EP1463404B1 - Bewässerungsmethode und -system - Google Patents

Bewässerungsmethode und -system Download PDF

Info

Publication number
EP1463404B1
EP1463404B1 EP02730659A EP02730659A EP1463404B1 EP 1463404 B1 EP1463404 B1 EP 1463404B1 EP 02730659 A EP02730659 A EP 02730659A EP 02730659 A EP02730659 A EP 02730659A EP 1463404 B1 EP1463404 B1 EP 1463404B1
Authority
EP
European Patent Office
Prior art keywords
cool
section
ground
irrigation
condensing section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02730659A
Other languages
English (en)
French (fr)
Other versions
EP1463404A1 (de
Inventor
Boaz Wachtel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Water and Energy Savers Ltd
Original Assignee
International Water and Energy Savers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Water and Energy Savers Ltd filed Critical International Water and Energy Savers Ltd
Publication of EP1463404A1 publication Critical patent/EP1463404A1/de
Application granted granted Critical
Publication of EP1463404B1 publication Critical patent/EP1463404B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0009Horizontal tubes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/06Watering arrangements making use of perforated pipe-lines located in the soil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/0087Recirculating of the cooling medium
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Definitions

  • the present invention is generally in the field of irrigation and more specifically it is concerned with a method and system for irrigation by condensation.
  • US 4315599 discloses a method and apparatus for automatically watering vegetation whereby the water requirement of vegetation is constantly monitored, and water vapor is selectively condensed out of the atmosphere onto a condensation member that is cooled via an electrically powered cooling unit
  • the present invention provides an irrigation system for recovering water in the soil or air by condensation over pipes buried in the soil at a depth corresponding with the depths of roots of agriculture growth or laid on the ground.
  • adjacent ground surface will be used to denote laying the piping system either or both upon the ground surface or below ground surface above.
  • adjacent ground surface will be used to denote laying the piping system either or both upon the ground surface or below ground surface, as denoted above.
  • ground is used to denote that the piping is received within any media suitable for agriculture growth, wherein the pipes are received within said media.
  • any media suitable for agriculture growth wherein the pipes are received within said media.
  • this term may be understood also as inground, depending on the context
  • ground and soil are interchangeably used to denote the growing media.
  • the present invention solves the above mentioned problem by providing an irrigation system and a method according to claims 1 and 11, as well as claim 20.
  • an irrigation system comprising a cool ground zero cooling system for cooling a liquid to a temperature below ground temperature, closed-loop piping at least partially placed on or adjacent below ground surface as will be described in page 4, line 11 in a more detailed manner and an energized liquid circulating arrangement for circulating the liquid through the system, whereby propelling the cooled liquid through the piping extracts moisture from the environment (air and soil) by condensation over the piping, for consumption by agriculture growth in the vicinity of the piping.
  • substantial portions of the piping may be laid on the ground.
  • closed-loop denoted a system wherein substantially there is no loss of liquid to the environment
  • one or more components of the system are buried under ground for reducing heat loss during hot hours of the day. In some cases it might be advantageous to provide additional cooling systems for increasing performances of the system.
  • the cooling system includes heat exchanger arrangements for cooling the liquid.
  • the system can be a so-called stand alone irrigation system, or it may be used as a co-existing system along with a conventional irrigation system, where each of the systems may be selectively used.
  • the liquid circulating arrangement may be energized by a variety of energy sources such as, solar energy supply, wind energy, electric energy (main supply, generators, etc,), hydraulic energy, biomass energy and source of natural cold water.
  • energy sources such as, solar energy supply, wind energy, electric energy (main supply, generators, etc,), hydraulic energy, biomass energy and source of natural cold water.
  • the piping may be inert with increased section area as compared with a pipe having a circular cross-section. This is possible by forming the piping with indentations or serrated sheath surface, increasing the effective surface of the piping which is in contact with the ground
  • the control system is utilized also for governing flow parameters and operative patterns of the irrigation system, e.g. sensing the humidity of the soil or ambient air at different hours of the day in order to recover maximum condensation liquid, determining hours of the day during which the liquids in the system is at its minimal temperature, etc.
  • a method for underground irrigation according to which a liquid is propelled at a temperature below ground temperature, through a closed piping system adapted to be buried below ground surface, thereby condensing liquid over the piping sheath for consumption by agriculture growth in the vicinity of the piping.
