EP1462613A1 - Revêtement refroidissable - Google Patents

Revêtement refroidissable Download PDF

Info

Publication number
EP1462613A1
EP1462613A1 EP03006962A EP03006962A EP1462613A1 EP 1462613 A1 EP1462613 A1 EP 1462613A1 EP 03006962 A EP03006962 A EP 03006962A EP 03006962 A EP03006962 A EP 03006962A EP 1462613 A1 EP1462613 A1 EP 1462613A1
Authority
EP
European Patent Office
Prior art keywords
coating
cooling
layer system
coolable
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03006962A
Other languages
German (de)
English (en)
Inventor
Heinz-Jürgen Dr. Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03006962A priority Critical patent/EP1462613A1/fr
Priority to EP04717097A priority patent/EP1606494B1/fr
Priority to DE502004003687T priority patent/DE502004003687D1/de
Priority to ES04717097T priority patent/ES2285440T3/es
Priority to PCT/EP2004/002223 priority patent/WO2004085799A1/fr
Priority to US10/550,973 priority patent/US20060222492A1/en
Publication of EP1462613A1 publication Critical patent/EP1462613A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • the invention relates to a coolable layer system according to Preamble of claim 1.
  • a layer system is known from US Pat. No. 5,080,557 which has a porous structure underneath a wall, through which a cooling medium flows. This layer structure is relative thick and bad to cool.
  • the US-PS 5,820,337, the US-PS 5,640,767 and the US-PS 5,392,515 show turbine blades formed from a substrate, those below an outer wall, the same Material as the substrate has, cooling channels arranged are. Cooling the outermost coating on the outer Wall is often not sufficient.
  • EP 1 007 271 B1 shows an impact-cooled gas turbine blade, which, however, have no cooling channels below the outer one Wall.
  • the surveys serve to support the outer wall and do not form cooling channels.
  • the layer system 1 shows a coolable layer system 1.
  • the layer system 1 has a substrate 4.
  • the substrate 4 is, for example, a ceramic or a metal, in particular a superalloy (nickel- or cobalt-based) for gas turbine components (turbine blade, combustion chamber lining, ..).
  • At least one coating 7 is applied to the substrate 4.
  • a ceramic coating for example a thermal insulation layer 9 (FIG. 6), can also be applied to the coating 7.
  • At least one cooling channel 10 is formed within the coating 7, ie the cooling channel 10 is formed by removing the material of the coating 7 or by applying the coating 7 while leaving out a corresponding cavity.
  • the largest part of the circumferential surface of the cooling channel 10 is formed by the coating 7.
  • the surface 22 mostly remains unprocessed.
  • a coolant is supplied via a coolant supply 13, which is formed at least in the substrate 4 and leads into at least one cooling channel 10.
  • the cooling channels 10 are thus arranged in the immediate vicinity of an outer surface which can come into contact with a hot gas 8.
  • the coating 7, which is exposed to higher temperatures than the substrate 4, can thus be cooled better.
  • cooling channels 10 are not arranged through channels within the coating 7, but through depressions 23 in the substrate 4.
  • the coating 7 forms part of the inner surface of the cooling channel 10 and closes it off from the outside.
  • cooling channels 10 both in the substrate 4 and in the coating 7 are arranged.
  • the cooling channel 10 can also through a recess 23 (dashed indicated) can be formed in the coating 7.
  • the cooling channels 10 according to FIGS. 1, 6 are produced as follows, for example. On the surface 22 of the substrate 4 or the surface of the coating 7, webs are filled with a filler material, which correspond in cross section to the cooling channels 10 to be produced. The substrate 4 or the coating 7 is then coated with the coating 7 or the coating 9 (plasma spraying, physical vapor deposition (PVP), chemical vapor deposition (CVD), .
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the webs with the filling material are then removed.
  • the material for the webs consists, for example, of graphite, which after being coated with the coating 7, 9 can be burned out or leached out. Other materials for the filling material are possible.
