EP1457644B1 - Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung - Google Patents

Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung Download PDF

Info

Publication number
EP1457644B1
EP1457644B1 EP20030075727 EP03075727A EP1457644B1 EP 1457644 B1 EP1457644 B1 EP 1457644B1 EP 20030075727 EP20030075727 EP 20030075727 EP 03075727 A EP03075727 A EP 03075727A EP 1457644 B1 EP1457644 B1 EP 1457644B1
Authority
EP
European Patent Office
Prior art keywords
engine speed
function
engine
representing
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030075727
Other languages
English (en)
French (fr)
Other versions
EP1457644A1 (de
Inventor
Alexander Anatoljevich Stotsky
Sören ERIKSSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP20030075727 priority Critical patent/EP1457644B1/de
Priority to DE2003602426 priority patent/DE60302426T2/de
Publication of EP1457644A1 publication Critical patent/EP1457644A1/de
Application granted granted Critical
Publication of EP1457644B1 publication Critical patent/EP1457644B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/143Tappets; Push rods for use with overhead camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Definitions

  • the invention relates to a method for monitoring the position of a variable valve control in a combustion engine according to the preamble of claim 1.
  • the invention relates to a method for monitoring which of a first cam having a first cam profile and a second cam having a second cam profile greater that said first cam profile currently is acting on lift mechanisms for gas exchange valves being arranged for controlling gas exchange into or out from said plurality of cylinders.
  • the invention further relates to an apparatus for monitoring the position of a variable valve control in a combustion engine according to the preamble of claim 10.
  • the invention relates to an apparatus for monitoring which of a first cam having a first cam profile and a second cam having a second cam profile greater that said first cam profile currently is acting on lift mechanisms for gas exchange valves being arranged for controlling gas exchange into or out from said plurality of cylinders.
  • the timing of the opening and closing of the intake and exhaust valves must be set to optimise the power output and efficiency of the engine over a reasonable range of speeds and loads.
  • valve control mechanism for use only at low engine speeds which has a relatively short operating or opening period.
  • variable valve control In internal combustion engine with variable valve control, it is necessary to monitor the function of this variable valve control at regular intervals.
  • known monitoring methods determine the position of a component used to adjust the valve control in order to thus determine the current position of the valve control.
  • a monitoring method of this kind provides only a general idea of how the valve control is being controlled at a given moment.
  • variable valve control such as cam profile switching (CPS) technology
  • CPS cam profile switching
  • a couple of methods which allow to detect the CPS state are known.
  • detection is based on the difference in the air charge inducted in the cylinders for different lifts.
  • the inducted air charge measured by Manifold Air Flow (MAF) sensor is compared with the air charge model based on the measured position of the throttle flap, intake manifold pressure and engine speed.
  • the CPS state is associated with the error between measured and modeled air charge.
  • a drawback of the method described in the Patent 6213 068 is that the method does not allow cylinder individual failure detection. However, it is suitable for the failure detection of the whole 3 cylinders bank.
  • US 6 006 152 a method for combustion state monitoring using fluctuations of the engine speed is disclosed.
  • the method disclosed therein is based on the fact that the combustion state changes considerably during shifting of valve mode of the engine.
  • the combustion state is monitored via irregularities of the engine speed. Irregularities are associated with the CPS state.
  • the method allows cylinder individual failure detection.
  • the method uses torque estimation technique well known in the literature devoted to the combustion efficiency monitoring functions, see for example US 4 532 592, and references therein.
  • the invention described in the US Patent 6 006 152 proposes to detect the average value of the nonuniformity of the engine speed fluctuations and compare it with the reference average value of the nonuniformity.
  • the reference average value which also depends on the transient characteristics is impossible to find for all the transients. That makes the method described in US Patent 6 006 152 not suitable for the detection of the CPS state during transients. Since switching is likely to occur during engine speed transients, the method disclosed in US 6 006 152 does not provide adequate detection of the CPS state at all engine operating conditions.
  • An object of the invention is to provide a method for monitoring the position of a variable valve control and in particular detection of the CPS state during transients.
  • the present invention deals with the transient detection of the position of a variable valve control and in particular the CPS position using nonuniformity of the rotational speed under the transient conditions.
