweist
    - eine Beeinflussungseinheit (14), um das vom Lichtsensor (12) zu empfangende Beleuchtungslicht (22) zu beeinflussen, welche Beeinflussungseinheit (14) mittels eines Steuersignals (CS) steuerbar ist,
    - eine Verarbeitungseinheit (16) zum Verarbeiten des Sensorsignals (SS) und des Steuersignals (CS), und zur Abgabe eines Informationssignals (IS), welches eine Aussage ermöglicht, ob Beleuchtungslicht (22) detektiert wurde und ob es sich bei dem Sensorsignal (SS) um ein gültiges Signal handelt.
  6. Überwachungssystem (10) nach Anspruch 5, dadurch gekennzeichnet,
    - dass sie eine Test-Lichtquelle (102) aufweist, durch welche ein Test-Licht (122) emittierbar ist, das durch die Beeinflussungseinheit (14) beeinflussbar ist, bevor es von dem Lichtsensor (12) empfangen wird, wobei
    - der Lichtsensor (12) dazu ausgebildet ist, ein mit dem Test-Licht (122) nach Beeinflussung durch die Beeinflussungseinheit (14) korreliertes Test-Sensorsignal (TSS) zur Verfügung zu stellen; und
    - die Verarbeitungseinheit (16) dazu ausgebildet ist, das Test-Sensorsignal (TSS) und das Steuersignal (CS) zu verarbeiten und ein Test-Informationssignal (TIS) zur Verfügung zu stellen, welches eine Aussage ermöglicht, ob die gesteuerte Beeinflussung durch die Beeinflussungseinheit (14) und der Lichtsensor (12) funktionieren.
  7. Überwachungssystem (10) nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Beeinflussungseinheit (14) durch die Verarbeitungseinheit (16) steuerbar ist.
  8. Überwachungssystem nach Anspruch 6, dadurch gekennzeichnet, dass die Test-Lichtquelle (102) durch die Verarbeitungseinheit (16) schaltbar ist.
  9. Überwachungssystem (10) nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass es sich bei der Beeinflussungseinheit (14) um einen Modulator handelt, der, durch das Steuersignal (CS) gesteuert, das Beleuchtungslicht (22) und/oder das Test-Licht (122) moduliert.
  10. Überwachungssystem (10) nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass es mit einem weiteren System verbunden ist, um eine Reaktion auszulösen, falls es sich bei dem Sensorsignal (SS) nicht um ein gültiges Signal handelt.
EP04011227A 2003-05-22 2004-05-12 Überwachungsverfahren und Überwachungssystem zum Überwachen der Beleuchtung einer Aufzugskabine Expired - Lifetime EP1479635B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03405362 2003-05-22
EP03405362 2003-05-22

Publications (2)

Publication Number Publication Date
EP1479635A1 EP1479635A1 (de) 2004-11-24
EP1479635B1 true EP1479635B1 (de) 2007-07-18

Family

ID=34924338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04011227A Expired - Lifetime EP1479635B1 (de) 2003-05-22 2004-05-12 Überwachungsverfahren und Überwachungssystem zum Überwachen der Beleuchtung einer Aufzugskabine

Country Status (3)

Country Link
EP (1) EP1479635B1 (de)
AT (1) ATE367351T1 (de)
DE (1) DE502004004330D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730509A (zh) * 2012-04-28 2012-10-17 中山市卓梅尼控制技术有限公司 电梯轿厢灯检测系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107771159A (zh) * 2015-06-16 2018-03-06 因温特奥股份公司 具有能够借助于光检测单元配置的用户界面的电梯系统以及便携的配置装置
FR3091799B1 (fr) * 2019-01-15 2023-04-28 Amphitech Sarl Module de communication pour cabine d'ascenseur ou analogue

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147620A (en) * 1999-03-30 2000-11-14 Otis Elevator Company Remote monitoring of elevator cab lights

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730509A (zh) * 2012-04-28 2012-10-17 中山市卓梅尼控制技术有限公司 电梯轿厢灯检测系统
CN102730509B (zh) * 2012-04-28 2015-04-01 中山市卓梅尼控制技术有限公司 电梯轿厢灯检测系统