  • corresponding depressions 23 are made in the surface 22 of the substrate.
  • the depressions 23 are filled, for example, with a filler material which prevents the material of the coating 7 from penetrating into the cooling channels 10 when the substrate 4 is coated. After the application of the coating 7 or the application of an outer wall, the filling material is removed again, so that the cooling channels 10 are created.
  • FIG. 3 shows the arrangement of cooling channels 10 according to FIG. 1, 2 and 6 on a surface of a component 1 (layer system).
  • the layer system 1 is, for example, a turbine blade, which extends along a radial direction 16.
  • At least one cooling channel 10 extends in an axial Direction 19, perpendicular (90 °) to the radial direction 16.
  • the cooling channels 10 can also run at an angle deviating from 90 ° to the radial axis 16 (FIG. 4), for example approximately parallel to the radial direction 16 (0 °). All cooling channels (10) can also extend in one direction. Groups of cooling channels can also run parallel to each other.
  • FIG. 4 shows a further arrangement possibility of cooling channels 10 on a surface 22 or a coating 7 a component 1.
  • At least two cooling channels 10 intersect and are connected to one another, ie a cooling medium can flow from the cooling channel 10 into another cooling channel 10.
  • a cooling medium can flow from the cooling channel 10 into another cooling channel 10.
  • complex, meandering cooling channels are superfluous, since the entire surface to be cooled is covered by the cross pattern of the cooling channels 10. If a cooling channel 10 is blocked at one point, the cooling medium can still flow through the other cooling channels.
  • the cooling medium K flows through an inlet, for example, into the cooling channels 10 'and 10''. The cooling medium passes directly from the cooling channel 10 "into the cooling channel 10"'and 10 "", etc.
  • the cooling channels 10 are here, for example, crosswise in groups arranged to each other, the cooling channels 10 within of a group run parallel to each other.
  • the cooling duct 10 is at least partially adjacent to the coating 7 (not shown) or to an outer wall, the cooling duct 10 of the layer system 1 to be produced has an opening 24 on the surface 22 without coatings or without an outer wall.
  • the angle ⁇ between the surface 22 and the inner surface of the cooling channel 10 at the opening 24 has a value different from 90 °. This means that the cooling channel 10 has undercuts 26 with respect to the surface 22.
  • Such a cooling channel 10 with undercuts 26 can also be arranged in the coating 7 (FIG. 6).
  • a cooling channel 10 with undercuts 26 in the substrate 4 is produced, for example, with a milling cutter or grinding head 25, which is spherical, hemispherical or conical at one end.
  • a hole is made in the substrate 4 using the milling cutter 25 or another cylindrical drill by moving it in a drilling direction 29 almost perpendicular to the surface 22 of the substrate 4.
  • the cutter 25 is moved back and forth in a direction 32 perpendicular to the drilling direction 29, as indicated by the arrow, as a result of which the undercuts 26 are produced in the substrate 4.
  • the various positions of the milling cutter 25 during the back and forth movement are indicated by dashed lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP03006962A 2003-03-26 2003-03-26 Revêtement refroidissable Withdrawn EP1462613A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03006962A EP1462613A1 (fr) 2003-03-26 2003-03-26 Revêtement refroidissable
EP04717097A EP1606494B1 (fr) 2003-03-26 2004-03-04 Systeme de couches pouvant etre refroidi
DE502004003687T DE502004003687D1 (de) 2003-03-26 2004-03-04 Kühlbares schichtsystem
ES04717097T ES2285440T3 (es) 2003-03-26 2004-03-04 Sistema de capas refrigerable.
PCT/EP2004/002223 WO2004085799A1 (fr) 2003-03-26 2004-03-04 Systeme de couches pouvant etre refroidi
US10/550,973 US20060222492A1 (en) 2003-03-26 2004-03-04 Coolable layer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03006962A EP1462613A1 (fr) 2003-03-26 2003-03-26 Revêtement refroidissable

