EP1462620A1 - Verfahren und Vorrichtung zur Bestimmung des Betriebszustandes in einer Brenkraftmaschine mit Nockenprofilwechsel - Google Patents
Verfahren und Vorrichtung zur Bestimmung des Betriebszustandes in einer Brenkraftmaschine mit Nockenprofilwechsel Download PDFInfo
- Publication number
- EP1462620A1 EP1462620A1 EP03075870A EP03075870A EP1462620A1 EP 1462620 A1 EP1462620 A1 EP 1462620A1 EP 03075870 A EP03075870 A EP 03075870A EP 03075870 A EP03075870 A EP 03075870A EP 1462620 A1 EP1462620 A1 EP 1462620A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- camshaft
- angular acceleration
- cam
- threshold value
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/14—Tappets; Push rods
- F01L1/143—Tappets; Push rods for use with overhead camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0036—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2800/00—Methods of operation using a variable valve timing mechanism
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/04—Sensors
- F01L2820/041—Camshafts position or phase sensors
Definitions
- the invention relates to a method for determining which of a first cam having a first cam profile and a second cam, having a second cam profile taller than said first cam profile currently, is acting on lift mechanisms for gas exchange valves according to the preamble of claim 1. Furthermore the invention relates to an apparatus for determining which of a first cam having a first cam profile and a second cam, having a second cam profile taller than said first cam profile, currently is acting on lift mechanisms for gas exchange valves according to the preamble of claim 11.
- the timing of the opening and closing of the intake and exhaust valves must be set to optimise the power output and efficiency of the engine over a reasonable range of speeds and loads.
- variable valve control In internal combustion engine with variable valve control, it is necessary to monitor the function of this variable valve control at regular intervals.
- known monitoring methods determine the position of a component used to adjust the valve control in order to thus determine the current position of the valve control.
- a monitoring method of this kind provides only a general idea of how the valve control is being controlled at a given moment.
- variable valve control such as cam profile switching (CPS) technology
- CPS cam profile switching
- US 6213 068 B1 discloses a method which is based on the difference in the air charge inducted in the cylinders for different lifts.
- the inducted air charge measured by Manifold Air Flow (MAF) sensor is compared with the air charge model based on the measured position of the throttle flap, intake manifold pressure and engine speed.
- the CPS state is associated with the error between measured and modelled air charge.
- the drawback of the method described in US 6213 068 B1 is that the method does not allow the individual failure detection in the cases where the difference in the volumetric efficiency between low and high lifts is not large. Moreover, the low frequency pressure oscillations induced by the failure of one bank make the failure detection difficult.
- the intake manifold pressure signal can be used for the CPS state detection the use of the high frequency component of the pressure signal which includes the information about the CPS state is not discussed in the US 6213 068 B1.
- the drawback of the method proposed in the US 6 006 152 is the fact that the detection is restricted to the steady-state case only.
- the detection methods described in the US 6 006 1521 can be seen as an indirect method.
- the detection method based on the engine speed nonuniformity suffers from the dependence of the combustion state of the engine on ignition and Air/Fuel ratio. In other words any problems in the ignition or fuel system affect this diagnostic method.
- a method which is based on the intake manifold pressure irregularities suffers from the dependence of the irregularities on purge flow, positions of Variable Intake System (VIS) flaps, etc... Therefore there is a necessity to develop the CPS diagnostic method which is based on the direct information about the valve events.
- VIS Variable Intake System
- An object of the invention is to provide a method for CPS diagnostics which is based on the direct information about the valve events.
- valve lifts based on the estimated camshaft acceleration. This approach is based on the direct information about the valve lift.
- Information regarding the valve lift is provided from the fact that different levels of torque are required to drive the inlet camshaft at the different valve lift levels.
- the CPS state can thus be estimated from information about identified torque levels.
- Camshaft shall instantaneously accelerate and decelerate at different rates for different values of valve lift. Different levels of torque are required to drive the inlet valve camshaft at the different valve lift levels.
- a camshaft position sensor having sufficient resolution, that is preferably with the possibility of detecting at least 60 fixed position per cam shaft revolution, it is possible, with suitable processing, to identify the acceleration/deceleration characteristics of a healthy system and a failed system.
- Camshaft torque characteristics has a wave form whose frequency is proportional to the camshaft speed.
