EP1466037A1 - Revetement de protection haute temperature - Google Patents

Revetement de protection haute temperature

Info

Publication number
EP1466037A1
EP1466037A1 EP03700010A EP03700010A EP1466037A1 EP 1466037 A1 EP1466037 A1 EP 1466037A1 EP 03700010 A EP03700010 A EP 03700010A EP 03700010 A EP03700010 A EP 03700010A EP 1466037 A1 EP1466037 A1 EP 1466037A1
Authority
EP
European Patent Office
Prior art keywords
protective layer
temperature
temperature protective
layer according
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03700010A
Other languages
German (de)
English (en)
Other versions
EP1466037B1 (fr
Inventor
Dietrich Eckardt
Klaus Erich Schneider
Christoph Toennes
Hans-Peter Bossmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1466037A1 publication Critical patent/EP1466037A1/fr
Application granted granted Critical
Publication of EP1466037B1 publication Critical patent/EP1466037B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the invention relates to a high temperature protective layer according to the independent claim.
  • Such high-temperature protective layers are used above all where the base material of components made of heat-resistant steels and / or alloys that are used at temperatures above 600 S C is to be protected.
  • high-temperature protective layers are intended to slow down or completely prevent the effects of high-temperature corrosion, especially of sulfur, oil ash, oxygen, alkaline earths and vanadium.
  • Such high-temperature protective layers are designed so that they can be applied directly to the base material of the component to be protected.
  • High-temperature protective layers are of particular importance for components of gas turbines. They are mainly applied to rotor blades and guide vanes as well as to heat accumulation segments in gas turbines.
  • An austenitic material based on nickel, cobalt or iron is preferably used to manufacture these components.
  • nickel superalloys in particular are used as the base material.
  • the layers differ in the concentration of the "family elements" nickel, cobalt, chromium, aluminum and yttrium and in the addition of other elements.
  • the composition of the layer decisively determines the behavior at high temperature in an oxidizing or corrosive atmosphere, with temperature changes and with mechanical stress.
  • the composition of the layer determines the material and manufacturing costs.
  • Many known layers only show excellent properties in some aspects.Although widely used worldwide, the addition of cobalt has, according to our own investigations, negatively influenced both the corrosion resistance and the costs.
  • the invention is based on the object of creating a high-temperature protective layer which is inexpensive, oxidation-resistant, corrosion-resistant and resistant to temperature changes.
  • composition of this alloy according to the invention has (% by weight) 23 to 27% chromium, 4 to 7% aluminum, 0.1 to 3% silicon, 0.1 to 3% tantalum, 0.2 to 2% yttrium, 0.001 to 0.01% boron, 0.001 to 0.01% magnesium and 0.001 to 0.01% calcium. All weights refer to the total weight of the respective alloy. The rest of the alloy consists of nickel and unavoidable impurities. The Al content is preferably in a range from over 5 to 6% by weight.
  • the protective layer according to the invention is a NiCrAlY alloy. It shows a significant improvement in the resistance to oxidation and corrosion compared to the already known high-temperature protective layers.
  • the high-temperature protective layer according to the invention it can be ascertained that at high temperatures (depending on the version above 800 ° C.) it has aluminum-containing ⁇ and ⁇ ' phases with a volume fraction of at least 50%, which enables the formation of an aluminum oxide-containing protective layer, at low temperatures and at medium temperatures (depending on the version below 900 ° C.) has chromium-containing ⁇ -Cr phases (referred to as BCC in FIG. 1) of more than 5%, which enables the formation of a chromium oxide-containing protective layer.
  • BCC chromium-containing ⁇ -Cr phases
  • the adhesion of the aluminum oxide-containing cover layer at high temperature improves, which significantly increases the protection of the high-temperature protective layer and the component located underneath.
  • magnesium Calcium and calcium are primarily bound to the impurities that are naturally present in the production process, thereby increasing the corrosion resistance for temperatures below 850-950 ° C.
  • the quantity ratio of chromium to aluminum is limited to 3.6 to 6.5 in order to prevent the formation of brittle ß phases.
  • the quantity ratio of nickel to chromium is limited to 2.3 to 3.0 in order to prevent brittle ⁇ phases, which improves the resistance to temperature changes.
  • the firm and permanent adhesion of the protective layer and its cover layer with frequent changes in temperature is achieved by the percentage of yttrium specifically determined for the alloy.
  • composition chosen here shows no or only small proportions by volume of ⁇ -phase or ß-NiAI-phase (FIG. 1), so that significant advantages can be expected under thermal cycling.
  • the comparative alloy from FIG. 2 shows a similar composition for some elements, but due to the differences in other elements, a very different microstructure is shown, which, based on our experience, will not have sufficient resistance to thermal shock for turbines and also due to the beginning melting above 900 ° C cannot be used.