Publications (1)

Publication Number Publication Date
EP1462613A1 true EP1462613A1 (fr) 2004-09-29

Family

ID=32798919

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03006962A Withdrawn EP1462613A1 (fr) 2003-03-26 2003-03-26 Revêtement refroidissable
EP04717097A Expired - Lifetime EP1606494B1 (fr) 2003-03-26 2004-03-04 Systeme de couches pouvant etre refroidi

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04717097A Expired - Lifetime EP1606494B1 (fr) 2003-03-26 2004-03-04 Systeme de couches pouvant etre refroidi

Country Status (5)

Country Link
US (1) US20060222492A1 (fr)
EP (2) EP1462613A1 (fr)
DE (1) DE502004003687D1 (fr)
ES (1) ES2285440T3 (fr)
WO (1) WO2004085799A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744348B2 (en) 2004-12-24 2010-06-29 Alstom Technology Ltd. Method of producing a hot gas component of a turbomachine including an embedded channel
EP2431572A1 (fr) * 2010-09-21 2012-03-21 Siemens Aktiengesellschaft Revêtement de barrière thermique pour un élément de turbine à vapeur
WO2013143886A1 (fr) * 2012-03-29 2013-10-03 Siemens Aktiengesellschaft Élément de turbine à gaz revêtu pour des applications à haute température comprenant un système de canaux pour gaz de protection
EP3179039A1 (fr) * 2015-12-11 2017-06-14 Rolls-Royce plc Composant pour moteur à turbine à gaz
EP3179043A1 (fr) * 2015-12-08 2017-06-14 General Electric Company Composante de turbine avec passage de refroidissement incorporé dans le revêtement
DE102011055246B4 (de) 2010-11-10 2022-07-21 General Electric Company Verfahren zur Herstellung und Beschichtung von Komponenten mit einspringend ausgebildeten Kühlkanälen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150666A1 (en) * 2009-12-18 2011-06-23 Brian Thomas Hazel Turbine blade
DE102013109116A1 (de) * 2012-08-27 2014-03-27 General Electric Company (N.D.Ges.D. Staates New York) Bauteil mit Kühlkanälen und Verfahren zur Herstellung
US20160032766A1 (en) * 2013-03-14 2016-02-04 General Electric Company Components with micro cooled laser deposited material layer and methods of manufacture
US9803939B2 (en) * 2013-11-22 2017-10-31 General Electric Company Methods for the formation and shaping of cooling channels, and related articles of manufacture
DE102016205320A1 (de) 2016-03-31 2017-10-05 Siemens Aktiengesellschaft Turbinenschaufel mit Kühlstruktur
US10830058B2 (en) 2016-11-30 2020-11-10 Rolls-Royce Corporation Turbine engine components with cooling features

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641439A (en) * 1947-10-01 1953-06-09 Chrysler Corp Cooled turbine or compressor blade
GB803650A (en) * 1955-11-16 1958-10-29 Birmingham Small Arms Co Ltd Improvements in or relating to components for operation at high temperature
US6214248B1 (en) * 1998-11-12 2001-04-10 General Electric Company Method of forming hollow channels within a component
EP1215183A1 (fr) * 2000-12-18 2002-06-19 United Technologies Corporation Matériau composite avec matrice céramique et son procédé de fabrication
US20020141872A1 (en) * 2001-03-27 2002-10-03 Ramgopal Darolia Process for forming micro cooling channels inside a thermal barrier coating system without masking material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1175816A (en) * 1968-06-24 1969-12-23 Rolls Royce Improvements relating to the Cooling of Aerofoil Shaped Blades
US5405242A (en) * 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
US5080557A (en) * 1991-01-14 1992-01-14 General Motors Corporation Turbine blade shroud assembly
US5653110A (en) * 1991-07-22 1997-08-05 General Electric Company Film cooling of jet engine components
US5370499A (en) * 1992-02-03 1994-12-06 General Electric Company Film cooling of turbine airfoil wall using mesh cooling hole arrangement
US5820337A (en) * 1995-01-03 1998-10-13 General Electric Company Double wall turbine parts
US5640767A (en) * 1995-01-03 1997-06-24 Gen Electric Method for making a double-wall airfoil
US6617003B1 (en) * 2000-11-06 2003-09-09 General Electric Company Directly cooled thermal barrier coating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641439A (en) * 1947-10-01 1953-06-09 Chrysler Corp Cooled turbine or compressor blade
GB803650A (en) * 1955-11-16 1958-10-29 Birmingham Small Arms Co Ltd Improvements in or relating to components for operation at high temperature
US6214248B1 (en) * 1998-11-12 2001-04-10 General Electric Company Method of forming hollow channels within a component
EP1215183A1 (fr) * 2000-12-18 2002-06-19 United Technologies Corporation Matériau composite avec matrice céramique et son procédé de fabrication
US20020141872A1 (en) * 2001-03-27 2002-10-03 Ramgopal Darolia Process for forming micro cooling channels inside a thermal barrier coating system without masking material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744348B2 (en) 2004-12-24 2010-06-29 Alstom Technology Ltd. Method of producing a hot gas component of a turbomachine including an embedded channel
US8210815B2 (en) 2004-12-24 2012-07-03 Alstom Technology Ltd. Hot gas component of a turbomachine including an embedded channel
EP2431572A1 (fr) * 2010-09-21 2012-03-21 Siemens Aktiengesellschaft Revêtement de barrière thermique pour un élément de turbine à vapeur
DE102011055246B4 (de) 2010-11-10 2022-07-21 General Electric Company Verfahren zur Herstellung und Beschichtung von Komponenten mit einspringend ausgebildeten Kühlkanälen
WO2013143886A1 (fr) * 2012-03-29 2013-10-03 Siemens Aktiengesellschaft Élément de turbine à gaz revêtu pour des applications à haute température comprenant un système de canaux pour gaz de protection
EP3179043A1 (fr) * 2015-12-08 2017-06-14 General Electric Company Composante de turbine avec passage de refroidissement incorporé dans le revêtement
US10731483B2 (en) 2015-12-08 2020-08-04 General Electric Company Thermal management article
EP3179039A1 (fr) * 2015-12-11 2017-06-14 Rolls-Royce plc Composant pour moteur à turbine à gaz

