EP1468427B1 - Dispositif a composants opto-neutroniques pour configuration spectrale specifique de faisceaux ou d'impulsions de neutrons - Google Patents

Dispositif a composants opto-neutroniques pour configuration spectrale specifique de faisceaux ou d'impulsions de neutrons Download PDF

Info

Publication number
EP1468427B1
EP1468427B1 EP03731659A EP03731659A EP1468427B1 EP 1468427 B1 EP1468427 B1 EP 1468427B1 EP 03731659 A EP03731659 A EP 03731659A EP 03731659 A EP03731659 A EP 03731659A EP 1468427 B1 EP1468427 B1 EP 1468427B1
Authority
EP
European Patent Office
Prior art keywords
neutron
optical component
neutrons
moderators
component array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03731659A
Other languages
German (de)
English (en)
Other versions
EP1468427A1 (fr
Inventor
Ferenc Mezei
Margarita Russina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Publication of EP1468427A1 publication Critical patent/EP1468427A1/fr
Application granted granted Critical
Publication of EP1468427B1 publication Critical patent/EP1468427B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the invention relates to a neutron-optical component arrangement for the targeted spectral design of neutron beams or pulses between a fast neutron source with a plurality of closely arranged moderators of different embodiments for the production of slow neutrons different energy spectra and their radiation in predetermined Radiation directions and at least one experimental space.
  • Neutron beams serve a broad spectrum of scientific investigations ranging from pure basic research to application-oriented investigations in the field of material structure research.
  • neutrons act as probes that penetrate into matter.
  • Neutrons striking atoms of structured matter are either scattered in a characteristic way for the atoms or absorbed by the atoms by emitting characteristic radiation.
  • characteristic radiation For most applications, such as neutron scattering, it is necessary to provide slow neutrons produced by slowing down fast neutrons obtained from nuclear reactions.
  • Intensive neutron radiation of fast neutrons is generated primarily by either constant-time flow in research reactors by fission enriched uranium or in pulsed form in spallation sources by disintegration of heavy nuclei.
  • the targeted slowing down of the fast neutrons occurs primarily through so-called "moderators", which are brought into contact with the fast neutron radiation. This is simply stated Accumulations of matter in gaseous, liquid or solid form with special properties at a given temperature. Due to the interaction of the fast neutrons with the lightest possible atoms of the moderator matter, the high-energy neutrons are strongly decelerated until their energies and wavelengths have the values suitable for the experiments on condensed matter. It produces a neutron gas with a kinetic energy distribution that can be approximated by a Maxwellian velocity distribution at a given temperature. This is a theoretically derived function that assigns their relative abundances to the velocities of the atoms of a gas.
  • the effective temperature of the Maxwellian spectrum of the neutron gas is slightly higher than the temperature of the moderator material.
  • neutron reflectors such as (heavy) water, lead, beryllium, graphite, etc.
  • reflectors which mainly serve to increase the neutron flux, contribute to the neutron deceleration, so that in a broader sense they can also be assigned to the group of moderators as neutron-optical components.
  • premoders such as water or all other structures of a neutron source are added to the group of moderators who can even emit slow-neutrons.
  • the slow neutrons are differentiated into “hot”, “thermal” and “cold” neutrons, whereby the moderators can also be distinguished into “hot”, “thermal” and “cold” moderators.
  • slow neutrons in the present context, neutrons with a kinetic energy in the range of 1 eV and less are called.
  • Higher speed, lower wavelength hot neutrons have energy in the range above 100 meV and are particularly useful for scattering experiments on liquids suitable.
  • Thermal neutrons have a kinetic energy in the range between 10 meV and 100 meV and the cold neutrons have kinetic energies in a range between 0.1 meV and 10 meV.
  • Moderators exist in different forms of training. Hot, thermal, and cold moderators are distinguished by the nature of their primarily produced slow neutrons. An overview of possible moderator structures in a spallation source can be found in the article I by D. Filges et al.
  • the ESC Mercury Target - Moderator - Reflector System (available from the Internet under http://www.hmi.de/ Societye/SF/ess/ESS_moderators3.pdf, as of 18.01.2002) Examples are the liquid hydrogen moderator with an operating temperature in the range of 25 K for the production of cold neutrons and the water moderator with the ambient temperature as operating temperature for the production of thermal neutrons, whereby a cold moderator also produces thermal and hot and a thermal moderator also cold and hot neutrons, but always with at least an order of magnitude smaller flux than the moderator, which mainly serves for the generation of cold, thermal or hot neutrons.
  • Each of the moderators now exclusively supplies one or more of eighteen different experimental sites via neutron guides with the slow neutron spectrum that he has generated (see Figure 9 and Chapter 6 of Appendix II).