- the positive torque corresponds to the valve closing due to the valve spring energy.
- the negative torque represent the valve opening process and peaks are at the points which correspond to the maximum resistance to the valve operation.
- the negative torque represent the work which is required to overcome the cylinder pressure and to open the valves.
- the method for detecting the valve lift according to the invention is based on the fact that maximum resistance to the valve operation (maximum negative torque) is different for low and high valve lift levels. This difference is an input to the diagnostic algorithms to make a decision about successful cam profile switching.
- the camshaft torque is proportional to the camshaft angular acceleration which, in turn, is estimated via the camshaft angle measurements by the differentiation.
- the camshaft acceleration is estimated via a spline interpolation method which gives the high quality acceleration estimate due to the analytical differentiation.
- the idea for the spline interpolation method is to fit a polynomial of a second order to the camshaft angle measurements as a function of time in least squares sense and take the derivatives analytically.
- the invention also relates to an apparatus for determining which of a first cam having a first cam profile and a second cam, having a second cam profile taller than said first cam profile, currently is acting on lift mechanisms for gas exchange valves according to the characterising portion of claim 11.
- the method for detecting the valve lift according to the invention is based on the fact that maximum resistance to the valve operation (maximum negative torque) is different for low and high valve lift levels. This difference is an input to the diagnostic algorithms to make a decision about the successful cam profile switching.
- camshaft torque depends on number of variables. According to a preferred embodiments those dependencies should be taken into account when making diagnostic decisions.
- the camshaft torque is proportional to the camshaft angular acceleration which, in turn, is estimated via the camshaft angle measurements by the differentiation.
- the diagnostic decision making process can be described by the following inequality: where is the estimated camshaft angular acceleration. If the absolute value of the camshaft angular acceleration exceeds the ,threshold b(. ), which is the function (mapping) of the throttle angle th, intake and exhaust VVT positions vvt i , vvt e , engine speed n e , and oil temperature T, then the high lift profile is engaged, otherwise the low lift cam profile is used.
- the detection method is based on the fact that the maximal value of the angular acceleration is bigger for high cam profile than for low cam profile since the maximal resistance to the valve operation (maximal negative torque) is higher for the high valve lift.
- the method allows the cylinder individual failure detection and the comparison as shown in inequality (E1) should be done on the cylinder individual basis.
- the camshaft acceleration is estimated via the spline interpolation method which gives the high quality acceleration estimate due to the analytical differentiation.
- the idea for the spline interpolation method is to fit a polynomial of a second order to the camshaft angle measurements as a function of time in least squares sense and take the derivatives analytically.
- a spline interpolation method is proposed.
- a spline interpolation method is based on on-line least-squares polynomial fitting over the moving window of a size W.
- the advantage of this method over the backward difference method is its nice transient behavior.
- the idea for the spline interpolation method is to fit a polynom of a certain order as a function of time in least squares sense and take the derivatives analytically.
- a background to this method is described in Diop S., Grizzle J., Moraal P., Stefanopoulou A., " Interpolation and Numerical Differentiation for Observer Design ", Proc. American Control Conference, Baltimore, Maryland, June, 1994, p.p. 1329 -1333., which is incorporated by reference.
- Camshaft angular acceleration should be estimate from the camshaft angle measurements.
- ⁇ (t) c 1 + c 2 t + c 3 t 2
- ⁇ and (t) is the estimate of the camshaft angle ⁇ (t)
- t is time
- the objective is to find coefficients c 1k , c 2k and c 3k such that the following sum becomes minimal at every step where W is the size of the moving in time window. Notice that, in order to minimize S k the coefficients c 1k , c 2k and c 3k should be updated at every step k.
- This algorithm has one parameter only to be calibrated which is the size of the moving window. If the derivative of the camshaft angle changes slow it is advisable to have relatively large window size to filter out measurement noise. If the rotational velocity changes fast, the window size should be chosen small enough to capture corresponding fast changes in the derivative. The price for that is the noise in the estimated signal. Ideally, the windows size should be adjustable so that it is small enough during transients in order to capture fast changes in the derivative of the signal, and big enough under steady-state conditions so that to filter out measurement, space-discretization noise. This approach is currently under investigation.
