EP1464078A1 - Method and device for anisotropic etching of high aspect ratio - Google Patents

Method and device for anisotropic etching of high aspect ratio

Info

Publication number
EP1464078A1
EP1464078A1 EP02806334A EP02806334A EP1464078A1 EP 1464078 A1 EP1464078 A1 EP 1464078A1 EP 02806334 A EP02806334 A EP 02806334A EP 02806334 A EP02806334 A EP 02806334A EP 1464078 A1 EP1464078 A1 EP 1464078A1
Authority
EP
European Patent Office
Prior art keywords
substrate
etching
plasma
gas
depassivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02806334A
Other languages
German (de)
French (fr)
Inventor
Michel Puech
Emile;DELFT Institute of M&S(DIMES) VAN DER DRIFT
Tony; DELFT Institute of M&S ZILSTRA (DIMES)
Michiel; DELFT Institute of M&S BLAUW (DIMES)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CollabRx Inc
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1464078A1 publication Critical patent/EP1464078A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00619Forming high aspect ratio structures having deep steep walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • H01L21/30655Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3085Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0112Bosch process

Definitions

  • the present invention relates to the methods and devices used to produce microreliefs on the surface of substrates, in particular silicon substrates.
  • the invention relates more specifically to the methods and devices making it possible to produce such reliefs by anisotropic chemical attack on the plasma, for the production of silicon-based components, for example semiconductor components for electronics, or parts for micromechanical components.
  • Another example is the wish to make holes of the order of 10 ⁇ m in diameter over the entire thickness of a silicon wafer to make the contact points: these holes, once metallized, would make it possible to make the electrical connections. outwards to replace the usual gold threads. It would thus be possible to make very reproducible connections, but above all much shorter, reducing the parasitic inductances and thus being of great interest for high frequency applications.
  • attack step the etching gas plasma such. that the sulfur hexafluoride SF S creates cavities in the substrate areas not protected by the mask.
  • the plasma of passivation gas such as a fluorocarbon gas, for example C 4 F 8 , deposits a protective polymer film on the wall of the cavity.
  • passivation gas such as a fluorocarbon gas, for example C 4 F 8 .
  • the attack and passivation stages has a very short duration, of a few seconds, and the passivation avoids, during the subsequent attack stage, that the. Etching gas plasma attacks the side wall — of — the cavity.
  • the attack is done selectively in the bottom of the cavity, after the etching gas plasma has removed the protective polymer film in the bottom of the cavity.
  • FIG. 1 is a photograph of a section of silicon substrate etched by this known technique: in a substrate 2 whose surface 2a is covered with a mask 2c, there is attempted to make a deep cavity 2b; it was not possible to reach a depth of more than fifty ⁇ m, the walls of the cavity 2b meeting at a bottom 2g of zero section preventing any additional etching.
  • FIG. 1 is a photograph of a section of silicon substrate etched by this known technique: in a substrate 2 whose surface 2a is covered with a mask 2c, there is attempted to make a deep cavity 2b; it was not possible to reach a depth of more than fifty ⁇ m, the walls of the cavity 2b meeting at a bottom 2g of zero section preventing any additional etching.
  • a first solution was to increase the energy of the ions during the etching step, by increasing the bias voltage of the substrate. By doing this, the number of ions lost on the walls of the trench is reduced and more ions can be used to spray the polymer layer in the bottom of the trench. It was thus possible to slightly increase the aspect factor, going from a factor of 20 to a factor of only 23. On the other hand, this solution has the major drawback of increasing the attack speed of the mask itself which is made of silica or of photosensitive resin, and the etching selectivity is thus reduced.
  • a second solution also mentioned in document JP 63 043321 A is to increase the flow of ions arriving on the surface of the substrate, hoping thus to have enough ions to spray the polymer film in the bottom of the cavities.
  • the substrate was placed as close as possible to the plasma source, and it was thus also possible to increase the aspect factor up to approximately 27. But we then degraded the etching uniformity, that is ie the etching depth as a function of the zones considered on the substrate.
  • a third solution which has been devised is to decrease the working pressure, in order to thus increase the mean free path of the particles, thus reducing the collisions between particles and increasing the directivity of the ions.
  • This solution does not make it possible to increase the aspect factor appreciably, and further has the disadvantage of considerably reducing the speed of etching of the silicon, which is contrary to the desired objective.
  • Curve A illustrates the usual method of etching alternately attack steps using a fluorinated gas plasma and steps of plasma passivation of fluorocarbon gas according to document US 5 501 893.
  • Curve B illustrates the result obtained by increasing the bias voltage of the substrate, that is to say by increasing the bombardment energy of the plasma ions.
  • Curve C illustrates the result obtained by bringing the substrate as close as possible to the plasma source.
  • curve D illustrates the result obtained by reducing the atmospheric pressure in the etching chamber by a factor of two.
  • the curve illustrates the progressive variation of the etching speed, or digging speed of the cavities, as a function of the depth reached of the cavity. It can be seen that for each curve the etching speed gradually decreases as a function of the depth of the cavity. For each curve, a maximum depth is reached, and this maximum determines the maximum aspect factor that can be achieved by the process.
  • Curve A shows a maximum aspect factor of approximately 21.
  • Curve B shows a maximum aspect factor of approximately 23.
  • Curve C shows a maximum aspect factor of approximately 29.
  • Curve D shows a maximum aspect factor of approximately 23.
  • 144974 A consists in carrying out the etching step by mixing oxygen with the etching gas (SF 6 ), to oxidize the sulfur and thus avoid contaminating the pumps or process chambers with sulfur.
  • SF 6 etching gas
  • the document WO 00 05749 A teaches to carry out the etching step. or the passivation step by a chemical process in the gas phase in the absence of plasma.
  • the depassivation step is carried out by plasma of a precursor gas, argon, halo or hydrocarbon, passivation gas, etching gas, or by irradiation.
  • Such a process is difficult to implement and not very rapid, because of the incompatibility between the chemical etching or passivation steps outside plasma and the steps using a plasma, which are carried out at different pressures.
  • the aim of the present invention is to achieve an industrial etching of silicon having a practically perfect " anisotropy " , without attack by undercut or progressive narrowing of the cavity, to markedly increased depths making it possible to reach aspect factors greater than 45.
  • the invention also aims to produce such engravings industrially with speeds at least as high, if not higher, than the engraving speeds by known methods in alternating stages of attack by fluorinated gas plasma. and plasma passivation of fluorocarbon gas.
  • the invention provides an anisotropic etching process for silicon, in which a silicon substrate partially protected by a mask is subjected to an alternating succession of etching gas plasma etching steps producing cavities in the substrate areas not protected by the e mask and plasma passivation steps of passivation gas ensuring a deposit of protective polymer on the walls of the cavities resulting from the etching steps; the method of the invention further comprises impulse steps of selective depassivation by which the deposition of protective polymer is subjected to the action of a plasma of cleaning gas more effective than the etching gas and which removes the protective polymer in the bottom area of the cavities. Thanks to a more effective cleaning of the protective film in the bottom area of the cavities, the disadvantage of the gradual approximation of the walls of the cavity in the bottom of the cavity is eliminated, making it possible to achieve significantly more aspect factors.
  • the method comprises an impulse step of selective depassivation after each passivation step.
  • each impulse step of selective depassivation is separated from the passivation step which precedes it and the attack step which follows it.
  • the etching gas can advantageously be a fluorinated gas such as SF 6 , CF 4 or NF 3 .
  • SF 6 fluorinated gas
  • CF 4 fluorinated gas
  • NF 3 NF 3
  • the passivation gas can advantageously be a fluorocarbon gas, such as CHF 3 , C 2 F 6 , C 2 F 4 , C 4 F 8 , or mixtures thereof.
  • the cleaning gas can advantageously contain oxygen. It is thus possible to use as cleaning gas at least one of the gases 0 2 , S0 2 , CO, C0 2 , NO, N0 2 , 20 N 2 0, or their mixtures.
  • the invention provides an anisotropic device for etching a silicon substrate, comprising:
  • gas injection means for selectively injecting etching gases, passivation gases and cleaning gases into the enclosure according to programmed durations and flow rates
  • control means which control the gas injection means, the plasma generation means and the
  • the invention makes it possible to industrially produce components based on silicon with microreliefs having an aspect factor greater than 45, using for example a method as defined above. Such components having in themselves a novelty character, since they could not be obtained until now.
  • FIG. 1 previously considered illustrates the profile of trenches produced by an etching process according to the prior art