  • a linear model for the crankshaft speed fluctuations during transients is constructed. Coefficients of the model are found by minimizing the distances from the measured amplitudes to the model outputs. The technique allows the CPS failure detection during engine speed transients via compensation of the transient component of the crankshaft speed fluctuations.
  • relative distances i.e., distances from the measured amplitudes to the outputs of the model divided by the output of the model evaluated for every cylinder are averaged for a number of cycles and compared with a reference value.
  • Another object of the invention is to provide an apparatus for monitoring the position of a variable valve control in a combustion engine, which is arranged for monitoring the position of a variable valve control and in particular detection of the CPS state during transients. This object is achieved by an apparatus as disclosed in claim 8.
  • Angular acceleration is proportional to the fraction Te - Tl / J, where Te is the engine produced torque by all cylinders at the time t, TI is the engine load torque. Integrating between the times where engine speed gets minimal and maximal values respectively for a single cylinder, whose combustion stroke occurs in the interval, one gets where A i is the crankshaft speed fluctuation over the time interval [ts tf], where ts is the start time of the interval and tf is the end time. This fluctuation A i is the measure of the net engine torque over the interval involved.
  • Equation (E1) allows to determine the average value of the torque produced by the cylinder whose combustion stroke occurs in the interval.
  • the speed fluctuation is the same for all the cylinders since the speed wave form is regular.
  • the wave amplitudes are not the exactly the same.
  • the wave amplitude can be averaged over the engine cycle.
  • a performance indexes are proposed instead of the formulas (E2) and (E3), which allow the transient detection of the CPS failure. This is achieved by removing an average transient component from the indexes received by functions (E2), and (E3).
  • the model of the crankshaft speed fluctuations is constructed. This is done by assigning a function representing a transient component of engine speed fluctuation over said at least one engine cycle, said function being represented by a set of model coefficients.
  • Last two equations are solved with respect to c 0 and c 1 for every engine cycle.
  • the coefficient c 0 represents the offset value of the amplitude of the fluctuations and coefficient c 1 is the tangent of the angle which reflects directly the character of the transient.
  • the model (E4) can be seen as model of the average of the crankshaft speed fluctuations. In the steady-state the average value of the fluctuations is constant and c 1 is approximately zero. On the contrary under the transients average value of the crankshaft speed fluctuations changes within the cycle and can be well approximated by the model (E4).
  • crankshaft speed fluctuations E4
  • the model could be constructed using information from several engine cycles. In the embodiment disclosed herein the simplest case is considered.
  • the next step is to calculate relative distances between the amplitudes of the fluctuations and the outputs of the model (E4).
  • a third and a fourth performance indexes can be obtained by reformulating the performance indexes (E2) and (E3) suggested by US 6 006 152.
  • the fundamental difference between the indexes (E2), (E3) and (E7),(E8) is that (E7) and (E8) compute the average relative values of the deviation of the amplitude from the linear model of fluctuations in the cycle, i.e., remove the effect induced by the engine speed transients.
  • Average relative amplitude d (per cent) as a function of a cycle number is plotted in Fig.3.
  • the Figure shows that the index (E3) is not suitable for use during the transient (the first 20 cycles). During the transient the performance index (E3) has too big values despite of quite equal combustions.
  • d 01 and d 02 are reference values which are functions of engine speed and load.
  • Fig.3 shows that the biggest value the performance index (E11) gets in the cycle 28.
  • Engine speed for the cycle 28 is plotted in Fig.6, which shows significant combustion irregularities in the cycle.
  • FIG. 7 shows in schematic form an internal combustion engine 1 equipped with a variable valve control 2.
  • the variable valve control 2 is arranged to control gas exchange into or out from a plurality of cylinders 3 of the combustion engine 1 by selection of cam shaft profile of a cam shaft 4.
  • the cam shaft 4 has a first cam having a first cam profile and a second cam having a second cam profile greater that said first cam profile, as will be described in further detail below.
  • the variable valve control 2 includes an actuating device 5, which is controlled by an electronic control unit 6.
  • the actuating device 5 manoeuvres the cam shaft in order to set which cam profile is currently is acting on lift mechanisms 7 for gas exchange valves 8.
  • the variable valve control which in the embodiment shown is arranged on the intake valve, can also be arranged on the exhaust valve.