Also Published As

Publication number Publication date
US20060222492A1 (en) 2006-10-05
EP1606494A1 (fr) 2005-12-21
WO2004085799A1 (fr) 2004-10-07
EP1606494B1 (fr) 2007-05-02
DE502004003687D1 (de) 2007-06-14
ES2285440T3 (es) 2007-11-16

Similar Documents

Publication Publication Date Title
DE60216177T2 (de) Kühlsystem einer beschichteten Turbinenschaufelspitze
EP1641959B1 (fr) Structure en couches et procede de realisation de structure en couches
EP1682342B1 (fr) Systeme stratifie pour dissipation de chaleur a haute temperature et methode de fabrication
DE102011056346B4 (de) Verfahren zur Herstellung einer Gasturbinentriebwerkskomponente mit einer zweischichtigen Strukturbeschichtung und derartige Gasturbinentriebwerkskomponente
DE102011056905A1 (de) Kühlkanalsysteme für mit Beschichtungen überzogene Hochtemperaturkomponenten und zugehörige Verfahren
EP1007271B1 (fr) Aube de turbine a gaz et procede permettant de la produire
DE102014116796A1 (de) Bauteile mit mehrschichtigen Kühlstrukturen und Verfahren zur Herstellung derselben
EP1606494B1 (fr) Systeme de couches pouvant etre refroidi
EP0132667A1 (fr) Aube de turbine refroidie soumise à une charge thermique élevée
DE102005033176A1 (de) Abschleifbare Beschichtungen für eine 7FA+E-Stufe 1 und Verfahren zum Herstellen der Beschichtungen
DE102011050757A1 (de) Brennkammerflammrohrkühlsystem
EP2097616B1 (fr) Élément structurel ayant dans sa surface des évidements s'étendant en oblique, et procédé d'exploitation d'une turbine
DE112020000789B4 (de) Hochtemperaturbauteil und verfahren zur herstellung des hochtemperaturbauteils
EP1475567A1 (fr) Structure stratifiée et procédé de fabrication de la structure stratifiée
EP1837113A1 (fr) Agencement d'électrode et procédé pour usiner par électro-érosion des materiaux électriquement non-conducteur
EP1816316B1 (fr) Procédé de réparation de composants
EP1382707A1 (fr) Systeme stratifie
WO2018011126A1 (fr) Écrans thermiques céramiques à revêtement de réaction
WO2013068159A1 (fr) Procédé de fabrication d'un système en couches
EP2021147A1 (fr) Procédé de traitement par électro-érosion d'un matériau électriquement non conducteur
DE102013109116A1 (de) Bauteil mit Kühlkanälen und Verfahren zur Herstellung
DE102013111874A1 (de) Bauteil mit hinterschnitten geformten Kühlkanälen und Herstellungsverfahren dazu
EP1462612A1 (fr) Revêtement refroidissable et procédé de fabrication d'un revêtement refroidissable
EP1462611A1 (fr) Revêtement refroidissable et procédé de fabrication d'un revêtement refroidissable
DE10221114C1 (de) Dichtung für Strömungsmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050330