  • - Figure 2 illustrates the etching speed curves as a function of the aspect factor for several known etching processes
  • FIG. 3 illustrates an attack speed of a protective polymer film, as a function of the substrate bias voltage, on the one hand during an attack by SF 6 , on the other hand during an attack by an oxygen plasma;
  • FIG. 4 schematically illustrates an etching device according to an embodiment of the invention
  • FIG. 5 is a time diagram illustrating the steps of the method according to an embodiment of the invention.
  • FIG. 4 schematically illustrates the formation of a cavity during the continuation of four successive steps according to the method of Figure 5; and FIG. 7 illustrates a profile of trenches in progress by an etching method according to the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS We first consider the etching device according to the invention, for example in the embodiment illustrated in FIG. 4.
  • Such a device comprises a sealed enclosure 1, shaped to receive and contain a substrate 2 to engrave.
  • the substrate 2 is placed on a support 3 itself negatively polarized relative to ground by polarization means comprising a polarization source 4.
  • a vacuum generating device 6 connected to the enclosure
  • a pipe 7 comprising for example a primary pump and a secondary pump, makes it possible to create and maintain a suitable vacuum in the enclosure 1.
  • the substrate 2 is oriented in the enclosure 1 so that its surface 2a to be worked is visible. We want for example to make in the surface 2a cavities such as the cavity 2b. Facing the surface 2a to be machined, are plasma generating means 8, for generating a plasma 9 which is directed towards the surface 2a to be machined and which is attracted to the substrate
  • the plasma generation means 8 schematically comprises a microwave or radio frequency generator 10 " which, via a " transducer or radio applicator frequencies 11, excites the gas atoms in a plasma generation zone 12.
  • the device further comprises means 13 for selectively injecting into the enclosure 1 etching gases, passivation gases and depassivation gases.
  • these gas injection means 13 comprise a gas inlet 14 in the enclosure 1, preferably upstream of the plasma generation zone 12, the gas inlet 14 being connected by pipes 15 and valves 16, 17 and 18 respectively to an etching gas source 19, a passivation gas source 20 and a cleaning gas source 21.
  • the control valves 16, 17 and 18 are actuated by means of control 22 for controlling the gas injection according to the successive stages of etching, passivation and depassivation of the process which will be described below.
  • FIG. 5 respectively illustrate the opening times of the valve 16 for the supply of etching gas, the opening times of the valve 17 for the supply of passivation gas, and the opening times of the valve 18 for the supply of cleaning gas.
  • the steps of the method are impulse, that is to say of limited duration between periods of stoppage.
  • the first attack step a) consists in opening the valve 16, to generate a plasma 9 of etching gas.
  • the first attack step a) is followed by a second passivation step b) disjoint, during which the valve 16 is closed and the valve 17 is opened for the generation of a plasma 9 of cleaning gas.
  • valve 17 is closed and, during a selective depassivation step c) the valve 18 is opened for the generation of a plasma 9 of cleaning gas.
  • the valve 18 is then closed and the operations are repeated in a step d) by opening the valve 16 again for the generation of an etching gas plasma, and so on.
  • the successive steps a), b), c) and d) are separated from each other.
  • a step c) which encroaches on one and / or the other of the adjacent steps " b) and d).
  • an etching gas of the fluorinated gas type such as SF 6 , CF 4 or NF 3 for example, is introduced into enclosure 1. Excellent results are obtained using sulfur hexafluoride SF 6 .
  • the fluorine atoms generated in the plasma__ isotropically attack the exposed silicon surface.
  • FIG. 6 the action of plasmas on the substrate has been illustrated schematically: the substrate 2 is illustrated in partial section on a large scale, at the location of a cavity 2b to be produced: the substrate 2 is covered with a mask 2c comprising a light 2d in line with the cavity 2b to be produced. Thus, by the light 2d, the substrate 2 remains visible and accessible by the plasma.
  • the action of the etching gas plasma SF 6 has been illustrated, which isotropically attacks the silicon of the substrate 2 in line with the light 2d to produce a first section 2bl of the cavity 2b.
  • the duration of the etching step between the instants t1 and t2 in FIG. 5 is chosen so that the first section 2bl of cavity has a shape that is little different from the desired shape, that is to say with a wall lateral 2e, substantially perpendicular to the surface 2a of the substrate.
  • a first section depth 2bl of a few microns may be suitable.
  • etching parameters such as those usually used, for example a polarization of the substrate 2 of the order of 20 to 80 volts, a pressure of the gaseous atmosphere 5 in the enclosure 1 of the order of 10 to 100 Pa, and the etching gas flow rate is of the order of 10 to 200 Sccm (standard cm3 per minute).
  • a plasma of passivation gas is generated using a fluorocarbon gas such as CHF 3 , C 2 F 6 , C 2 F 4 , C 4 F 8 .
  • the pressure of the atmosphere 5 in the enclosure 1 is similar to that of step a), and the passivation gas flow rate is between 50 and 300 Sccm.
  • the passivation gas plasma generates the formation of a protective polymer film 2f over the entire interior surface of the first section 2bl of cavity, this is ie both on the side wall 2e and on the bottom 2g.
  • the duration between the start t2 and end t3 instants of step b) is chosen so that the thickness of the protective film is satisfactory, for example of the order of a few nanometers to several tens of nanometers.
  • a plasma of cleaning or depassivation gas is generated, chosen so as to clean the polymer more effectively than that provided by the etching gas, and which removes the polymer in the zone of bottom 2g of the cavities 2b selectively.
  • a cleaning gas containing oxygen for example a cleaning gas comprising at least one of the gases: 0 2 , S0 2 , CO, C0 2 , NO, N0 2 , N 2 0.
  • the substrate 2 is simultaneously polarized by the polarization source 4, in order to attract the oxygen ions to the substrate 2.
  • the cleaning step also makes it possible to remove the polymer film on the vertical cavity blanks in the vicinity of the bottom of the cavity, thus avoiding the narrowing of the patterns and making it possible to achieve higher aspect factors.
  • the time spent removing the polymer film is greatly reduced, the time available for the etching step is increased correspondingly, and it is therefore possible to increase the net etching speed and therefore increase the productivity of the equipment.
  • the substrate 2 is biased at a voltage close to that used during the attack steps, typically from 20 to 120 volts, advantageously from 20 to 80 volts, so as to attract ions from the plasma.
  • the pressure of the atmosphere surrounding the substrate 2 is between 0.5 and 10 Pa, preferably between 2 and 5 Pa.
  • the cleaning gas flow rate is between 10 and 100 Sccm, and the duration of step c ) is chosen just sufficient to ensure effective cleaning of the bottom zone 2g of the cavities 2b.
  • the step of depassivation by action of the oxygen plasma 0 2 makes it possible to remove efficiently and quickly the polymer film on the bottom 2g of the first section 2bl of cavity.
  • step d an attack step similar to step a) is repeated, by the action of the etching gas plasma SF 6 , which produces a second section 2b2 of the cavity 2b.
  • step d an attack step similar to step a) is repeated, by the action of the etching gas plasma SF 6 , which produces a second section 2b2 of the cavity 2b.
  • the duration of the impulse steps of selective depassivation c) can be determined as a function of the duration of the passivation steps b) which precede them. In fact, the thicker the polymer film, the longer it takes a pulse step of selective selective depassivation.
  • the duration of the impulse stages of selective depassivation can be chosen to increase from one depassivation stage to another during the etching process of the same substrate 2.
  • the first etching steps make it possible to produce a cavity with a substantially vertical side wall until an aspect factor of the order of 20 is reached, without the need to use long cleaning steps to keep the section constant of the cavity.
  • the advantage of the depassivation steps is then only to increase the speed of the process. But then, it becomes essential to use the steps of depassivation to guarantee the obtaining of the aspect factor beyond 20 ⁇ or 30.
  • steps of depassivation whose duration is progressive with as the aspect factor increases, or alternatively in increasing number of depassivation steps, for example going from one depassivation step to three attack and passivation steps, then a step ofappel depassivation for two stages _attack and passivation, then finally a stage of depassivation for a stage of attack and passivation.
  • the method of the invention makes it possible both to obtain industrially considerably higher aspect factors than known methods, while guaranteeing good selectivity with respect to photosensitive lacquer masks, and by increasing the overall etching speed. .
  • FIG. 7 is a photograph of a section of silicon substrate after a partial etching operation according to a method of the present invention.
  • the substrate 2 whose surface 2a is covered with a mask 2c.
  • Cavities 2b during engraving have a substantially vertical side wall, so that the bottom 2g remains of sufficient cross section to allow an additional etching to increase the depth of the cavities 2b, and thus to increase the aspect factor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Geometry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

