EP1466087A1 - Injector for high pressure fuel injection - Google Patents

Injector for high pressure fuel injection

Info

Publication number
EP1466087A1
EP1466087A1 EP02779159A EP02779159A EP1466087A1 EP 1466087 A1 EP1466087 A1 EP 1466087A1 EP 02779159 A EP02779159 A EP 02779159A EP 02779159 A EP02779159 A EP 02779159A EP 1466087 A1 EP1466087 A1 EP 1466087A1
Authority
EP
European Patent Office
Prior art keywords
valve
pressure
control
injector
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02779159A
Other languages
German (de)
French (fr)
Other versions
EP1466087B1 (en
Inventor
Michael Kurrle
Reiner Koch
Joerg-Peter Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1466087A1 publication Critical patent/EP1466087A1/en
Application granted granted Critical
Publication of EP1466087B1 publication Critical patent/EP1466087B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0005Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Definitions

  • the common rail injection system is used for high-pressure injection of fuel into direct-injection ner internal combustion engines.
  • pressure generation and injection are decoupled from one another in time and place.
  • a separate high-pressure pump generates the injection pressure in a central high-pressure fuel reservoir.
  • the start of injection and the injection quantity are determined by the actuation time and duration of electrically actuated injectors which are connected to the high-pressure fuel reservoir via fuel lines.
  • DE 100 01 099 AI relates to a control valve for an injector of a fuel injection system.
  • the control valve comprises an actuator and is actuated by an actuator.
  • a hydraulic connection between a fuel return and a control chamber of the injector can be established by means of the control valve.
  • the control valve When the control valve is opened, fuel flows from the control room into the fuel return. As a result, the pressure in the control chamber drops and the hydraulic force acting on the end face of the nozzle needle decreases. As soon as this hydraulic force is less than the hydraulic force acting in the opening direction, the nozzle needle opens so that the fuel can get into the combustion chamber through the injection holes of the injection nozzle.
  • This indirect control of the nozzle needle via a hydraulic power booster system is necessary because the large forces required to open the nozzle needle quickly cannot be generated directly with the control valve.
  • DE 196 50 865 AI relates to a solenoid valve for controlling an electrically controlled fuel injection valve.
  • the valve needle of the fuel injection valve is loaded by pressure prevailing in a control chamber in the closing direction.
  • the solenoid valve discharges the control chamber to initiate injection when the solenoid of the solenoid valve is energized.
  • the valve needle of the injection valve is then lifted off its seat under the action of the high pressure acting on it in the opening direction.
  • a so-called “control amount” is required for the indirect actuation of the valve needle.
  • a control quantity reaches the low-pressure area of the fuel tank via the solenoid valve and via a control quantity line.
  • the solution according to the invention has the advantage that pressure vibrations in the control quantity line are damped and undesired opening of the actuator valve is prevented by the effects of the pressure vibrations. Furthermore, the solution according to the invention enables a compact, space-saving design of the pressure control valve.
  • an injector for high-pressure injection of fuel in self-igniting internal combustion engines comprises an actuator valve for opening and closing the injector, a nozzle needle which closes at least one injection opening in the closed state of the injector, a metering valve which establishes a hydraulic connection between the actuator valve and a control chamber of the injector, a pressure maintaining device for compliance serves a stand pressure necessary for the metering valve, a first control quantity line for control quantities that flow via the actuator valve and a second control quantity line for control quantities that flow via the metering valve.
  • the pressure maintaining device dynamically separates the control quantities of the metering valve from the control quantities of the actuator valve and also serves as a hydraulic vibration damper.
  • the pressure maintaining device is therefore designed in such a way that it dampens pressure vibrations of the fuel. In particular, these are pressure fluctuations that arise in the associated control quantity line when the metering valve is switched.
  • the actuator valve is a solenoid valve.
  • the actuator of the actuator valve is a piezo actuator. The advantage of a piezo actuator is that large actuating forces and a quick response of the actuator are guaranteed.
  • FIG. 1 shows a schematic illustration of an injector according to the invention with a solenoid valve, metering valve and pressure-maintaining device and a high-pressure fuel accumulator connected thereto,
  • Figure 2 shows a section of a pressure maintaining device according to the present invention
  • Figure 1 shows the schematic representation of an injector according to the invention with a solenoid valve, a metering valve and a Druckl old boots. A fuel high-pressure accumulator (common rail) connected to this is also shown.
  • the system shown is a pressure-controlled common rail injection system.
  • a high-pressure fuel reservoir 1 common rail
  • fuel is stored under high pressure (up to 1400 bar).
  • a high-pressure pump 2 pumps the fuel into the high-pressure fuel reservoir 1.
  • the high-pressure fuel reservoir 1 is connected to a metering valve 4 via a high-pressure line 3.
  • the metering valve 4 provides a hydraulic connection between a solenoid valve 5 and the relief space 6 of an injection nozzle 7 ago.
  • Metering valve 4 is a 3/2-way valve.
  • An adjusting piston 8 is arranged displaceably in the interior of the hollow metering valve 4.
  • the actuating piston 8 has a seat edge 9.
  • the actuating piston 8 in the metering valve body 11 is displaced in the opening direction 50.
  • a section 52 of the actuating piston 8 with a larger diameter seals off a section 53 of the metering valve body 11, so that the section 14 of the metering valve 4 is hydraulically separated from the annular chamber 15.
  • the nozzle needle 17 closes injection openings 18 which open into the combustion chamber 19 of the internal combustion engine.
  • a compression spring 20 generates a closing force on the nozzle needle 17.
  • the solenoid valve 5 and the metering valve 4 are connected to one another via a control line 21.
  • An inlet throttle element 22 runs through the actuating piston 8 of the metering valve 4 and opens into two partial spaces 23, 24 inside the metering valve body 11, one partial chamber 23 being connected to the high pressure line 3 and the other partial chamber 24 to the control line 21 containing an outlet throttle element 63.
  • a first control quantity line 29 runs from the solenoid valve 5 into a control quantity container 30 and from there an overall leakage line 32 into a low pressure area 31, for example the fuel tank of the internal combustion engine.
  • the control quantity container 30 is part of a pressure holding device 33.
  • the pressure holding device 33 serves on the one hand to maintain a standing pressure necessary for the metering valve 4 and on the other hand to dynamically separate the control quantities 34 of the solenoid valve 5 and the control quantities 35 of the metering valve 4.
  • the separation is dynamic, since the control quantities 35 of the metering valve 4 execute vibrations and are therefore highly dynamic and the control quantities 34 of the solenoid valve 5 are quasi-stationary, since the container 49 has an anti-vibration effect. Both tax amounts 34, 35 do not influence one another dynamically.
  • the pressure maintaining device 33 also has the function of a hydraulic vibration damper.
  • the control quantity container 30 contains a pressure holding valve 36, a volume accumulator 37, an inlet throttle 38, an outlet throttle 39 and an inlet container 40.
  • the pressure holding valve 36 is a spring-loaded valve, in particular a spring-loaded ball valve. which comprises a compression spring 41 and a ball 42.
  • the control quantities 35 of the metering valve 4 pass through the first line 12, the relief chamber 6 of the injection nozzle 7, the spring chamber 64 and a second control quantity line 43 to the pressure maintaining device 33.
  • the control quantities 35 of the metering valve 4 flow through the second control quantity line 43 the inlet container 40. From there they reach the control quantity container 30 via the inlet throttle 38, the volume accumulator 37, the pressure holding valve 36 and the outlet throttle 39.
  • the pressure holding device 33 contains an inlet throttle 38 which is arranged between the second control quantity line 43 and the pressure holding valve 36.
  • the pressure-maintaining device 33 also preferably contains an outlet throttle 39, which is arranged at the outlet 46 of the pressure-maintaining valve 36.
  • the pressure maintaining device 33 comprises a volume storage device. rather 37, which is arranged between the inlet throttle 38 and the inlet 45 of the pressure control valve 36.
  • the solenoid valve 5 is closed.
  • the control line 21 to the container 49 is closed.
  • the metering valve 4 is in switching position a, i.e. the actuating piston 8 is displaced in the closing direction 51 in the metering valve body 11, so that the seat edge 9 rests on the valve seat 10.
  • the first partial space 23 of the metering valve 4 is accordingly sealed against the annular space 15.
  • the fuel under high pressure is in this switching position a of the metering valve 4 in the first subspace 23 and is from there via the inlet throttle element 22 in the second subspace 24 and in the control line 21.
  • the magnet armature 26 moves in the opening direction 50 until it bears against the electromagnet 27.
  • the solenoid valve needle 25 opens and the fuel flows from the second subspace 24 of the metering valve 4 and the control line 21 via the container 49 and the first control quantity line 29.
  • the force in the opening direction 50 on the actuating piston 8 becomes greater than the force in the closing direction 51 due to the pressure difference between the second subspace 24 and the first subspace 23, so that the actuating piston 8 moves into the switching position b.
  • the portion 52 of the actuating piston 8 with its larger diameter, reaches the portion 53 of the metering valve body 11 and thus interrupts the hydraulic connection between the annular space 15 and the portion 14.
  • the first portion 23 is open towards the annular space 15, so that fuel under high pressure from the high-pressure line 3 passes through the first partial space 23, the annular space 15 and the second line 13 into the fuel storage space 16.
  • the high pressure in the fuel storage chamber 16 generates a force in the opening direction 50 on the nozzle needle 17 which is greater than the force of the compression spring 20 and the lower pressure in the relief chamber 6 in the closing direction 51.
  • the nozzle needle 17 opens and fuel becomes overpressurized the injection openings 18 are injected into the combustion chamber 19.
  • a control quantity 34 flows continuously via the inlet throttle element 22, the outlet throttle element 63, the control line 21, the container 49 and the first control quantity line 29 into the control quantity container 30 and from there via the total leakage line 32 into the low pressure region 31 Pressure holding valve 36 is closed and no control quantities 35 of metering valve 4 flow via second control quantity line 43.
  • the solenoid valve 5 closes by turning off the r electromagnet 27 and by the force of the compression spring 28.
  • the pressure in the second compartment 24 of the metering valve 4 rises again, thereby to move the adjusting piston 8 in the switching position a.
  • a control quantity 35 flows into subspace 14 of the metering valve 4.
  • This control quantity 35 which is moved in abrupt fashion, causes hydraulic vibrations in the line 12, in the relief chamber 6, in the second control quantity line 43 and in the inlet tank 40 Control amount 35, via the volume memory 37 damping the hydraulic vibrations.
  • the pressure holding valve 36 opens as soon as the stand pressure set by the design of the pressure holding valve 36 is exceeded and consequently the control quantity 35 flows via the outlet throttle 39 into the control quantity container 30 and from there into the low pressure region 31.
  • the pressure in the control quantity container 30 through the The control quantity 35 also acts on the solenoid valve needle 25 in the opening direction 50 via the first control quantity line 29.
  • the inlet and outlet throttles 38, 39 and the volume accumulator 37 are dimensioned with regard to their diameter or volume such that the pressure in the control quantity container 30 a maximum pressure, for example 5 bar, is not exceeded. In particular, this ensures that the pressure in the spring chamber 47 of the solenoid valve remains limited to this maximum pressure, for reasons of the coil tightness of the electromagnet 27.
  • the diameter of the inlet throttle (38) and the outlet throttle (39) is suitably chosen to ensure that pressure vibrations have no effect on the actuator valve, in particular on the movement of the actuator valve needle, in the second control quantity line (43).
  • the compensation throttle 48 prevents hydraulic vibrations or shocks in the first control quantity line 29 from being transmitted to the armature 26.
  • the preferred embodiment of the present invention shown in FIG. 1 offers, in addition to the advantage that it prevents an undesired opening of the solenoid valve 5, also advantageously the possibility of keeping the pressure holding valve 36 very small by the arrangement of the throttles 38, 39 and the volume accumulator 37 ,
  • PCS Pressure Controlled Common Rail System
  • DCRS pressure-controlled common rail system
  • Figure 2 shows a section of a pressure maintaining device according to the present invention.
  • a pressure holding valve body 54 is shown, in which the ball 42 and the compression spring 41 of a spring-loaded ball valve are arranged along its longitudinal axis 55.
  • the ball 42 In the closed state of the valve, the ball 42 is pressed against a valve ball seat 57 contained in the transition part 56.
  • a ball holder 58 is used to connect the ball 42 to the compression spring 41.
  • the volume storage 37 is only shown in part.
  • a sealing ring 62 seals the pressure switch device when installed.
  • the control quantities 35 of the metering valve 4 (not shown) reach the outlet throttle 39 via the volume accumulator 37 when the ball valve is open and the outlet throttle 39.
  • the outlet throttle 39 is located in a prestressing device 60 which limits the spring chamber 59 and at the same time keeps the compression spring 41 preloaded.
  • control quantity 35 of the metering valve 4 After the control quantity 35 of the metering valve 4 has passed the discharge throttle 39, it is brought together with the control quantity 34 of the (not shown) solenoid valve 5 at point 61 and all control quantities are passed as a total leakage quantity 44 into a low-pressure area.
  • Figure 3 shows a pressure switch device according to the present invention.
  • the volume accumulator 37 As already described with reference to FIG. 2, it comprises the volume accumulator 37, the transition part 56, the ball 42, the ball holder 58, the compression spring 41 in the spring chamber 59, the sealing ring 62 and the outlet throttle 39. Furthermore, the metering valve 4 is on the pressure maintaining valve body 54 attached (but only shown in part).
  • the control quantities 35 of the metering valve 4 reach the volume accumulator 37 via the inlet throttle 38. Behind the outlet throttle 39, these control quantities 35 are combined with the control quantities 34 of the (not shown) solenoid valve 5 to form a total leakage quantity 44.

