EP1462613A1 - Coolable coating - Google Patents

Coolable coating Download PDF

Info

Publication number
EP1462613A1
EP1462613A1 EP03006962A EP03006962A EP1462613A1 EP 1462613 A1 EP1462613 A1 EP 1462613A1 EP 03006962 A EP03006962 A EP 03006962A EP 03006962 A EP03006962 A EP 03006962A EP 1462613 A1 EP1462613 A1 EP 1462613A1
Authority
EP
European Patent Office
Prior art keywords
coating
cooling
layer system
coolable
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03006962A
Other languages
German (de)
French (fr)
Inventor
Heinz-Jürgen Dr. Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03006962A priority Critical patent/EP1462613A1/en
Priority to PCT/EP2004/002223 priority patent/WO2004085799A1/en
Priority to US10/550,973 priority patent/US20060222492A1/en
Priority to EP04717097A priority patent/EP1606494B1/en
Priority to DE502004003687T priority patent/DE502004003687D1/en
Priority to ES04717097T priority patent/ES2285440T3/en
Publication of EP1462613A1 publication Critical patent/EP1462613A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • the invention relates to a coolable layer system according to Preamble of claim 1.
  • a layer system is known from US Pat. No. 5,080,557 which has a porous structure underneath a wall, through which a cooling medium flows. This layer structure is relative thick and bad to cool.
  • the US-PS 5,820,337, the US-PS 5,640,767 and the US-PS 5,392,515 show turbine blades formed from a substrate, those below an outer wall, the same Material as the substrate has, cooling channels arranged are. Cooling the outermost coating on the outer Wall is often not sufficient.
  • EP 1 007 271 B1 shows an impact-cooled gas turbine blade, which, however, have no cooling channels below the outer one Wall.
  • the surveys serve to support the outer wall and do not form cooling channels.
  • the layer system 1 shows a coolable layer system 1.
  • the layer system 1 has a substrate 4.
  • the substrate 4 is, for example, a ceramic or a metal, in particular a superalloy (nickel- or cobalt-based) for gas turbine components (turbine blade, combustion chamber lining, ..).
  • At least one coating 7 is applied to the substrate 4.
  • a ceramic coating for example a thermal insulation layer 9 (FIG. 6), can also be applied to the coating 7.
  • At least one cooling channel 10 is formed within the coating 7, ie the cooling channel 10 is formed by removing the material of the coating 7 or by applying the coating 7 while leaving out a corresponding cavity.
  • the largest part of the circumferential surface of the cooling channel 10 is formed by the coating 7.
  • the surface 22 mostly remains unprocessed.
  • a coolant is supplied via a coolant supply 13, which is formed at least in the substrate 4 and leads into at least one cooling channel 10.
  • the cooling channels 10 are thus arranged in the immediate vicinity of an outer surface which can come into contact with a hot gas 8.
  • the coating 7, which is exposed to higher temperatures than the substrate 4, can thus be cooled better.
  • cooling channels 10 are not arranged through channels within the coating 7, but through depressions 23 in the substrate 4.
  • the coating 7 forms part of the inner surface of the cooling channel 10 and closes it off from the outside.
  • cooling channels 10 both in the substrate 4 and in the coating 7 are arranged.
  • the cooling channel 10 can also through a recess 23 (dashed indicated) can be formed in the coating 7.
  • the cooling channels 10 according to FIGS. 1, 6 are produced as follows, for example. On the surface 22 of the substrate 4 or the surface of the coating 7, webs are filled with a filler material, which correspond in cross section to the cooling channels 10 to be produced. The substrate 4 or the coating 7 is then coated with the coating 7 or the coating 9 (plasma spraying, physical vapor deposition (PVP), chemical vapor deposition (CVD), .
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the webs with the filling material are then removed.
  • the material for the webs consists, for example, of graphite, which after being coated with the coating 7, 9 can be burned out or leached out. Other materials for the filling material are possible.
  • corresponding depressions 23 are made in the surface 22 of the substrate.
  • the depressions 23 are filled, for example, with a filler material which prevents the material of the coating 7 from penetrating into the cooling channels 10 when the substrate 4 is coated. After the application of the coating 7 or the application of an outer wall, the filling material is removed again, so that the cooling channels 10 are created.
  • FIG. 3 shows the arrangement of cooling channels 10 according to FIG. 1, 2 and 6 on a surface of a component 1 (layer system).
  • the layer system 1 is, for example, a turbine blade, which extends along a radial direction 16.
  • At least one cooling channel 10 extends in an axial Direction 19, perpendicular (90 °) to the radial direction 16.
  • the cooling channels 10 can also run at an angle deviating from 90 ° to the radial axis 16 (FIG. 4), for example approximately parallel to the radial direction 16 (0 °). All cooling channels (10) can also extend in one direction. Groups of cooling channels can also run parallel to each other.
  • FIG. 4 shows a further arrangement possibility of cooling channels 10 on a surface 22 or a coating 7 a component 1.
  • At least two cooling channels 10 intersect and are connected to one another, ie a cooling medium can flow from the cooling channel 10 into another cooling channel 10.
  • a cooling medium can flow from the cooling channel 10 into another cooling channel 10.
  • complex, meandering cooling channels are superfluous, since the entire surface to be cooled is covered by the cross pattern of the cooling channels 10. If a cooling channel 10 is blocked at one point, the cooling medium can still flow through the other cooling channels.
  • the cooling medium K flows through an inlet, for example, into the cooling channels 10 'and 10''. The cooling medium passes directly from the cooling channel 10 "into the cooling channel 10"'and 10 "", etc.
  • the cooling channels 10 are here, for example, crosswise in groups arranged to each other, the cooling channels 10 within of a group run parallel to each other.
  • the cooling duct 10 is at least partially adjacent to the coating 7 (not shown) or to an outer wall, the cooling duct 10 of the layer system 1 to be produced has an opening 24 on the surface 22 without coatings or without an outer wall.
  • the angle ⁇ between the surface 22 and the inner surface of the cooling channel 10 at the opening 24 has a value different from 90 °. This means that the cooling channel 10 has undercuts 26 with respect to the surface 22.
  • Such a cooling channel 10 with undercuts 26 can also be arranged in the coating 7 (FIG. 6).
  • a cooling channel 10 with undercuts 26 in the substrate 4 is produced, for example, with a milling cutter or grinding head 25, which is spherical, hemispherical or conical at one end.
  • a hole is made in the substrate 4 using the milling cutter 25 or another cylindrical drill by moving it in a drilling direction 29 almost perpendicular to the surface 22 of the substrate 4.
  • the cutter 25 is moved back and forth in a direction 32 perpendicular to the drilling direction 29, as indicated by the arrow, as a result of which the undercuts 26 are produced in the substrate 4.
  • the various positions of the milling cutter 25 during the back and forth movement are indicated by dashed lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The coolable coating system (1) consisting of a coating on a base uses cooling passages (10) which are least partially adjoin the coating. At least two cooling passages cross. The coolable coating system extends in a radial direction, and at least one cooling passage has an angle of 0 degrees in relation to the radial direction, an angle of 90 degrees, or an angle between 0 and 90 degrees to the radial direction. At least one cooling passage is located at least partially inside the coating.