  • the piping is connected to a liquid reservoir and a circulating arrangement.
  • the irrigation system comprises an irrigation system comprising a closed-loop piping system of which at least a portion of which is a condensing section extending on or adjacent below ground surface, and at least another portion of which is a cool-collecting section adapted to be buried under ground at a cool ground zone; said closed-loop piping holding a liquid which is propelled by a circulating system fitted along the piping system; whereby said liquid is chilled by heat exchanging at the cool ground zone and then flows to the condensing section where moisture from the vicinity is extracted by condensation over condensing section readily available for consumption by agriculture growth.
  • cool ground zone refers to a level under ground wherein the mean soil temperature remains essentially constant in spite decrease in depth. This zone is at a depth at which temperature differences are minor.
  • the arrangement in accordance with this application is such that the liquid at the cool-collecting section is chilled by the soil which is significantly cooler than ambient air temperature and as the chilled liquid reaches the condensing section, it causes condensation over sheets of the piping at the condensing section, extracting moisture from the environment which is then to be consumed by the growth.
  • An advantage of the system in accordance with the invention is that the cooled liquid flowing through the condensing section has positive influence on the crops as known per se. Even more so, during winter time, in case of frost on the ground, liquid flowing through the system does not freeze as the temperature at the cool ground zone remains above freezing point and accordingly, liquid flowing through the condensing section may prevent frost and damage of the growth.
  • the irrigation system comprises a piping system formed with at least a condensing section extending on or adjacent below ground surface, a cool-collecting section extending into an underground water reservoir adapted to be buried at a cool ground zone and a return section extending from said condensing section to the reservoir, wherein water from said reservoir is pumped and propelled through said condensing section by a circulating system fitted along the piping system, said water then being returned to said reservoir by the return section; whereby moisture from the vicinity is extracted by condensation over condensing section, readily available for consumption by agriculture growth.
  • a cooling system may be incorporated with the irrigation system, to thereby reduce the temperature of the liquid within the piping for improving condensation performances.
  • control system in association with the irrigation system for determining the due point temperature which is the temperature at which the chilled liquid flowing within the condensing section must reach and the ambient temperature surrounding the condensing section, for moisture to form on sheets of the piping.
  • the liquid flowing through the piping is at essentially constant pressure.
  • An irrigation system in accordance with an embodiment of the invention is arranged such that the piping system comprises several condensing sections and several cool-collecting sections; said cool-collecting sections being arranged in altering depths to thereby minimize heat transfer influence between adjoining sections.
  • Irrigation system comprises two or more parallel closed loop piping systems 82, each having a condensing section 84 extending above or adjacent below ground surface 88, and a cool- collecting section 90 ascending deep under ground surface at a depth D ( Fig. 2 ).
  • the depth D is typically greater then 1 meter which is considered a cool ground zone.
  • the condensing section 84 and the cool-collecting section 90 are in flow communication via tube sections 96 and 98 which together constitute a closed loop piping 82.
  • a control station 102 comprising a circulation system typically a pump P and optionally also a control system designated C which will be specified hereinafter.
  • Circulating system P may be a regular liquid propelling pump which may be energized by different known means, e.g. electric, wind, petrol, biomass, solar, etc.
  • the depth D at which the cool-collecting section 90 extends is selected at a depth such that the soil temperature remains around an average value which is substantially cooler than mean air temperature. Determining the soil temperature as it varies with time and depth may be carried out by different means, using different mathematical models as can be calculated for example in the Website of the Intermountain Resource Inventories, Inc. at http//soilphysics.okstate.edu/toolldt/temperature/index0.html.
  • Arrangement is such that a liquid flowing through the piping 82 is chilled at the cool-collecting section 90 and when it reaches the condensing section 84, owing to temperature difference with ambient temperature, moisture is formed on the sheath of the condensing section 84.
  • the condensing section 84 is located right above ground surface 88, it is to be appreciated that rather the condensing section may be positioned at a short distance below ground surface, e.g. several centimeters below ground surface at a level corresponding with the level of roots of the agriculture growth.