  • the production-related, inherent contamination of sulfur which can typically reach a concentration of less than 10 ppm, but in some cases up to 50ppm, leads to reduced resistance to oxidation and corrosion.
  • the trace elements Mg and Ca which absorb sulfur, are added during the production of the coating.
  • the alloy is applied directly to the base material of the component or to an intermediate layer consisting of a third composition.
  • the layer thicknesses vary between 0.03 mm and 1.5 mm.
  • Fig. 1 shows the phase balance (molar fraction ⁇ [%] vs. temperature [ 9 C]) according to the composition given here
  • Fig. 2 shows the phase balance (molar fraction ⁇ [%] vs. temperature [ Q C]) according to that in the US patent -A-4,973,445 specified composition.
  • the invention is explained in more detail using an exemplary embodiment which describes the production of a coated gas turbine component or another component of a thermal turbomachine.
  • the gas turbine component to be coated is made of an austenitic material, in particular a nickel superalloy. Before coating, the component is first chemically cleaned and then roughened using a blasting process. The component is coated under vacuum, under protective gas or in air by means of thermal spray processes (LPPS, VPS, APS), high-speed spraying (HVOF), electrochemical processes, physical / chemical evaporation (PVD, CVD) or another known from the prior art coating process.
  • LPPS thermal spray processes
  • VPS high-speed spraying
  • PVD physical / chemical evaporation
  • CVD chemical evaporation
  • a NiCrAlY alloy is used for the coating, which according to the invention (% by weight) contains 23 to 27% by weight chromium, 4 to 7% by weight aluminum, 0.1 to 3% by weight silicon, 0.1 to 3% by weight. % Tantalum, 0.2 to 2% by weight yttrium, 0.001 to 0.01% by weight boron, 0.001 to 0.01% by weight magnesium and 0.001 to 0.01% by weight calcium.
  • the rest of the alloy consists of nickel and unavoidable impurities.
  • the Al content is preferably in a range from over 5 to 6% by weight. All weights refer to the total weight of the alloy used.
  • the alloy according to the invention has a significant improvement in the oxidation and corrosion resistance compared to the already known high-temperature protective layers.
  • the high-temperature protective layer according to the invention it can be established that it is at high temperatures (depending on the design above 800 ° C) has aluminum-containing ⁇ and ⁇ ' phases with a volume fraction of at least 50%, which enables the formation of an aluminum oxide-containing protective layer, at low and at medium temperatures (depending on the version below 900 ° C) chromium-containing ⁇ -Cr phases of more than 5%, which enables the formation of a protective layer containing chromium oxide.
  • the composition selected here shows no or only small proportions by volume of ⁇ -phase or ⁇ -NiAI phase or boride phases (referred to in FIG. 1 as M2B_ORTH), so that there are clear advantages under thermal cycling are to be expected.
  • the comparative alloy (Fig. 2) shows a similar composition for some elements, but due to the differences in other elements, a very different microstructure is shown which, based on our experience, will not have sufficient resistance to temperature changes for turbines and also due to the beginning melting above 900 ° C cannot be used.
  • silicon and boron are added to the base material that forms the high temperature protective layer. This significantly increases the protection of the high-temperature protective layer and the component located underneath.
  • the production-related, inherent contamination of sulfur which can typically reach a concentration of less than 10 ppm, but in some cases also 50 ppm, leads to reduced oxidation and corrosion resistance.
  • the Spu 'renetti Mg and Ca added in the preparation of the coating to absorb the sulfur and thereby increases in temperatures below 850 to 950 ° C the corrosion resistance.
  • the quantity ratio of chromium to aluminum is limited to 3.6 to 6.5 in order to prevent the formation of brittle ß phases.
  • the quantity ratio of nickel to chromium is limited to 2.3 to 3.0 to prevent brittle ⁇ phases, which improves the resistance to temperature changes.
  • the firm and permanent adhesion of the protective layer and its cover layer with frequent changes in temperature is achieved by the percentage of yttrium specifically determined for the alloy.
  • the material forming the alloy is in powder form for the thermal spraying processes and preferably has a grain size of 5 to 90 ⁇ m.
  • the alloy is produced as a target or as a suspension.
  • the alloy is applied directly to the base material of the component or to an intermediate layer consisting of a third composition. Depending on the coating process, the layer thicknesses vary between 0.03 mm and 1.5 mm.
  • the component is subjected to a heat treatment. This takes place at a temperature of 1000 to 1200 ° C. for about 10 minutes to 24 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Resistance Heating (AREA)
  • Organic Insulating Materials (AREA)
  • Magnetic Heads (AREA)
  • Physical Vapour Deposition (AREA)
  • Spark Plugs (AREA)
EP03700010A 2002-01-18 2003-01-16 Revetement de protection haute temperature Expired - Lifetime EP1466037B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10202012 2002-01-18
DE10202012 2002-01-18
PCT/CH2003/000023 WO2003060194A1 (fr) 2002-01-18 2003-01-16 Revetement de protection haute temperature