Description

Die Erfindung betrifft ein kühlbares Schichtsystem gemäß Oberbegriff der Anspruchs 1.The invention relates to a coolable layer system according to Preamble of claim 1.

Aus der US-PS 5,080,557 ist ein Schichtsystem bekannt, bei dem unterhalb einer Wand eine poröse Struktur angeordnet ist, durch die ein Kühlmedium strömt. Dieser Schichtaufbau ist relativ dick und schlecht zu kühlen.A layer system is known from US Pat. No. 5,080,557 which has a porous structure underneath a wall, through which a cooling medium flows. This layer structure is relative thick and bad to cool.

Die US-PS 5,820,337, die US-PS 5,640,767 sowie die US-PS 5,392,515 zeigen aus einem Substrat gebildete Turbinenschaufeln, bei denen unterhalb einer äußeren Wand, die dasselbe Material wie das Substrat aufweist, Kühlkanäle angeordnet sind. Die Kühlung der äußersten Beschichtung auf der äußeren Wand ist vielfach nicht ausreichend.The US-PS 5,820,337, the US-PS 5,640,767 and the US-PS 5,392,515 show turbine blades formed from a substrate, those below an outer wall, the same Material as the substrate has, cooling channels arranged are. Cooling the outermost coating on the outer Wall is often not sufficient.

Die EP 1 007 271 B1 zeigt eine prallgekühlte Gasturbinenschaufel, die allerdings keine Kühlkanäle unterhalb der äußeren Wand aufweist. Die Erhebungen dienen zur Stützung der äußeren Wand und bilden keine Kühlkanäle.EP 1 007 271 B1 shows an impact-cooled gas turbine blade, which, however, have no cooling channels below the outer one Wall. The surveys serve to support the outer wall and do not form cooling channels.

Es ist daher Aufgabe der Erfindung, die Kühlung eines Schichtsystems zu verbessern.It is therefore an object of the invention to cool a To improve the layer system.