  • the actual depth of the piping should correspond with the depth of roots of a respective agriculture growth, e.g. typically at a depth of between about 5 to 20 cm.
  • the piping may be laid on the ground surface.
  • the ground may also be a soil bedding of any type wherein the piping is received within the bedding. It is known that cold water agriculture yields crops having rapid growth, high yield with high sugar and aromatic content of the fruits and vegetables.
  • each circulating pump may be located at any location of the plant with a common energizing system in accordance with the present examples disclosed herewith.
  • the piping may be made of simple plastic or any other material which provides increased condensation thereabout as known per se.
  • the piping is buried at a depth which corresponds to the root depth of a specific growth planted in the site.
  • the area of contact of the piping with the soil may be increased by providing piping 33 with increased sheath area having a cross-sectional shape formed with a plurality of axial projections 34 ( Fig. 1A ) or a piping 35 formed plurality of axial indentations 36 ( Fig. 1B ).
  • fluid typically a liquid such as water
  • circulating pump 26 if required, several circulating pumps may be fitted in the system
  • thermal gradient develops between the soil and the sheath of the piping 42, resulting in condensation induced around the piping, whereby the humidity of the soil in the vicinity of the piping is converted into liquid available for consumption by the roots of the plants 38.
  • Various energy sources such as solar panels or wind energy may be used to supply the required electric power for energizing the circulating pump.
  • FIG. 3A and Fig. 3B illustrating a particular layout of an irrigation system in accordance with the present invention.
  • the system 110 comprises three closed loop piping systems 112 each having a condensing section 84 (to be laid on ground surface or adjacent below) and cool-collecting sections, two of which designated 90 extending at a first depth D1 (best seen in Fig. 3B ) and an intermediate cool-collecting section 116 extending at a deeper level D2 whereby the connecting tube sections 118 is necessarily longer than corresponding portion 96 on the adjoining piping systems.
  • the piping systems 112 are laterally spaced apart by a distance L ( Fig. 3B ) and each system is provided with a control unit 102 which is buried under ground surface, e.g. for minimal space consuming, for temper preventing and for retaining it at a temperature below ambient temperature.
  • Figs. 3A and 3B The arrangement of Figs. 3A and 3B is useful to ensure that the cool-collecting sections 90 and 116 are sufficiently remote from one another so as to minimize heat transfer between the adjoining sections.
  • the cool-collecting system 124 comprises a heat exchanging unit 126 e.g. in the form of a plurality of looped pipes or a structure provided with fins for increasing heat exchange with the soil so as to rapidly cool the liquid flowing through that section.
  • a heat exchanging unit 126 e.g. in the form of a plurality of looped pipes or a structure provided with fins for increasing heat exchange with the soil so as to rapidly cool the liquid flowing through that section.
  • an irrigation system comprising several closed loop piping systems 130 which rather than each being provided with an independent pump, there is a central control unit 132 provided with a controlling mechanism and a pump unit for selectively circulating liquid through each of the closed loop piping systems 130 at intervals, e.g. depending upon cooling rate of the liquid at the cool-collecting system, etc.
  • control unit which is schematically represented, comprises a variety of control means receiving different inputs such as liquid temperature within piping, soil temperature in the vicinity of the piping, relative humidity in the soil, precipitation (rain, dew, etc.) According to the data received, the control unit emits operating signals to operate or cease operation of the system, pumping rate, etc.
  • FIG. 6 illustrates still another application of the present invention, wherein an irrigation system generally designated 150 comprises a looped condensing section 152 extending on ground surface 154 (though it may just as well be buried adjacent below ground surface).
  • a cool water collecting pipe segment 158 extends from the looped condensing section into a cool water reservoir 160 e.g. a well (dug or natural), and a return water section 162 also extends into the water reservoir 160.
  • a pumping unit 166 is fitted at a suitable location of the piping, e.g. at the looped condensing section 152.
  • Water is pumped from the water reservoir 160 by pump 166 and is propelled through the looped condensing section 152, where moisture from the vicinity is extracted by condensation over the condensing section, readily available for consumption by agriculture growth. The water then flows back by gravity (or by the pump) into the water reservoir 160 .
  • energizing power for a system in accordance with the present invention may be any suitable system such as, for example, solar, wind, electric, hydraulic, biomass, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Greenhouses (AREA)
  • Cultivation Of Plants (AREA)
  • Pipeline Systems (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Claims (23)