- Camshaft angular accelerations calculated with (11) ( rad / sec 2 ) and with TYCON are presented in Fig. 3, lines numbered (1) and (2) respectively. Simulations show relatively good agreement of the method proposed here and the TYCON simulation system.
- the method was evaluated by using measurements from a V6 engine.
- High resolution encoder was mounted on the camshaft.
- the encoder signal was converted into the rotational velocity.
- the velocity measurements were loaded in MATLAB.
- the rotational acceleration is computed in MATLAB via the spline interpolation method, described above.
- Fig. 4 shows the difference in the variation in the camshaft angular acceleration ( rad / sec 2 ) for different CPS modes ( for low and high lift), (the line marked (1) corresponds to the camshaft acceleration variation for low lift and the line marked (2) is the camshaft acceleration variation for high lift ).
- FIG. 5 shows in schematic form an internal combustion engine 1 equipped with a variable valve control 2.
- the variable valve control 2 is arranged to control gas exchange into or out from a plurality of combustion chambers, preferably in the form of cylinders 3 of the combustion engine 1 by selection of cam shaft profile of a cam shaft 4.
- the cam shaft 4 has a first cam having a first cam profile and a second cam having a second cam profile taller than said first cam profile, as will be described in further detail below.
- the variable valve control 2 includes an actuating device 5, which is controlled by an electronic control unit 6.
- the actuating device 5 manoeuvres the cam shaft in order to set which cam profile is currently is acting on lift mechanisms 7 for gas exchange valves 8.
- the variable valve control which in the embodiment shown is arranged on the intake valve, can also be arranged on the exhaust valve.
- the cam profile which is currently is acting on lift mechanisms is the cam profile, which during a certain operation condition of the engine is controlling the movement of a valve.
- cam profile which is currently is acting on lift mechanisms is intended the cam profile that currently is active.
- variable valve control may optionally be applicable for variable valve control 2 which also is arranged to control the position of a camshaft 4, which is variable with respect to the angular position of a crankshaft 8 by means of an adjusting device.
- the actuating device 5 for change of camshaft mode is controlled by a valve control unit 10 arranged in the electronic control unit 6.
- the control is performed in a manner know to a person skilled in the art in order to provide switching of camshaft mode in dependence of engine operating condition.
- the electronic control unit 6 furthermore includes an evaluation device 11, and a monitoring device 12.
- Evaluation device 11 and monitoring device 12 together with camshaft sensor 9, which in this case acts as a sensing device to detect nonuniformity of the rotational speed of the camshaft 4, together constitute an apparatus for monitoring the which of a first cam having a first cam profile and a second cam having a second cam profile taller than said first cam profile currently is acting on lift mechanisms 7 for gas exchange valves 8.
- Evaluating device 11 receives from camshaft sensor 9 a signal corresponding to the angular position of camshaft 4.
- this signal consists of a pulse train, with each pulse corresponding to a specific section of an angle swept by camshaft 4.
- the pulse train may be created by use of a dented wheel 13, which is rotated by the camshaft 4.
- the sensor 9 senses the proximity of the wheel 13 whereby an output signal indicating the position of the camshaft is provided. Sensors of this type are well known to persons skilled in the art and will therefore not be described in further detail.
- Preferably at least 60 indentations are provided on the wheel 13.
- the evaluating device 11 includes means 14 for determining camshaft angular acceleration from the signal provided from the camshaft sensor 9.
- the camshaft angular acceleration may be determined by any known method but is preferably determined according to the method of least square fitting of a polynomial according to what is disclosed above.
- the evaluating device 11 may according to a preferred embodiment of the invention furthermore include means 15 for estimating a maximum value of said camshaft angular acceleration.
- the maximum value may be determined in a conventional manner by comparing discrete values.
- the absolute value of the maximum value is determined in said means 15 for estimating a maximum value.
- the monitoring device 12 includes means 16 for comparing said camshaft angular acceleration with a threshold value, and means 17 for determining which of said first and second cam profiles is acting on said lift mechanism by using said camshaft angular acceleration.
- the means for determining which of said first and second cam profiles is acting on said lift mechanism is arranged to decide that said second cam profile is acting on said lift mechanism in the event said camshaft angular acceleration exceeds said threshold value and that said first cam profile is acting on said lift mechanism in the event said camshaft angular acceleration does not exceed said threshold value.
- the monitoring device includes means 18 for determining the threshold value.