Abstract

The invention relates to an injector for high pressure injection of fuel in auto-igniting internal combustion engines. The injector comprises an actuator valve for opening and closing the injector, an injector needle (17) which seals at least one injection opening (18) when the injector is in a closed state, a metering valve (4) producing a hydraulic connection between the actuator valve and the discharge area (6) of the injector, a pressure maintenance device (33) which is used to maintain the pressure required for the metering valve (4), a first line (20) for control amounts (34) flowing via the actuator valve and a second line (43) for control amounts flowing via the metering valve (4). The pressure maintenance device (33) dynamically separates the control amounts (35) from the metering valve from the control amounts (34) from the actuator valve by means of a hydraulic vibration damper.

Description

Injektor zur Hochdruckeinspritzung von KraftstoffHigh pressure fuel injector
Technisches GebietTechnical field
Das Common Rail-Einspritzsystem dient der Hochdruckeinspritzung von Kraftstoff in direkteinspritzende Nerbrennungskraftmaschinen. Bei diesem Speichereinspritzsystem sind Druckerzeugung und Einspritzung voneinander zeitlich und Örtlich entkoppelt. Eine separate Hochdruckpumpe erzeugt den Einspritzdruck in einem zentralen Kraftstoffhochdruck- speicher. Der Einspritzbeginn und die Einspritzmenge werden durch Ansteuerzeitpunkt und -dauer von elektrisch betätigten Injektoren bestimmt, die über Kraftstoffleitungen mit dem Kraftstoffhochdruckspeicher verbunden sind.The common rail injection system is used for high-pressure injection of fuel into direct-injection ner internal combustion engines. In this accumulator injection system, pressure generation and injection are decoupled from one another in time and place. A separate high-pressure pump generates the injection pressure in a central high-pressure fuel reservoir. The start of injection and the injection quantity are determined by the actuation time and duration of electrically actuated injectors which are connected to the high-pressure fuel reservoir via fuel lines.
Stand der TechnikState of the art
DE 100 01 099 AI bezieht sich auf ein Steuerventil für einen Injektor eines Kraftstoffein- spritzsystems. Das Steuerventil umfasst dabei ein Stellglied und wird von einem Aktor betätigt. Mittels des Steuerventils ist eine hydraulische Verbindung zwischen einem Kraftstoffrücklauf und einem Steuerraum des Injektors herstellbar. Wenn das Steuerventil geöffnet wird, strömt Kraftstoff vom Steuerraum in den Kraftstoffrücklauf. Dadurch sinkt der Druck im Steuerraum und die auf die Stirnfläche der Düsennadel wirkende hydraulische Kraft nimmt ab. Sobald diese hydraulische Kraft kleiner ist als die in Öffnungsrichtung wirkende hydraulische Kraft, öffnet die Düsennadel, so dass der Kraftstoff durch die Spritzlöcher der Einspritzdüse in den Brennraum gelangen kann. Diese indirekte Ansteue- rung der Düsennadel über ein hydraulisches Kraftverstärkersystem ist notwendig, weil die zum schnellen Öffnen der Düsennadel benötigten großen Kräfte mit dem Steuerventil nicht direkt erzeugt werden können.DE 100 01 099 AI relates to a control valve for an injector of a fuel injection system. The control valve comprises an actuator and is actuated by an actuator. A hydraulic connection between a fuel return and a control chamber of the injector can be established by means of the control valve. When the control valve is opened, fuel flows from the control room into the fuel return. As a result, the pressure in the control chamber drops and the hydraulic force acting on the end face of the nozzle needle decreases. As soon as this hydraulic force is less than the hydraulic force acting in the opening direction, the nozzle needle opens so that the fuel can get into the combustion chamber through the injection holes of the injection nozzle. This indirect control of the nozzle needle via a hydraulic power booster system is necessary because the large forces required to open the nozzle needle quickly cannot be generated directly with the control valve.
DE 196 50 865 AI betrifft ein Magnetventil zur Steuerung eines elektrisch gesteuerten Kraftstof einspritzventils. Die Ventilnadel des Kraftstoff einspritzventils wird von in einem Steuerraum herrschendem Druck in Schließrichtung belastet. Das Magnetventil leitet zur Einleitung der Einspritzung eine Entlastung des Steuerraums ein, wenn der Magnet des Magnetventils erregt wird. Die Ventilnadel des Einspritzventils wird dann unter Einwirkung des in Öffnungsrichtung an ihr wirkenden Hochdrucks von ihrem Sitz abgehoben. Im Stande der Technik wird dabei zusätzlich zu der in den Brennraum eingespritzten Kraftstoffmenge eine sogenannte "Steuermenge" für die indirekte Ansteuerung der Ventilnadel benötigt. Beim Öffnen des Magnetventils gelangt eine Steuermenge über das Magnetventil und über eine Steuermengenleitung in den Niederdruckbereich des Kraftstofftanks. Beim Schließen des Magnetventils geht das Steuerventil in eine andere Schaltstellung über, wobei ebenfalls eine Steuermenge entsteht. Zur Aufrechterhaltung eines für die Steuerventilfunktion notwendigen Stammdrucks dient ein Druckhalteventil mit vorgeschalteter Zulaufdrossel in einer weiteren Steuermengenleitung, durch die die Steuermenge vom Steuerventil abfließt. Hinter dem Druckhalteventil strömen die Steuermengen von dem Magnetventil und von dem Steuerventil in einer gemeinsamen Leitung als Gesamtleckagemenge in den Niederdruckbereich. Das Druckhalteventil dient demnach außer zur Einhaltung des erwähnten Stammdrucks auch zur Trennung der Druckpotentiale beider Steuermengen (des Steuerventils und des Magnetventils).DE 196 50 865 AI relates to a solenoid valve for controlling an electrically controlled fuel injection valve. The valve needle of the fuel injection valve is loaded by pressure prevailing in a control chamber in the closing direction. The solenoid valve discharges the control chamber to initiate injection when the solenoid of the solenoid valve is energized. The valve needle of the injection valve is then lifted off its seat under the action of the high pressure acting on it in the opening direction. In the prior art, in addition to the amount of fuel injected into the combustion chamber, a so-called “control amount” is required for the indirect actuation of the valve needle. When the solenoid valve is opened, a control quantity reaches the low-pressure area of the fuel tank via the solenoid valve and via a control quantity line. When the solenoid valve closes, the control valve changes to another switching position, which also results in a control quantity. To maintain a master pressure necessary for the control valve function, a pressure control valve with an upstream inlet throttle is used in another control quantity line, through which the control quantity flows from the control valve. Behind the pressure control valve, the control quantities flow from the solenoid valve and from the control valve in a common line as a total leakage quantity into the low pressure range. The pressure control valve is therefore used not only to maintain the mentioned master pressure but also to separate the pressure potentials of both control quantities (the control valve and the solenoid valve).
Bei diesem Injektor im Stand der Technik können jedoch beim Schalten des Steuerventils Druckschwingungen in der Steuermengenleitung von dem Steuerventil entstehen, die sich bis zu der Ventilnadel des Magnetventils fortsetzen und im ungünstigsten Falle zu einem unerwünschten Öffnen des Magnetventils führen können.In this injector in the prior art, however, when the control valve is switched, pressure fluctuations can occur in the control quantity line from the control valve, which continue to the valve needle of the solenoid valve and, in the worst case, can lead to an undesired opening of the solenoid valve.
Darstellung der ErfindungPresentation of the invention
Die erfindungsgemäße Lösung hat den Vorteil, dass Druckschwingungen in der Steuermengenleitung gedämpft werden und ein unerwünschtes Öffnen des Aktorventils durch die Auswirkungen der Druckschwingungen verhindert wird. Ferner ermöglicht die erfindungsgemäße Lösung eine kompakte, platzsparende Ausführung des Druckhalteventils.The solution according to the invention has the advantage that pressure vibrations in the control quantity line are damped and undesired opening of the actuator valve is prevented by the effects of the pressure vibrations. Furthermore, the solution according to the invention enables a compact, space-saving design of the pressure control valve.