Publications (2)

Publication Number Publication Date
EP1466037A1 true EP1466037A1 (fr) 2004-10-13
EP1466037B1 EP1466037B1 (fr) 2005-07-13

Family

ID=7712588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03700010A Expired - Lifetime EP1466037B1 (fr) 2002-01-18 2003-01-16 Revetement de protection haute temperature

Country Status (12)

Country Link
US (1) US7052782B2 (fr)
EP (1) EP1466037B1 (fr)
JP (1) JP4217626B2 (fr)
CN (1) CN100350075C (fr)
AT (1) ATE299536T1 (fr)
AU (1) AU2003200835A1 (fr)
BR (1) BR0306989B1 (fr)
CA (1) CA2473565C (fr)
DE (1) DE50300758D1 (fr)
ES (1) ES2244914T3 (fr)
RU (1) RU2301284C2 (fr)
WO (1) WO2003060194A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50300758D1 (de) 2002-01-18 2005-08-18 Alstom Technology Ltd Baden Hochtemperatur-schutzschicht
US7288328B2 (en) * 2004-10-29 2007-10-30 General Electric Company Superalloy article having a gamma-prime nickel aluminide coating
US7364801B1 (en) * 2006-12-06 2008-04-29 General Electric Company Turbine component protected with environmental coating
IL191822A0 (en) * 2007-06-25 2009-02-11 Sulzer Metaplas Gmbh Layer system for the formation of a surface layer on a surface of a substrate and also are vaporization source for the manufacture of a layer system
EP2022870B1 (fr) 2007-06-25 2014-07-23 Sulzer Metaplas GmbH Système de couche destiné à la formation d'une couche superficielle à la surface d'un substrat, tout comme source d'évaporation destinée à la fabrication d'un système de couche
WO2009109199A1 (fr) * 2008-03-04 2009-09-11 Siemens Aktiengesellschaft Alliage, couche protectrice contre la corrosion à haute température et système stratifié
DE102010021691A1 (de) * 2010-05-27 2011-12-01 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Schichtverbund mit einer eindimensionalen Kompositstruktur
EP2474413A1 (fr) * 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Alliage, couche de protection et composant
US9359669B2 (en) * 2011-12-09 2016-06-07 United Technologies Corporation Method for improved cathodic arc coating process
EP3118345B1 (fr) 2015-07-17 2018-04-11 Ansaldo Energia IP UK Limited Revêtement protecteur à haute température
CN105419409A (zh) * 2015-11-23 2016-03-23 沈阳黎明航空发动机(集团)有限责任公司 一种抗高温燃气冲刷涂料及其制备方法和应用
CN108165902A (zh) * 2017-12-27 2018-06-15 宁波市江北吉铭汽车配件有限公司 一种贮油桶
KR102711268B1 (ko) * 2019-03-07 2024-09-26 오를리콘 메트코 (유에스) 아이엔씨. 열 사이클 피로 내성 및 황화부식 저항성이 향상된 tbc용 고도의 접합 코트 재료
CN111485205A (zh) * 2020-05-25 2020-08-04 中国科学院宁波材料技术与工程研究所 一种NiMAlY/Al2O3复合涂层及其制备方法与应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620693A (en) 1969-04-22 1971-11-16 Gte Electric Inc Ductile, high-temperature oxidation-resistant composites and processes for producing same
US3754903A (en) 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US4013424A (en) 1971-06-19 1977-03-22 Rolls-Royce (1971) Limited Composite articles
US3837894A (en) 1972-05-22 1974-09-24 Union Carbide Corp Process for producing a corrosion resistant duplex coating
US4022587A (en) 1974-04-24 1977-05-10 Cabot Corporation Protective nickel base alloy coatings
US4088479A (en) 1976-01-16 1978-05-09 Westinghouse Electric Corp. Hot corrosion resistant fabricable alloy
US4095003A (en) 1976-09-09 1978-06-13 Union Carbide Corporation Duplex coating for thermal and corrosion protection
JPS5385736A (en) * 1977-01-06 1978-07-28 Mitsubishi Heavy Ind Ltd Surface treatment method of metallic body
US4477538A (en) 1981-02-17 1984-10-16 The United States Of America As Represented By The Secretary Of The Navy Platinum underlayers and overlayers for coatings
DE3246507C2 (de) 1982-12-16 1987-04-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Hochtemperaturschutzschicht
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
DE3740478C1 (de) 1987-11-28 1989-01-19 Asea Brown Boveri Hochtemperatur-Schutzschicht
IT1294098B1 (it) * 1997-07-10 1999-03-22 Flametal S P A Lega per rivestimenti o riporti resistenti alla corrosione.
EP1001055B1 (fr) * 1998-11-10 2004-02-25 ALSTOM Technology Ltd Composant d'une turbine à gaz
KR100372482B1 (ko) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 니켈 베이스 내열합금
JP3952861B2 (ja) * 2001-06-19 2007-08-01 住友金属工業株式会社 耐メタルダスティング性を有する金属材料
DE50300758D1 (de) 2002-01-18 2005-08-18 Alstom Technology Ltd Baden Hochtemperatur-schutzschicht