Die Aufgabe wird gelöst durch ein kühlbares Schichtsystem gemäss Anspruch 1.The task is solved by a coolable layer system according to Claim 1.

In den Unteransprüchen sind weitere vorteilhafte Maßnahmen zur Verbesserung des gekühlten Schichtsystems aufgelistet.Further advantageous measures are in the subclaims listed to improve the chilled layer system.

Die in den Unteransprüchen aufgelisteten Maßnahmen können in vorteilhafter Weise miteinander kombiniert werden. The measures listed in the subclaims can be found in can advantageously be combined with one another.

Ausführungsbeispiele der Erfindung sind im folgenden erläutert.Embodiments of the invention are explained below.

Es zeigen

FIG 1
ein erstes Ausführungsbeispiel des kühlbaren Schichtsystems,
FIG 2
ein weiteres Ausführungsbeispiel eines kühlbaren Schichtsystems, und
die FIG 3, 4, 6
weitere Modifikationen des kühlbaren Schichtsystems, und
FIG 5
einen speziell ausgebildeten Kühlkanal.
Show it
FIG. 1
a first embodiment of the coolable layer system,
FIG 2
another embodiment of a coolable layer system, and
3, 4, 6
further modifications of the coolable layer system, and
FIG 5
a specially designed cooling channel.

FIG 1 zeigt ein kühlbares Schichtsystem 1.
Das Schichtsystem 1 weist ein Substrat 4 auf. Das Substrat 4 ist beispielsweise eine Keramik oder ein Metall, insbesondere eine Superlegierung (nickel- oder kobaltbasiert) für Gasturbinenbauteile (Turbinenschaufel, Brennkammerauskleidung,..). Auf dem Substrat 4 ist zumindest eine Beschichtung 7 aufgebracht. Die Beschichtung 7 kann eine metallische MCrAlY-Beschichtung sein, wie sie bei Gasturbinenschaufeln verwendet wird (M= Cr oder Fe oder Ni; Y= Yttrium oder Seltene Erde). Darüber hinaus kann auf der Beschichtung 7 noch eine keramische Beschichtung, beispielsweise eine Wärmedämmschicht 9 (FIG 6), aufgebracht sein.
1 shows a coolable layer system 1.
The layer system 1 has a substrate 4. The substrate 4 is, for example, a ceramic or a metal, in particular a superalloy (nickel- or cobalt-based) for gas turbine components (turbine blade, combustion chamber lining, ..). At least one coating 7 is applied to the substrate 4. The coating 7 can be a metallic MCrAlY coating, as is used in gas turbine blades (M = Cr or Fe or Ni; Y = yttrium or rare earth). In addition, a ceramic coating, for example a thermal insulation layer 9 (FIG. 6), can also be applied to the coating 7.

Ausgehend von der Oberfläche 22 des Substrats 4 ist zumindest ein Kühlkanal 10 innerhalb der Beschichtung 7 ausgebildet, d.h. der Kühlkanal 10 entsteht durch Entfernen von Material der Beschichtung 7 oder durch Auftragen der Beschichtung 7 unter Aussparung eines entsprechenden Hohlraums.
Somit wird der größte Teil der Umfangsfläche des Kühlkanals 10 durch die Beschichtung 7 gebildet. Die Oberfläche 22 bleibt meistens unbearbeitet.
Starting from the surface 22 of the substrate 4, at least one cooling channel 10 is formed within the coating 7, ie the cooling channel 10 is formed by removing the material of the coating 7 or by applying the coating 7 while leaving out a corresponding cavity.
Thus, the largest part of the circumferential surface of the cooling channel 10 is formed by the coating 7. The surface 22 mostly remains unprocessed.

Eine Zufuhr von einem Kühlmedium erfolgt über eine Kühlmittelzufuhr 13, die zumindest im Substrat 4 ausgebildet ist und in zumindest einen Kühlkanal 10 führt.
Die Kühlkanäle 10 sind somit in der unmittelbaren Nähe einer äußeren Oberfläche, die mit einem Heißgas 8 in Kontakt treten kann, angeordnet. So kann die Beschichtung 7, die höheren Temperaturen ausgesetzt ist als das Substrat 4, besser gekühlt werden.
A coolant is supplied via a coolant supply 13, which is formed at least in the substrate 4 and leads into at least one cooling channel 10.
The cooling channels 10 are thus arranged in the immediate vicinity of an outer surface which can come into contact with a hot gas 8. The coating 7, which is exposed to higher temperatures than the substrate 4, can thus be cooled better.