  • the invention is also applicable for variable valve control 2 which is arranged to control the position of a camshaft 4, which is variable with respect to the angular position of a crankshaft 8 by means of an adjusting device.
  • the adjusting device 5 for change of camshaft mode is controlled by a valve control unit 10 arranged in the electronic control unit 6.
  • the control is performed in a manner know to a person skilled in the art in order to provide switching of camshaft mode in dependence of engine operating condition.
  • the electronic control unit 6 furthermore includes an evaluation device 11, and a monitoring device 12.
  • Evaluation device 11 and monitoring device 12 together with crankshaft sensor 9, which in this case acts as a sensing device to detect nonuniformity of the rotational speed of crankshaft 8, together constitute an apparatus for monitoring the position of variable valve control 2.
  • Evaluating device 11 receives from crankshaft sensor 9 a signal corresponding to the angular position of crankshaft 8.
  • this signal consists of a pulse train, with each pulse corresponding to a specific section of an angle swept by crankshaft 8.
  • a mark 13 is made that generates a special pulse and therefore makes it possible to determine the absolute position of the crankshaft.
  • the evaluating device 11 includes means for measuring engine speed 13 over at least one engine cycle for all cylinders. The measurement is performed in a manner known to a person skilled in the art by performing a time derivative of the angular position provided from the crankshaft sensor.
  • the evaluating device 11 furthermore includes means for determining engine speed fluctuations 14 for respective cylinder as the difference between maximum and minimum engine speed at a time interval including the combustion stroke of respective cylinder.
  • the maximum and minimum values are obtained in a known manner from the variation of sampled values of the engine speed.
  • the sampled values vary in a manner as shown in figure 1.
  • the maximum and minimum values are stored in a memory 15 arranged in the evaluating device.
  • the evaluating device 11 also includes means for assigning 16 a function representing a transient component of engine speed fluctuation over said at least one engine cycle, said function being represented by a set of model coefficients.
  • the means for assigning a function 16 can be arranged by a storage area where the model coefficients are stored.
  • the form of the function is decided when implementing the control device by deciding which form the function should have.
  • the function is chosen to be a linear model.
  • the evaluating device furthermore includes means 17 for determining the model coefficients.
  • the means for determining the model coefficient is preferably constitute by means for minimising a cost function for the determined engine speed fluctuations for respective cylinder in respect of said function representing a transient component and thereby determining said model coefficients.
  • the means for minimising the cost function 17 are constituted by means for least square adaptation of a function to the set of values representing the maximum and minimum values stored in the memory 15 and possibly all sampled values of the engine speed. Means for least square adaptation are well known to a person skilled in the art.
  • the cost function has an appearance as shown in equation (E5)
  • the monitoring device 12 includes means for calculating 18 the distance between the determined engine speed fluctuations and a value of said function representing a transient component corresponding to respective determined engine speed fluctuation whereby a first performance index is obtained.
  • the distance is calculated in accordance with formula (E5A).
  • the means for monitoring 12 further includes means 19 for determining a relative distance between the determined engine speed fluctuations and the value of said function representing a transient component in respect of said value of said function representing a transient component corresponding to respective determined engine speed fluctuation for use as a second performance index.
  • the relative distance is determined in accordance with formula (E6).
  • the means for monitoring 12 further includes means for calculating 20 an average amplitude of said relative distance over one engine cycle, wherein said average amplitude is used as a third performance index.
  • the average amplitude is determined in accordance with formula (E7).
  • the means for monitoring 12 further includes means 21 for calculating an average amplitude of said relative distance over for respective cylinder over a number of engine cycles, wherein said average amplitude is used as a fourth performance index.
  • the average amplitude for respective cylinder is determined in accordance with formula (E8).
  • the means for monitoring 12 further includes means 22 for comparing at least one of said performance indexes with reference values stored in a memory 23. The comparison is made in accordance with formulas (E11) and (E12). In the event the performance indexes exceeds the reference values an indication of that the correct valve mode is not operating is given.