Diese Vorteile werden erfindungsgemäß durch einen Injektor zur Hochdruckeinspritzung von Kraftstoff bei selbstzündenden Brennkraftmaschinen erreicht. Der Injektor umfasst dabei ein Aktorventil zum Öffnen und Schließen des Injelctors, eine Düsennadel, die im geschlossenen Zustand des Injektors mindestens eine Einspritzöffnung verschließt, ein Zumessventil, das eine hydraulische Verbindung zwischen dem Aktorventil und einem Steuerraum des Injelctors herstellt, eine Druckhalteeinrichtung, die zur Einhaltung eines für das Zumessventil notwendigen Standdruckes dient, eine erste Steuermengenleitung für Steuermengen, die über das Aktorventil strömen und eine zweite Steuermengenleitung für Steuermengen, die über das Zumessventil strömen. Die Druckhalteeinrichtung trennt dabei die Steuermengen des Zumessventils dynamisch von den Steuermengen des Aktorventils und dient ferner als ein hydraulischer Schwingungsdämpfer. Die Druckhalteeinrichtung ist demnach so konstruiert, dass sie Druckschwingungen des Kraftstoffs dämpft. Insbesondere handelt es sich dabei um Druckschwingungen, die beim Schalten des Zumessventils in der zugehörigen Steuermengenleitung entstehen.According to the invention, these advantages are achieved by an injector for high-pressure injection of fuel in self-igniting internal combustion engines. The injector in this case comprises an actuator valve for opening and closing the injector, a nozzle needle which closes at least one injection opening in the closed state of the injector, a metering valve which establishes a hydraulic connection between the actuator valve and a control chamber of the injector, a pressure maintaining device for compliance serves a stand pressure necessary for the metering valve, a first control quantity line for control quantities that flow via the actuator valve and a second control quantity line for control quantities that flow via the metering valve. The pressure maintaining device dynamically separates the control quantities of the metering valve from the control quantities of the actuator valve and also serves as a hydraulic vibration damper. The pressure maintaining device is therefore designed in such a way that it dampens pressure vibrations of the fuel. In particular, these are pressure fluctuations that arise in the associated control quantity line when the metering valve is switched.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei dem Aktorventil um ein Magnetventil. Bei einer anderen Variante der Erfindung ist der Aktor des Aktorventils ein Piezoaktor. Vorteilhaft bei einem Piezoaktor ist, dass große Stellkräfte und ein schnelles Ansprechen des Aktors gewährleistet sind.In a preferred embodiment of the present invention, the actuator valve is a solenoid valve. In another variant of the invention, the actuator of the actuator valve is a piezo actuator. The advantage of a piezo actuator is that large actuating forces and a quick response of the actuator are guaranteed.
Zeichnungdrawing
Anhand der Zeichnung wird die Erfindung nachstehend näher erläutert.The invention is explained in more detail below with the aid of the drawing.
Es zeigt:It shows:
Figur 1 eine schematische Darstellung eines erfindungsgemäßen Injektors mit Magnetventil, Zumessventil und Druckhalteeinrichtung und eines damit verbundenen Kraftstoffhochdruckspeichers,FIG. 1 shows a schematic illustration of an injector according to the invention with a solenoid valve, metering valve and pressure-maintaining device and a high-pressure fuel accumulator connected thereto,
Figur 2 einen Ausschnitt aus einer Druckhalteeinrichtung gemäß der vorliegenden Erfindung undFigure 2 shows a section of a pressure maintaining device according to the present invention and
Figur 3 eine Druckhalteeinrichtung gemäß der vorliegenden Erfindung.Figure 3 shows a pressure maintaining device according to the present invention.
Ausfuhrungsvarianten.Design variants.
Figur 1 zeigt die schematische Darstellung eines erfindungsgemäßen Injektors mit einem Magnetventil, einem Zumessventil und einer Druckl alteeinrichtung. Femer ist ein damit verbundener Kraftstoffhochdruckspeicher (Common Rail) dargestellt.Figure 1 shows the schematic representation of an injector according to the invention with a solenoid valve, a metering valve and a Druckl oldeinrichtung. A fuel high-pressure accumulator (common rail) connected to this is also shown.
Bei dem dargestellten System handelt es sich um ein druckgesteuertes Common Rail- Einspritzsystem. In einem Kraftstoffhochdruckspeicher 1 (Common Rail) wird Kraftstoff unter hohem Druck (bis zu 1400 bar) gespeichert. Eine Hochdruckpumpe 2 fördert den Kraftstoff in den Kraftstoffhochdruckspeicher 1. Der Kraftstoffhochdruckspeicher 1 ist über eine Hochdruckleitung 3 mit einem Zumessventil 4 verbunden. Das Zumessventil 4 stellt eine hydraulische Verbindung zwischen einem Magnetventil 5 und dem Entlastungs- räum 6 einer Einspritzdüse 7 her. Bei dem Zumessventil 4 handelt es sich um ein 3/2- egeventil. Im Inneren des hohlen Zumessventils 4 ist ein Stellkolben 8 verschiebbar angeordnet. Der Stellkolben 8 weist eine Sitzkante 9 auf. In der einen Schaltstellung a ist der Stellkolben in dem Zumessventilkörper 11 so verschoben, dass die Sitzkante 9 an einem im Zumessventilkörper 11 ausgebildeten Ventilsitz 10 anliegt. In dieser Schaltstellung a des Zumessventils 4 ist die Hochdruckleitung 3 hydraulisch von der Einspritzdüse 7 getrennt. Von dem Zumessventil 4 aus verlaufen zwei Leitungen 12, 13 zu der Einspritzdüse 7. Die erste Leitung 12 verbindet einen Teilraum 14 des Zumessventils 4 mit dem Entlastungsraum 6 der Einspritzdüse 7. Die zweite Leitung 13 verläuft von einem ringförmigen Raum 15 in dem Zumessventilkörper 11 zu einem Kraftstoffvorratsraum 16, der die Düsennadel 17 der Einspritzdüse 7 umgibt. Dadurch kann sich kein hoher Druck in dem Kraftstoffvorratsraum 16 aufbauen, so dass die Düsennadel 17 geschlossen bleibt.The system shown is a pressure-controlled common rail injection system. In a high-pressure fuel reservoir 1 (common rail), fuel is stored under high pressure (up to 1400 bar). A high-pressure pump 2 pumps the fuel into the high-pressure fuel reservoir 1. The high-pressure fuel reservoir 1 is connected to a metering valve 4 via a high-pressure line 3. The metering valve 4 provides a hydraulic connection between a solenoid valve 5 and the relief space 6 of an injection nozzle 7 ago. Metering valve 4 is a 3/2-way valve. An adjusting piston 8 is arranged displaceably in the interior of the hollow metering valve 4. The actuating piston 8 has a seat edge 9. In one switching position a, the actuating piston in the metering valve body 11 is displaced such that the seat edge 9 bears against a valve seat 10 formed in the metering valve body 11. In this switching position a of the metering valve 4, the high-pressure line 3 is hydraulically separated from the injection nozzle 7. Two lines 12, 13 run from the metering valve 4 to the injection nozzle 7. The first line 12 connects a partial space 14 of the metering valve 4 to the relief chamber 6 of the injection nozzle 7. The second line 13 runs from an annular space 15 in the metering valve body 11 a fuel reservoir 16 which surrounds the nozzle needle 17 of the injection nozzle 7. As a result, no high pressure can build up in the fuel storage space 16, so that the nozzle needle 17 remains closed.
In der zweiten Schaltstellung b des Zumessventils 4 ist der Stellkolben 8 in dem Zumess- ventilkörper 11 in Öffnungsrichtung 50 verschoben. In dieser Schaltstellung b dichtet ein Teilbereich 52 des Stellkolbens 8 mit größerem Durchmesser mit einem Teilbereich 53 des Zumessventilkörpers 11 ab, so dass der Teilraum 14 des Zumessventils 4 von dem ringförmigen Raum 15 hydraulisch getrennt ist. Es besteht in dieser Schaltstellung b eine Verbindung zwischen der Hochdruckleitung 3, dem Teilraum 23 des Zumessventils 4, dem ringförmigen Raum 15, der Leitung 13 zur Einspritzdüse 7 und dem Kraftstoffvorratsraum 16.In the second switching position b of the metering valve 4, the actuating piston 8 in the metering valve body 11 is displaced in the opening direction 50. In this switching position b, a section 52 of the actuating piston 8 with a larger diameter seals off a section 53 of the metering valve body 11, so that the section 14 of the metering valve 4 is hydraulically separated from the annular chamber 15. In this switching position b, there is a connection between the high-pressure line 3, the subspace 23 of the metering valve 4, the annular space 15, the line 13 to the injection nozzle 7 and the fuel supply space 16.
Die Düsennadel 17 verschließt im geschlossenen Zustand des Injektors Einspritzöffnungen 18, die in den Brennraum 19 der Brennkraftmaschine münden. Eine Druckfeder 20 erzeugt eine Schließkraft auf die Düsennadel 17.In the closed state of the injector, the nozzle needle 17 closes injection openings 18 which open into the combustion chamber 19 of the internal combustion engine. A compression spring 20 generates a closing force on the nozzle needle 17.