Die FIG 2 zeigt ein weiteres Ausführungsbeispiel eines kühlbaren Schichtsystems 1.
Hier sind die Kühlkanäle 10 nicht durch Kanäle innerhalb der Beschichtung 7, sondern durch Vertiefungen 23 im Substrat 4 angeordnet.
Die Beschichtung 7 bildet einen Teil der Innenfläche des Kühlkanals 10 und schließt diesen nach außen hin ab.
2 shows a further exemplary embodiment of a coolable layer system 1.
Here, the cooling channels 10 are not arranged through channels within the coating 7, but through depressions 23 in the substrate 4.
The coating 7 forms part of the inner surface of the cooling channel 10 and closes it off from the outside.

Ebenso ist es möglich, dass die Kühlkanäle 10 sowohl im Substrat 4 als auch in der Beschichtung 7 angeordnet sind.It is also possible that the cooling channels 10 both in the substrate 4 and in the coating 7 are arranged.

FIG 6 zeigt Kühlkanäle 10 zwischen zwei Beschichtungen 7, 9. Der Kühlkanal 10 kann auch durch eine Vertiefung 23 (gestrichelt angedeutet) in der Beschichtung 7 ausgebildet sein.6 shows cooling channels 10 between two coatings 7, 9. The cooling channel 10 can also through a recess 23 (dashed indicated) can be formed in the coating 7.

Die Kühlkanäle 10 gemäss FIG 1, 6 werden beispielsweise wie folgt hergestellt.
Auf der Oberfläche 22 des Substrats 4 bzw. der Oberfläche der Beschichtung 7 werden Bahnen mit einem Füllmaterial gelegt, die im Querschnitt den herzustellenden Kühlkanälen 10 entsprechen.
Das Substrat 4 bzw. die Beschichtung 7 wird dann mit der Beschichtung 7 bzw. der Beschichtung 9 beschichtet (Plasmaspritzen, Physical Vapour Deposition (PVP), Chemical Vapour Deposition (CVD),...).
The cooling channels 10 according to FIGS. 1, 6 are produced as follows, for example.
On the surface 22 of the substrate 4 or the surface of the coating 7, webs are filled with a filler material, which correspond in cross section to the cooling channels 10 to be produced.
The substrate 4 or the coating 7 is then coated with the coating 7 or the coating 9 (plasma spraying, physical vapor deposition (PVP), chemical vapor deposition (CVD), ...).

Anschließend werden die Bahnen mit dem Füllmaterial entfernt. Das Material für die Bahnen besteht beispielsweise aus Graphit, das nach der Beschichtung mit der Beschichtung 7, 9 ausgebrannt oder ausgelaugt werden kann.
Andere Materialien für das Füllmaterial sind möglich.
The webs with the filling material are then removed. The material for the webs consists, for example, of graphite, which after being coated with the coating 7, 9 can be burned out or leached out.
Other materials for the filling material are possible.

Für die Herstellung der Kühlkanäle 10 gemäss FIG 2 werden in die Oberfläche 22 des Substrats entsprechende Vertiefungen 23 eingebracht. Die Vertiefungen 23 werden bspw. mit einem Füllmaterial aufgefüllt, das verhindert, dass Material der Beschichtung 7 bei der Beschichtung des Substrats 4 in die Kühlkanäle 10 eindringt.
Nach der Aufbringung der Beschichtung 7 oder der Aufbringung einer äußeren Wand wird das Füllmaterial wieder entfernt, so dass die Kühlkanäle 10 entstehen.
For the production of the cooling channels 10 according to FIG. 2, corresponding depressions 23 are made in the surface 22 of the substrate. The depressions 23 are filled, for example, with a filler material which prevents the material of the coating 7 from penetrating into the cooling channels 10 when the substrate 4 is coated.
After the application of the coating 7 or the application of an outer wall, the filling material is removed again, so that the cooling channels 10 are created.

FIG 3 zeigt die Anordnung von Kühlkanälen 10 gemäss FIG 1, 2 und 6 auf einer Oberfläche eines Bauteils 1 (Schichtsystem). Das Schichtsystem 1 ist beispielsweise eine Turbinenschaufel, die sich entlang einer radialen Richtung 16 erstreckt. Zumindest ein Kühlkanal 10 erstreckt sich in einer axialen Richtung 19, senkrecht (90°) zur radialen Richtung 16.3 shows the arrangement of cooling channels 10 according to FIG. 1, 2 and 6 on a surface of a component 1 (layer system). The layer system 1 is, for example, a turbine blade, which extends along a radial direction 16. At least one cooling channel 10 extends in an axial Direction 19, perpendicular (90 °) to the radial direction 16.