- the threshold b( . ) is the function (mapping) of the throttle angle th, intake and exhaust WT positions vvt j , vvt e , engine speed n e , and oil temperature T. The map for these variables are determined by experiments.
- the means 18 for determining the threshold value receives input data from an throttle sensor 19, an engine speed sensor 20, an oil temperature sensor 21 and a camshaft rotational phase detector (not shown) in the event variable cams are used information from a phase shift detector.
- the camshaft rotational phase detector may be of the type described in EP 1 229 215, which is incorporated by reference.
- the means 14 for determining camshaft angular acceleration is arranged to determine camshaft acceleration by an on line least square polynomial fitting.
- the means 14 for determining camshaft angular acceleration includes: means 14A for assigning a polynomial representing camshaft angle position, said polynomial being characterised by a set of model coefficients, means 14B for determining said model coefficients, and means 14C for using a second derivative of said polynomial as a representation for angular acceleration.
- All the different means included in the means for evaluating 11 and the means for monitoring 12 are constituted by programs running in a microcontroller having processing means and storage areas.
- the microcontroller is programmed to execute calculation of formulas (E4) - (E11) by use of information provided from the camshaft sensor 9.
- valve assembly which may be used in connection with the invention in order to provided two different cam modes.
- a valve 110 having a head 111 which is movable in an axial direction to seal the passageway 105.
- the valve 110 is slidably mounted in a bore 112 in cylinder block 113 and passes through a cavity 114.
- a spring 115 one end of which rests against a lower surface of said cavity 114 and the other end of which is located in a collar 116 mounted on the valve 110 so as to generally bias the valve 110 in an upwards direction.
- the tappet assembly 118 comprises a co-axial inner tappet 120 and outer tappet 121.
- the inner tappet bears on a hydraulic lash adjustment element 122 of known type which in turn bears on the upper end of valve 110.
- the tappet assembly 118 is slidably mounted within bore 119 which extends from the cavity 114 to the upper surface of the cylinder block 113.
- a cylinder head cover may be positioned over and secured to the upper surface of the cylinder block 113.
- a rotatable camshaft 130 which is drivable in the usual arrangement 131, which comprises a pair of outer cam lobes 126 in between which is situated a central cam lobe 123.
- the central cam lobe 123 has a profile designed to optimise engine performance over a selected portion of engine speed and load range.
- the central cam lobe 123 is illustrated as having a generally eccentric form it is envisaged that this cam lobe can be a circular form allowing valve deactivation while under control of this cam lobe.
- the outer cam lobes 126 are of a substantial identical profile to each other and are designed to optimise engine performance over another portion of engine speed and load range.
- the camshaft 130 is located such that in low speed conditions an upper surface 120a of the inner tappet 120 is driven by the central cam lobe via finger follower 124.
- the upper surface 121 a of outer tappet 121 is kept in contact with the outer cam lobes 126 by means of a spring 125 which is coaxially positioned around spring 115 and which locates at one end in recesses 132 in the lower end surface of outer tappet 121.
- spring 125 bears on the lower surface of cavity 114
- Cam profile selection is achieved by either connecting the inner tappet 120 and outer tappet 121 so that they move together which allows the outer tappet 121 and outer cam lobes 126 to control the valve 110 or by disconnecting the inner tappet 120 and outer tappet 121, which allows the inner tappet 120 and inner cam lobe 123 to control valve 110.
- a valve assembly which may be used in connection with the invention in order to provided two different cam modes, it is referred to US 5287830, which is incorporated by reference.
- FIG 7 a flow chart of determining which of a first cam having a first cam profile and a second cam having a second cam profile taller than said first cam profile currently is acting on lift mechanisms for gas exchange valves is shown.
- step 210 the camshaft angular acceleration is determined.
- a second step 220 the camshaft angular acceleration is compared with a threshold value.
- a third method step 230 it is determined which of said first and second cam profiles is acting on said lift mechanism 7 by using information regarding camshaft angular acceleration. Characteristics of the representation of the camshaft angular acceleration are used to determine which cam shaft is acting on the lift mechanism. This is possible since the different cam profiles has different influence on the cam shaft angular acceleration. Thus it is possible to decide which cam profile is currently active by comparing obtained information about the cam shaft angular acceleration with reference values stored in a memory. This can be done by a comparator unit, which is arranged for performing a comparison between obtained information about the cam shaft angular acceleration and said reference values.