  1. Bewässerungssystem umfassend ein Leitungssystem (82, 112, 122, 130, 150) mit geschlossenem Kreislauf, wobei wenigstens ein Teil desselben ein Kondensationsabschnitt (84, 152) ist, der sich auf oder anliegend unterhalb einer Bodenoberfläche erstreckt, und wenigstens ein anderer Teil desselben ein Sammlungsabschnitt (90, 116, 124) für Kühle ist, der vertikal dazu in einer Tiefenrichtung beabstandet ist und angepasst ist, um in dem Boden an einer kühlen Bodenzone zum Betrieb des Bewässerungssystems eingegraben zu werden; wobei das Leitungssystem (82, 112, 122, 130, 150) mit geschlossenem Kreislauf eine Flüssigkeit hält, die durch ein Zirkulationssystem vorwärts getrieben wird, das entlang des Leitungssystems (82, 102, 112, 130, 150) angebracht ist, wodurch besagte Flüssigkeit durch Wärmeaustausch an der kühlen Bodenzone während des Betriebs gekühlt wird und dann zum Kondensationsabschnitt (84, 152) fließt, wo Feuchtigkeit aus der Umgebung durch Kondensation über besagten Kondensationsabschnitt (84, 152) extrahiert wird, die zum Verbrauch durch Ackerbauwuchs leicht verfügbar ist.
  2. Bewässerungssystem nach Anspruch 1, wobei der Sammlungsabschnitt (90, 116, 124) für Kühle wenigstens 3 Meter unter der Bodenoberfläche eingegraben ist.
  3. Bewässerungssystem nach Anspruch 1, wobei der Sammlungsabschnitt (90, 116, 124) für Kühle angepasst ist, um an oder unterhalb einer Tiefe eingegraben zu werden, bei der der Gradient der Temperaturänderung im wesentlichen konstant ist.
  4. Bewässerungssystem nach Anspruch 1, wobei die Flüssigkeit ein Gefrierschutzmittel umfasst, um dadurch ihren Gefrierpunkt abzusenken.
  5. Bewässerungssystem nach Anspruch 1, wobei das Leitungssystem (81) mehrere Kondensationsabschnitte (84, 152) und mehrere Sammlungsabschnitte (90, 116, 124) für Kühle umfasst; wobei besagte Sammlungsabschnitte (90, 116, 124) für Kühle in wechselnden Tiefen angeordnet sind, um dadurch Wärmetransfereinfluß zwischen angrenzenden Abschnitten zu minimieren.
  6. Bewässerungssystem nach Anspruch 1, wobei der Sammlungsabschnitt (90, 116, 124) für Kühle eine Wärmetauscheranordnung (126) zum Steigern der Wärmeaustauschrate verglichen mit einer Leitung mit einem kreisförmigen Querschnitt umfasst.
  7. Bewässerungssystem nach Anspruch 1, wobei mehrere Leitungssysteme (82, 112, 122, 130, 150) mit geschlossenem Kreislauf über ein Flußkontrollventilsystem mit einem zentralen Zirkulationssystem verbunden sind.
  8. Bewässerungssystem nach Anspruch 1, weiter umfassend ein Steuerungssystem (102, 102', 132) zum Aktivieren des zentralen Zirkulationssystems lediglich dann, wenn die Temperatur der kühlen Bodenzone unterhalb eines vorgegebenen Temperaturwerts der Umgebung des Kondensationsabschnitts ist.
  9. Bewässerungssystem nach Anspruch 8, wobei das Steuerungssystem (102, 102', 132) eine Steuereinrichtung umfasst, die mit dem Zirkulationssystem, einem Bodentemperaturmesssystem zum Messen der Temperatur am Sammelabschnitt (90, 116, 124) für Kühle und einem Umgebungstemperatursystem zum Messen der Temperatur am Kondensationsabschnitt (84, 152) verbunden ist; wobei die Messsysteme korrespondierende Temperatursignale erzeugen, die durch die Steuereinrichtung verarbeitet werden, um ein Aktivierungssignal an dem Kondensationsabschnitt (84, 152) immer dann zu erzeugen, wenn die kühle Bodenzone unterhalb eines vorgegebenen Temperaturwerts der Umgebung des Kondensationsabschnitts (84, 152) ist.
  10. Bewässerungssystem nach Anspruch 9, wobei die Temperaturmesssysteme entweder die Flüssigkeitstemperatur oder die Umgebungstemperatur oder beide messen.
  11. Verfahren zum Bewässern, wodurch eine Flüssigkeit durch ein Leitungssystem (82, 112, 122, 130, 150) mit geschlossenem Kreislauf vorwärts getrieben wird, das wenigstens einen Kondensationsabschnitt (84, 152), der sich an oder anliegend unterhalb einer Bodenoberfläche erstreckt, und wenigstens einen Sammlungsabschnitt (90, 116, 124) für Kühle, der angepasst ist, um unter einem Boden an einer kühlen Bodenzone eingegraben zu werden, umfasst; wobei besagte Flüssigkeit an dem Sammlungsabschnitt (90, 116, 124) für Kühle gekühlt wird, wodurch Feuchtigkeit jenseits einer Umhüllung am Kondensationsabschnitt (84, 152) kondensiert wird, die zum Verbrauch durch Ackerbauwuchs leicht verfügbar ist.