The invention concerns a method which consists in: plasma etching treatment of a substrate (2) contained in a chamber (1) whereof the atmosphere (5) is maintained at low pressure by a vacuum-generating device (6, 7). Plasma-generating means (8) generate a plasma (9) which acts on the surface (2a) of the substrate (2). The etching method consists in subjecting the substrate (2) to an alternating succession of steps comprising: a plasma etching step with etching gas derived from an etching gas source (19), a second plasma passivation step with passivating gas derived from a passivating gas source (20), followed by a selective plasma pulsed depassivation step by the action of a cleaning plasma gas derived from a cleaning plasma gas source (21) which removes the polymer in the base zone of the cavities (2b) more efficiently than the etching gas, thereby enabling formation of cavities (2b) having an aspect ratio higher than 30, with increased speed, and good selectivity with respect to the mask protecting the substrate (2).

Description

PROCEDE ET DISPOSITIF DE GRAVURE ANISOTROPE DU SILICIUM A HAUT FACTEUR D'ASPECT METHOD AND DEVICE FOR ANISOTROPIC ETCHING OF HIGH APPEARANCE SILICON
DOMAINE TECHNIQUE DE L'INVENTION La présente invention concerne les procédés et dispositifs utilisés pour réaliser des microreliefs à la surface des substrats, notamment des substrats en silicium.TECHNICAL FIELD OF THE INVENTION The present invention relates to the methods and devices used to produce microreliefs on the surface of substrates, in particular silicon substrates.
L'invention concerne plus spécialement les procédés et dispositifs permettant de réaliser de tels reliefs par attaque chimique anisotrope au plasma, pour la réalisation de composants à base de silicium, par exemple des composants à semi-conducteur pour l'électronique, ou des pièces pour composants de micromécanique.The invention relates more specifically to the methods and devices making it possible to produce such reliefs by anisotropic chemical attack on the plasma, for the production of silicon-based components, for example semiconductor components for electronics, or parts for micromechanical components.
Dans la fabrication, de tels composants, on cherche en général à réaliser des reliefs qui reproduisent sur la surface du substrat un modèle plan à deux dimensions dont les bords sont nets et perpendiculaires au plan. Par exemple, on veut réaliser un trou borgne ou traversant, selon la direction perpendiculaire au plan général du substrat ou tranche de silicium, et la paroi du trou doit être parallèle à l'axe, la section du trou étant constante sur toute sa hauteur.In the manufacture of such components, it is generally sought to produce reliefs which reproduce on the surface of the substrate a two-dimensional plane model whose edges are sharp and perpendicular to the plane. For example, we want to make a blind or through hole, in the direction perpendicular to the general plane of the substrate or silicon wafer, and the wall of the hole must be parallel to the axis, the section of the hole being constant over its entire height.
Dans le domaine industriel _des MEMS, ou microsystèmes électromécaniques, il y a une demande de plus en plus importante pour la réalisation de structures à très haut facteur d'aspect dans des substrats de silicium. On peut citer comme exemple l'intérêt qu'il y aurait à réaliser des trous de 2 à 3 μm de diamètre sur des profondeurs de 100 à 200 μm, correspondant à un facteur d'aspect de 30 à 100, pour fabriquer des condensateurs de forte capacité et miniaturisés pour être utilisés dans les téléphones portables.In the industrial field of MEMS, or electromechanical microsystems, there is an increasing demand for the production of structures with a very high aspect factor in silicon substrates. We can cite as an example the advantage of making holes 2 to 3 μm in diameter over depths of 100 to 200 μm, corresponding to an aspect factor of 30 to 100, to manufacture capacitors of high capacity and miniaturized for use in mobile phones.
Un autre exemple est le souhait de réaliser des trous de l'ordre de 10 μm de diamètre sur toute l'épaisseur d'une plaquette de silicium pour réaliser les prises de contact : ces trous, une fois métallisés, permettraient de réaliser les connexions électriques vers l'extérieur en remplacement des habituels fils d'or. On pourrait ainsi réaliser des connexions très reproductibles, mais surtout beaucoup plus courtes, diminuant les inductances parasites et présentant ainsi un grand intérêt pour les applications haute fréquence. On pourrait également envisager d'hybrider des MEMS avec des circuits intégrés classiques et obtenir ainsi des MEMS avec le traitement du signal intégré.Another example is the wish to make holes of the order of 10 μm in diameter over the entire thickness of a silicon wafer to make the contact points: these holes, once metallized, would make it possible to make the electrical connections. outwards to replace the usual gold threads. It would thus be possible to make very reproducible connections, but above all much shorter, reducing the parasitic inductances and thus being of great interest for high frequency applications. One could also consider hybridizing MEMS with conventional integrated circuits and thus obtain MEMS with integrated signal processing.
Le micro-usinage des substrats en silicium est actuellement réalisé par des techniques de gravμre au plasma. La technique la plus répandue aujourd'hui est pour cela la gravure par plasma de gaz fluoré telle que décrite dans les documentsThe micro-machining of silicon substrates is currently carried out by plasma etching techniques. The most widespread technique today is for this plasma etching of fluorinated gas as described in documents
US 5 501 893 ou US 4 985 114. Cette technique consiste à protéger partiellement le substrat de silicium par un masque, et à soumettre le substrat ainsi protégé partiellement à une succession alternée d'étapes d'attaque par plasma de gaz de gravure et d'étapes de passivation par plasma de gaz de passivation. Au cours de chaqueUS 5 501 893 or US 4 985 114. This technique consists in partially protecting the silicon substrate with a mask, and in subjecting the partially protected substrate to an alternating succession of etching gas plasma etching steps and d 'Passivation steps by passivation gas plasma. During each
•étape d'attaque, le plasma de gaz de gravure tel. que l'hexafluorure de soufre SFS réalise des cavités dans les zones de substrat non protégées par le masque. Au cours de chaque étape de passivation, le plasma de gaz de passivation tel qu'un gaz fluorocarboné, par exemple C4F8, dépose sur la paroi de la cavité un film polymère protecteur. Chacune des étapes d'attaque et de passivation a une durée très courte, de quelques secondes, et la passivation évite, au cours de l'étape d'attaque ultérieure, que le. plasma de gaz de gravure attaque la paroi latérale—de—la cavité. Il en résulte que l'attaque se fait sélectivement dans le fond de la cavité, après que le plasma de gaz de gravure ait enlevé le film de polymère protecteur dans le fond de la cavité. Ainsi, malgré le caractère isotrope de l'attaque du silicium par un plasma de gaz de gravure tel qu'un gaz fluoré, on obtient une gravure quasi anisotrope, rapide et sélective du silicium.• attack step, the etching gas plasma such. that the sulfur hexafluoride SF S creates cavities in the substrate areas not protected by the mask. During each passivation step, the plasma of passivation gas such as a fluorocarbon gas, for example C 4 F 8 , deposits a protective polymer film on the wall of the cavity. Each of the attack and passivation stages has a very short duration, of a few seconds, and the passivation avoids, during the subsequent attack stage, that the. Etching gas plasma attacks the side wall — of — the cavity. As a result, the attack is done selectively in the bottom of the cavity, after the etching gas plasma has removed the protective polymer film in the bottom of the cavity. Thus, despite the isotropic nature of the attack on silicon by an etching gas plasma such as a fluorinated gas, an almost anisotropic, fast and selective etching of the silicon is obtained.
Mais lorsqu'on utilise cette technique pour réaliser des gravures de motifs à haut facteur.» d' aspect , comme des tranchées de 2 à 3 μm de large, on se rend compte que le profil de gravure est tout d'abord vertical puis, à partir d'une certaine profondeur, ce profil devient légèrement positif de sorte que les deux côtés de la tranchée finissent par se rejoindre, et il n'est plus possible d'augmenter la profondeur de la tranchée. Le résultat obtenu est illustré sur la figure 1, qui est la photographie d'une coupe de substrat de silicium gravé par cette technique connue : dans un substrat 2 dont la surface 2a est recouverte d'un masque 2c, on a tenté de réaliser une cavité 2b profonde ; il n'a pas été possible d'atteindre une profondeur de plus d'une cinquantaine de μm, les parois de la cavité 2b se rejoignant selon un fond 2g de section nulle empêchant toute gravure supplémentaire. A ce jour, en pratique, on ne sait guère faire de manière industrielle des gravures de motifs avec des facteurs d'aspect supérieurs à 20, c'est-à-dire ayant une profondeur supérieure à 20 fois la largeur ou le diamètre.But when we use this technique to make etchings of high factor patterns. "Of appearance, like trenches 2 to 3 μm wide, we realize that the etching profile is first vertical then, from a certain depth, this profile becomes slightly positive so that the two sides of the trench eventually join, and it is no longer possible to increase the depth of the trench. The result obtained is illustrated in FIG. 1, which is a photograph of a section of silicon substrate etched by this known technique: in a substrate 2 whose surface 2a is covered with a mask 2c, there is attempted to make a deep cavity 2b; it was not possible to reach a depth of more than fifty μm, the walls of the cavity 2b meeting at a bottom 2g of zero section preventing any additional etching. To date, in practice, it is hardly known to make engravings of patterns industrially with aspect factors greater than 20, that is to say having a depth greater than 20 times the width or the diameter.
Il existe donc un besoin d'augmenter le facteur d'aspect des reliefs réalisés par gravure sur un substrat de silicium.There is therefore a need to increase the aspect factor of the reliefs produced by etching on a silicon substrate.
Pour cela, comme décrit dans le document JP 63 043321 A, une première solution a été d'augmenter l'énergie des ions pendant l'étape de gravure, en augmentant la tension de polarisation du substrat. Ce faisant, on diminue le nombre d'ions perdus sur les parois de la tranchée et on peut bénéficier de plus d'ions pour pulvériser la couche de polymère dans le fond de la tranchée. On a ainsi pu augmenter légèrement le facteur d'aspect, passant d'un facteur de 20 à un facteur de 23 seulement. Par contre, cette solution présente le gros inconvénient d'augmenter la vitesse d'attaque du masque lui-même qui est en silice ou en résine photosensible, et on diminue ainsi la sélectivité de gravure.For this, as described in the document JP 63 043321 A, a first solution was to increase the energy of the ions during the etching step, by increasing the bias voltage of the substrate. By doing this, the number of ions lost on the walls of the trench is reduced and more ions can be used to spray the polymer layer in the bottom of the trench. It was thus possible to slightly increase the aspect factor, going from a factor of 20 to a factor of only 23. On the other hand, this solution has the major drawback of increasing the attack speed of the mask itself which is made of silica or of photosensitive resin, and the etching selectivity is thus reduced.
Une seconde solution également mentionnée dans le document JP 63 043321 A est d'augmenter le flux d'ions arrivant sur la surface du substrat, en espérant avoir ainsi assez d'ions pour pulvériser le film de polymère dans le fond des cavités. Pour cela, on a tout d'abord augmenté la puissance de la source de plasma. On a pu ainsi augmenter le facteur d'aspect jusqu'à environ 27, mais en dégradant la sélectivité par rapport au masque comme dans la solution précédente. En alternative, on a placé le substrat au plus près de la source de plasma, et on a pu ainsi augmenter également le facteur d'aspect jusqu'à environ 27. Mais on a alors dégradé l'uniformité de gravure, c'est-à-dire la profondeur de gravure en fonction des zones considérées sur le substrat.A second solution also mentioned in document JP 63 043321 A is to increase the flow of ions arriving on the surface of the substrate, hoping thus to have enough ions to spray the polymer film in the bottom of the cavities. To do this, we first increased the power of the plasma source. It was thus possible to increase the aspect factor up to approximately 27, but by degrading the selectivity with respect to the mask as in the previous solution. As an alternative, the substrate was placed as close as possible to the plasma source, and it was thus also possible to increase the aspect factor up to approximately 27. But we then degraded the etching uniformity, that is ie the etching depth as a function of the zones considered on the substrate.