  • a similar structure is also known from the article III of N. Watanabe "5.3 - Material Issues for Spallation Target by GeV Proton Irradiation" (available from the Internet at http://wwwndc.tokai.jaeri.go.jp/nds/proceedings /1998/watanabe_n.pdf, as of 18.01.2002).
  • a target moderator configuration for performing high-intensity and high-resolution experiments with cold neutrons is described, in which a coupled cold moderator with premodulator and two thermal moderators are closely adjacent in the region of highest and fastest neutron radiation at the target.
  • the moderators are therefore arranged at such angles to one another that their respective forward and rearward-oriented emission directions or emitted neutron beams are oriented in different spatial directions and do not overlap.
  • Each moderator supplies in this way about four to eight experimental stations with a neutron beam with a characteristic spectrum. Reflectors for separating the spectra are also arranged between the two levels.
  • Object of the present invention is therefore to provide such an arrangement of neutron optical components for the targeted design of the spectrum of a neutron beam of the aforementioned type, which has great flexibility with respect to the provision of a neutron beam at a training area, so that here no costly conversion measures changed Requirements are required. In particular, experiments with neutrons from a larger energy range should be possible. Furthermore, the neutron beam which can be provided by the invention should have a high quality.
  • the means for realizing the invention should be simple in construction and manageable and therefore relatively inconvenient and inexpensive. Existing safety aspects should be considered, additional risks should be avoided.
  • the features according to claim 1 are provided in a neutron-optical component arrangement for the targeted influencing of neutron beams or pulses of the type described above
  • the energy spectra of different moderators are combined with one another to form a "multi-spectrum".
  • a neutron beam (or neutron pulse - this alternative should always be included in the use of the term "neutron beam") with such a multi-spectrum is particularly versatile. Since it has a larger energy spectrum than the neutron beams generated by only one moderator at a time, neutron experiments in a wide energy range of the incident neutrons, for example between 0.1 meV and 100 meV, can be carried out with high efficiency with the superimposed neutron beam according to the invention.
  • the composition of the multi-spectrum of the superimposed neutron beam depends on the type and number of moderators used.
  • a cold and a thermal or a cold, a thermal and a hot moderator can be combined in their propagation direction.
  • different embodiments of a moderator type for achieving a particularly broad or specially designed multispectrum can be merged in their emission.
  • the combination of different modifier gates here are only constructive limits set, since a combination of the radiation directions must still be technically feasible with reasonable effort.
  • a superimposition of the individual neutron beams of the moderators used to form a common neutron beam can take place both in the neutron guide and at the experimental station.
  • a superimposed neutron beam is generated, which, like a single neutron beam, is also conducted in a neutron guide to the experimental station and to the sample.
  • the different neutron beams are as it were focused on the sample to be examined, so that the superimposed neutron beam occurs directly in the sample.
  • the neighboring moderators are to be aligned at such angles to one another that an intersection of the emission directions in the sample or shortly before results.
  • the cold, thermal and hot neutrons differ by their energy spectrum and thus by their velocity distribution, by the knowledge of the individual neutron flight times from the pulses predominantly an assignment to the individual moderators and thus to their radiation directions in relation to the sample can be made ,
  • another neutron optical device is designed as an oscillating mirror synchronously with a pulsed neutron source or with the chopped neutron beam a continuous neutron source oscillates.
  • the neutron beams of different moderators are alternately superimposed in the superimposed neutron beam with the effective, central beam direction. For example, if the mirror oscillates back and forth between a cold and a thermal moderator to the beat of a neutron pulse source and if it has the correct angle for the cold neutrons, it first reflects the cold neutron pulse in the central beam direction.
  • the mirror angle is adjusted in the pulse clock, so that the thermal neutrons impinge and the thermal neutron pulse is coupled.
  • the other neutron pulse is deflected outside the central beam direction.
  • mechanical or otherwise operating chopper arrangements can be used to chop the continuous neutron beam into individual pulses. The measurements on the sample are to be made in this embodiment in time with the neutron pulses or in the oscillator cycle.
  • a neutron-optical component which has an energy-selective switching function.