  12. Bewässerungssystem nach Anspruch 1, wobei besagter Sammlungsabschnitt (90, 116, 124) für Kühle sich in ein Untergrundwasserreservoir (160) erstreckt, das angepasst ist, um an einer kühlen Bodenzone eingegraben zu werden, und wobei besagtes Leitungssystem (82, 112, 122, 130, 150) einen Rückfiihrungsabschnitt (162) umfasst, der sich vom besagten Kondensationsabschnitt (84, 152) zu dem Reservoir (160) erstreckt; wodurch Wasser aus dem Reservoir (160) durch besagtes Kondensationssystem (84, 152) durch ein Zirkulationssystem, das entlang des Leitungssystems (82, 112, 122, 130, 150) angebracht ist, gepumpt und vorwärts getrieben wird, wobei besagtes Wasser dann zum Reservoir (160) durch den Rückführungsabschnitt (162) zurückgeführt wird; wodurch Feuchtigkeit aus der Umgebung durch Kondensation über den Kondensationsabschnitt (84, 152) extrahiert wird, die zum Verbrauch durch Ackerbauwuchs leicht verfügbar ist.
  13. Bewässerungssystem nach Anspruch 1, wobei der Kondensationsabschnitt (84, 152) wenigstens einen Bereich aufweist, der sich um eine im wesentlichen senkrechte Ebene wellt.
  14. Bewässerungssystem nach Anspruch 13, wobei untere Bereich des sich wellenden Bereichs sich unterirdisch erstrecken, während obere Bereiche desselben sich auf oder oberhalb der Bodenoberfläche erstrecken.
  15. Bewässerungssystem nach Anspruch 1, umfassend mehrere Leitungssegmente, die sich auf oder oberhalb der Bodenoberfläche erstrecken, und mehrere andere Leitungssegmente, die unter dem Boden eingegraben sind.
  16. Bewässerungsverfahren nach Anspruch 11, wobei der Kondensationsabschnitt (84, 152) wenigstens einen Bereich aufweist, der sich um eine im wesentlichen senkrechte Ebene wellt.
  17. Bewässerungsverfahren nach Anspruch 16, wobei untere Abschnitte des sich wellenden Bereichs sich unterirdisch erstrecken, während obere Bereich desselben sich auf oder oberhalb der Bodenfläche erstrecken.
  18. Bewässerungsverfahren nach Anspruch 11, wobei das System mehrere Leitungssegmente umfasst, die sich auf oder oberhalb der Bodenfläche erstrecken, und mehrere andere Leitungssegmente, die unter dem Boden eingegraben sind.
  19. System nach Anspruch 1, wobei der Kondensationsabschnitt (84, 152) unterhalb der Bodenoberfläche in einer Höhe positioniert ist, die mit einer Höhe von Wurzeln des Ackerbauwuchses korrespondieren.
  20. Verfahren zum Verhindern oder Reduzieren einer Schädigung von Ackerbauwuchs, welches umfasst:
    Vortreiben einer Flüssigkeit durch ein Leitungssystem mit geschlossenem Kreislauf, umfassend wenigstens einen Kondensationsabschnitt (84, 152), der sich auf oder unterhalb einer Bodenoberfläche erstreckt, und wenigstens einen Sammlungsabschnitt (90, 116, 124) für Kühle, der angepasst ist, um unterhalb eines Bodens an einer kühlen Bodenzone eingegraben zu werden, wobei die Bodenoberflächentemperatur geringer ist als an der kühlen Bodenzone;
    Verhindern, dass die Flüssigkeit aus dem Kondensationsabschnitt (84, 152) durch Wärmeaustausch an der kühlen Bodenzone gefriert, um Frost und Schädigung an dem Ackerbauwuchs zu verhindern.
  21. Verfahren nach Anspruch 20, wobei besagter Kondensationsabschnitt (84, 152) unterhalb der Bodenoberfläche auf einer Höhe positioniert ist, die mit einer Höhe von Wurzeln des Ackerbauwuchses korrespondiert, wodurch Schädigung an den Wurzeln verhindert oder reduziert wird.
  22. Bewässerungssystem nach Anspruch 1, wobei
    besagter Kondensationsabschnitt (84, 152) sich auf einer Höhe erstreckt, die der Höhe der Wurzeln entspricht, und besagter Sammlungsabschnitt (90, 116, 124) für Kühle angepasst ist, um unter dem Boden an einer kühlen Bodenzone eingegraben zu werden, deren Temperatur geringer ist als diejenige an besagter Bodenoberfläche,
    wodurch besagter Sammlungsabschnitt für Kühle angepasst ist zum Kühlen der Flüssigkeit aus besagtem Kondensationsabschnitt durch Wärmeaustausch an der kühlen Bodenzone, um so besagte Wurzeln für den Ackerbauwuchs zu kühlen.
  23. Verfahren zum Bewässern nach Anspruch 11, wobei
    besagter Kondensationsabschnitt auf einer Höhe angeordnet ist, die der Höhe der Wurzeln entspricht und wobei besagter Sammlungsabschnitt für Kühle angepasst ist, um unter dem Boden an einer kühlen Bodenzone eingegraben zu werden, deren Temperatur kleiner ist als diejenige an besagter Bodenoberfläche,
    wodurch die Flüssigkeit aus dem Kondensationsabschnitt durch Wärmeaustausch an der kühlen Bodenzone gekühlt wird, um so besagte Wurzeln zu kühlen.
EP02730659A 2001-10-26 2002-05-14 Bewässerungsmethode und -system Expired - Lifetime EP1463404B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US44342 1993-04-07
US10/044,342 US6709198B2 (en) 2000-02-14 2001-10-26 Irrigation system and method
PCT/IL2002/000368 WO2003043407A1 (en) 2001-10-26 2002-05-14 Irrigation method and system