Une troisième solution qui a été imaginée est de diminuer la pression de travail, afin d'augmenter ainsi le libre parcours moyen des particules, diminuant ainsi les collisions entre particules et augmentant la directivité des ions. Comme dans la première solution, on a pu bénéficier de plus d'ions pour pulvériser la couche de polymère dans les coins du fond de la tranchée, et on a pu augmenter légèrement le facteur d'aspect jusqu'à une valeur d'environ 23. Cette solution ne permet pas d'augmenter sensiblement le facteur d'aspect, et présente en outre 1 ' inconvénient de diminuer considérablement la vitesse de gravure du silicium, ce qui est contraire au but recherché.A third solution which has been devised is to decrease the working pressure, in order to thus increase the mean free path of the particles, thus reducing the collisions between particles and increasing the directivity of the ions. As in the first solution, we were able to benefit from more ions to spray the polymer layer in the corners of the bottom of the trench, and we were able to slightly increase the aspect factor up to a value of approximately 23. This solution does not make it possible to increase the aspect factor appreciably, and further has the disadvantage of considerably reducing the speed of etching of the silicon, which is contrary to the desired objective.
Les résultats de ces essais sont illustrés sur la figure 2. La courbe A illustre le procédé habituel de gravure par alternance d'étapes d'attaque pas plasma de gaz fluoré et d'étapes de passivation par plasma de gaz fluorocarboné selon le document US 5 501 893. La courbe B illustre le résultat obtenu en augmentant la tension de polarisation du substrat, c'est-à-dire en augmentant l'énergie de bombardement des ions du plasma. La courbe C illustre le résultat obtenu en rapprochant le substrat au plus près de la source de plasma. Et la courbe D illustre le résultat obtenu en réduisant d'un facteur deux la pression d'atmosphère dans la chambre de gravure.The results of these tests are illustrated in FIG. 2. Curve A illustrates the usual method of etching alternately attack steps using a fluorinated gas plasma and steps of plasma passivation of fluorocarbon gas according to document US 5 501 893. Curve B illustrates the result obtained by increasing the bias voltage of the substrate, that is to say by increasing the bombardment energy of the plasma ions. Curve C illustrates the result obtained by bringing the substrate as close as possible to the plasma source. And curve D illustrates the result obtained by reducing the atmospheric pressure in the etching chamber by a factor of two.
Dans chaque cas, la courbe illustre la variation progressive de la vitesse de gravure, ou vitesse de creusement des cavités, en fonction de la profondeur atteinte de la cavité. On constate que pour chaque courbe la vitesse de gravure diminue progressivement en fonction de la profondeur de cavité. Pour chaque courbe, on atteint un maximum de profondeur, et ce maximum détermine le facteur d'aspect maximum pouvant être atteint par le procédé. La courbe A montre un facteur d'aspect maximum d'environ 21. La courbe B montre un facteur d'aspect maximum d'environ 23. La courbe C montre un facteur d'aspect maximum d'environ 29. La courbe D montre un facteur d'aspect maximum d'environ 23. Une autre solution proposée dans le document US 2002In each case, the curve illustrates the progressive variation of the etching speed, or digging speed of the cavities, as a function of the depth reached of the cavity. It can be seen that for each curve the etching speed gradually decreases as a function of the depth of the cavity. For each curve, a maximum depth is reached, and this maximum determines the maximum aspect factor that can be achieved by the process. Curve A shows a maximum aspect factor of approximately 21. Curve B shows a maximum aspect factor of approximately 23. Curve C shows a maximum aspect factor of approximately 29. Curve D shows a maximum aspect factor of approximately 23. Another solution proposed in document US 2002
144974 A consiste à effectuer l'étape de gravure en mélangeant de l'oxygène au gaz de gravure (SF6) , pour oxyder le soufre et éviter ainsi de contaminer par le soufre les pompes ou les chambres de procédés. Le document enseigne que la présence d'oxygène n'a pas d'effet sur le procédé de gravure lui-même.144974 A consists in carrying out the etching step by mixing oxygen with the etching gas (SF 6 ), to oxidize the sulfur and thus avoid contaminating the pumps or process chambers with sulfur. The document teaches that the presence of oxygen has no effect on the etching process itself.
Pour réaliser une gravure à facteur d'aspect plus élevé, le document WO 00 05749 A enseigne de réaliser l'étape de gravure ou l'étape de passivation par un procédé chimique en phase gazeuse en l'absence de plasma. L'étape de dépassivation est réalisée par plasma d'un gaz précurseur, d'argon, de halo ou hydrocarbone, de gaz de passivation, de gaz de gravure, ou par irradiation. Un tel procédé est difficile à mettre en œuvre et peu rapide, à cause de 1 ' incompatibilité entre les étapes chimiques de gravure ou de passivation hors plasma et les étapes mettant en œuvre un plasma, qui s'effectuent à des pressions différentes.To carry out an engraving with a higher aspect factor, the document WO 00 05749 A teaches to carry out the etching step. or the passivation step by a chemical process in the gas phase in the absence of plasma. The depassivation step is carried out by plasma of a precursor gas, argon, halo or hydrocarbon, passivation gas, etching gas, or by irradiation. Such a process is difficult to implement and not very rapid, because of the incompatibility between the chemical etching or passivation steps outside plasma and the steps using a plasma, which are carried out at different pressures.
Le document US 6,277,756 Bl enseigne de graver par un plasma de gaz à mélange d'oxygène et d'argon, puis de passiver par oxydation et formation de silice. Il n'y a pas de dépassivation par un gaz spécifique.Document US Pat. No. 6,277,756 B1 teaches to etch with a gas plasma with a mixture of oxygen and argon, then to passivate by oxidation and formation of silica. There is no depassivation by a specific gas.
EXPOSE DE L'INVENTION La présente invention a pour but de réaliser industriellement une gravure de silicium ayant une anisotropie" pratiquement parfaite, sans attaque par contre-dépouille ni rétrécissement progressif de la cavité, jusqu'à des profondeurs nettement augmentées permettant d'atteindre des facteurs d'aspect supérieurs à 45. L'invention vise également à réaliser industriellement de telles gravures avec des vitesses au moins aussi élevées, sinon., supérieures aux vitesses de gravure par les procédés connus en étapes alternées d'attaque par plasma de gaz fluoré et de passivation par plasma de gaz fluorocarboné . Pour, atteindre ces buts ainsi que d'autres, l'invention prévoit un procédé de gravure anisotrope du silicium, dans lequel un substrat de silicium protégé partiellement par un masque est soumis à une succession alternée d'étapes d'attaque par plasma de gaz de gravure réalisant des cavités dans les zones de substrat non protégées par le masque et d'étapes de passivation par plasma de gaz de passivation assurant un dépôt de polymère protecteur sur les parois des cavités résultant des étapes d'attaque ; le procédé de 1 ' invention comprend en outre des étapes impulsionnelles de dépassivation sélective par lesquelles le dépôt de polymère protecteur est soumis à l'action d'un plasma de gaz de nettoyage plus efficace que le gaz de gravure et qui enlève le polymère protecteur dans la zone de fond des cavités . Grâce à un nettoyage plus efficace du film protecteur dans la zone de fond des cavités, on fait disparaître l'inconvénient du rapprochement progressif des parois de la cavité dans le fond de la cavité, permettant d'atteindre des facteurs d'aspect nettement plusPRESENTATION OF THE INVENTION The aim of the present invention is to achieve an industrial etching of silicon having a practically perfect " anisotropy " , without attack by undercut or progressive narrowing of the cavity, to markedly increased depths making it possible to reach aspect factors greater than 45. The invention also aims to produce such engravings industrially with speeds at least as high, if not higher, than the engraving speeds by known methods in alternating stages of attack by fluorinated gas plasma. and plasma passivation of fluorocarbon gas. To achieve these and other objects, the invention provides an anisotropic etching process for silicon, in which a silicon substrate partially protected by a mask is subjected to an alternating succession of etching gas plasma etching steps producing cavities in the substrate areas not protected by the e mask and plasma passivation steps of passivation gas ensuring a deposit of protective polymer on the walls of the cavities resulting from the etching steps; the method of the invention further comprises impulse steps of selective depassivation by which the deposition of protective polymer is subjected to the action of a plasma of cleaning gas more effective than the etching gas and which removes the protective polymer in the bottom area of the cavities. Thanks to a more effective cleaning of the protective film in the bottom area of the cavities, the disadvantage of the gradual approximation of the walls of the cavity in the bottom of the cavity is eliminated, making it possible to achieve significantly more aspect factors.
5 élevés .5 high.
Selon un mode de réalisation, le procédé comprend une étape impulsionnelle de dépassivation sélective après chaque étape de passivation.According to one embodiment, the method comprises an impulse step of selective depassivation after each passivation step.
Avantageusement, chaque étape impulsionnelle de 10 dépassivation sélective est disjointe de l'étape de passivation qui la précède et de l'étape d'attaque qui la suit.Advantageously, each impulse step of selective depassivation is separated from the passivation step which precedes it and the attack step which follows it.
Le gaz de gravure peut avantageusement être un gaz fluoré tel que SF6, CF4 ou NF3. Les meilleurs résultats semblent être — obtenus par SF6. —The etching gas can advantageously be a fluorinated gas such as SF 6 , CF 4 or NF 3 . The best results seem to be - obtained by SF 6 . -
15 Le gaz de passivation peut avantageusement être un gaz fluorocarboné, tel que CHF3, C2F6, C2F4, C4F8, ou leurs mélanges.The passivation gas can advantageously be a fluorocarbon gas, such as CHF 3 , C 2 F 6 , C 2 F 4 , C 4 F 8 , or mixtures thereof.
Dans tous les cas, le gaz de nettoyage peut avantageusement contenir de l'oxygène. On peut ainsi utiliser comme gaz de nettoyage l'un au moins des gaz 02, S02, CO, C02, NO, N02, 20 N20, ou leurs mélanges.In all cases, the cleaning gas can advantageously contain oxygen. It is thus possible to use as cleaning gas at least one of the gases 0 2 , S0 2 , CO, C0 2 , NO, N0 2 , 20 N 2 0, or their mixtures.
— Selon un autre aspect, l'invention prévoit un dispositif de gravure anisotrope de substrat en silicium, comprenant :According to another aspect, the invention provides an anisotropic device for etching a silicon substrate, comprising:
- une enceinte étanche conformée pour recevoir et contenir un substrat à graver,- a sealed enclosure shaped to receive and contain a substrate to be etched,
25 - des moyens de création et de maintien d'un vide approprié dans 1 'enceinte,25 - means for creating and maintaining a suitable vacuum in the enclosure,
- des moyens d'injection de gaz pour injecter sélectivement dans l'enceinte des gaz de gravure, des gaz de passivation et des gaz de nettoyage selon des durées et des débits programmés,gas injection means for selectively injecting etching gases, passivation gases and cleaning gases into the enclosure according to programmed durations and flow rates,
30 - des moyens de génération d'un plasma dans l'enceinte, face à la surface de substrat à graver,30 - means for generating a plasma in the enclosure, facing the surface of the substrate to be etched,
- des moyens de polarisation du substrat,- means for polarizing the substrate,
- des moyens de commande qui pilotent les moyens d'injection de gaz, les moyens de génération de plasma et les moyens de- control means which control the gas injection means, the plasma generation means and the