Das Magnetventil 5 und das Zumessventil 4 sind über eine Steuerleitung 21 miteinander verbunden. Ein Zulaufdrosselelement 22 verläuft durch den Stellkolben 8 des Zumessventils 4 und mündet in zwei Teilräume 23, 24 im Inneren des Zumessventilkörpers 11, wobei der eine Teilraum 23 mit der Hochdruckleitung 3 und der andere Teilraum 24 mit der ein Ablaufdrosselelement 63 enthaltenden Steuerleitung 21 verbunden ist.The solenoid valve 5 and the metering valve 4 are connected to one another via a control line 21. An inlet throttle element 22 runs through the actuating piston 8 of the metering valve 4 and opens into two partial spaces 23, 24 inside the metering valve body 11, one partial chamber 23 being connected to the high pressure line 3 and the other partial chamber 24 to the control line 21 containing an outlet throttle element 63.
Das Magnetventil 5 enthält eine Magnetventilnadel 25, die über einen Magnetanker 26 und einen Elektromagneten 27 geöffnet werden kann. Eine Druckfeder 28 erzeugt eine Schließ- kraft auf die Magnetventilnadel 25. Der Federraum 47 des Magnetventils 5 steht über eine Ausgleichsdrossel 48 in Verbindung mit einem Behälter 49, der durch die Magnetventilnadel 25 zur Steuerleitung 21 hin verschlossen werden kann. Über die Ausgleichsdrossel 48 können der Druck im Behälter 49, der auf die Magnetventilnadel 25 in Öffnungsrichtung 50 wirkt, und der Druck in dem Federraum 47 des Magnetventils 5, der Kräfte auf die Magnetventilnadel 25 sowohl in Öffnungsrichtung 50 als auch in Schließrichtung 51 erzeugt, ausgeglichen werden. Bei gleichem Druck im Behälter 49 und im Federraum 47 stehen die Kräfte auf die Magnetventilnadel 25 in Öffnungs- und in Schließrichtung 50, 51 im Gleichgewicht, da die Wirkflächen gleichgroß sind. Demnach wird das Magnetventil 5 lediglich durch die Kraft der Druckfeder 28 geschlossen gehalten. Von dem Magnetventil 5 aus verläuft eine erste Steuermengenleitung 29 in einen Steuermengenbehälter 30 und von dort aus eine Gesamtleckageleitung 32 in einen Niederdruckbereich 31, beispielsweise den Kraftstofftank der Brennkraftmaschine.The solenoid valve 5 contains a solenoid valve needle 25 which can be opened via a magnet armature 26 and an electromagnet 27. A compression spring 28 generates a closing force on the solenoid valve needle 25. The spring chamber 47 of the solenoid valve 5 is connected via a compensating throttle 48 to a container 49 which can be closed to the control line 21 by the solenoid valve needle 25. Via the compensating throttle 48, the pressure in the container 49 can be applied to the solenoid valve needle 25 in the opening direction 50 acts, and the pressure in the spring chamber 47 of the solenoid valve 5, which generates forces on the solenoid valve needle 25 both in the opening direction 50 and in the closing direction 51, are equalized. At the same pressure in the container 49 and in the spring chamber 47, the forces on the solenoid valve needle 25 in the opening and closing directions 50, 51 are in equilibrium, since the effective areas are of the same size. Accordingly, the solenoid valve 5 is kept closed only by the force of the compression spring 28. A first control quantity line 29 runs from the solenoid valve 5 into a control quantity container 30 and from there an overall leakage line 32 into a low pressure area 31, for example the fuel tank of the internal combustion engine.
Der Steuermengenbehälter 30 ist Teil einer Druckhalteeinrichtung 33. Die Druckhalteeinrichtung 33 dient einerseits dazu, einen für das Zumessventil 4 notwendigen Standdruck einzuhalten, und andererseits dazu, die Steuermengen 34 des Magnetventils 5 und die Steuermengen 35 des Zumessventils 4 dynamisch zu trennen. Die Trennung ist dynamisch, da die Steuermengen 35 des Zumessventils 4 Schwingungen ausführen und somit hochdynamisch sind und die Steuermengen 34 des Magnetventils 5 quasistationär sind, da der Behälter 49 schwingungshemmend wirkt. Beide Steuermengen 34, 35 beeinflussen sich dynamisch nicht. Femer hat die Druckhalteeinrichtung 33 bei der vorliegenden Erfindung die Funktion eines hydraulischen Schwingungsdämpfers. Sie enthält außer dem Steuer- mengenbehälter 30 ein Druckhalteventil 36, einen Volumenspeicher 37, eine Zulaufdrossel 38, eine Ablaufdrossel 39 und einen Zulaufbehälter 40. Das Druckhalteventil 36 ist in dieser bevorzugten Ausfül rungsform der vorliegenden Erfindung ein federbelastetes Ventil, insbesondere ein federbelastetes Kugel ventil, das eine Druckfeder 41 und eine Kugel 42 umfasst. Die Steuermengen 35 des Zumessventils 4 gelangen über die erste Leitung 12, den Entlastungsraum 6 der Einspritzdüse 7, den Federraum 64 und eine zweite Steuermengenleitung 43 zu der Druckhalteeinrichtung 33. Bei geöffnetem Druckhalteventil 36 fließen die Steuermengen 35 des Zumessventils 4 durch die zweite Steuermengenleitung 43 in den Zulaufbehälter 40. Von dort aus gelangen sie über die Zulaufdrossel 38, den Volumenspeicher 37, das Druckhalteventil 36 und die Ablaufdrossel 39 in den Steuermengenbehälter 30.The control quantity container 30 is part of a pressure holding device 33. The pressure holding device 33 serves on the one hand to maintain a standing pressure necessary for the metering valve 4 and on the other hand to dynamically separate the control quantities 34 of the solenoid valve 5 and the control quantities 35 of the metering valve 4. The separation is dynamic, since the control quantities 35 of the metering valve 4 execute vibrations and are therefore highly dynamic and the control quantities 34 of the solenoid valve 5 are quasi-stationary, since the container 49 has an anti-vibration effect. Both tax amounts 34, 35 do not influence one another dynamically. In the present invention, the pressure maintaining device 33 also has the function of a hydraulic vibration damper. In addition to the control quantity container 30, it contains a pressure holding valve 36, a volume accumulator 37, an inlet throttle 38, an outlet throttle 39 and an inlet container 40. In this preferred embodiment of the present invention, the pressure holding valve 36 is a spring-loaded valve, in particular a spring-loaded ball valve. which comprises a compression spring 41 and a ball 42. The control quantities 35 of the metering valve 4 pass through the first line 12, the relief chamber 6 of the injection nozzle 7, the spring chamber 64 and a second control quantity line 43 to the pressure maintaining device 33. When the pressure holding valve 36 is open, the control quantities 35 of the metering valve 4 flow through the second control quantity line 43 the inlet container 40. From there they reach the control quantity container 30 via the inlet throttle 38, the volume accumulator 37, the pressure holding valve 36 and the outlet throttle 39.
In der in Figur 1 dargestellten bevorzugten Ausführungsform der vorliegenden Erfindung enthält die Druckhalteeinrichtung 33 eine Zulaufdrossel 38, die zwischen der zweiten Steuermengenleitung 43 und dem Druckhalteventil 36 angeordnet ist. Femer enthält die Druck- halteeinrichtung 33 vorzugsweise eine Ablaufdrossel 39, die am Ablauf 46 des Druckhal- teventils 36 angeordnet ist. Schließlich umfasst die Druckhalteeinrichtung 33 bei der dargestellten bevorzugten Ausführungsform der vorliegenden Erfindung einen Volumenspei- eher 37, der zwischen der Zulaufdrossel 38 und dem Zulauf 45 des Druckhalteventils 36 angeordnet ist.In the preferred embodiment of the present invention shown in FIG. 1, the pressure holding device 33 contains an inlet throttle 38 which is arranged between the second control quantity line 43 and the pressure holding valve 36. The pressure-maintaining device 33 also preferably contains an outlet throttle 39, which is arranged at the outlet 46 of the pressure-maintaining valve 36. Finally, in the preferred embodiment of the present invention shown, the pressure maintaining device 33 comprises a volume storage device. rather 37, which is arranged between the inlet throttle 38 and the inlet 45 of the pressure control valve 36.
In dem Steuermengenbehälter 30 vermischen sich die Steuermengen 35 des Zumessventils 4 und die Steuermengen 34 des Magnetventils 5 und werden als Gesamtleckagemenge 44 über die Gesamtleckageleitung 32 in den Niederdruckbereich 31 geleitet.The control quantities 35 of the metering valve 4 and the control quantities 34 of the solenoid valve 5 mix in the control quantity container 30 and are passed as a total leakage quantity 44 via the total leakage line 32 into the low-pressure region 31.
Ein Einspritzvorgang läuft in folgender Weise ab:An injection process takes place in the following way:
Zunächst ist das Magnetventil 5 geschlossen. Dadurch ist die Steuerleitung 21 zu dem Behälter 49 hin geschlossen. Das Zumessventil 4 befindet sich in Schaltposition a, d.h. der Stellkolben 8 ist in Schließrichtung 51 in dem Zumessventilkörper 11 verschoben, so dass die Sitzkante 9 an dem Ventilsitz 10 anliegt. Der erste Teilraum 23 des Zumessventils 4 ist demnach gegen den ringförmigen Raum 15 abgedichtet. Der Kraftstoff unter hohem Druck befindet sich in dieser Schaltposition a des Zumessventils 4 im ersten Teilraum 23 und steht von dort aus über das Zulaufdrosselelement 22 im zweiten Teilraum 24 und in der Steuerleitung 21 an. Er erzeugt im zweiten Teilraum 24 eine Kraft in Schließrichtung 51, die auf den Stellkolben 8 wirkt und dadurch die Sitzkante 9 des Stellkolbens 8 auf den Ventilsitz 10 drückt. In dem ringförmigen Raum 15, im Teilraum 14, in der ersten und zweiten Leitung 12, 13, im Kraftstoffvorratsraum 16 und im Entlastungsraum 6 der Einspritzdüse 7 herrscht ein gegenüber dem Hochdruck reduzierter einheitlicher Druck. Die Düsennadel 17 verschließt vorwiegend aufgrund der Federkraft der Druckfeder 20 die Einspritzöffnungen 18 zum Brennraum 19 hin. In dieser Schaltstellung a ist das Druckhalteventil 36 geschlossen und es fließen weder Steuermengen 34 des Magnetventils 5 noch Steuermengen 35 des Zumessventils 4. Dabei entsteht ein Standdruck von dem Teilraum 14 des Zumessventils bis zum Zulaufbehälter 40.First, the solenoid valve 5 is closed. As a result, the control line 21 to the container 49 is closed. The metering valve 4 is in switching position a, i.e. the actuating piston 8 is displaced in the closing direction 51 in the metering valve body 11, so that the seat edge 9 rests on the valve seat 10. The first partial space 23 of the metering valve 4 is accordingly sealed against the annular space 15. The fuel under high pressure is in this switching position a of the metering valve 4 in the first subspace 23 and is from there via the inlet throttle element 22 in the second subspace 24 and in the control line 21. It generates a force in the closing direction 51 in the second subspace 24, which acts on the actuating piston 8 and thereby presses the seat edge 9 of the actuating piston 8 onto the valve seat 10. In the annular space 15, in the partial space 14, in the first and second lines 12, 13, in the fuel storage space 16 and in the relief space 6 of the injection nozzle 7, there is a uniform pressure that is reduced compared to the high pressure. The nozzle needle 17 closes the injection openings 18 toward the combustion chamber 19 primarily due to the spring force of the compression spring 20. In this switching position a, the pressure-maintaining valve 36 is closed and neither control quantities 34 of the solenoid valve 5 nor control quantities 35 of the metering valve 4 flow. A stand pressure arises from the subspace 14 of the metering valve to the inlet tank 40.
Durch die Betätigung des Magnetventils 5 (Erregung des Elektromagneten 27) bewegt sich der Magnetanker 26 in Öffnungsrichtung 50, bis er an dem Elektromagneten 27 anliegt. Die Magnetventilnadel 25 öffnet und über den Behälter 49 und die erste Steuermengenleitung 29 fließt der Kraf stoff aus dem zweiten Teilraum 24 des Zumessventils 4 und der Steuerleitung 21 ab. Folglich wird die Kraft in Öffnungsrichtung 50 auf den Stellkolben 8 durch die Druckdifferenz zwischen dem zweiten Teilraum 24 und dem ersten Teilraum 23 größer als die Kraft in Schließrichtung 51, so dass sich der Stellkolben 8 in Schaltstellung b bewegt. Der Teilbereich 52 des Stellkolbens 8 erreicht mit seinem größeren Durchmesser den Teilbereich 53 des Zumessventilkörpers 11 und unterbricht somit die hydraulische Verbindung zwischen dem ringförmigen Raum 15 und dem Teilraum 14. Der erste Teilraum 23 ist in dieser Schaltstellung b hingegen zum ringförmigen Raum 15 hin geöffnet, so dass Kraftstoff unter Hochdruck aus der Hochdruckleitung 3 über den ersten Teilraum 23, den ringförmigen Raum 15 und die zweite Leitung 13 in den KraftstoffVorratsraum 16 gelangt. Der hohe Druck in dem KraftstoffVorratsraum 16 erzeugt eine Kraft in Öffnungsrichtung 50 auf die Düsennadel 17, die größer ist als die Kraft der Druckfeder 20 und des geringeren Druckes im Entlastungsraum 6 in Schließrichtung 51. Folglich öffnet die Düsennadel 17 und es wird Kraftstoff unter Hochdruck über die Einspritzöffnungen 18 in den Brennraum 19 eingespritzt. In dieser Schaltstellung b fließt ununterbrochen eine Steuermenge 34 über das Zulaufdrosselelement 22, das Ablaufdrosselelement 63, die Steuerleitung 21, den Behälter 49 und die erste Steuermengenleitung 29 in den Steuermengenbe- hälter 30 und von dort aus über die Gesamtleckageleitung 32 in den Niederdruckbereich 31. Das Druckhalteventil 36 ist geschlossen und es fließen keine Steuermengen 35 des Zumessventils 4 über die zweite Steuermengenleitung 43.By actuating the solenoid valve 5 (excitation of the electromagnet 27), the magnet armature 26 moves in the opening direction 50 until it bears against the electromagnet 27. The solenoid valve needle 25 opens and the fuel flows from the second subspace 24 of the metering valve 4 and the control line 21 via the container 49 and the first control quantity line 29. As a result, the force in the opening direction 50 on the actuating piston 8 becomes greater than the force in the closing direction 51 due to the pressure difference between the second subspace 24 and the first subspace 23, so that the actuating piston 8 moves into the switching position b. The portion 52 of the actuating piston 8, with its larger diameter, reaches the portion 53 of the metering valve body 11 and thus interrupts the hydraulic connection between the annular space 15 and the portion 14. In this switching position b, however, the first portion 23 is open towards the annular space 15, so that fuel under high pressure from the high-pressure line 3 passes through the first partial space 23, the annular space 15 and the second line 13 into the fuel storage space 16. The high pressure in the fuel storage chamber 16 generates a force in the opening direction 50 on the nozzle needle 17 which is greater than the force of the compression spring 20 and the lower pressure in the relief chamber 6 in the closing direction 51. As a result, the nozzle needle 17 opens and fuel becomes overpressurized the injection openings 18 are injected into the combustion chamber 19. In this switch position b, a control quantity 34 flows continuously via the inlet throttle element 22, the outlet throttle element 63, the control line 21, the container 49 and the first control quantity line 29 into the control quantity container 30 and from there via the total leakage line 32 into the low pressure region 31 Pressure holding valve 36 is closed and no control quantities 35 of metering valve 4 flow via second control quantity line 43.
Zum Beenden des Einspritzvorgangs schließt das Magnetventil 5 durch Abschalten des r Elektromagneten 27 und durch die Kraft der Druckfeder 28. Der Druck im zweiten Teilraum 24 des Zumessventils 4 steigt wieder an, wodurch der Stellkolben 8 in Schaltstellung a bewegt wird. Durch diese Schaltbewegung strömt eine Steuermenge 35 in Teilraum 14 des Zumessventils 4. Diese stoßartig bewegte Steuermenge 35 verursacht hydraulische Schwingungen in der Leitung 12, im Entlastungsraum 6, in der zweiten Steuermengenlei- tung 43 und im Zulaufbehälter 40. Über Zulaufdrossel 38 erfolgt eine Druckabsenkung der Steuermenge 35, über den Volumenspeicher 37 eine Dämpfung der hydraulischen Schwingungen. Das Druckhalteventil 36 öffnet, sobald der durch die Auslegung des Druckhalteventils 36 eingestellte Standdruck überschritten wird und folglich strömt die Steuermenge 35 über die Ablaufdrossel 39 in den Steuermengenbehälter 30 und von dort aus in den Nie- derdruckbereich 31. Der Druck in dem Steuermengenbehälter 30 durch die Steuermenge 35 wirkt über die erste Steuermengenleitung 29 auch in Öffnungsrichtung 50 auf die Magnetventilnadel 25. Die Zulauf- und die Ablaufdrossel 38, 39 und der Volumenspeicher 37 werden bei der vorliegenden Erfindung hinsichtlich ihres Durchmessers bzw. Volumens so dimensioniert, dass der Druck im Steuermengenbehälter 30 einen maximalen Druck, bei- spielsweise 5 bar, nicht übersclireitet. Insbesondere wird dadurch erreicht, dass der Druck im Federraum 47 des Magnetventils auf diesen maximalen Druck begrenzt bleibt, aus Gründen der Spulendichtheit des Elektromagneten 27. Ferner ist durch geeignete Wahl der Durchmesser der Zulaufdrossel (38) und der Ablaufdrossel (39) gewährleistet, dass Druckschwingungen in der zweiten Steuermengenleitung (43) keine Rückwirkung auf das Aktor- ventil, insbesondere auf die Bewegung der Aktorventilnadel, haben. Die Ausgleichsdrossel 48 verhindert, dass hydraulische Schwingungen oder Stöße in der ersten Steuermengenleitung 29 auf den Magnetanker 26 übertragen werden. Die in Figur 1 dargestellte bevorzugte Ausführungsform der vorliegenden Erfindung bietet außer dem Vorteil, dass sie ein unerwünschtes Öffnen des Magnetventils 5 verhindert, auch noch in vorteilhafter Weise die Möglichkeit, das Druckhalteventil 36 durch die Anordnung der Drosseln 38, 39 und des Volumenspeichers 37 sehr kleinzuhalten. Bei dem in Figur 1 schematisch dargestellten Hochdruckeinspritzsystem kann es sich um ein sogenanntes PCS (Pressure Controlled Common Rail-System) handeln, bei dem das Zumessventil 4 in den Injektor integriert ist. Es kann aber auch ein DCRS (Druckgesteuertes Common Rail- System) darstellen, bei dem das Zumessventil 4 ein vom Injektor isoliertes Modul ist.To terminate the injection event, the solenoid valve 5 closes by turning off the r electromagnet 27 and by the