Publications (2)

Publication Number Publication Date
EP1463404A1 EP1463404A1 (de) 2004-10-06
EP1463404B1 true EP1463404B1 (de) 2009-09-09

Family

ID=21931851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02730659A Expired - Lifetime EP1463404B1 (de) 2001-10-26 2002-05-14 Bewässerungsmethode und -system

Country Status (13)

Country Link
US (1) US6709198B2 (de)
EP (1) EP1463404B1 (de)
CN (1) CN100353830C (de)
AR (1) AR036959A1 (de)
AT (1) ATE442034T1 (de)
AU (1) AU2002302944B2 (de)
CA (1) CA2464324C (de)
DE (1) DE60233681D1 (de)
ES (1) ES2332448T3 (de)
IL (1) IL161589A0 (de)
MX (1) MXPA04003850A (de)
WO (1) WO2003043407A1 (de)
ZA (1) ZA200403071B (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003213880B2 (en) * 2003-04-11 2006-04-13 Francesco Antonio Martino A portable camp and provision of utility service therefor
US7328584B2 (en) * 2004-02-26 2008-02-12 Common Heritage Corporation Fresh water extraction device
US20070189852A1 (en) * 2006-01-31 2007-08-16 Greg Wolfley Modular network irrigation system
US7878429B2 (en) * 2007-09-28 2011-02-01 Lindsay Corporation Solar powered irrigation machine
US20090166451A1 (en) * 2007-12-27 2009-07-02 Lindsay Corporation Wind-Powered Irrigation Machine
US20110265897A1 (en) * 2010-04-30 2011-11-03 Developmental Technologies, Llc Fertigation Efficacy Enhancement System And Associated Methods
SE534739C2 (sv) * 2010-08-09 2011-12-06 Water Crossing Inc Anordning för utvinnande av kondensvatten med en rörcirkulationskrets
US8876026B2 (en) 2011-10-06 2014-11-04 Lindsay Corporation Method and system for orienting solar powered irrigation systems
GB2495782A (en) * 2011-10-23 2013-04-24 Noel Mcwilliam Solar energy and water treatment apparatus
CN102487783B (zh) * 2011-12-28 2013-06-05 福建农林大学 一种利用太阳能与风能的山地作物灌溉系统
CN102972259A (zh) * 2012-11-02 2013-03-20 北京天诚同创电气有限公司 一种无水灌溉系统
US20140261693A1 (en) * 2013-03-12 2014-09-18 Rain Bird Corporation Irrigation system with freeze protection and method
CN103477956B (zh) * 2013-09-24 2015-04-01 中国水利水电科学研究院 一种盆栽试验自动测灌系统和方法
US9137956B1 (en) 2015-04-08 2015-09-22 Carlos Alfredo Pujadas Sub-surface irrigation system and method
US9668433B2 (en) 2015-04-08 2017-06-06 Carlos Alfredo Pujadas Sub-surface irrigation system and method
CN104776614A (zh) * 2015-04-21 2015-07-15 新疆汉源机械制造有限公司 一种太阳能加热井水灌溉系统
CN105961145A (zh) * 2016-06-30 2016-09-28 余庆县惠农果蔬销售农民专业合作社 蔬菜种植浇灌装置
ES2654381B1 (es) * 2016-08-11 2018-11-30 Raúl PIÑOL PASCUAL Instalación para la producción de agua
US10583389B2 (en) 2016-12-21 2020-03-10 Genesis Systems Llc Atmospheric water generation systems and methods
CN106718671B (zh) * 2017-01-04 2022-03-08 厦门精图信息技术有限公司 一种全自动的市政绿化灌溉系统