35 polarisation de substrat selon les étapes successives de gravure, de passivation et de dépassivation par plasma telles que définies ci-dessus. Selon un autre aspect, l'invention permet de réaliser industriellement des composants à base de silicium à microreliefs présentant un facteur d'aspect supérieur à 45, en utilisant par exemple un procédé tel que défini ci-dessus. De tels composants présentant en eux-mêmes un caractère de nouveauté, car ils n'avaient pas pu être obtenus jusqu'à présent.35 substrate polarization according to the successive stages of etching, passivation and depassivation by plasma as defined above. According to another aspect, the invention makes it possible to industrially produce components based on silicon with microreliefs having an aspect factor greater than 45, using for example a method as defined above. Such components having in themselves a novelty character, since they could not be obtained until now.
DESCRIPTION SOMMAIRE DES DESSINS D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles: la figure 1 précédemment considérée illustre le profil de tranchées réalisés par un procédé de gravure selon 1 ' art antérieur ; - la figure 2 illustre les courbes de vitesse de gravure en fonction du facteur d'aspect pour plusieurs procédés de gravure connus ;SUMMARY DESCRIPTION OF THE DRAWINGS Other objects, characteristics and advantages of the present invention will emerge from the following description of particular embodiments, made in relation to the attached figures, among which: FIG. 1 previously considered illustrates the profile of trenches produced by an etching process according to the prior art; - Figure 2 illustrates the etching speed curves as a function of the aspect factor for several known etching processes;
- la figure 3 illustre une vitesse d'attaque d'un film de polymère protecteur, en fonction de la tension de polarisation de substrat, d'une part lors d'une attaque par SF6, d'autre part lors d'une attaque par un plasma d ' oxygène ;.- Figure 3 illustrates an attack speed of a protective polymer film, as a function of the substrate bias voltage, on the one hand during an attack by SF 6 , on the other hand during an attack by an oxygen plasma;
- la figure 4 illustre schématiquement un dispositif de gravure selon un mode de réalisation de l'invention ;- Figure 4 schematically illustrates an etching device according to an embodiment of the invention;
- la figure 5 est un diagramme temporel illustrant les étapes du procédé selon un mode de réalisation de l'invention ;- Figure 5 is a time diagram illustrating the steps of the method according to an embodiment of the invention;
- la figure 6 illustre schématiquement la formation d'une cavité lors de la suite de quatre étapes successives selon le procédé de la figure 5 ; et la figure 7 illustre un profil de tranchées en cours de réalisation par un procédé de gravure selon l'invention. DESCRIPTION DES MODES DE REALISATION PREFERES On considère tout d'abord le dispositif de gravure selon 1 ' invention, par exemple dans le mode de réalisation illustré sur la figure 4. Un tel dispositif comprend une enceinte 1 étanche, conformée pour recevoir et contenir un substrat 2 à graver. Le substrat 2 est posé sur un support 3 lui-même polarisé négativement par rapport à la masse par des moyens de polarisation comprenant une source de polarisation 4.- Figure 6 schematically illustrates the formation of a cavity during the continuation of four successive steps according to the method of Figure 5; and FIG. 7 illustrates a profile of trenches in progress by an etching method according to the invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS We first consider the etching device according to the invention, for example in the embodiment illustrated in FIG. 4. Such a device comprises a sealed enclosure 1, shaped to receive and contain a substrate 2 to engrave. The substrate 2 is placed on a support 3 itself negatively polarized relative to ground by polarization means comprising a polarization source 4.
Un dispositif de génération de vide 6, relié à l'enceinteA vacuum generating device 6, connected to the enclosure
1 par une canalisation 7, et comprenant par exemple une pompe primaire et une pompe secondaire, permet de créer et de maintenir un vide approprié dans 1 ' enceinte 1.1 by a pipe 7, and comprising for example a primary pump and a secondary pump, makes it possible to create and maintain a suitable vacuum in the enclosure 1.
Le substrat 2 est orienté dans 1 ' enceinte 1 de façon que sa surface 2a à travailler soit apparente. On veut par exemple réaliser dans la surface 2a des cavités telles que la cavité 2b. Face à la surface 2a à usiner, se trouvent des moyens de génération de plasma 8, pour générer un plasma 9 qui est dirigé vers la surface 2a à usiner et qui se trouve attiré par le substratThe substrate 2 is oriented in the enclosure 1 so that its surface 2a to be worked is visible. We want for example to make in the surface 2a cavities such as the cavity 2b. Facing the surface 2a to be machined, are plasma generating means 8, for generating a plasma 9 which is directed towards the surface 2a to be machined and which is attracted to the substrate
2 polarisé par la source de polarisation 4. Le moyen de génération de plasma 8 comprend, de façon schématique, un générateur de micro- ondes ou radiofréquences 10" qui, par l'intermédiaire d'un" transducteur ou d'un applicateur radio-fréquences 11, excite les atomes de gaz dans une zone de génération de plasma 12.2 polarized by the polarization source 4. The plasma generation means 8 schematically comprises a microwave or radio frequency generator 10 " which, via a " transducer or radio applicator frequencies 11, excites the gas atoms in a plasma generation zone 12.
Le dispositif comprend en outre des moyens 13 pour injecter sélectivement dans l'enceinte 1 des gaz de gravure, des gaz de passivation et des gaz de dépassivation. Ainsi, ces moyens d'injection de gaz 13 comprennent une entrée de gaz 14 dans l'enceinte 1, de préférence en amont de la zone de génération de plasma 12, l'entrée de gaz 14 étant reliée par des canalisations 15 et des vannes de commande 16, 17 et 18 respectivement à une source de gaz de gravure 19, à une source de gaz de passivation 20 et à une source de gaz de nettoyage 21. Les vannes de commande 16, 17 et 18 sont actionnées par des moyens de commande 22 pour piloter l'injection de gaz selon les étapes successives de gravure, de passivation et de dépassivation du procédé qui sera décrit ci- après .The device further comprises means 13 for selectively injecting into the enclosure 1 etching gases, passivation gases and depassivation gases. Thus, these gas injection means 13 comprise a gas inlet 14 in the enclosure 1, preferably upstream of the plasma generation zone 12, the gas inlet 14 being connected by pipes 15 and valves 16, 17 and 18 respectively to an etching gas source 19, a passivation gas source 20 and a cleaning gas source 21. The control valves 16, 17 and 18 are actuated by means of control 22 for controlling the gas injection according to the successive stages of etching, passivation and depassivation of the process which will be described below.
On considérera maintenant les diagrammes de la figure 5, qui illustrent respectivement les temps d'ouverture de la vanne 16 pour l'alimentation en gaz de gravure, les temps d'ouverture de la vanne 17 pour l'alimentation en gaz de passivation, et les temps d'ouverture de la vanne 18 pour l'alimentation en gaz de nettoyage. On voit que les étapes du procédé sont impulsionnelles, c'est-à-dire de durée limitée entre des périodes d'arrêt. On voit que la première étape d'attaque a) consiste à ouvrir la vanne 16, pour générer un plasma 9 de gaz de gravure. La première étape d'attaque a) est suivie d'une seconde étape de passivation b) disjointe, au cours de laquelle on ferme la vanne 16 et on ouvre la vanne 17 pour la génération d'un plasma 9 de gaz de nettoyage. Ensuite on ferme la vanne 17 et, au cours d'une étape de dépassivation sélective c) on ouvre la vanne 18 pour la génération d'un plasma 9 de gaz de nettoyage. On ferme ensuite la vanne 18 et on recommence les opérations dans une étape d) en ouvrant à nouveau la vanne 16 pour la génération d'un plasma de gaz de gravure, et ainsi de suite.We will now consider the diagrams in FIG. 5, which respectively illustrate the opening times of the valve 16 for the supply of etching gas, the opening times of the valve 17 for the supply of passivation gas, and the opening times of the valve 18 for the supply of cleaning gas. It can be seen that the steps of the method are impulse, that is to say of limited duration between periods of stoppage. We see that the first attack step a) consists in opening the valve 16, to generate a plasma 9 of etching gas. The first attack step a) is followed by a second passivation step b) disjoint, during which the valve 16 is closed and the valve 17 is opened for the generation of a plasma 9 of cleaning gas. Then the valve 17 is closed and, during a selective depassivation step c) the valve 18 is opened for the generation of a plasma 9 of cleaning gas. The valve 18 is then closed and the operations are repeated in a step d) by opening the valve 16 again for the generation of an etching gas plasma, and so on.
Dans le mode de réalisation illustré sur la figure 5, les étapes successives a) , b) , c) et d) sont disjointes les unes des autres. On pourrait toutefois, sans sortir du cadre de l'invention, prévoir une étape c) qui empiète sur l'une et/ou l'autre des étapes" b) et d) adjacentes.In the embodiment illustrated in FIG. 5, the successive steps a), b), c) and d) are separated from each other. One could, however, without departing from the scope of the invention, provide for a step c) which encroaches on one and / or the other of the adjacent steps " b) and d).
Au cours de l'étape a) de génération d'un plasma de gaz de gravure, on introduit dans l'enceinte 1 un gaz de gravure de type gaz fluoré, tel que SF6, CF4 ou NF3 par exemple. D'excellents résultats sont obtenus en utilisant l'hexafluorure de soufre SF6. Pendant cette étape, les atomes de fluor générés dans le plasma__ attaquent de manière isotrope la surface de silicium exposée. Sur la figure 6, on a illustré schématiquement l'action des plasmas sur le substrat : le substrat 2 est illustré en coupe partielle à grande échelle, à l'endroit d'une cavité 2b à réaliser : le substrat 2 est recouvert d'un masque 2c comportant une lumière 2d au droit de la cavité 2b à réaliser. Ainsi, par la lumière 2d, le substrat 2 reste apparent et accessible par le plasma.During step a) of generating an etching gas plasma, an etching gas of the fluorinated gas type, such as SF 6 , CF 4 or NF 3 for example, is introduced into enclosure 1. Excellent results are obtained using sulfur hexafluoride SF 6 . During this step, the fluorine atoms generated in the plasma__ isotropically attack the exposed silicon surface. In FIG. 6, the action of plasmas on the substrate has been illustrated schematically: the substrate 2 is illustrated in partial section on a large scale, at the location of a cavity 2b to be produced: the substrate 2 is covered with a mask 2c comprising a light 2d in line with the cavity 2b to be produced. Thus, by the light 2d, the substrate 2 remains visible and accessible by the plasma.
Sur la vue o) de la figure 6, le substrat 2 est représenté avant gravure.In view o) of Figure 6, the substrate 2 is shown before etching.
Sur la vue a) de la figure 6, on a illustré l'action du plasma de gaz de gravure SF6, qui attaque de façon isotrope le silicium du substrat 2 au droit de la lumière 2d pour réaliser un premier tronçon 2bl de la cavité 2b. La durée de l'étape de gravure entre les instants tl et t2 sur la figure 5, est choisie de façon que le premier tronçon 2bl de cavité présente une forme peu différente de la forme désirée, c'est-à-dire avec une paroi latérale 2e, sensiblement perpendiculaire à la surface 2a du substrat . Une profondeur de premier tronçon 2bl de quelques microns peut convenir. On peut choisir des paramètres de gravure tels que ceux habituellement utilisés, par exemple une polarisation du substrat 2 de l'ordre de 20 à 80 volts, une pression de l'atmosphère 5 gazeuse dans l'enceinte 1 de l'ordre de 10 à 100 Pa, et le débit de gaz de gravure est de l'ordre de 10 à 200 Sccm (cm3 standard par minute) .In view a) of FIG. 6, the action of the etching gas plasma SF 6 has been illustrated, which isotropically attacks the silicon of the substrate 2 in line with the light 2d to produce a first section 2bl of the cavity 2b. The duration of the etching step between the instants t1 and t2 in FIG. 5 is chosen so that the first section 2bl of cavity has a shape that is little different from the desired shape, that is to say with a wall lateral 2e, substantially perpendicular to the surface 2a of the substrate. A first section depth 2bl of a few microns may be suitable. One can choose etching parameters such as those usually used, for example a polarization of the substrate 2 of the order of 20 to 80 volts, a pressure of the gaseous atmosphere 5 in the enclosure 1 of the order of 10 to 100 Pa, and the etching gas flow rate is of the order of 10 to 200 Sccm (standard cm3 per minute).