force of the compression spring 28. The pressure in the second compartment 24 of the metering valve 4 rises again, thereby to move the adjusting piston 8 in the switching position a. As a result of this switching movement, a control quantity 35 flows into subspace 14 of the metering valve 4. This control quantity 35, which is moved in abrupt fashion, causes hydraulic vibrations in the line 12, in the relief chamber 6, in the second control quantity line 43 and in the inlet tank 40 Control amount 35, via the volume memory 37 damping the hydraulic vibrations. The pressure holding valve 36 opens as soon as the stand pressure set by the design of the pressure holding valve 36 is exceeded and consequently the control quantity 35 flows via the outlet throttle 39 into the control quantity container 30 and from there into the low pressure region 31. The pressure in the control quantity container 30 through the The control quantity 35 also acts on the solenoid valve needle 25 in the opening direction 50 via the first control quantity line 29. In the present invention, the inlet and outlet throttles 38, 39 and the volume accumulator 37 are dimensioned with regard to their diameter or volume such that the pressure in the control quantity container 30 a maximum pressure, for example 5 bar, is not exceeded. In particular, this ensures that the pressure in the spring chamber 47 of the solenoid valve remains limited to this maximum pressure, for reasons of the coil tightness of the electromagnet 27. Furthermore, the diameter of the inlet throttle (38) and the outlet throttle (39) is suitably chosen to ensure that pressure vibrations have no effect on the actuator valve, in particular on the movement of the actuator valve needle, in the second control quantity line (43). The compensation throttle 48 prevents hydraulic vibrations or shocks in the first control quantity line 29 from being transmitted to the armature 26. The preferred embodiment of the present invention shown in FIG. 1 offers, in addition to the advantage that it prevents an undesired opening of the solenoid valve 5, also advantageously the possibility of keeping the pressure holding valve 36 very small by the arrangement of the throttles 38, 39 and the volume accumulator 37 , The high-pressure injection system shown schematically in FIG. 1 can be a so-called PCS (Pressure Controlled Common Rail System), in which the metering valve 4 is integrated in the injector. However, it can also be a DCRS (pressure-controlled common rail system) in which the metering valve 4 is a module isolated from the injector.
Figur 2 zeigt einen Ausschnitt aus einer Druckhalteeinrichtung gemäß der vorliegenden Erfindung.Figure 2 shows a section of a pressure maintaining device according to the present invention.
Es ist ein Druckhalteventilkörper 54 dargestellt, in dem entlang seiner Längsachse 55 die Kugel 42 und die Druckfeder 41 eines federbelasteten Kugelventils angeordnet sind. Im geschlossenen Zustand des Ventils wird die Kugel 42 gegen einen in dem Übergangsteil 56 enthaltenen Ventilkugelsitz 57 gedrückt. Zur Verbindung der Kugel 42 mit der Druckfeder 41 dient ein Kugelhalter 58. Der Volumenspeicher 37 ist nur ausschnittsweise dargestellt. Ein Dichtring 62 dichtet die Druclchalteeinrichtung im eingebauten Zustand ab. Die Steuermengen 35 des (nicht dargestellten) Zumessventils 4 gelangen über den Volumenspeicher 37 bei geöffnetem Kugelventil in den Federraum 59 zu der Ablaufdrossel 39. Die Ablaufdrossel 39 befindet sich in einer Vorspaimeinrichtung 60, die den Federraum 59 begrenzt und gleichzeitig die Druckfeder 41 vorgespannt hält. Nachdem die Steuermenge 35 des Zumessventils 4 die Ablaufdrossel 39 passiert hat, wird sie mit der Steuermenge 34 des (nicht dargestellten) Magnetventils 5 im Punkt 61 zusammengeführt und alle Steuermen- gen werden als Gesamtleckagemenge 44 in einen Niederdruckbereich geleitet.A pressure holding valve body 54 is shown, in which the ball 42 and the compression spring 41 of a spring-loaded ball valve are arranged along its longitudinal axis 55. In the closed state of the valve, the ball 42 is pressed against a valve ball seat 57 contained in the transition part 56. A ball holder 58 is used to connect the ball 42 to the compression spring 41. The volume storage 37 is only shown in part. A sealing ring 62 seals the pressure switch device when installed. The control quantities 35 of the metering valve 4 (not shown) reach the outlet throttle 39 via the volume accumulator 37 when the ball valve is open and the outlet throttle 39. The outlet throttle 39 is located in a prestressing device 60 which limits the spring chamber 59 and at the same time keeps the compression spring 41 preloaded. After the control quantity 35 of the metering valve 4 has passed the discharge throttle 39, it is brought together with the control quantity 34 of the (not shown) solenoid valve 5 at point 61 and all control quantities are passed as a total leakage quantity 44 into a low-pressure area.
Figur 3 zeigt eine Druclchalteeinrichtung gemäß der vorliegenden Erfindung.Figure 3 shows a pressure switch device according to the present invention.
Sie umfasst, wie schon bezüglich Figur 2 beschrieben, den Volumenspeicher 37, das Über- gangsteil 56, die Kugel 42, den Kugelhalter 58, die Druckfeder 41 in dem Federraum 59, den Dichtring 62 und die Ablaufdrossel 39. Ferner ist das Zumessventil 4 an dem Druckhalteventilkörper 54 angebracht (jedoch nur ausschnittsweise dargestellt). Über die Zulaufdrossel 38 gelangen die Steuermengen 35 des Zumessventils 4 in den Volumenspeicher 37. Hinter der Ablaufdrossel 39 werden diese Steuermengen 35 mit den Steuermengen 34 des (nicht dargestellten) Magnetventils 5 zusammengeführt zu einer Gesamtleckagemenge 44. BezugszeichenlisteAs already described with reference to FIG. 2, it comprises the volume accumulator 37, the transition part 56, the ball 42, the ball holder 58, the compression spring 41 in the spring chamber 59, the sealing ring 62 and the outlet throttle 39. Furthermore, the metering valve 4 is on the pressure maintaining valve body 54 attached (but only shown in part). The control quantities 35 of the metering valve 4 reach the volume accumulator 37 via the inlet throttle 38. Behind the outlet throttle 39, these control quantities 35 are combined with the control quantities 34 of the (not shown) solenoid valve 5 to form a total leakage quantity 44. LIST OF REFERENCE NUMBERS
Kraftstoffhochdruckspeicher Hochdruckpumpe Hochdruckleitung Zumessventil Magnetventil Entlastungsraum der Einspritzdüse Einspritzdüse Stellkolben des Zumessventils Sitzkante Ventilsitz Zumessventilkörper erste Leitung zwischen Zumessventil und Einspritzdüse zweite Leitung zwischen Zumessventil und Einspritzdüse Teilraum des Zumessventils ringförmiger Raum Kraftstoffvorratsraum Düsennadel Einspritzöffnungen Brennraum Druckfeder Steuerleitung Zulauf drosselelement erster Teilraum des Zumessventils zweiter Teilraum des Zumessventils Magnetventilnadel Magnetanker Elektromagnet Druckfeder erste Steuermengenleitung Steuermengenbehälter Niederdruckbereich Gesamtleckageleitung Druckhalteeinrichtung Steuermengen des Magnetventils Steuermengen des Zumessventils Druckhalteventil 1(High-pressure fuel accumulator high-pressure pump high-pressure line metering valve solenoid valve relief chamber of the injector injection nozzle adjusting piston of the metering valve seat edge valve seat metering valve body first line between metering valve and injector second line between metering valve and injector sub-chamber of the metering valve annular space solenoid valve metering valve of the sub-chamber of the solenoid valve metering line of the valve chamber pressure control element Electromagnet compression spring first control quantity line control quantity container low pressure area total leakage line pressure holding device control quantities of the solenoid valve control quantities of the metering valve pressure holding valve 1(
Volumenspeichervolume storage
Zulaufdrosselinlet throttle
Ablaufdrosseloutlet throttle
Zulaufbehälterfeed tank
Druckfedercompression spring
Kugel zweite SteuermengenleitungSphere second control quantity line
GesamtleckagemengeTotal amount of leakage
Zulauf des DruckhalteventilsInlet of the pressure control valve
Ablauf des DruckhalteventilsExpiration of the pressure control valve
Federraum des MagnetventilsSpring chamber of the solenoid valve
Ausgleichs drosselCompensating choke
Behältercontainer
Öffnungsrichtungopening direction
Schließrichtungclosing direction
Teilbereich des StellkolbensPart of the control piston
Teilbereich des ZumessventilkörpersPart of the metering valve body
DruckhalteventilkörperPressure holding valve body
Längsachselongitudinal axis
ÜbergangsteilTransitional part
VentilkugelsitzValve ball seat
Kugelhalterball retainer
Federraumspring chamber
VorspamieinrichtungVorspamieinrichtung
Zusammenfül rpunlctPacking rpunlct
Dichtringseal
AblaufdrosselelementOutlet throttle element
Federraum spring chamber