  • the means 22 for comparing performance indexes with reference values constitutes means for determining which of a first cam having a first cam profile and a second cam having a second cam profile greater that said first cam profile currently is acting on lift mechanisms for gas exchange valves in the event the an apparatus according to the invention is used to monitor a CPS engine.
  • All the different means included in the means for evaluating 11 and the means for monitoring 12 are constituted by programs running in a microcontroller having processing means and storage areas.
  • the microcontroller is programmed to execute calculation of formulas (E5) - (E12) by use of information provided from the engine speed sensor 9.
  • a valve assembly is shown, which may be used in connection with the invention in order to provided two different cam modes. Referring to FIG. 8 there is shown a valve 110 having a head 111 which is movable in an axial direction to seal the passageway 105.
  • the valve 110 is slidably mounted in a bore 112 in cylinder block 113 and passes through a cavity 114.
  • a spring 115 one end of which rests against a lower surface of said cavity 114 and the other end of which is located in a collar 116 mounted on the valve 110 so as to generally bias the valve 110 in an upwards direction.
  • the tappet assembly 118 comprises a co-axial inner tappet 120 and outer tappet 121.
  • the inner tappet bears on a hydraulic lash adjustment element 122 of known type which in turn bears on the upper end of valve 110.
  • the tappet assembly 118 is slidably mounted within bore 119 which extends from the cavity 114 to the upper surface of the cylinder block 113.
  • a cylinder head cover may be positioned over and secured to the upper surface of the cylinder block 113.
  • a rotatable camshaft 130 which is drivable in the usual arrangement 131, which comprises a pair of outer cam lobes 126 in between which is situated a central cam lobe 123.
  • the central cam lobe 123 has a profile designed to optimise engine performance over a selected portion of engine speed and load range.
  • the central cam lobe 123 is illustrated as having a generally eccentric form it is envisaged that this cam lobe can be a circular form allowing valve deactivation while under control of this cam lobe.
  • the outer cam lobes 126 are of a substantial identical profile to each other and are designed to optimise engine performance over another portion of engine speed and load range.
  • the camshaft 130 is located such that in low speed conditions an upper surface 120a of the inner tappet 120 is driven by the central cam lobe via finger follower 124.
  • the upper surface 121 a of outer tappet 121 is kept in contact with the outer cam lobes 126 by means of a spring 125 which is coaxially positioned around spring 115 and which locates at one end in recesses 132 in the lower end surface of outer tappet 121.
  • spring 125 bears on the lower surface of cavity 114
  • Cam profile selection is achieved by either connecting the inner tappet 120 and outer tappet 121 so that they move together which allows the outer tappet 121 and outer cam lobes 126 to control the valve 110 or by disconnecting the inner tappet 120 and outer tappet 121, which allows the inner tappet 120 and inner cam lobe 123 to control valve 110.
  • FIG 9 a flow chart of a method for monitoring the position of a variable valve control in a combustion engine having a plurality of cylinders is shown.
  • step 210 engine speed is measured over at least one engine cycle for all cylinders included in said plurality of cylinders.
  • step 211 engine speed fluctuations for respective cylinder as the difference between maximum and minimum engine speed at a time interval including the combustion stroke of respective cylinder is determined.
  • a function representing a transient component of engine speed fluctuation over said at least one engine cycle is assigned.
  • the function being represented by a set of model coefficients.
  • a fourth method step 213 the model coefficeints, that is the coefficients for the assigned function are determined. This is preferably done by minimising the cost function for the determined engine speed fluctuations for respective cylinder in respect of said function representing a transient component.
  • a fifth method step 214 the distance between the determined engine speed fluctuations and a value of said function representing a transient component corresponding to respective determined engine speed fluctuation is calculated whereby a first performance index is obtained.
  • a relative distance between the determined engine speed fluctuations and the value of said function representing a transient component in respect of said value of said function representing a transient component corresponding to respective determined engine speed fluctuation is determined for use as a second performance index.
  • a seventh method 216 an average amplitude of said relative distance is calculated over one engine cycle, wherein said average amplitude is used as a third performance index.
  • an average amplitude of said relative distance over for respective cylinder is calculated over a number of engine cycles, wherein said average amplitude is used as a fourth performance index.
  • a ninth method 218 at least one of said performance indexes is compared with reference values stored in a memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (18)