Au cours de l'étape b) de passivation, on génère un plasma de gaz de passivation en utilisant un gaz fluorocarboné tel que CHF3, C2F6, C2F4, C4F8. La pression de l'atmosphère 5 dans l'enceinte 1 est similaire de celle de l'étape a), et le débit de gaz de passivation est compris entre 50 et 300 Sccm. Au cours de cette étape, comme illustré sur la vue b) de la figure 6, le plasma de gaz de passivation génère la formation d'un film de polymère protecteur 2f sur toute la surface intérieure du premier tronçon 2bl de cavité, c'est-à-dire à la fois sur la paroi latérale 2e et sur le fond 2g. La durée entre les instants de début t2 et de fin t3 de l'étape b) est choisie de façon que l'épaisseur du film protecteur soit satisfaisante, par exemple de l'ordre de quelques nanomètres à quelques-dizaines de nanomètres.During passivation step b), a plasma of passivation gas is generated using a fluorocarbon gas such as CHF 3 , C 2 F 6 , C 2 F 4 , C 4 F 8 . The pressure of the atmosphere 5 in the enclosure 1 is similar to that of step a), and the passivation gas flow rate is between 50 and 300 Sccm. During this step, as illustrated in view b) of FIG. 6, the passivation gas plasma generates the formation of a protective polymer film 2f over the entire interior surface of the first section 2bl of cavity, this is ie both on the side wall 2e and on the bottom 2g. The duration between the start t2 and end t3 instants of step b) is chosen so that the thickness of the protective film is satisfactory, for example of the order of a few nanometers to several tens of nanometers.
Au cours de l'étape c) , on génère un plasma de gaz de nettoyage ou de dépassivation, choisi de façon à assurer un nettoyage du polymère plus efficace que celui assuré par le gaz de gravure, et qui enlève le polymère dans la zone de fond 2g des cavités 2b de façon sélective. De bons résultats sont obtenus en utilisant un gaz de nettoyage contenant de l'oxygène, par exemple un gaz de nettoyage comprenant l'un au moins des gaz : 02, S02, CO, C02, NO, N02, N20. De préférence, on polarise simultanément le substrat 2 par la source de polarisation 4, pour attirer les ions oxygène sur le substrat 2.During step c), a plasma of cleaning or depassivation gas is generated, chosen so as to clean the polymer more effectively than that provided by the etching gas, and which removes the polymer in the zone of bottom 2g of the cavities 2b selectively. Good results are obtained by using a cleaning gas containing oxygen, for example a cleaning gas comprising at least one of the gases: 0 2 , S0 2 , CO, C0 2 , NO, N0 2 , N 2 0. Preferably, the substrate 2 is simultaneously polarized by the polarization source 4, in order to attract the oxygen ions to the substrate 2.
On a pu mesurer la vitesse de gravure du film de polymère par le plasma d'oxygène et la comparer à celle obtenue par le plasma de gaz fluoré SF6 correspondant à 1 ' étape de gravure . La comparaison est illustrée sur la figure 3. On voit que la courbe correspondant au plasma d'oxygène permet une vitesse de nettoyage VN au moins quatre fois supérieure à la vitesse obtenue par un nettoyage à l'hexafluorure de soufre SF6, pour toutes les tensions de polarisation BV entre 0 et 100 volts. Par conséquent, le plasma d'oxygène est au moins quatre fois plus efficace que le plasma de gaz fluoré comme le SF6 pour nettoyer le film de polymère. De plus, dans un plasma de gaz contenant des atomes d'oxygène, on bénéficie de l'effet oxydant des ions mais aussi de l'effet oxydant des atomes, qui sont des particules neutres à trajectoire isotrope. On constate que l'étape de nettoyage permet d'enlever également le film de polymère sur les flans verticaux de cavité au voisinage du fond de la cavité, évitant ainsi le rétrécissement des motifs et permettant d'atteindre des facteurs d'aspect plus élevés.It was possible to measure the etching speed of the polymer film by the oxygen plasma and compare it to that obtained by the fluorinated gas plasma SF 6 corresponding to the etching step. The comparison is illustrated in FIG. 3. It can be seen that the curve corresponding to the oxygen plasma allows a cleaning speed. VN at least four times greater than the speed obtained by cleaning with sulfur hexafluoride SF 6 , for all the polarization voltages BV between 0 and 100 volts. Therefore, the oxygen plasma is at least four times more efficient than the fluorinated gas plasma like SF 6 in cleaning the polymer film. In addition, in a gas plasma containing oxygen atoms, one benefits from the oxidizing effect of the ions but also from the oxidizing effect of the atoms, which are neutral particles with an isotropic trajectory. It is noted that the cleaning step also makes it possible to remove the polymer film on the vertical cavity blanks in the vicinity of the bottom of the cavity, thus avoiding the narrowing of the patterns and making it possible to achieve higher aspect factors.
Comme le temps passé à enlever le film de polymère est fortement diminué, le temps disponible pour l'étape de gravure est augmenté d'autant, et on peut donc augmenter la vitesse nette de gravure et donc augmenter la productivité de l'équipement.As the time spent removing the polymer film is greatly reduced, the time available for the etching step is increased correspondingly, and it is therefore possible to increase the net etching speed and therefore increase the productivity of the equipment.
Au cours de l'étape impulsionnelle de dépassivation sélective ou de nettoyage, le substrat 2 est polarisé à une tension proche de celle utilisée pendant les étapes d'attaque, typiquement de 20 à 120 volts, avantageusement de 20 à 80 volts, de façon à attirer les ions du plasma. La pression de 1 ' atmosphère_5__entourant le substrat 2 est comprise entre 0,5 et 10 Pa, de préférence comprise entre 2 et 5 Pa. Le débit de gaz de nettoyage est compris entre 10 et 100 Sccm, et la durée de l'étape c) est choisie juste suffisante pour assurer un nettoyage efficace de la zone de fond 2g des cavités 2b.During the impulse step of selective depassivation or cleaning, the substrate 2 is biased at a voltage close to that used during the attack steps, typically from 20 to 120 volts, advantageously from 20 to 80 volts, so as to attract ions from the plasma. The pressure of the atmosphere surrounding the substrate 2 is between 0.5 and 10 Pa, preferably between 2 and 5 Pa. The cleaning gas flow rate is between 10 and 100 Sccm, and the duration of step c ) is chosen just sufficient to ensure effective cleaning of the bottom zone 2g of the cavities 2b.
Comme on le voit sur la vue c) de la figure 6, l'étape de dépassivation par action du plasma d'oxygène 02 permet d'enlever efficacement et rapidement le film de polymère sur le fond 2g du premier tronçon 2bl de cavité.As can be seen in view c) of FIG. 6, the step of depassivation by action of the oxygen plasma 0 2 makes it possible to remove efficiently and quickly the polymer film on the bottom 2g of the first section 2bl of cavity.
Ensuite, au cours de l'étape d) , on recommence une étape d'attaque similaire à l'étape a), par action du plasma de gaz de gravure SF6, qui réalise un second tronçon 2b2 de la cavité 2b. On continue ensuite par une étape impulsionnelle de passivation, puis par une étape de dépassivation et ainsi de suite.Then, during step d), an attack step similar to step a) is repeated, by the action of the etching gas plasma SF 6 , which produces a second section 2b2 of the cavity 2b. We then continue with an impulse passivation step, then with a depassivation step and so on.
En pratique, la durée des étapes impulsionnelles de dépassivation sélective c) peut être déterminée en fonction de la durée des étapes de passivation b) qui les précèdent. En effet, plus le film de polymère est épais, plus il faut une étape impulsionnelle de dépassivation sélective longue.In practice, the duration of the impulse steps of selective depassivation c) can be determined as a function of the duration of the passivation steps b) which precede them. In fact, the thicker the polymer film, the longer it takes a pulse step of selective selective depassivation.
D'autre part, la durée des étapes impulsionnelles de dépassivation sélective peut être choisie croissante d'une étape de dépassivation à l'autre au cours du procédé de gravure d'un même substrat 2. En effet, comme indiqué sur la figure 1, les premières étapes de gravure permettent de réaliser une cavité à paroi latérale sensiblement verticale jusqu'à atteindre un facteur d'aspect de l'ordre de 20, sans qu'il soit nécessaire d'utiliser des étapes de nettoyage longues pour conserver la section constante de la cavité. L'intérêt des étapes de dépassivation est alors seulement d'augmenter la rapidité du procédé. Mais ensuite, il devient indispensable d'utiliser les étapes de dépassivation pour garantir l'obtention du facteur d'aspect au-delà de 20~~ou 30. On peut alors imaginer d'utiliser des étapes de dépassivation dont la durée est progressive au fur et à mesure de l'augmentation du facteur d'aspect, ou encore des étapes de dépassivation qui sont en nombre croissant, par exemple en allant de une étape de dépassivation pour trois étapes d'attaque et de passivation, puis une étape de„ dépassivation pour deux étapes _dlattaque et de passivation, puis enfin une étape de dépassivation pour une étape d'attaque et de passivation.On the other hand, the duration of the impulse stages of selective depassivation can be chosen to increase from one depassivation stage to another during the etching process of the same substrate 2. In fact, as indicated in FIG. 1, the first etching steps make it possible to produce a cavity with a substantially vertical side wall until an aspect factor of the order of 20 is reached, without the need to use long cleaning steps to keep the section constant of the cavity. The advantage of the depassivation steps is then only to increase the speed of the process. But then, it becomes essential to use the steps of depassivation to guarantee the obtaining of the aspect factor beyond 20 ~~ or 30. One can then imagine to use steps of depassivation whose duration is progressive with as the aspect factor increases, or alternatively in increasing number of depassivation steps, for example going from one depassivation step to three attack and passivation steps, then a step of „ depassivation for two stages _attack and passivation, then finally a stage of depassivation for a stage of attack and passivation.
Egalement, selon l'invention, on peut prévoir une tension de polarisation du substrat 2 qui soit progressivement croissante d'une étape de dépassivation à l'autre au cours du procédé de gravure d'un substrat 2.Also, according to the invention, it is possible to provide a bias voltage of the substrate 2 which is progressively increasing from one depassivation step to the next during the etching process of a substrate 2.
Le procédé de l'invention permet à la fois d'obtenir industriellement des facteurs d'aspect nettement plus élevés que les procédés connus, tout en garantissant une bonne sélectivité vis à vis des masques de laque photosensible, et en augmentant la vitesse globale de gravure.The method of the invention makes it possible both to obtain industrially considerably higher aspect factors than known methods, while guaranteeing good selectivity with respect to photosensitive lacquer masks, and by increasing the overall etching speed. .
L'effet obtenu est illustré sur la figure 7, qui est une photographie d'une coupe de substrat de silicium après une opération de gravure partielle selon un procédé de la présente invention. On retrouve le substrat 2 dont la surface 2a est recouverte d'un masque 2c. Les cavités 2b en cours de gravure présentent une paroi latérale sensiblement verticale, de sorte que le fond 2g reste de section transversale suffisante pour autoriser une gravure supplémentaire pour accroître la profondeur des cavités 2b, et pour augmenter ainsi le facteur d'aspect.The effect obtained is illustrated in FIG. 7, which is a photograph of a section of silicon substrate after a partial etching operation according to a method of the present invention. We find the substrate 2 whose surface 2a is covered with a mask 2c. Cavities 2b during engraving have a substantially vertical side wall, so that the bottom 2g remains of sufficient cross section to allow an additional etching to increase the depth of the cavities 2b, and thus to increase the aspect factor.
La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations qui sont à la portée de l'homme du métier. The present invention is not limited to the embodiments which have been explicitly described, but it includes the various variants and generalizations which are within the reach of those skilled in the art.