Claims

Patentansprüche . Claims.
1. Injektor zur Hochdruckeinspritzung von Kraftstoff bei selbstzündenden Brerrnkraftma- schinen mit a) einem Aktorventil zum Öffnen und Schließen des Injektors, b) einer Düsennadel (17), die im geschlossenen Zustand des Injektors mindestens eine Einspritzöffnung (18) verschließt, c) einem Zumessventil (4), das eine hydraulische Verbindung zwischen dem Aktorventil und einem Entlastungsraum (6) des Injektors herstellt, d) einer Druclchalteeinrichtung (33), die der Einhaltung eines für das Zumessventil1. Injector for high-pressure injection of fuel in self-igniting internal combustion engines with a) an actuator valve for opening and closing the injector, b) a nozzle needle (17) which closes at least one injection opening (18) when the injector is closed, c) a metering valve (4), which establishes a hydraulic connection between the actuator valve and a relief chamber (6) of the injector, d) a pressure switch device (33) which ensures compliance with one for the metering valve
(4) notwendigen Standdruckes dient und e) einer ersten Steuermengenleitung (29) für Steuermengen (34), die über das Aktorventil strömen und einer zweiten Steuermengenleitung (43) für Steuermengen (35), die über das Zumessventil (4) strömen, dadurch gekennzeichnet, dass die Druclchalteeinrichtung (33) die Steuermengen (35) des Zumessventils (4) dynamisch trennt von den Steuermengen (34) des Aktorventils und als hydraulischer Schwingungsdämpfer dient.(4) necessary stand pressure and e) a first control quantity line (29) for control quantities (34) flowing through the actuator valve and a second control quantity line (43) for control quantities (35) flowing through the metering valve (4), characterized that the pressure switch device (33) dynamically separates the control quantities (35) of the metering valve (4) from the control quantities (34) of the actuator valve and serves as a hydraulic vibration damper.
2. Injektor gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem Aktorventil um ein Magnetventil (5) mit einer Magnetventilnadel (25) oder um ein Piezo aktorventil handelt.2. Injector according to claim 1, characterized in that the actuator valve is a solenoid valve (5) with a solenoid valve needle (25) or a piezo actuator valve.
3. Injektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der hydraulische Schwingungsdämpfer Druckschwingungen in der zweiten Steuermengenleitung (43) aufgrund des Schaltens des Zumessventils (4) dämpft.3. Injector according to claim 1, characterized in that the hydraulic vibration damper dampens pressure vibrations in the second control quantity line (43) due to the switching of the metering valve (4).
4. Injektor gemäß Anspruch 1, dadurch gekennzeiclmet, dass die Steuermengen (35) des Zumessventils (4) und die Steuermengen (34) des Aktorventils hinter der Druckhalteeinrichtung (33) gemeinsam über eine Gesamtleckageleitung (44) in einen Nieder- druckbereich (31) geleitet werden.4. Injector according to claim 1, characterized in that the control quantities (35) of the metering valve (4) and the control quantities (34) of the actuator valve behind the pressure maintaining device (33) together via a total leakage line (44) into a low pressure area (31). be directed.
5. Injektor gemäß Anspruch 1, dadurch gekennzeichnet, dass die Drucld alteeinrichtung (33) ein Druckhalteventil (36) enthält.5. Injector according to claim 1, characterized in that the printing device (33) contains a pressure maintaining valve (36).
6. Injektor gemäß Anspruch 5, dadurch gekennzeichnet, dass das Druckhalteventil (36) ein federbelastetes Ventil ist. 6. Injector according to claim 5, characterized in that the pressure holding valve (36) is a spring-loaded valve.
7. Injektor gemäß Ansprach 5, dadurch gekennzeichnet, dass die Drucklialteeinrichtung (33) eine Zulaufdrossel (38) enthält, die zwischen der zweiten Steuermengenleitung (43) und dem Druckhalteventil (36) angeordnet ist.7. Injector according spoke 5, characterized in that the Drucklialteeinrichtung (33) contains an inlet throttle (38) which is arranged between the second control amount line (43) and the pressure maintaining valve (36).
8. Injektor gemäß Anspruch 5, dadurch gekennzeichnet, dass die Druckhalteeinrichtung (33) eine Ablaufdrossel (39) enthält, die am Ablauf (46) des Druclchalteventils (36) angeordnet ist.8. Injector according to claim 5, characterized in that the pressure maintaining device (33) contains an outlet throttle (39) which is arranged on the outlet (46) of the pressure switch valve (36).
9. Injektor gemäß Anspruch 5, dadurch gekennzeichnet, dass die Druckhalteeimichtung (33) einen Volumenspeicher (37) enthält, der zwischen der Zulaufdrossel (38) und dem Zulauf (45) des Druckhalteventils (36) angeordnet ist.9. Injector according to claim 5, characterized in that the pressure holding device (33) contains a volume accumulator (37) which is arranged between the inlet throttle (38) and the inlet (45) of the pressure holding valve (36).
10. Injektor gemäß Ansprüchen 7 und 8, dadurch gekennzeichnet, dass die Zulaufdrossel (38) und die Ablaufdrossel (39) Durchmesser aufweisen, die gewährleisten, dass Druckschwingungen in der zweiten Steuermengenleitung (43) keine Rückwirkung auf das Aktorventil haben. 10. Injector according to claims 7 and 8, characterized in that the inlet throttle (38) and the outlet throttle (39) have diameters which ensure that pressure fluctuations in the second control quantity line (43) have no effect on the actuator valve.
EP02779159A 2001-11-23 2002-10-15 Injector for high pressure fuel injection Expired - Lifetime EP1466087B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10157411 2001-11-23
DE10157411A DE10157411A1 (en) 2001-11-23 2001-11-23 High pressure fuel injector
PCT/DE2002/003882 WO2003046369A1 (en) 2001-11-23 2002-10-15 Injector for high pressure fuel injection