Die Kühlkanäle 10 können auch in einem von 90° abweichenden Winkel zur radialen Achse 16 verlaufen (FIG 4), bspw. etwa parallel zur radialen Richtung 16 (0°).
Es können sich auch alle Kühlkanäle (10) in einer Richtung erstrecken. Gruppen von Kühlkanälen können auch parallel zueinander verlaufen.
The cooling channels 10 can also run at an angle deviating from 90 ° to the radial axis 16 (FIG. 4), for example approximately parallel to the radial direction 16 (0 °).
All cooling channels (10) can also extend in one direction. Groups of cooling channels can also run parallel to each other.

FIG 4 zeigt eine weitere Anordnungsmöglichkeit von Kühlkanälen 10 auf einer Oberfläche 22 oder einer Beschichtung 7 eines Bauteils 1. 4 shows a further arrangement possibility of cooling channels 10 on a surface 22 or a coating 7 a component 1.

Zumindest zwei Kühlkanäle 10 kreuzen sich und stehen miteinander in Verbindung, d.h. ein Kühlmedium kann aus den Kühlkanal 10 in einen anderen Kühlkanal 10 strömen. Dadurch sind aufwendige, mäanderförmige Kühlkanäle überflüssig, da durch das Kreuzmuster der Kühlkanäle 10 die gesamte zu kühlende Oberfläche erfasst wird. Wenn ein Kühlkanal 10 an einer Stelle verstopft ist, kann das Kühlmedium trotzdem über die anderen Kühlkanäle weiterfliessen.
Das Kühlmedium K strömt über ein Einlass bspw. in die Kühlkanäle 10' und 10'' ein. Aus dem Kühlkanal 10" gelangt das Kühlmedium unmittelbar in den Kühlkanal 10 ''' und 10'''', usw..
At least two cooling channels 10 intersect and are connected to one another, ie a cooling medium can flow from the cooling channel 10 into another cooling channel 10. As a result, complex, meandering cooling channels are superfluous, since the entire surface to be cooled is covered by the cross pattern of the cooling channels 10. If a cooling channel 10 is blocked at one point, the cooling medium can still flow through the other cooling channels.
The cooling medium K flows through an inlet, for example, into the cooling channels 10 'and 10''. The cooling medium passes directly from the cooling channel 10 "into the cooling channel 10"'and 10 "", etc.

Die Kühlkanäle 10 sind hier beispielsweise in Gruppen kreuzweise zueinander angeordnet, wobei die Kühlkanäle 10 innerhalb einer Gruppe parallel zueinander verlaufen.The cooling channels 10 are here, for example, crosswise in groups arranged to each other, the cooling channels 10 within of a group run parallel to each other.

Andere Anordnungen von sich kreuzenden Kühlkanälen sind denkbar.Other arrangements of intersecting cooling channels are conceivable.

FIG 5 zeigt ein speziell ausgebildeten Kühlkanal 10, bspw. ausgehend von FIG 1.
Da der Kühlkanal 10 zumindest teilweise an die nicht dargestellte Beschichtung 7 oder an eine äußere Wand angrenzt, weist der Kühlkanal 10 des herzustellenden Schichtsystems 1 ohne Beschichtungen oder ohne äußere Wand an der Oberfläche 22 eine Öffnung 24 auf.
Der Winkel α zwischen der Oberfläche 22 und der Innenoberfläche des Kühlkanals 10 an der Öffnung 24 weist einen von 90° verschiedenen Wert auf. Dies bedeutet, dass der Kühlkanal 10 gegenüber der Oberfläche 22 Hinterschneidungen 26 aufweist.
Dadurch werden bei einem hohen thermischen Gradient zwischen äußerer heißer Beschichtung 7,9 oder der Wand und Kühlkanal 10 thermische Spannungen zwischen den Beschichtungen 7, 9 oder der Wand und dem Substrat 4 reduziert.
5 shows a specially designed cooling duct 10, for example starting from FIG. 1.
Since the cooling duct 10 is at least partially adjacent to the coating 7 (not shown) or to an outer wall, the cooling duct 10 of the layer system 1 to be produced has an opening 24 on the surface 22 without coatings or without an outer wall.
The angle α between the surface 22 and the inner surface of the cooling channel 10 at the opening 24 has a value different from 90 °. This means that the cooling channel 10 has undercuts 26 with respect to the surface 22.
As a result, with a high thermal gradient between the outer hot coating 7, 9 or the wall and the cooling channel 10, thermal stresses between the coatings 7, 9 or the wall and the substrate 4 are reduced.

Ein solcher Kühlkanal 10 mit Hinterschneidungen 26 kann auch in der Beschichtung 7 angeordnet sein (FIG 6).Such a cooling channel 10 with undercuts 26 can also be arranged in the coating 7 (FIG. 6).