  • Such components can be designed and aligned so that they pass, for example, the central energy of each moderator with the largest number of neutrons targeted to be generated and in the coupling effective, middle beam direction, whereas they lock the edge regions with the energetic deviating neutrons.
  • the switching function the multi-spectrum of the superimposed neutron beam can be assembled by passing only the corresponding neutrons from the moderators producing them in maximum number for the individual neutron species.
  • maximum neutron flux can be achieved for the experiments.
  • Neutron optical components with an energy-selective switching function can be realized primarily by special neutron mirrors. Therefore, according to a further embodiment of the invention, it is provided that the further neutron-optical component with an energy-dependent switching function is designed as a neutron mirror, which transmits or reflects incident neutrons continuously or graduated by a corresponding angular orientation as a function of their energy.
  • a neutron mirror which transmits or reflects incident neutrons continuously or graduated by a corresponding angular orientation as a function of their energy.
  • the neutron mirrors are formed in self-supporting or on a neutron-transparent substrate form as a single-layered or multi-layered neutron mirror, wherein the coating is applied to one or both sides of the substrate.
  • the multi-layered, neutron mirrors are so-called "super-mirrors" with interfering properties (cf. DE 198 44 300 A1 ).
  • substrates for example, silicon or sapphire are suitable. All of these neutron optical components are relatively simple and thus cost compared to other neutron optical components.
  • a particularly favorable and compact embodiment of the invention results when, according to another invention continuation, the further neutron-optical components with an energy-dependent switching function in the Neutron conductor are integrated. Reference is also made to this embodiment to avoid repetition in the specific description part.
  • the FIG. 1 shows a neutron-optical component arrangement according to the invention NOA for the targeted spectral design of neutron beams or pulses.
  • a cold moderator CNM for neutrons is arranged closely adjacent to a thermal moderator TNM for neutrons.
  • Both moderators CNM, TNM have a cross section of 12 cm x 12 cm and are adjacent to each other with a gap of 0.5 cm.
  • their emission directions CBL, TBL are indicated at an angle to one another.
  • the cold moderator CNM emits a neutron spectrum with a maximum at the cold neutrons CCN and a smaller contribution at the thermal neutrons TCN.
  • the thermal moderator TNM generates a maximum at the thermal neutrons TTN and a smaller number of cold neutrons CTN.
  • the thermal moderator TNM is arranged directly opposite a neutron guide NGT , which makes the coupled neutrons one in the FIG. 1 not further illustrated experimental station passes.
  • the neutron guide NGT has a cross section of 6 cm x 10 cm and extends from the also in of the FIG. 1 not shown neutron source at a distance of 32 m. It is nickel plated to improve its reflective properties on the inner surface INS .
  • the superimposed neutron beam SBL generated in the neutron guide NGT by beam superimposition has a qualitatively very high-quality multispectrum, which is composed only of the maximum ranges of the spectra of the two moderators CNM, TNM .
  • the neutron guide NGT at its end facing the two moderators CNM, TNM at a distance of 1.5 m from these further neutron optical devices NOC with integrated an energy-dependent switching function.
  • this is a simple neutron-conducting super mirror RSM and a further super mirror SSM lying opposite it .
  • the supermirror SSM is deposited on a 0.75 mm thick neutron transparent Si substrate. While the supermirror RSM serves the pure reflection of emanating neutron beams, the opposite super-mirror has SSM an energy and angle dependent switching function.
  • the supermirror SSM is constructed and angularly adjusted (here, for example, 0.72 °) so as to reflect the cold neutrons CCN of the cold moderator CNM in the neutron guides NGT , whereas the cold neutrons CTN of the thermal moderator TNM be reflected away from the other mirror side of the area of the neutron guide NGT .
  • the thermal neutrons TCN of the cold moderator CNM are led out of the neutron guide NGT along the supermirror SSM , whereas the thermal neutrons TTN of the thermal moderator TNM can pass unhindered through the super-mirror SSM .
  • the superimposed neutron beam SBL consists of preferentially emitted neutrons of the two moderators CNM, TNM .
  • the relative transmission coefficient RTC of the entire neutron optical system is as a function of the neutron wavelength NWL in nm for both moderators CNM, TNM according to FIG. 1 , which can be defined in comparison to the simple spectra in an identical neutron guide, which is located at 1.5 m distance either before the cold or before the thermal moderator CNM, TNM .
  • neutron energies of more than 20 meV are required in an experiment, only thermal neutrons TTN of the thermal moderator TNM are available in the combined multi- spectrum .
  • the neutron supply is almost exclusively by the cold moderator CNM with cold neutrons CCN.
  • the neutrons TTN, CCN from both moderators TNM, CNM are fed into the experiment in a mixed form with different proportions in the superimposed neutron beam SBL .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Claims (8)