CN111163629B (zh) * 2017-08-14 2022-08-19 鲁比康研究有限公司 用于水分配和土壤水分确定的方法和系统
US10577755B1 (en) * 2017-08-16 2020-03-03 Subair Systems Llc Wireless sensor-based turf heating and cooling
US10975534B1 (en) 2017-08-16 2021-04-13 Subair Systems Llc Wireless sensor-based turf heating and cooling
US10159203B1 (en) * 2017-11-16 2018-12-25 Mark E. Ogram Irrigation system
WO2019133389A1 (en) * 2017-12-26 2019-07-04 Earth Purified LLC System and method for reclaiming and optimizing land
CN109699460B (zh) * 2019-03-04 2021-04-13 河北太和洁源水务科技发展有限公司 城市植树造林冷凝器滴灌系统及其控制方法
CN114568266B (zh) * 2022-03-18 2023-06-13 时创科技(青岛)有限公司 一种沙漠地区智能节水灌溉系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1318210A (en) * 1919-10-07 Tubing for automobile-radiators and other purposes
US661944A (en) 1900-03-16 1900-11-20 Edgar S Belden Apparatus for removing moisture from air.
US1442367A (en) 1920-09-04 1923-01-16 Stevens Arthur Means for treating trees to retard the flow of sap therein
US3498077A (en) 1968-02-26 1970-03-03 Us Navy Atmospheric water recovery method and means
US3675442A (en) 1971-02-12 1972-07-11 Rollin J Swanson Atmospheric water collector
US3890740A (en) 1973-05-07 1975-06-24 Technical Materials Limited Fruit bud retarding method and system
US4087893A (en) * 1974-11-08 1978-05-09 Nippon Gakki Seizo Kabushiki Kaisha Process for producing a heat pipe
US4065926A (en) 1975-07-18 1978-01-03 Brandt Edison R Subterranean irrigation system
US4348135A (en) 1976-11-02 1982-09-07 St Clair John C Draining, irrigating and aeration of soil and heating or cooling of soil
US4315599A (en) 1980-03-03 1982-02-16 Biancardi Robert P Apparatus and method for automatically watering vegetation
US4351651A (en) 1980-12-12 1982-09-28 Courneya Calice G Apparatus for extracting potable water
US4459177A (en) 1981-05-08 1984-07-10 Hare Louis R O Ground moisture transfer system
US4577435A (en) 1981-08-17 1986-03-25 Springer Edward A Micro-climate temperature control apparatus
DE3830647A1 (de) 1988-09-09 1990-03-22 Adolf Prof Dr Rer Nat Weber Wassergewinnung aus der natuerlichen luftfeuchte zum pflanzenanbau, zur tierzucht und fuer den menschlichen bedarf
US5368092A (en) 1993-12-27 1994-11-29 Biotherm Hydronic, Inc. Apparatus and method for controlling temperature of a turf field
FI941303A (fi) 1994-03-18 1995-09-19 Heikki K Auvinen Kylmätekniikkaan perustuva kuivien alueiden kastelujärjestelmä
US5598661A (en) 1996-02-22 1997-02-04 The Israeli International Company For Investments "Hatchiya Ltd." Soil irrigation solar still system
US6148559A (en) 1997-10-20 2000-11-21 May Business Trust Fruit tree budding control method and apparatus