Ein Kühlkanal 10 mit Hinterschneidungen 26 in dem Substrat 4 wird beispielsweise mit einem Fräser oder Schleifkopf 25 hergestellt, der an einem Ende kugel-, halbkugel- oder kegelförmig ausgebildet ist, hergestellt.
Zuerst wird mit dem Fräser 25 oder einem anderen zylindrischen Bohrer ein Loch in dem Substrat 4 erzeugt, indem er in einer Bohrrichtung 29 nahezu senkrecht zur Oberfläche 22 des Substrats 4 bewegt wird. Dann erfolgt ein durch Hin- und Herbewegen des Fräsers 25 in einer Richtung 32 senkrecht zur Bohrrichtung 29, wie durch den Pfeil angedeutet, wodurch die Hinterschneidungen 26 im Substrat 4 erzeugt werden.
Die verschiedenen Stellungen des Fräsers 25 bei der Hin- und Herbewegung sind gestrichelt angedeutet.
A cooling channel 10 with undercuts 26 in the substrate 4 is produced, for example, with a milling cutter or grinding head 25, which is spherical, hemispherical or conical at one end.
First, a hole is made in the substrate 4 using the milling cutter 25 or another cylindrical drill by moving it in a drilling direction 29 almost perpendicular to the surface 22 of the substrate 4. Then, the cutter 25 is moved back and forth in a direction 32 perpendicular to the drilling direction 29, as indicated by the arrow, as a result of which the undercuts 26 are produced in the substrate 4.
The various positions of the milling cutter 25 during the back and forth movement are indicated by dashed lines.

Claims (7)

Kühlbares Schichtsystem (1),
zumindest bestehend aus
einem Substrat (4) und
zumindest einer Beschichtung (7) auf dem Substrat (4), wobei Kühlkanäle (10) zur Kühlung verwendet werden, wobei die Kühlkanäle (10) zumindest teilweise an die Beschichtung (7) angrenzen,
dadurch gekennzeichnet, dass
zumindest zwei Kühlkanäle (10) sich kreuzen.
Coolable layer system (1),
at least consisting of
a substrate (4) and
at least one coating (7) on the substrate (4), cooling channels (10) being used for cooling, the cooling channels (10) at least partially adjoining the coating (7),
characterized in that
at least two cooling channels (10) intersect.
Kühlbares Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
das kühlbare Schichtsystem (1) sich in einer radialen Richtung (16) erstreckt, und
dass zumindest ein Kühlkanal (10) einen Winkel von 0° zur radialen Ausrichtung (16) aufweist.
Coolable layer system according to claim 1,
characterized in that
the coolable layer system (1) extends in a radial direction (16), and
that at least one cooling duct (10) has an angle of 0 ° to the radial alignment (16).
Kühlbares Schichtsystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das kühlbare Schichtsystem (1) sich in einer radialen Richtung (16) erstreckt, und
dass zumindest ein Kühlkanal (10) einen Winkel von 90° zur radialen Ausrichtung (16) aufweist.
Coolable layer system according to claim 1 or 2,
characterized in that
the coolable layer system (1) extends in a radial direction (16), and
that at least one cooling duct (10) has an angle of 90 ° to the radial orientation (16).
Kühlbares Schichtsystem nach Anspruch 1, 2 oder 3,
dadurch gekennzeichnet, dass
das kühlbare Schichtsystem (1) sich in einer radialen Richtung (16) erstreckt, und
dass zumindest ein Kühlkanal (10) einen Winkel von grösser 0° bis kleiner 90° zur radialen Ausrichtung (16) aufweist.
Coolable layer system according to claim 1, 2 or 3,
characterized in that
the coolable layer system (1) extends in a radial direction (16), and
that at least one cooling channel (10) has an angle of greater than 0 ° to less than 90 ° to the radial alignment (16).
Kühlbares Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
zumindest ein Kühlkanal (10) zumindest teilweise innerhalb der Beschichtung (7) angeordnet ist.
Coolable layer system according to claim 1,
characterized in that
at least one cooling duct (10) is arranged at least partially within the coating (7).
Kühlbares Schichtsystem nach einem oder mehreren der vorherigen Ansprüche.
dadurch gekennzeichnet, dass
zumindest ein Kühlkanal (10) zwischen zwei Beschichtungen (7, 9) angeordnet ist.
Coolable layer system according to one or more of the preceding claims.
characterized in that
at least one cooling channel (10) is arranged between two coatings (7, 9).
Kühlbares Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
zumindest ein Kühlkanal (10) zumindest eine Hinterschneidung (26) aufweist.
Coolable layer system according to claim 1,
characterized in that
at least one cooling channel (10) has at least one undercut (26).
EP03006962A 2003-03-26 2003-03-26 Coolable coating Withdrawn EP1462613A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03006962A EP1462613A1 (en) 2003-03-26 2003-03-26 Coolable coating
PCT/EP2004/002223 WO2004085799A1 (en) 2003-03-26 2004-03-04 Coolable layer system
US10/550,973 US20060222492A1 (en) 2003-03-26 2004-03-04 Coolable layer system
EP04717097A EP1606494B1 (en) 2003-03-26 2004-03-04 Coolable layer system
DE502004003687T DE502004003687D1 (en) 2003-03-26 2004-03-04 COOLABLE COATING SYSTEM
ES04717097T ES2285440T3 (en) 2003-03-26 2004-03-04 COOLING SYSTEM COOLING.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03006962A EP1462613A1 (en) 2003-03-26 2003-03-26 Coolable coating