  1. Verfahren zum Überwachen der Position einer variablen Ventilsteuerung (2) in einem Verbrennungsmotor (1), welcher eine Mehrzahl von Zylindern (3) aufweist, mit den nachfolgenden Schritten:
    Messen (210) einer Motordrehzahl über mindestens einen Motorzyklus für alle Zylinder (3), welche in der Mehrzahl von Zylindern beinhaltet sind,
    Bestimmen (211) von Motordrehzahlfluktuationen (Ai) für entsprechende Zylinder als den Unterschied zwischen einer maximalen und einer minimalen Motordrehzahl in einem Zeitintervall, welches den Arbeitshub der entsprechenden Zylinder beinhaltet, gekennzeichnet dadurch, dass das Verfahren die weiteren Schritte beinhaltet:
    Zuordnen (212) einer Funktion (E4), welche eine transiente Komponente einer Motordrehzahlfluktuation (Ai) über den letzten Motorzyklus repräsentiert, wobei die Funktion durch einen Satz von Modellkoeffizienten repräsentiert wird,
    Bestimmen (213, E5) der Modellkoeffizienten und
    Berechnen (214, ESA) des Abstands (ki) zwischen den vorbestimmten Motorgeschwindigkeitsfluktuationen (Ai) und einem Wert der Funktion (E4), welche eine transiente Komponente repräsentiert, welche mit einer entsprechend bestimmten Motordrehzahlfluktuation (Ai) korrespondiert.
  2. Verfahren nach Anspruch 1, gekennzeichnet dadurch, dass die Modellkoeffizienten durch Minimieren einer Kostenfunktion (E5) für die bestimmten Motordrehzahlfluktuationen (Ai) für einen entsprechenden Zylinder in Bezug auf die Funktion (E4) bestimmt werden, welche eine transiente Komponente repräsentiert.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als erster Performance Index der Abstand (ki) zwischen den bestimmten Motordrehzahlfluktuationen (Ai) und einem Wert der Funktion (E4) verwendet wird, welche eine transiente Komponente repräsentiert, welche mit den entsprechenden bestimmten Motordrehzahlfluktuationen (Ai) korrespondiert.
  4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass zur Verwendung als zweiten Performance Index ein relativer Abstand (di) zwischen den bestimmten Motordrehzahlfluktuationen (Ai) und dem Wert der Funktion (E4), welche eine transiente Komponente repräsentiert, in Bezug auf den Wert der Funktion (E4) welche eine transiente Komponente repräsentiert, welche mit der entsprechenden bestimmten Motordrehzahlfluktuation korrespondiert; bestimmt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass eine mittlere Amplitude d des relativen Abstandes (di) über einen Motorzyklus berechnet wird (E7), wobei die mittlere Amplitude als dritter Performance Index verwendet wird.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass eine mittlere Amplitude di des relativen Abstandes (di) über eine Anzahl von Motorzyklen für einen entsprechenden Zylinder berechnet wird (E8), wobei die mittlere Amplitude als vierter Performance Index verwendet wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet dadurch, dass mindestens einer der Performance Indizes mit Referenzwerten verglichen wird, welche in einem Speicher gespeichert sind.