- the step of determination 230 is performed by deciding that the second cam profile is acting on said lift mechanism in the event said camshaft angular acceleration exceeds said threshold value and that said first cam profile is acting on said lift mechanism in the event said camshaft angular acceleration does not exceed said threshold value.
- the first method step 210 determines camshaft acceleration by an on line least square polynomial fitting.
- the first method step includes the following substeps:
- the model coefficients are preferably decided by least square optimising using equation (E4).
- the model coefficients can be obtained by solving the equation system (E9).
- the threshold value is calculated in the means for determining a threshold value by interpolation in a matrix.
- the matrix is obtained by experiments.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Valve Device For Special Equipments (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003602429 DE60302429T2 (de) | 2003-03-27 | 2003-03-27 | Verfahren und Vorrichtung zur Bestimmung des Betriebszustandes in einer Brenkraftmaschine mit Nockenprofilwechsel |
EP20030075870 EP1462620B1 (de) | 2003-03-27 | 2003-03-27 | Verfahren und Vorrichtung zur Bestimmung des Betriebszustandes in einer Brenkraftmaschine mit Nockenprofilwechsel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20030075870 EP1462620B1 (de) | 2003-03-27 | 2003-03-27 | Verfahren und Vorrichtung zur Bestimmung des Betriebszustandes in einer Brenkraftmaschine mit Nockenprofilwechsel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1462620A1 true EP1462620A1 (de) | 2004-09-29 |
EP1462620B1 EP1462620B1 (de) | 2005-11-23 |
Family
ID=32798959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20030075870 Expired - Lifetime EP1462620B1 (de) | 2003-03-27 | 2003-03-27 | Verfahren und Vorrichtung zur Bestimmung des Betriebszustandes in einer Brenkraftmaschine mit Nockenprofilwechsel |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1462620B1 (de) |
DE (1) | DE60302429T2 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1754866A1 (de) * | 2005-08-19 | 2007-02-21 | Delphi Technologies, Inc. | Verfahren zur Diagnose des Betriebszustandes einer zweistufigen, variablen Ventilhubsteuerung |
EP1754867A1 (de) * | 2005-08-19 | 2007-02-21 | Delphi Technologies, Inc. | Verfahren zur effektiven Diagnose des Betriebszustandes einer variablen Ventilhubsteuerung |
ITBO20090599A1 (it) * | 2009-09-21 | 2011-03-22 | Magneti Marelli Spa | Metodo di verifica della effettiva apertura di una valvola di aspirazione in un motore a combustione interna |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0609451A1 (de) * | 1992-06-09 | 1994-08-10 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Verfahren zur erkennung von fehlzündungen durch drehzahländerung der kurbelwelle |
US5406835A (en) * | 1992-06-27 | 1995-04-18 | Mercedes Benz Ag | Method for monitoring the switching process of a coupling device |
US6006152A (en) * | 1996-07-10 | 1999-12-21 | Dr. Ing H.C.F. Porsche Ag | Method and device for monitoring the position of a variable valve control |
US6213068B1 (en) * | 1998-12-11 | 2001-04-10 | Robert Bosch Gmbh | Method of checking the operability of the variable valve control in an internal combustion engine |
EP1103707A2 (de) * | 1999-11-27 | 2001-05-30 | Dr.Ing. h.c.F. Porsche Aktiengesellschaft | Ventilsteuerung für eine Brennkraftmaschine |
-
2003
- 2003-03-27 EP EP20030075870 patent/EP1462620B1/de not_active Expired - Lifetime
- 2003-03-27 DE DE2003602429 patent/DE60302429T2/de not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0609451A1 (de) * | 1992-06-09 | 1994-08-10 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Verfahren zur erkennung von fehlzündungen durch drehzahländerung der kurbelwelle |
US5406835A (en) * | 1992-06-27 | 1995-04-18 | Mercedes Benz Ag | Method for monitoring the switching process of a coupling device |
US6006152A (en) * | 1996-07-10 | 1999-12-21 | Dr. Ing H.C.F. Porsche Ag | Method and device for monitoring the position of a variable valve control |