Claims

REVENDICATIONS
1 - Procédé de gravure anisotrope du silicium, dans lequel un substrat (2) de silicium protégé partiellement par un masque1 - Method of anisotropic etching of silicon, in which a silicon substrate (2) partially protected by a mask
(2c) est soumis à une succession alternée d'étapes d'attaque (a) par plasma de gaz de gravure réalisant des cavités (2b) dans les zones de substrat non protégées par le masque (2c) et d'étapes de passivation (b) par plasma de gaz de passivation assurant un dépôt de polymère protecteur (2f) sur les parois des cavités (2b) résultant des étapes d'attaque, caractérisé en ce qu'il comprend en outre des étapes impulsionnelles de dépassivation sélective (c) par lesquelles le dépôt de polymère protecteur (2f) est soumis à l'action d'un plasma de gaz de nettoyage plus efficace que le gaz de gravure et qui enlève le polymère protecteur (2f) dans la zone de fond (2g) des cavités (2b) .(2c) is subjected to an alternating succession of attack steps (a) by etching gas plasma producing cavities (2b) in the substrate areas not protected by the mask (2c) and passivation steps ( b) by passivation gas plasma ensuring a deposit of protective polymer (2f) on the walls of the cavities (2b) resulting from the attack steps, characterized in that it further comprises impulse steps of selective depassivation (c) by which the deposit of protective polymer (2f) is subjected to the action of a plasma of cleaning gas more effective than the etching gas and which removes the protective polymer (2f) in the bottom zone (2g) of the cavities (2b).
2 - Procédé selon la revendication 1, caractérisé en ce qu'il comprend une étape impulsionnelle de dépassivation sélective2 - Method according to claim 1, characterized in that it comprises an impulse step of selective depassivation
(c) après chaque étape de passivation (b) .(c) after each passivation step (b).
3 - Procédé selon la revendication 2, caractérisé en ce que chaque étape impulsionnelle de dépassivation sélective (c) est disjointe de l'étape de passivation—qui- -la précède (b) et de l'étape d'attaque qui la suit (d) .3 - Method according to claim 2, characterized in that each impulse step of selective depassivation (c) is disjoint from the passivation step — which precedes (b) and the attack step which follows it ( d).
4 - Procédé selon l'une quelconque des revendications 1 à4 - Method according to any one of claims 1 to
3 , caractérisé en ce que le gaz de gravure est un gaz fluoré tel que SF6, CF4 ou NF3.3, characterized in that the etching gas is a fluorinated gas such as SF 6 , CF 4 or NF 3 .
5 - Procédé selon l'une quelconque des revendications 1 à5 - Method according to any one of claims 1 to
4, caractérisé en ce que le gaz de passivation est un gaz fluorocarboné tel que CHF3, C2F6, C2F4, C4F8.4, characterized in that the passivation gas is a fluorocarbon gas such as CHF 3 , C 2 F 6 , C 2 F 4 , C 4 F 8 .
6 - Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le gaz de nettoyage contient de l'oxygène.6 - Process according to any one of claims 1 to 5, characterized in that the cleaning gas contains oxygen.
7 - Procédé selon la revendication 6, caractérisé en ce que le gaz de nettoyage comprend l'un au moins des gaz 02, S02, CO, C02, NO, N02, N20.7 - Method according to claim 6, characterized in that the cleaning gas comprises at least one of the gases 0 2 , S0 2 , CO, C0 2 , NO, N0 2 , N 2 0.
8 - Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que, pendant les étapes impulsionnelles de dépassivation sélective (c) , le substrat (2) est polarisé de façon à attirer les ions du plasma. 9 - Procédé selon la revendication 8, caractérisé en ce que le substrat (2) est polarisé à une tension proche de celle utilisée pendant les étapes d'attaque (a), typiquement de 20 à 120 volts, avantageusement de 20 à 80 volts. 10 - Procédé selon l'une des revendications 8 ou 9, caractérisé en ce que la tension de polarisation du substrat (2) est progressivement croissante d'une étape de dépassivation à l'autre au cours du procédé de gravure d'un substrat (2) .8 - Method according to any one of claims 1 to 7, characterized in that, during the impulse steps of selective depassivation (c), the substrate (2) is polarized so as to attract the ions from the plasma. 9 - Method according to claim 8, characterized in that the substrate (2) is biased at a voltage close to that used during the attack steps (a), typically from 20 to 120 volts, advantageously from 20 to 80 volts. 10 - Method according to one of claims 8 or 9, characterized in that the bias voltage of the substrate (2) is gradually increasing from one step of depassivation to another during the process of etching a substrate ( 2).
11 - Procédé selon l'une quelconque des revendications 8 à 10, caractérisé en ce que, pendant les étapes impulsionnelles de dépassivation sélective (c) , la pression de l'atmosphère (5) entourant le substrat (2) est comprise entre 0,5 et 10 Pa, de préférence comprise entre 2 et 5 Pa.11 - Method according to any one of claims 8 to 10, characterized in that, during the impulse steps of selective depassivation (c), the pressure of the atmosphere (5) surrounding the substrate (2) is between 0, 5 and 10 Pa, preferably between 2 and 5 Pa.
12 - Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la durée des étapes impulsionnelles de dépassivation sélective (c) est choisie juste suffisante pour assurer un nettoyage efficace de la zone de fond (2g) des cavités (2b) .12 - Method according to any one of claims 1 to 11, characterized in that the duration of the impulse steps of selective depassivation (c) is chosen just sufficient to ensure effective cleaning of the bottom zone (2g) of the cavities (2b ).
13 - Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la durée des étapes impulsionnelles de dépassivation sélective (c) est déterminée en fonction de la durée des étapes de passivation (b) qui les précèdent.13 - Method according to any one of claims 1 to 12, characterized in that the duration of the impulse steps of selective depassivation (c) is determined according to the duration of the passivation steps (b) which precede them.
14 - Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la durée des étapes impulsionnelles de dépassivation sélective (c) est croissante d'une étape de dépassivation à l'autre au cours du procédé de gravure d'un substrat (2) .14 - Method according to any one of claims 1 to 13, characterized in that the duration of the impulse steps of selective depassivation (c) is increasing from one depassivation step to another during the etching process of a substrate (2).
15 - Dispositif de gravure anisotrope de substrats (2) en silicium, comprenant : - une enceinte (1) étanche conformée pour recevoir et contenir un substrat (2) à graver,15 - Anisotropic etching device for silicon substrates (2), comprising: - a sealed enclosure (1) shaped to receive and contain a substrate (2) to be etched,
- des moyens de création et de maintien d'un vide approprié (6, 7) dans l'enceinte (1),- means for creating and maintaining an appropriate vacuum (6, 7) in the enclosure (1),
- des moyens d'injection de gaz (13) pour injecter sélectivement dans l'enceinte (1) des gaz de gravure, des gaz de passivation et des gaz de nettoyage selon des durées et des débits programmés, - des moyens de génération (8) d'un plasma (9) dans l'enceinte (1), face à la surface (2a) de substrat (2) à graver,- gas injection means (13) for selectively injecting into the enclosure (1) etching gases, passivation gases and cleaning gases according to programmed durations and flow rates, means for generating (8) a plasma (9) in the enclosure (1), facing the surface (2a) of substrate (2) to be etched,
- des moyens de polarisation (4) du substrat (2) ,- polarization means (4) of the substrate (2),
- des moyens de commande qui pilotent les moyens d'injection de gaz, les moyens de génération (8) de plasma et les moyens de polarisation (4) de substrat selon les étapes successives de gravure, de passivation et de dépassivation par plasma telles que définies dans l'une quelconque des revendications 1 à 14.- control means which control the gas injection means, the plasma generation means (8) and the substrate polarization means (4) according to the successive stages of plasma etching, passivation and depassivation such as defined in any one of claims 1 to 14.
16 - Composant à base de silicium à microreliefs (2b) réalisé par un procédé selon l'une quelconque des revendications 1 à 14.16 - Component based on silicon with microreliefs (2b) produced by a process according to any one of claims 1 to 14.
17 - Composant à base de silicium à microreliefs (2b) présentant un facteur d'aspect supérieur à 45. 17 - Component based on silicon with microreliefs (2b) having an aspect factor greater than 45.
EP02806334A 2002-01-03 2002-12-31 Method and device for anisotropic etching of high aspect ratio Withdrawn EP1464078A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0200032 2002-01-03
FR0200032A FR2834382B1 (en) 2002-01-03 2002-01-03 METHOD AND DEVICE FOR ANISOTROPIC SILICON ETCHING WITH HIGH ASPECT FACTOR
PCT/FR2002/004588 WO2003060975A1 (en) 2002-01-03 2002-12-31 Method and device for anisotropic etching of high aspect ratio