  8. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet dadurch, dass mindestens einer der Performance Indizes zum Bestimmen verwendet wird, welche von einer ersten Nocke (123), welche ein erstes Nockenprofil aufweist, und einer zweiten Nocke (126), welche ein zweites Nockenprofil aufweist, welches größer als das erste Nockenprofil ist, im Moment an einem Hebemechanismus (7) für Gasaustauschventile (8) agiert, welche zum Steuern eines Gaswechsels in oder aus der Mehrzahl von Zylindern angeordnet sind.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Funktion (E4), welche eine transiente Komponente der Motordrehzahlfluktuation über den mindestens einen Motorzyklus repräsentiert, als f = c0 + c1xi ausgedrückt wird, wobei c0 und c1 Modellkoeffizienten und xi die Nummer der Amplitude der Fluktuation innerhalb eines Motorzyklusses ist.
  10. Vorrichtung zum Überwachen der Position einer variablen Ventilsteuerung (2) in einem Verbrennungsmotor (1), welcher eine Mehrzahl von Zylindern (3) aufweist, mit:
    einer Einrichtung (13) zum Messen einer Motordrehzahl über mindestens einen Motorzyklus für alle Zylinder, welche in der Mehrzahl von Zylindern beinhaltet sind, eine Einrichtung (14) zum Bestimmen von Motordrehzahlfluktuationen (Ai) für entsprechende Zylinder (3) als den Unterschied zwischen einer maximalen und einer minimalen Motordrehzahl in einem Zeitintervall, welches den Arbeitshub der entsprechenden Zylinder beinhaltet, gekennzeichnet dadurch, dass die Vorrichtung ferner beinhaltet:
    einer Einrichtung (16) zum Zuordnen einer Funktion (E4), welche eine transiente Komponente von Motordrehzahlfluktuationen (Ai) über den mindestens einen Motorzyklus repräsentiert, wobei die Funktion (E4) durch einen Satz von Modellkoeffizienten repräsentiert wird,
    einer Einrichtung (17) zum Bestimmen der Modellkoeffizienten und
    einer Einrichtung (18) zum Berechnen des Abstandes (ki) zwischen den bestimmten Motordrehzahlfluktuationen (Ai) und einem Wert der Funktion (E4), welche eine transiente Komponente repräsentiert, welche mit den entsprechenden bestimmten Motordrehzahlfluktuationen (Ai) korrespondiert.
  11. Vorrichtung nach Anspruch 10, gekennzeichnet dadurch, dass die Einrichtung (17) zum Bestimmen der Modellkoeffizienten eine Einrichtung zum Minimieren einer Kostenfunktion (E5) für die bestimmten Motordrehzahlfluktuationen (Ai) für einen entsprechenden Zylinder in Bezug auf die Funktion (E4) beinhaltet, welche eine transiente Komponente repräsentiert.