  1. Assemblage d'optique neutronique destiné à la modulation spectrale ciblée de faisceaux ou pulsations neutroniques au sein d'un conducteur de neutrons ou d'un canal expérimental reliant une source de neutrons rapides pourvue de plusieurs modérateurs disposés d'une manière rapprochée et présentant différents modes de réalisation, lesdits modérateurs étant destinés à générer des neutrons lents ayant différents spectres énergétiques ainsi qu'à les émettre dans des direction d'émission prédéfinies, et au moins un lieu d'expérimentation.
    caractérisé en ce que
    les directions d'émission (CBL, TBL) des modérateurs (CNM, TNM) sont soit focalisées directement sur ledit lieu d'expérimentation de par leur orientation angulaire soit chevauchées dans le conducteur de neutrons (NGT) ou dans le lieu d'expérimentation en raison de la présence d'éléments d'optique neutronique supplémentaires (RSM, SSM) servant à l'orientation ciblée de faisceaux neutroniques, chacun des faisceaux neutroniques (SBL) chevauchés ainsi formés présentant un multi-spectre couvrant l'ensemble des neutrons lents (CCN, TTN) aux spectres énergétiques différents qui sont générés par les modérateurs (CNM, TNM).
  2. Assemblage d'optique neutronique selon la revendication 1,
    caractérisé en ce que,
    dans le cas d'une focalisation dans le lieu d'expérimentation, les directions d'émission des modérateurs (CNM, TNM) peuvent être déterminées, pour une source de neutrons pulsée ou un faisceau neutronique haché qui se chevauche (SBL), par un schéma de codage prédéfini impliquant la mesure du temps de vol des neutrons.
  3. Assemblage d'optique neutronique selon la revendication 1,
    caractérisé en ce que
    la surface intérieure (INS) du conducteur de neutrons (NGT) est revêtue de nickel.
  4. Assemblage d'optique neutronique selon la revendication 1 ou 3,
    caractérisé en ce que,
    dans le cas d'un chevauchement des directions d'émission par des éléments d'optique neutronique supplémentaires afin d'obtenir un faisceau neutronique chevauché qui est émis selon une direction effective moyenne, un élément d'optique neutronique supplémentaire est réalisé sous forme d'un miroir oscillant dont l'oscillation est synchronisée avec ladite source d'électrons pulsée ou avec ledit faisceau neutronique haché d'une source de neutrons continue.
  5. Assemblage d'optique neutronique selon la revendication 1 ou 3,
    caractérisé en ce que,
    dans le cas d'un chevauchement des directions d'émission (CBL, TBL) par des éléments d'optique neutronique supplémentaires (NOC) afin d'obtenir un faisceau neutronique chevauché (SBL) qui est émis selon une direction effective moyenne (EBL), un élément d'optique neutronique supplémentaire (SSM) est réalisé avec une fonction de commutation dont l'état dépend de l'énergie.
  6. Assemblage d'optique neutronique selon la revendication 5,
    caractérisé en ce que
    l'élément d'optique neutronique supplémentaire (NOC) doté d'une fonction de commutation dont l'état dépend de l'énergie, est réalisé sous forme d'un miroir à neutrons (SSM) qui présente une orientation angulaire adaptée à laisser passer les neutrons incidents de façon continue ou par paliers ou bien à les réfléchir, en fonction de leur énergie.
  7. Assemblage d'optique neutronique selon la revendication 5 ou 6,
    caractérisé en ce que
    les miroirs à neutrons (RSM, SSM) sous réalisés sous forme de miroirs à neutrons monocouche ou multicouche, lesdites couches étant autoporteuses ou appliquées sur un substrat transparent pour les neutrons, le revêtement étant appliquée sur l'une ou sur les deux faces du substrat.
  8. Assemblage d'optique neutronique selon l'une des revendications 4 à 7,
    caractérisé en ce que
    les éléments d'optique neutronique supplémentaires (NOC, RSM, SSM) sont intégrés dans le conducteur de neutrons (NGT).
EP03731659A 2002-01-23 2003-01-22 Dispositif a composants opto-neutroniques pour configuration spectrale specifique de faisceaux ou d'impulsions de neutrons Expired - Lifetime EP1468427B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10203591 2002-01-23
DE10203591A DE10203591B4 (de) 2002-01-23 2002-01-23 Neutronenoptische Bauelementanordnung zur gezielten spektralen Gestaltung von Neutronenstrahlen oder -pulsen
PCT/DE2003/000192 WO2003063183A1 (fr) 2002-01-23 2003-01-22 Dispositif a composants opto-neutroniques pour configuration spectrale specifique de faisceaux ou d'impulsions de neutrons