US6213068B1 (en) * | 1998-12-11 | 2001-04-10 | Robert Bosch Gmbh | Method of checking the operability of the variable valve control in an internal combustion engine |
EP1103707A2 (de) * | 1999-11-27 | 2001-05-30 | Dr.Ing. h.c.F. Porsche Aktiengesellschaft | Ventilsteuerung für eine Brennkraftmaschine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1754866A1 (de) * | 2005-08-19 | 2007-02-21 | Delphi Technologies, Inc. | Verfahren zur Diagnose des Betriebszustandes einer zweistufigen, variablen Ventilhubsteuerung |
EP1754867A1 (de) * | 2005-08-19 | 2007-02-21 | Delphi Technologies, Inc. | Verfahren zur effektiven Diagnose des Betriebszustandes einer variablen Ventilhubsteuerung |
ITBO20090599A1 (it) * | 2009-09-21 | 2011-03-22 | Magneti Marelli Spa | Metodo di verifica della effettiva apertura di una valvola di aspirazione in un motore a combustione interna |
EP2299096A1 (de) * | 2009-09-21 | 2011-03-23 | Magneti Marelli S.p.A. | Verfahren zur Bestimmung der Öffnung eines Ansaugventils eines Verbrennungsmotors |
Also Published As
Publication number | Publication date |
---|---|
DE60302429T2 (de) | 2006-08-03 |
EP1462620B1 (de) | 2005-11-23 |
DE60302429D1 (de) | 2005-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102635453B (zh) | 可变气门升程机构故障检测系统和方法 | |
US7546827B1 (en) | Methods for variable displacement engine diagnostics | |
EP3704370B1 (de) | System und verfahren zur erkennung defekter turbodieselzylinder | |
EP1705353B1 (de) | Vorrichtung und Verfahren zur bewertung der Einlassluftmenge in einer Brennkammer einer Brennkraftmaschine | |
CN102192018B (zh) | 用于控制内燃发动机的方法 | |
EP1754866B1 (de) | Verfahren zur Diagnose des Betriebszustandes einer zweistufigen, variablen Ventilhubsteuerung | |
CN101881184B (zh) | 两级油控制阀诊断系统 | |
CN103628994B (zh) | 使用爆震感测的气门机构故障指示系统和方法 | |
US7308355B2 (en) | Method and control device for diagnosing a charge cycle valve stroke adjusting system of an internal-combustion engine | |
US5195470A (en) | Variable cam engine | |
US7302835B2 (en) | Method and device for determining a phase position between a crankshaft and a camshaft of an internal combustion engine | |
EP1811161B1 (de) | Verfahren zur Diagnose des Betriebs eines Nockenprofil-Umschaltsystems | |
US8096271B2 (en) | System and method for determining a camshaft position in a variable valve timing engine | |
KR102372257B1 (ko) | 내연 기관의 실화를 진단하기 위한 방법 | |
US8489312B2 (en) | Method and system for detecting operating errors in a variable valve timing engine | |
JPH0925851A (ja) | 内燃機関の排気還流装置における診断装置 | |
EP1462620B1 (de) | Verfahren und Vorrichtung zur Bestimmung des Betriebszustandes in einer Brenkraftmaschine mit Nockenprofilwechsel | |
CN103628993A (zh) | 使用发动机不发火的气门机构故障指示系统和方法 | |
EP1559898B1 (de) | Verfahren zur Bestimmung von Drehzahlschwankungen eines Motors | |
US20040187566A1 (en) | Diagnostic apparatus for valve timing control system | |
US7467042B2 (en) | Method and control unit for diagnosing a valve lift adjustment system of an internal combustion engine | |
US7383799B1 (en) | Method for monitoring the operating condition of an engine valve system | |
JP4760423B2 (ja) | 内燃機関のオイル劣化判定装置 | |
EP1457644B1 (de) | Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung | |
US7254476B2 (en) | Method and device for ascertaining valve timing for gas-exchange valves of an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17P | Request for examination filed |
Effective date: 20050316 |
|
AKX | Designation fees paid |
Designated state(s): DE GB SE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60302429 Country of ref document: DE Date of ref document: 20051229 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: FORD GLOBAL TECHNOLOGIES, LLC. |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060824 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080211 Year of fee payment: 6 Ref country code: SE Payment date: 20080310 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080331 Year of fee payment: 6 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090328 |