Publications (1)

Publication Number Publication Date
EP1462613A1 true EP1462613A1 (en) 2004-09-29

Family

ID=32798919

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03006962A Withdrawn EP1462613A1 (en) 2003-03-26 2003-03-26 Coolable coating
EP04717097A Expired - Lifetime EP1606494B1 (en) 2003-03-26 2004-03-04 Coolable layer system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04717097A Expired - Lifetime EP1606494B1 (en) 2003-03-26 2004-03-04 Coolable layer system

Country Status (5)

Country Link
US (1) US20060222492A1 (en)
EP (2) EP1462613A1 (en)
DE (1) DE502004003687D1 (en)
ES (1) ES2285440T3 (en)
WO (1) WO2004085799A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744348B2 (en) 2004-12-24 2010-06-29 Alstom Technology Ltd. Method of producing a hot gas component of a turbomachine including an embedded channel
EP2431572A1 (en) * 2010-09-21 2012-03-21 Siemens Aktiengesellschaft Thermal barrier coating for a steam turbine component
WO2013143886A1 (en) * 2012-03-29 2013-10-03 Siemens Aktiengesellschaft Coated gas turbine component for high-temperature applications, having a duct system for protective gas
EP3179043A1 (en) * 2015-12-08 2017-06-14 General Electric Company Turbine component comprising a cooling passage embedded within the coating
EP3179039A1 (en) * 2015-12-11 2017-06-14 Rolls-Royce plc Component for a gas turbine engine
DE102011055246B4 (en) 2010-11-10 2022-07-21 General Electric Company Process for manufacturing and coating components with re-entrant cooling channels

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150666A1 (en) * 2009-12-18 2011-06-23 Brian Thomas Hazel Turbine blade
DE102013109116A1 (en) * 2012-08-27 2014-03-27 General Electric Company (N.D.Ges.D. Staates New York) Component with cooling channels and method of manufacture
US20160032766A1 (en) * 2013-03-14 2016-02-04 General Electric Company Components with micro cooled laser deposited material layer and methods of manufacture
US9803939B2 (en) * 2013-11-22 2017-10-31 General Electric Company Methods for the formation and shaping of cooling channels, and related articles of manufacture
DE102016205320A1 (en) * 2016-03-31 2017-10-05 Siemens Aktiengesellschaft Turbine blade with cooling structure
US10830058B2 (en) 2016-11-30 2020-11-10 Rolls-Royce Corporation Turbine engine components with cooling features