Publications (2)

Publication Number Publication Date
EP1468427A1 EP1468427A1 (fr) 2004-10-20
EP1468427B1 true EP1468427B1 (fr) 2012-01-04

Family

ID=7713395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03731659A Expired - Lifetime EP1468427B1 (fr) 2002-01-23 2003-01-22 Dispositif a composants opto-neutroniques pour configuration spectrale specifique de faisceaux ou d'impulsions de neutrons

Country Status (6)

Country Link
US (1) US7030397B2 (fr)
EP (1) EP1468427B1 (fr)
JP (1) JP4426305B2 (fr)
AT (1) ATE540411T1 (fr)
DE (1) DE10203591B4 (fr)
WO (1) WO2003063183A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003239533A1 (en) * 2002-05-20 2003-12-12 The University Of Houston System Energetic neutral particle lithographic apparatus and process
DE102004031934B4 (de) 2004-06-27 2006-11-09 Hahn-Meitner-Institut Berlin Gmbh Strahlungsoptisches Bauelement
JP5105342B2 (ja) * 2006-05-10 2012-12-26 独立行政法人日本原子力研究開発機構 パルス中性子非弾性散乱実験の高効率測定方法
KR100825914B1 (ko) * 2006-11-17 2008-04-28 한국원자력연구원 중성자 단색기 구조를 이용한 중성자 초거울 제작방법
DE102008052410B4 (de) 2008-10-21 2010-10-07 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Strahlungsoptisches Bauelement zur Beeinflussung von Strahlung in Bezug auf deren Wellenlängenspektrum
JP5320592B2 (ja) * 2009-03-18 2013-10-23 大学共同利用機関法人 高エネルギー加速器研究機構 中性子線の単色集光装置
JP2011053096A (ja) * 2009-09-02 2011-03-17 Japan Atomic Energy Agency 中性子光学素子
DE102011121740B3 (de) * 2011-12-21 2012-12-27 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Anordnung zur Erzeugung kalter Neutronen
DE102014013082A1 (de) * 2014-09-09 2016-03-10 Forschungszentrum Jülich GmbH Anordnung für polarisierte Neutronenstrahlen und Verfahren zur Polarisationsanalyse

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU713292A1 (ru) * 1978-08-15 1983-09-15 Предприятие П/Я В-2679 Нейтронный спектрометр
SU1091096A1 (ru) * 1983-01-06 1984-05-07 Объединенный Институт Ядерных Исследований Способ измерени среднего значени напр женности магнитного пол
US5920601A (en) * 1996-10-25 1999-07-06 Lockheed Martin Idaho Technologies Company System and method for delivery of neutron beams for medical therapy
DE29716107U1 (de) * 1997-09-08 1997-10-30 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 80539 München Strahlführungssystem für Neutronen zur Grenzflächenuntersuchung
DE19844300C2 (de) * 1998-09-17 2002-07-18 Hahn Meitner Inst Berlin Gmbh Neutronenoptisches Bauelement
US5949840A (en) * 1998-11-25 1999-09-07 The Regents Of The University Of California Neutron guide
JP3048569B1 (ja) * 1999-03-08 2000-06-05 理化学研究所 中性子ビ―ム制御装置及び中性子エネルギ―測定装置
FR2811857B1 (fr) * 2000-07-11 2003-01-17 Commissariat Energie Atomique Dispositif de spallation pour la production de neutrons

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHARLTON L A ET AL: "Spallation neutron source moderator design", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - A:ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, ELSEVIER, AMSTERDAM, NL LNKD- DOI:10.1016/S0168-9002(98)00312-X, vol. 411, no. 2-3, 11 July 1998 (1998-07-11), pages 494 - 502, XP004133296, ISSN: 0168-9002 *
RUSSELL G.J. ET AL: "Target station design for a 1 MW pulsed spallation neutron source", 7 February 1994 (1994-02-07), THE CONSENER'S HOUSE, ABINGDON, OXFORDSHIRE, UK, pages 1 - 13, Retrieved from the Internet <URL:www.osti.gov/bridge/servlets/purl/10120597-cNggLU/.../10120597.pdf> *