Also Published As

Publication number Publication date
EP1479635A1 (de) 2004-11-24
ATE367351T1 (de) 2007-08-15
DE502004004330D1 (de) 2007-08-30

Similar Documents

Publication Publication Date Title
EP0902402B1 (de) Verfahren und Vorrichtung zur optischen Überwachung eines Raumbereichs
DE102017212657B4 (de) Fensterscheibeneinrichtung für ein Fenster eines Kraftfahrzeugs sowie Verfahren und Kraftfahrzeug
DE102005010671B4 (de) Vorrichtung zur Überwachung der Funktion eines Anzeigeelements
EP1738580B1 (de) Vorrichtung zum überwachen eines raumbereichs, insbesondere zum absichern eines gefahrenbereichs einer automatisiert arbeitenden anlage
EP0072406A2 (de) Einrichtung zum automatischen Ein- und Ausschalten von Leuchten
DE102015209013A1 (de) Verfahren und Vorrichtung zur Generierung von Effektlicht
DE102008025530B4 (de) Einrichtung zur Prüfung der Funktion einer Leuchteinrichtung eines Kraftfahrzeugs
WO2010037615A1 (de) Verfahren zum kalibrieren eines bilderfassungssystems in einem kraftfahrzeug
DE102013017213A1 (de) Fahrzeug und Verfahren zum Ausleuchten eines Bereichs hinter einem Fahrzeug
EP1479635B1 (de) Überwachungsverfahren und Überwachungssystem zum Überwachen der Beleuchtung einer Aufzugskabine
DE102007055521A1 (de) Vorrichtung zur Überwachung eines Überwachungsbereichs
EP2694417B1 (de) Aktivierung einer notlichteinheit
DE102005055574A1 (de) Vorrichtung zum Ansteuern von Fahrzeuglampen
DE3701714A1 (de) Verfahren und vorrichtung zur ueberwachung rechnergesteuerter stellglieder
EP2584874B1 (de) LED-Leuchte mit Überwachung
EP2020350B1 (de) System zum Erfassen optischer Signale mit einem Regensensor und Verfahren
DE102007049618A1 (de) Vorrichtung und Verfahren zum Ermitteln eines Betriebsparameters von zumindest einem Leuchtmittel einer Lichtquelle eines Kraftfahrzeuges
EP3441263A1 (de) Verfahren zum betreiben einer innenraumbeleuchtungsvorrichtung, innenraumbeleuchtungsvorrichtung und kraftfahrzeug mit einer innenraumbeleuchtungsvorrichtung
DE69929582T2 (de) Verfahren und Einrichtung zur automatischen Steuerung von Kfz-Leuchten
DE102016202344A1 (de) Vorrichtung mit einem Bildsensor zum Erfassen von Bilddaten sowie Verfahren zum Prüfen eines solchen Bildsensors
EP3017293A1 (de) Behälterinspektionsvorrichtung und behälterinspektionsverfahren mit anti-epilepsie gesteuerter blitzanlage
EP1394566A1 (de) Verfahren zum Betreiben einer Überwachungseinrichtung sowie Überwachungseinrichtung
EP0231004B1 (de) Verfahren zur Selbstkontrolle einer optoelektronischen Risserkennungseinrichtung, insbesondere nach dem Magnetpulververfahren
EP1323579A2 (de) Verfahren zur Überprüfung einer automatischen Ansteuerung einer Beleuchtungseinrichtung eines Fahrzeuges und Prüfeinrichtung
DE102005057588A1 (de) Maschinensteuerung für eine gefahrbringende Aktionen ausführende Maschine wie Presse mit zumindest einem Abschaltpfad

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050524

AKX Designation fees paid

Designated state(s): AT CH DE FR GB LI

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEBENYI, PETER, EL. ING.

Inventor name: SCHAUBER, LUKAS, EL. ING.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004004330

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070718

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

26N No opposition filed

Effective date: 20080421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120511

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 367351

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160525

Year of fee payment: 13

Ref country code: DE

Payment date: 20160520

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004330

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201