Publications (1)

Publication Number Publication Date
EP1464078A1 true EP1464078A1 (en) 2004-10-06

Family

ID=8871147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02806334A Withdrawn EP1464078A1 (en) 2002-01-03 2002-12-31 Method and device for anisotropic etching of high aspect ratio

Country Status (5)

Country Link
US (1) US20050103749A1 (en)
EP (1) EP1464078A1 (en)
JP (1) JP4576122B2 (en)
FR (1) FR2834382B1 (en)
WO (1) WO2003060975A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041226B2 (en) * 2003-11-04 2006-05-09 Lexmark International, Inc. Methods for improving flow through fluidic channels
US7708859B2 (en) * 2004-04-30 2010-05-04 Lam Research Corporation Gas distribution system having fast gas switching capabilities
FR2880469B1 (en) * 2005-01-03 2007-04-27 Cit Alcatel DEVICE FOR MANUFACTURING A MASK BY PLASMA ETCHING OF A SEMICONDUCTOR SUBSTRATE
JP4512529B2 (en) * 2005-07-15 2010-07-28 住友精密工業株式会社 Etching method and etching apparatus
JP4512533B2 (en) * 2005-07-27 2010-07-28 住友精密工業株式会社 Etching method and etching apparatus
JP2009503882A (en) * 2005-08-04 2009-01-29 アビザ テクノロジー リミティド Substrate processing method
KR101174775B1 (en) * 2005-08-29 2012-08-20 엘지디스플레이 주식회사 method for manufacturing of printing plate
WO2008007944A1 (en) * 2006-07-12 2008-01-17 Technische Universiteit Eindhoven Method and device for treating a substrate by means of a plasma
US8187483B2 (en) 2006-08-11 2012-05-29 Jason Plumhoff Method to minimize CD etch bias
GB0616125D0 (en) * 2006-08-14 2006-09-20 Radiation Watch Ltd Etch process
KR101001875B1 (en) 2006-09-30 2010-12-17 엘지이노텍 주식회사 Method for forming a fine pattern using isotropic etching panel member for semiconductor substrate comprising fine pattern produced by the method
US20080146034A1 (en) * 2006-12-13 2008-06-19 Applied Materials, Inc. Method for recess etching
CN101903977A (en) 2007-12-21 2010-12-01 朗姆研究公司 Photoresist double patterning
JP5102653B2 (en) * 2008-02-29 2012-12-19 東京エレクトロン株式会社 Plasma etching method, plasma etching apparatus and computer storage medium
JP5608157B2 (en) * 2008-03-21 2014-10-15 アプライド マテリアルズ インコーポレイテッド Substrate etching system and process method and apparatus
US20090242512A1 (en) * 2008-03-27 2009-10-01 Dalsa Semiconductor Inc. Deep reactive ion etching
JP5305734B2 (en) * 2008-05-19 2013-10-02 ラピスセミコンダクタ株式会社 Dry etching method
KR101795658B1 (en) * 2009-01-31 2017-11-08 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for etching
JP5413331B2 (en) * 2010-08-19 2014-02-12 株式会社デンソー Manufacturing method of semiconductor device
JP5723678B2 (en) 2011-05-31 2015-05-27 東京エレクトロン株式会社 Plasma processing apparatus and gas supply method thereof
CN103620734B (en) 2011-06-30 2017-02-15 应用材料公司 Method and apparatus for fast gas exchange, fast gas switching and programmable gas delivery
JP5961794B2 (en) * 2012-08-29 2016-08-02 サムコ株式会社 Method for manufacturing silicon substrate having concavo-convex structure with high aspect ratio
DE102014216195A1 (en) 2014-08-14 2016-02-18 Robert Bosch Gmbh Apparatus for anisotropically etching a substrate and method for operating an apparatus for anisotropic etching of a substrate
JP6456131B2 (en) * 2014-12-18 2019-01-23 キヤノン株式会社 Substrate processing method and liquid discharge head manufacturing method
JP6609535B2 (en) * 2016-09-21 2019-11-20 株式会社日立ハイテクノロジーズ Plasma processing method
KR102693092B1 (en) * 2021-12-17 2024-08-07 세메스 주식회사 Substrate treating apparatus and method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919469A1 (en) * 1999-04-29 2000-11-02 Bosch Gmbh Robert Process for plasma etching silicon

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612767B2 (en) * 1984-01-25 1994-02-16 株式会社日立製作所 Groove and etching method thereof
JP2502536B2 (en) * 1986-08-08 1996-05-29 松下電器産業株式会社 Pattern formation method
DE4241045C1 (en) * 1992-12-05 1994-05-26 Bosch Gmbh Robert Process for anisotropic etching of silicon
JPH0817796A (en) * 1994-06-28 1996-01-19 Hitachi Ltd Method and apparatus for dry etching and semiconductor device
TW487983B (en) * 1996-04-26 2002-05-21 Hitachi Ltd Manufacturing method for semiconductor device
ATE251341T1 (en) * 1996-08-01 2003-10-15 Surface Technology Systems Plc METHOD FOR ETCHING SUBSTRATES
JPH11195641A (en) * 1998-01-05 1999-07-21 Matsushita Electric Ind Co Ltd Plasma treatment
US6355181B1 (en) * 1998-03-20 2002-03-12 Surface Technology Systems Plc Method and apparatus for manufacturing a micromechanical device
DE19826382C2 (en) * 1998-06-12 2002-02-07 Bosch Gmbh Robert Process for anisotropic etching of silicon
KR100639841B1 (en) * 1998-07-23 2006-10-27 서페이스 테크놀로지 시스템스 피엘씨 Method and apparatus for anisotropic etching
JP4680333B2 (en) * 1998-12-28 2011-05-11 東京エレクトロンAt株式会社 Plasma processing method, etching method, plasma processing apparatus and etching apparatus
JP4221859B2 (en) * 1999-02-12 2009-02-12 株式会社デンソー Manufacturing method of semiconductor device
US20020134749A1 (en) * 2001-01-26 2002-09-26 Chromux Technologies. Inc. Method of making a vertical, mirror quality surface in silicon and mirror made by the method
US6846746B2 (en) * 2002-05-01 2005-01-25 Applied Materials, Inc. Method of smoothing a trench sidewall after a deep trench silicon etch process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919469A1 (en) * 1999-04-29 2000-11-02 Bosch Gmbh Robert Process for plasma etching silicon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO03060975A1 *

Also Published As

Publication number Publication date
FR2834382B1 (en) 2005-03-18
US20050103749A1 (en) 2005-05-19
WO2003060975A1 (en) 2003-07-24
JP4576122B2 (en) 2010-11-04
JP2005515631A (en) 2005-05-26
FR2834382A1 (en) 2003-07-04

Similar Documents

Publication Publication Date Title
EP1464078A1 (en) Method and device for anisotropic etching of high aspect ratio
EP2939262B1 (en) Microelectronic method for etching a layer
EP2750170B1 (en) Method for forming spacers of a transistor gate
FR3017241A1 (en) PLASMA ETCHING PROCESS
FR2477773A1 (en) METHOD FOR MANUFACTURING SEMICONDUCTOR CIRCUITS
FR3023973A1 (en) METHOD FOR FORMING SPACERS OF A GRID OF A TRANSISTOR
WO2007088302A1 (en) Anisotropic etching process
FR2914782A1 (en) SILICON ANISOTROPID DEEP ETCHING PROCESS
FR2530865A1 (en) PLASMA ATTACHING METHOD IN THE MANUFACTURE OF SEMICONDUCTOR DEVICES
EP0000316A1 (en) Method of manufacturing semiconductor devices comprising recessed silicon oxide regions
EP3152786B1 (en) Method for the random texturing of a semiconductor substrate
FR2537341A1 (en) METHOD FOR MAKING A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE PRODUCED ACCORDING TO SAID METHOD
EP3506336B1 (en) Method for etching a three-dimensional dielectric layer
FR2492591A1 (en) METHOD OF MANUFACTURING AN INTEGRATED CIRCUIT
EP3107125A1 (en) Method for forming spacers of a transistor gate
EP3107118B1 (en) Method for forming spaces of a transistor gate
EP0347992B1 (en) Process for producing semiconductor devices comprising at least a step of reactive ion etching
FR3037712A1 (en) METHOD OF REALIZING REASONS BY IMPLANTATION
EP3671815B1 (en) Method for etching a three-dimensional dielectric layer
WO2002005336A1 (en) Method for producing a gate for a cmos transistor structure having a channel of reduced length
EP3792958A1 (en) Method for etching a layer made from iii-v material
EP4053884B1 (en) Method for etching a three-dimensional dielectric layer
FR2478421A1 (en) METHOD FOR MANUFACTURING MICROMINIATURE DEVICES BY REACTIVE ATTACK OF SILICON WITH BOMBING
EP4053883A1 (en) Method for etching a three-dimensional dielectric layer
EP0223721B1 (en) Method for plasma etching of a material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

17Q First examination report despatched

Effective date: 20110117

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEGAL CORPORATION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180620

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 21/308 20060101ALI20030730BHEP

Ipc: B81C 1/00 20060101ALI20030730BHEP

Ipc: H01L 21/3065 20060101AFI20030730BHEP

Ipc: B81B 1/00 20060101ALI20030730BHEP