Also Published As

Publication number Publication date
ATE540411T1 (de) 2012-01-15
US7030397B2 (en) 2006-04-18
US20050157831A1 (en) 2005-07-21
DE10203591B4 (de) 2008-09-18
DE10203591A1 (de) 2003-08-07
JP4426305B2 (ja) 2010-03-03
EP1468427A1 (fr) 2004-10-20
WO2003063183A1 (fr) 2003-07-31
JP2005516195A (ja) 2005-06-02

Similar Documents

Publication Publication Date Title
EP1241470B1 (fr) Dispositif de mesure du transfert d&#39;impulsion lors de la diffusion élastique de quantas de rayons x dans la région d&#39; un conteneur à inspecter
DE102011000860A1 (de) Hochfluss-Photonenstrahlen verwendende optische Vorrichtungen
EP1468427B1 (fr) Dispositif a composants opto-neutroniques pour configuration spectrale specifique de faisceaux ou d&#39;impulsions de neutrons
DE3244158A1 (de) Verfahren und vorrichtung zur isotopentrennung
EP2793056B1 (fr) Dispositif et procédé de détermination de la composition énergétique d&#39;ondes électromagnétiques
DE3434035A1 (de) Spektrometrisches diskriminierungsverfahren und vorrichtung zu seiner durchfuehrung
EP2550128A2 (fr) Dispositif de soumission à l&#39;action d&#39;un faisceau laser ainsi que dispositif pour reproduire une répartition de lumière en forme de ligne
DE10245676A1 (de) Phasenkontrast-Röntgengerät zur Erstellung eines Phasenkontrast-Bildes eines Objekts und Verfahren zum Erstellen des Phasenkontrast-Bildes
DE102008027229B4 (de) Vorrichtung zur Strahlformung
DE102007033052A1 (de) Bestrahlungsvorrichtung und Verfahren zur Steuerung/Regelung derselben
EP3155469B1 (fr) Microscopie à feuillets lumineux utilisant des éléments méso-optiques
DE19900878C2 (de) Verfahren zur Analyse eines primären Neutronenstrahls einer Neutronenquelle sowwie Strahlmonitor zur Untersuchung eines in einer Neutronenquelle erzeugten primären Neutronenstrahls
DE2703047A1 (de) Verfahren zur erzeugung ausgesuchter massenspektren
DE102010045620B4 (de) Vorrichtung zur Erzeugung einer linienförmigen Intensitätsverteilung in einer Arbeitsebene
EP3191819B1 (fr) Ensemble de faisceaux de neutrons polarisés et procédé d&#39;analyse de la polarisation
DE102008052410B4 (de) Strahlungsoptisches Bauelement zur Beeinflussung von Strahlung in Bezug auf deren Wellenlängenspektrum
Yasen et al. Dense positrons and γ-rays generation by lasers interacting with convex target
Khokonov et al. The relationship of channeling radiation to Thomson scattering and the relative efficiency of X-ray production by intense electron beams
Barty Advanced laser-Compton gamma-ray sources for nuclear materials detection, assay and imaging
EP0905491B1 (fr) Dispositif d&#39;analyse de la dispersion des longeurs d&#39;onde des rayons fluorescents
DE102012013530B3 (de) Vorrichtung zur Messung resonanter inelastischer Röntgenstreuung einer Probe
DE2202347A1 (de) Elektronenstrahl-analysator zum nachweis von auger-elektronen
Welsch Laser-Based Beam Diagnostics for Accelerators and Light Sources
RU2340023C9 (ru) Капиллярная нейтронно-оптическая система
Schlachter The Advanced Light Source: A New 1.5 GeV Synchrotron Radiation Facility at the Lawrence Berkeley Laboratory

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENER

17Q First examination report despatched

Effective date: 20100930

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUSSINA, MARGARITA

Inventor name: MEZEI, FERENC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENER

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUSSINA, MARGARITA

Inventor name: MEZEI, FERENC

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 540411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314158

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENER

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120405

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

26N No opposition filed

Effective date: 20121005

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120404

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314158

Country of ref document: DE

Effective date: 20121005

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 540411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50314158

Country of ref document: DE

Effective date: 20130206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141128

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150131

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314158

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131