Also Published As

Publication number Publication date
US6709198B2 (en) 2004-03-23
WO2003043407A1 (en) 2003-05-30
EP1463404A1 (de) 2004-10-06
CA2464324C (en) 2008-04-01
AU2002302944B2 (en) 2006-08-17
IL161589A0 (en) 2004-09-27
ZA200403071B (en) 2005-03-30
CN100353830C (zh) 2007-12-12
DE60233681D1 (de) 2009-10-22
CA2464324A1 (en) 2003-05-30
US20020141828A1 (en) 2002-10-03
ATE442034T1 (de) 2009-09-15
AU2002302944A1 (en) 2003-06-10
ES2332448T3 (es) 2010-02-05
CN1596071A (zh) 2005-03-16
AR036959A1 (es) 2004-10-13
MXPA04003850A (es) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1463404B1 (de) Bewässerungsmethode und -system
EP2338327A1 (de) Regenwandbildungssystem mit der Fähigkeit zur geologischen Grundwasserzirkulation und zum künstlichen Wiederaufladen von Regenwasser
CN102986499A (zh) 一种基于地表温差的自供电辅冷空气汲水自灌溉系统
US6419422B1 (en) Underground irrigation method and system
WO2015035468A1 (en) Soil temperature regulation system
JP2014511151A (ja) 芝用格子
Gudmundsson The elements of direct uses
KR20120024339A (ko) 수막재배용 시설하우스의 냉난방시스템
AU2006230755B2 (en) Irrigation Method and System
CN116596344A (zh) 基于融雪水利用的寒区防止旱涝灾害可持续高效调控方法
KR20110131445A (ko) 건조 지역에서의 집수장치
Moritani et al. Root-zone cooling evaluation using heat pump for greenhouse strawberry production
IL161589A (en) Irrigation method and system
JP5145465B1 (ja) 地中熱交換システム
JP6709128B2 (ja) 熱交換システム
KR200362988Y1 (ko) 지열을 이용한 시설원예 냉난방 장치
EP1224357B1 (de) Wärmespeicheranlage
JP4774530B2 (ja) 緑化システム
CN219612676U (zh) 一种适用于温室的跨季节太阳能主动蓄放热结构
Agodzo et al. Trickle irrigation of okra based on small pan evaporation schedule under glasshouse condition
JP2014005965A (ja) 地中熱熱交換システム
Shabaan et al. Effect of irrigation systems improvement on water unit productivity under North Delta region conditions of Egypt
KR20230160487A (ko) 건조지역 물 공급 장치
Amariei et al. Adapting smart irrigation systems-sustainable solution for the future.
JP2003164222A (ja) 地温制御方法およびその装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WACHTEL, BOAZ

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTERNATIONAL WATER & ENERGY SAVERS LTD.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTERNATIONAL WATER & ENERGY SAVERS LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60233681

Country of ref document: DE

Date of ref document: 20091022

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2332448

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

26N No opposition filed

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100514

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200526

Year of fee payment: 19

Ref country code: TR

Payment date: 20200514

Year of fee payment: 19

Ref country code: DE

Payment date: 20200529

Year of fee payment: 19

Ref country code: FR

Payment date: 20200527

Year of fee payment: 19

Ref country code: ES

Payment date: 20200609

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200528

Year of fee payment: 19

Ref country code: IT

Payment date: 20200522

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60233681

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210514

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210514

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210515