  12. Vorrichtung nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass als erster Performance Index der Unterschied (ki) zwischen den bestimmten Motordrehzahlfluktuationen (Ai) und einem Wert der Funktion (E4) verwendet wird, welche eine transiente Komponente repräsentiert, welche mit einer entsprechenden bestimmten Motordrehzahlfluktuation (Ai) korrespondiert.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Vorrichtung ferner eine Einrichtung (19) zum Bestimmen (E6) eines relativen Abstandes (di) zwischen den bestimmten Motordrehzahlfluktuationen (Ai) und dem Wert der Funktion (E4), welche eine transiente Komponente repräsentiert in Bezug auf den Wert der Funktion (E4), welche eine transiente Komponente repräsentiert, welche mit einer entsprechenden bestimmten Motordrehzahlfluktuation (Ai) korrespondiert, zur Verwendung als zweiter Performance Index, beinhaltet.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Vorrichtung ferner eine Einrichtung (20) zum Berechnen (E7) einer mittleren Amplitude (d) des relativen Abstandes (di) über einen Motorzyklus beinhaltet, wobei die mittlere Amplitude als dritter Performance Index verwendet wird.
  15. Vorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Vorrichtung ferner eine Einrichtung (21) zum Berechnen (E8) einer mittleren Amplitude (di) des relativen Abstandes (di) über eine Anzahl von Motorzyklen für einen entsprechenden Zylinder aufweist, wobei die mittlere Amplitude als vierter Performance Index verwendet wird.
  16. Vorrichtung nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass die Vorrichtung ferner eine Einrichtung (22) zum Vergleichen von mindestens einem der Performance Indizes mit Referenzwerten beinhaltet, welche in einem Speicher gespeichert sind.
  17. Vorrichtung nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass die Vorrichtung ferner aufweist:
    eine Einrichtung zum Bestimmen (22), welche von einer ersten Nocke (123), welche eine erstes Nockenprofil aufweist, und einer zweiten Nocke (126), welche ein zweites Nockenprofil aufweist, welches größer als das erste Nockenprofil ist, im Moment an Hubmechanismen (7) für Gasaustauschventile (8) agiert, welche zum Steuern eines Gasaustausches in oder aus der Mehrzahl von Zylindern (3) angeordnet sind, wobei ein Vergleich von mindestens einem der Performance Indizes zum Bestimmen mit
    einem Referenzwert verwendet wird, welcher in einem Speicher gespeichert ist.
  18. Vorrichtung nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass die Funktion (E4), welche eine transiente Komponente der Motordrehzahlfluktuationen (Ai) über den mindestens einen Motorzyklus repräsentiert, als f = c0 + c1xi ausgedrückt ist, wobei c0 und c1 Modellkoeffizienten sind und xi die Nummer der Amplitude der Fluktuation innerhalb eines Motorzyklusses ist.
EP20030075727 2003-03-12 2003-03-12 Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung Expired - Lifetime EP1457644B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20030075727 EP1457644B1 (de) 2003-03-12 2003-03-12 Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung
DE2003602426 DE60302426T2 (de) 2003-03-12 2003-03-12 Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20030075727 EP1457644B1 (de) 2003-03-12 2003-03-12 Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung

Publications (2)

Publication Number Publication Date
EP1457644A1 EP1457644A1 (de) 2004-09-15
EP1457644B1 true EP1457644B1 (de) 2005-11-23

Family

ID=32748909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030075727 Expired - Lifetime EP1457644B1 (de) 2003-03-12 2003-03-12 Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung

Country Status (2)

Country Link
EP (1) EP1457644B1 (de)
DE (1) DE60302426T2 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532798A (en) * 1983-06-08 1985-08-06 Nippon Soken, Inc. Measurement of variations in internal combustion engine output
DE4009285A1 (de) * 1989-08-23 1990-12-20 Audi Ag Verfahren zur zylinderselektiven ueberwachung des energieumsatzes bei einer mehrzylinder-brennkraftmaschine
JP2707832B2 (ja) * 1990-11-26 1998-02-04 日産自動車株式会社 内燃機関の出力制御装置
DE19627796A1 (de) * 1996-07-10 1998-01-15 Porsche Ag Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung
DE19857183A1 (de) * 1998-12-11 2000-06-15 Bosch Gmbh Robert Diagnose einer variablen Ventilsteuerung bei Verbrennungsmotoren

Also Published As

Publication number Publication date
EP1457644A1 (de) 2004-09-15
DE60302426T2 (de) 2006-08-17
DE60302426D1 (de) 2005-12-29

Similar Documents

Publication Publication Date Title
US5715794A (en) Engine control system and method
US7506536B2 (en) Method of deriving engine cylinder mechanical top dead centre
US7623955B1 (en) Method for estimation of indicated mean effective pressure for individual cylinders from crankshaft acceleration
JP3999262B2 (ja) 可変バルブタイミング機能を有する内燃機関のための空気充填量算出方法
US7367318B2 (en) Control system and control method of internal combustion engine
US20040093148A1 (en) Method and system for estimating cylinder charge for internal combustion engines having variable valve timing
US6681729B2 (en) Method and device for controlling a gas fill of cylinders of an internal combustion engine
US6332352B1 (en) Engine torque-detecting method and an apparatus therefor
CN112395733B (zh) 用于修改检测到的凸轮轴位置的方法、控制器、内燃机和车辆
US7302835B2 (en) Method and device for determining a phase position between a crankshaft and a camshaft of an internal combustion engine
EP1811161B1 (de) Verfahren zur Diagnose des Betriebs eines Nockenprofil-Umschaltsystems
US6718920B2 (en) Camshaft rotational phase detecting apparatus and cylinder intake air quantity calculating apparatus for engine
US6843214B1 (en) Method for balancing engine cylinder bank output using crankshaft sensing and intake cam phasing
EP2532866B1 (de) Motorsteuerungsvorrichtung
EP2116836B1 (de) Verfahren und Vorrichtung zur OT-Bestimmung für die einzelnen Zylinder eines Mehrzylinderverbrennungsmotors
JP4747977B2 (ja) 筒内圧センサの校正装置
EP1457644B1 (de) Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung
JPH07133742A (ja) 内燃機関の計測装置および制御装置
EP1462620B1 (de) Verfahren und Vorrichtung zur Bestimmung des Betriebszustandes in einer Brenkraftmaschine mit Nockenprofilwechsel
WO2008090312A1 (en) In- cylinder pressure measurement system
JP4665788B2 (ja) 内燃機関の制御装置
US20220178325A1 (en) Camshaft phase error monitoring
US5967117A (en) Method for determining a rotational speed for an idling control of an internal combustion engine
EP1609973A1 (de) Zündzeitsteuerungsverfahren und -einrichtung für Brennkraftmaschine
Haines et al. The determination of diesel engine friction characteristics by electronic cylinder disablement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE GB SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ERIKSSON, SOEREN

Inventor name: STOTSKY, ALEXANDER ANATOLJEVICH

REF Corresponds to:

Ref document number: 60302426

Country of ref document: DE

Date of ref document: 20051229

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FORD GLOBAL TECHNOLOGIES, LLC.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060824

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20111020 AND 20111025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60302426

Country of ref document: DE

Representative=s name: ISARPATENT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60302426

Country of ref document: DE

Owner name: VOLVO CAR CORPORATION, SE

Free format text: FORMER OWNER: FORD GLOBAL TECHNOLOGIES, LLC, DEARBORN, MICH., US

Effective date: 20120207

Ref country code: DE

Ref legal event code: R082

Ref document number: 60302426

Country of ref document: DE

Representative=s name: ISARPATENT PATENTANWAELTE BEHNISCH, BARTH, CHA, DE

Effective date: 20120207

Ref country code: DE

Ref legal event code: R082

Ref document number: 60302426

Country of ref document: DE

Representative=s name: ISARPATENT - PATENTANWAELTE- UND RECHTSANWAELT, DE

Effective date: 20120207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130321

Year of fee payment: 11

Ref country code: DE

Payment date: 20130320

Year of fee payment: 11

Ref country code: SE

Payment date: 20130321

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60302426

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60302426

Country of ref document: DE

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140312