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641439A (en) * 1947-10-01 1953-06-09 Chrysler Corp Cooled turbine or compressor blade
GB803650A (en) * 1955-11-16 1958-10-29 Birmingham Small Arms Co Ltd Improvements in or relating to components for operation at high temperature
US6214248B1 (en) * 1998-11-12 2001-04-10 General Electric Company Method of forming hollow channels within a component
EP1215183A1 (en) * 2000-12-18 2002-06-19 United Technologies Corporation Ceramic matrix composite parts with channels and process of making the same
US20020141872A1 (en) * 2001-03-27 2002-10-03 Ramgopal Darolia Process for forming micro cooling channels inside a thermal barrier coating system without masking material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1175816A (en) * 1968-06-24 1969-12-23 Rolls Royce Improvements relating to the Cooling of Aerofoil Shaped Blades
US5405242A (en) * 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
US5080557A (en) * 1991-01-14 1992-01-14 General Motors Corporation Turbine blade shroud assembly
US5653110A (en) * 1991-07-22 1997-08-05 General Electric Company Film cooling of jet engine components
US5370499A (en) * 1992-02-03 1994-12-06 General Electric Company Film cooling of turbine airfoil wall using mesh cooling hole arrangement
US5640767A (en) * 1995-01-03 1997-06-24 Gen Electric Method for making a double-wall airfoil
US5820337A (en) * 1995-01-03 1998-10-13 General Electric Company Double wall turbine parts
US6617003B1 (en) * 2000-11-06 2003-09-09 General Electric Company Directly cooled thermal barrier coating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641439A (en) * 1947-10-01 1953-06-09 Chrysler Corp Cooled turbine or compressor blade
GB803650A (en) * 1955-11-16 1958-10-29 Birmingham Small Arms Co Ltd Improvements in or relating to components for operation at high temperature
US6214248B1 (en) * 1998-11-12 2001-04-10 General Electric Company Method of forming hollow channels within a component
EP1215183A1 (en) * 2000-12-18 2002-06-19 United Technologies Corporation Ceramic matrix composite parts with channels and process of making the same
US20020141872A1 (en) * 2001-03-27 2002-10-03 Ramgopal Darolia Process for forming micro cooling channels inside a thermal barrier coating system without masking material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744348B2 (en) 2004-12-24 2010-06-29 Alstom Technology Ltd. Method of producing a hot gas component of a turbomachine including an embedded channel
US8210815B2 (en) 2004-12-24 2012-07-03 Alstom Technology Ltd. Hot gas component of a turbomachine including an embedded channel
EP2431572A1 (en) * 2010-09-21 2012-03-21 Siemens Aktiengesellschaft Thermal barrier coating for a steam turbine component
DE102011055246B4 (en) 2010-11-10 2022-07-21 General Electric Company Process for manufacturing and coating components with re-entrant cooling channels
WO2013143886A1 (en) * 2012-03-29 2013-10-03 Siemens Aktiengesellschaft Coated gas turbine component for high-temperature applications, having a duct system for protective gas
EP3179043A1 (en) * 2015-12-08 2017-06-14 General Electric Company Turbine component comprising a cooling passage embedded within the coating
US10731483B2 (en) 2015-12-08 2020-08-04 General Electric Company Thermal management article
EP3179039A1 (en) * 2015-12-11 2017-06-14 Rolls-Royce plc Component for a gas turbine engine

Also Published As

Publication number Publication date
DE502004003687D1 (en) 2007-06-14
WO2004085799A1 (en) 2004-10-07
US20060222492A1 (en) 2006-10-05
EP1606494A1 (en) 2005-12-21
ES2285440T3 (en) 2007-11-16
EP1606494B1 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
DE60216177T2 (en) Cooling system of a coated turbine blade tip
EP1641959B1 (en) Layer structure and method for producing such a layer structure
EP1682342B1 (en) High temperature layered system for heat dissipation and method for making it
DE102011056346B4 (en) Method of manufacturing a gas turbine engine component having a two-layer structural coating and such gas turbine engine component
DE102011056905A1 (en) Cooling channel systems for coating coated high temperature components and related processes
EP1007271B1 (en) Gas turbine vane and method for producing a gas turbine vane
DE102014116796A1 (en) Components with multilayer cooling structures and method for producing the same
EP1606494B1 (en) Coolable layer system
EP0132667A1 (en) Thermally highly stressed cooled turbine blade
DE102005033176A1 (en) Abradable coatings for a 7FA + E-stage 1 and process for producing the coatings
DE102011055612A1 (en) Turbine components with cooling devices and method for producing the same
EP1173657A1 (en) Turbine blade and method for producing a turbine blade
EP2097616B1 (en) Component with diagonally extending recesses in the surface and method for operating a turbine
EP1475567A1 (en) Layered structure and method to produce such a layered structure
EP1837113A1 (en) Electrode arrangement and electric discharge machining method for insulating material
EP1382707A1 (en) Layer system
EP3458431A1 (en) Ceramic heat shields having a reaction coating
EP2753729A1 (en) Production method for a coating system
EP2021147A1 (en) Method for spark-erosive treatment of electrically nonconductive materials
DE102013109116A1 (en) Component with cooling channels and method of manufacture
DE102013111874A1 (en) Manufacturing method of component for gas turbine engine involves forming grooves, each with cross-sectional are in predetermined ranged with respect to area derived from product of width of opening and depth of re-entrant shaped groove
EP1462612A1 (en) Coolable coating and method of producing a coolable coating
EP1462611A1 (en) Coolable coating and method of producing a coolable coating
DE10221114C1 (en) Seal maintaining gap dimensions under varying thermal stresses in turbo-machine, comprises joined assembly of hollow spheres
EP1892311A1 (en) Component with a coating system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050330