Publications (2)

Publication Number Publication Date
EP1466087A1 true EP1466087A1 (en) 2004-10-13
EP1466087B1 EP1466087B1 (en) 2007-02-07

Family

ID=7706656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02779159A Expired - Lifetime EP1466087B1 (en) 2001-11-23 2002-10-15 Injector for high pressure fuel injection

Country Status (7)

Country Link
US (1) US6994272B2 (en)
EP (1) EP1466087B1 (en)
JP (1) JP2005510658A (en)
KR (1) KR20040062871A (en)
DE (2) DE10157411A1 (en)
ES (1) ES2281549T3 (en)
WO (1) WO2003046369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356832A (en) * 2017-11-15 2020-06-30 罗伯特·博世有限公司 Injection device for a motor vehicle, in particular a vibration damping arrangement for a fuel injection system, and injection device having such a vibration damping arrangement

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328000A1 (en) * 2003-06-21 2005-01-13 Robert Bosch Gmbh Fuel injection system with reduced pressure oscillations in the return rail
DE10333695A1 (en) * 2003-07-24 2005-03-03 Robert Bosch Gmbh Fuel injector
DE10333696A1 (en) * 2003-07-24 2005-02-24 Robert Bosch Gmbh Fuel injector
DE10333697A1 (en) * 2003-07-24 2005-02-24 Robert Bosch Gmbh Fuel injector
JP3997983B2 (en) * 2003-11-10 2007-10-24 株式会社デンソー Piezoelectric element driven three-way switching valve and fuel injection valve using the three-way switching valve
DE102004015361A1 (en) 2004-03-30 2005-10-20 Bosch Gmbh Robert Valve for injecting fuel
JP4075894B2 (en) * 2004-09-24 2008-04-16 トヨタ自動車株式会社 Fuel injection device
JP4305394B2 (en) * 2005-01-25 2009-07-29 株式会社デンソー Fuel injection device for internal combustion engine
US7111614B1 (en) * 2005-08-29 2006-09-26 Caterpillar Inc. Single fluid injector with rate shaping capability
WO2007114750A1 (en) * 2006-03-30 2007-10-11 Volvo Lastvagnar Ab Fuel injection system
DE102006020634B4 (en) * 2006-05-04 2008-12-04 Man Diesel Se Injection injector for internal combustion engines
DE102006026877A1 (en) * 2006-06-09 2007-12-13 Robert Bosch Gmbh Fuel injection device for an internal combustion engine
DE112008003703T5 (en) * 2008-03-04 2011-01-13 Volvo Lastvagnar Ab Fuel injection system
US11220980B2 (en) * 2019-05-16 2022-01-11 Caterpillar Inc. Fuel system having isolation valves between fuel injectors and common drain conduit
CN114458498B (en) * 2022-02-24 2022-10-28 哈尔滨工程大学 High-pressure common rail oil injector for realizing high-stability injection based on throttling resistance-capacitance effect

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650865A1 (en) 1996-12-07 1998-06-10 Bosch Gmbh Robert magnetic valve
DE19701879A1 (en) * 1997-01-21 1998-07-23 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE19742073A1 (en) * 1997-09-24 1999-03-25 Bosch Gmbh Robert Fuel injection arrangement for internal combustion engines
DE19752496A1 (en) * 1997-11-27 1999-06-02 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
GB9822653D0 (en) * 1998-10-17 1998-12-09 Lucas Ind Plc Fuel system
DE19950779A1 (en) * 1999-10-21 2001-04-26 Bosch Gmbh Robert High pressure fuel injector has control valve element connecting supply line to high pressure line or relief line opening into a reservoir tank, damping elements on element ends opposite stops
DE10001099A1 (en) 2000-01-13 2001-08-02 Bosch Gmbh Robert Control valve for injector of fuel injection system for internal combustion engine; has regulator connected to pressure piston to separate control chamber from control valve and increase pressure
DE10032924A1 (en) * 2000-07-06 2002-01-24 Bosch Gmbh Robert Fuel injection device for internal combustion engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03046369A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356832A (en) * 2017-11-15 2020-06-30 罗伯特·博世有限公司 Injection device for a motor vehicle, in particular a vibration damping arrangement for a fuel injection system, and injection device having such a vibration damping arrangement
CN111356832B (en) * 2017-11-15 2022-04-26 罗伯特·博世有限公司 Vibration damping assembly, and spraying device with such a vibration damping assembly

Also Published As

Publication number Publication date
KR20040062871A (en) 2004-07-09
US20040050367A1 (en) 2004-03-18
WO2003046369A1 (en) 2003-06-05
US6994272B2 (en) 2006-02-07
DE50209448D1 (en) 2007-03-22
ES2281549T3 (en) 2007-10-01
DE10157411A1 (en) 2003-06-26
EP1466087B1 (en) 2007-02-07
JP2005510658A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
EP0828936B1 (en) Injection valve
EP1466087B1 (en) Injector for high pressure fuel injection
EP0925440A1 (en) Fuel injector
EP1135594A1 (en) Valve for controlling liquids
EP2310662B1 (en) Fuel injector
DE102009039647A1 (en) Fuel injector, particularly common rail fuel injector, for injecting fuel into combustion chamber of internal combustion engine, has servo valve that is controlled by piezoelectric actuator
EP1097303A2 (en) Fuel injection device
DE10139871B4 (en) Valve for controlling fluids
WO2009098112A1 (en) Compact injection device with reduced tendency to form vapor bubbles
EP1144842B1 (en) Injector for a fuel injection system for internal combustion engines comprising an injector needle that projects into the valve control space
WO2004040117A1 (en) Fuel injection system for internal combustion engines
EP1311755A1 (en) Fuel injection device
DE102007005382A1 (en) Injector i.e. common rail injector, for injecting fuel e.g. diesel, into combustion chamber of internal-combustion engine, has control valve for varying control pressure, and fuel tank connected with nozzle chamber via throttle channel
DE102005054927A1 (en) Fuel injector for common rail diesel injection for diesel engine, has nozzle needle which has steps in its shaft and damping chamber is formed in area of steps between shaft of nozzle needle and housing wall
DE102011007106A1 (en) Fuel injector
WO2008061842A1 (en) Fuel injector
DE10055269A1 (en) Pressure controlled injector with pressure translation
DE102007011788A1 (en) Fuel injector for injecting fuel into combustion chamber of diesel engine, has pressure accumulator volume subjecting nozzle needle or control rod with closing pressure, which is larger than pressure dropping when needle is opened
DE10032924A1 (en) Fuel injection device for internal combustion engines
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
WO2023079163A1 (en) Fuel injector
DE102011082668A1 (en) Fuel injection device for internal combustion engine, determines amount of fuel sprayed by fuel injector into the valve which is integrated with high-pressure accumulator
DE10002271A1 (en) Valve for controlling liquids
DE102004048322A1 (en) fuel injector
WO2001027462A1 (en) Injector for a common-rail fuel injection system for internal combustion engines with partial compensation of the forces acting on the nozzle needle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20050210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50209448

Country of ref document: DE

Date of ref document: 20070322

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070503

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2281549

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081025

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081021

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081024

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091015

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151215

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209448

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503