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03060194A1 *

Also Published As

Publication number Publication date
WO2003060194A1 (fr) 2003-07-24
BR0306989B1 (pt) 2012-03-06
CA2473565A1 (fr) 2003-07-24
ATE299536T1 (de) 2005-07-15
US7052782B2 (en) 2006-05-30
BR0306989A (pt) 2004-12-14
JP4217626B2 (ja) 2009-02-04
ES2244914T3 (es) 2005-12-16
DE50300758D1 (de) 2005-08-18
CA2473565C (fr) 2010-12-07
EP1466037B1 (fr) 2005-07-13
RU2004125154A (ru) 2005-07-20
RU2301284C2 (ru) 2007-06-20
CN1617951A (zh) 2005-05-18
US20050042474A1 (en) 2005-02-24
CN100350075C (zh) 2007-11-21
JP2005514525A (ja) 2005-05-19
AU2003200835A1 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
DE60305329T2 (de) Hochoxidationsbeständige komponente
DE68911363T2 (de) Mit Keramik beschichteter hitzebeständiger Legierungsbestandteil.
DE69732046T2 (de) Schutzbeschichtung für hochtemperatur
DE2657288C2 (de) Überzogener Superlegierungsgegenstand und seine Verwendung
US5154885A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium
DE69606708T2 (de) Bauteil aus superlegierung mit einem schutzschichtsystem
US5273712A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium
DE69401260T2 (de) Beschichtungszusammensetzung mit gutem Korrosions- und Oxydationsschutz
EP1082216B1 (fr) Produit pourvu d'une couche de protection anticorrosion, et procede de realisation d'une couche de protection anticorrosion
EP1673490B1 (fr) Composant avec une couche de protection destinee a proteger le composant contre la corrosion et l'oxydation a des temperatures elevees
EP1466037B1 (fr) Revetement de protection haute temperature
EP1902160B1 (fr) Couche calorifuge ceramique
US9873936B2 (en) Superalloy component and slurry composition
US5268238A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof
DE112008003460T5 (de) Überzogene Superlegierungs-Gegenstände
DE102004034410A1 (de) Schutzschicht zum Aufbringen auf ein Substrat und Verfahren zur Herstellung einer Schutzschicht
EP0241807B1 (fr) Revêtement résistant à haute température
DE102007056315A1 (de) Beschichtungssysteme mit Schichten auf Rhodiumaluminid-Grundlage
DE60209661T2 (de) Hafnium enthaltende Nickelaluminid-Beschichtung und daraus hergestellte Beschichtungssysteme
WO2008110607A1 (fr) Composant de turbine avec couche d'isolation thermique
WO1999023270A1 (fr) Produit pourvu d'un systeme stratifie pour la protection contre un gaz chaud agressif
DE112008003454T5 (de) Wärmesperren-Überzugssysteme
WO2007051755A1 (fr) Alliage, couche de protection pour la protection d’un element contre la corrosion et/ou l’oxydation a haute temperature et element
DE3246507C2 (de) Hochtemperaturschutzschicht
EP2537959B1 (fr) Revêtement multicouches anti-usure et procédé de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50300758

Country of ref document: DE

Date of ref document: 20050818

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALSTOM TECHNOLOGY LTD

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051013

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051013

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051013

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2244914

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060418

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50300758

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300758

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300758

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

Effective date: 20161021

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH; CH

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: ALSTOM TECHNOLOGY LTD

Effective date: 20161006

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ANSALDO ENERGIA IP UK LIMITED; GB

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170119

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170119

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20170123

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50300758

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300758

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ANSALDO ENERGIA IP UK LIMITED

Effective date: 20170927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Effective date: 20171221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180226

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180119

Year of fee payment: 16

Ref country code: IT

Payment date: 20180129

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180719 AND 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211215

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50300758

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230115