EP1456507B1 - Agencement d'etancheite pour composants d'une turbomachine - Google Patents

Agencement d'etancheite pour composants d'une turbomachine Download PDF

Info

Publication number
EP1456507B1
EP1456507B1 EP02805241.3A EP02805241A EP1456507B1 EP 1456507 B1 EP1456507 B1 EP 1456507B1 EP 02805241 A EP02805241 A EP 02805241A EP 1456507 B1 EP1456507 B1 EP 1456507B1
Authority
EP
European Patent Office
Prior art keywords
sealing
gas
coolant
redundant
assembly according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02805241.3A
Other languages
German (de)
English (en)
Other versions
EP1456507A1 (fr
Inventor
Shailendra Dr. Naik
Ulrich Rathmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1456507A1 publication Critical patent/EP1456507A1/fr
Application granted granted Critical
Publication of EP1456507B1 publication Critical patent/EP1456507B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/612Foam

Definitions

  • the present invention relates to a seal assembly, in particular for a turbomachine, according to the preamble of claim 1.
  • the present seal assembly can be used in particular for non-contact sealing between mutually moved components in areas in which the seal is exposed to a high temperature load.
  • a particular field of application here is the use in turbomachines, in particular in gas turbines, for the reduction of leakage currents which occur, for example, between the rotor blades and the housing or between the rotor blades and the rotor.
  • turbomachines in particular in gas turbines
  • leakage currents which occur, for example, between the rotor blades and the housing or between the rotor blades and the rotor.
  • the efficiency of a gas turbine is influenced inter alia by leakage currents of the compressed gas which occur between rotating and non-rotating components of the turbine.
  • the housing wall between the tips of the blades and the blades surrounding the blades necessarily existing gap plays an essential role here. A reduction of this column holds the latent risk of a grazing event.
  • honeycomb seals or sealing elements of abrasion tolerant materials such as porous foams or felts, are used. Both the tips of the blades or guide vanes and the honeycomb seals used are exposed to very high temperatures in hot gas operation of the gas turbine. It is therefore desirable, and often even necessary, for the blade tips and the sealing elements to be cooled.
  • the JP 61149506 shows a similar embodiment, in which the honeycomb seals are supported by a layer of porous metal, which is adjacent to a supply chamber for cooling air. Also in this embodiment, the cooling air is brought through the honeycomb seals to the blade tips.
  • the cooling of a honeycomb seal has become known for sealing between the blade tips and the housing of a gas turbine.
  • the seal assembly has two honeycomb-shaped sealing elements serving simultaneously as abradable coatings, one of which is arranged for sealing an axial leakage gap and one for sealing a radial leakage gap.
  • the honeycomb-shaped sealing elements are arranged on a carrier ring, in which an annular space is formed, which has a fluid connection with sealing elements. The annular space is acted upon by supply channels with cooling medium, which flows through the cavities of the honeycomb seals.
  • this embodiment achieves a homogeneous distribution of the cooling medium over the entire sealing ring.
  • cooling of both the honeycomb and the sealing tips of the blades and / or blade shrouds is achieved by the coolant flowing through the honeycomb.
  • the honeycomb seals can be smeared over large parts of the circumference, for example due to contamination, foreign bodies or even a grazing event, thereby considerably reducing the exiting cooling air mass flow. This leads to failure due to overheating and accelerated oxidation or corrosion of the honeycomb material.
  • Serve the honeycomb seals at the same time as an outlet for an upstream Cooling system it may come through the blockage of these exit areas to a collapse of the upstream component cooling with the corresponding negative consequences.
  • a gas turbine with a cooling device for the shroud of a blade ring is known in which on the one hand by first, radially oriented channels from the outside cooling air is injected into the sealed with a labyrinth seal gap between shroud and the outer wall of the hot gas channel, and on the other hand by upstream of the gap more axially oriented second channels cooling air is blown under and over the shroud to cool the shroud.
  • the object of the present invention is to provide a seal assembly of the type mentioned, which avoids the disadvantages of the prior art.
  • the object of the present invention is, in particular, that in the event of a blockage of the cooling medium permeable and comparatively soft, because it is tolerant to tolerances, structures of the seal assembly nevertheless ensure sufficient cooling.
  • the inventive seal assembly proves to be particularly suitable for use in turbomachines, such as gas turbines, for non-contact sealing between rotating and stationary components in the hot gas range suitable.
  • the core of the invention is to design the seal assembly so that a redundant coolant path is formed.
  • at least one redundant coolant channel branches off from the coolant feed of the gas-permeable seal assembly, such that a first Coolant flow path which leads to the sealing elements and through the sealing elements, which basically a transpiration cooling of the gas-permeable sealing elements is realized, and a redundant coolant flow path are formed, the redundant coolant channel seen in the direction of the sealed hot gas flow preferably upstream of the gas-permeable element on the hot gas side of the seal assembly opens in the hot gas flow.
  • the first coolant path or transpiration cooling phad thus passes through gas-permeable soft sealing element, while the redundant coolant channel is guided in a non-gas-permeable and generally mechanically rigid support structure.
  • the redundant coolant channel is designed so that the there emerging through redundant coolant openings coolant, in particular cooling air, at least approximately parallel to the wall of the hot gas side, such that the coolant exiting there as a cooling film on the gas-permeable sealing element, in particular a honeycomb seal , "Honeycomb", or a porous metal or ceramic element.
  • a design-oriented transpiration cooling of the gas-permeable sealing elements is combined with a redundant film cooling of the gas-permeable sealing elements.
  • the redundant coolant channel is inclined in the direction of the hot gas flow, in particular such that the passing coolant partial flow at an angle of preferably less than 30 ° to the overflowing leakage flow exits the redundant coolant openings.
  • part of the coolant is passed on in a highly efficient manner for transpiration cooling directly through the gas-permeable sealing element, while a second coolant flow emerges through the redundant coolant openings.
  • the passage cross sections of the sealing elements and the redundant coolant openings and / or channels may be dimensioned such that in normal operation only a relatively small part of the total mass flow of the coolant passing through the seal assembly of less than 50%, in particular less than 30%, passes through the redundant coolant holes. If there is now a blockage of passage openings in the gas-permeable sealing element, the pressure loss increases over the first coolant path, and the efficiency of the transpiration cooling is reduced.
  • the gas-permeable member is preferably designed and arranged so that the passing coolant flow opens in the leakage flow, and with this encloses an angle of more than 45 °, and is preferably oriented normal to the leakage flow.
  • the sealing element is designed as a honeycomb seal, "honeycomb” or the sealing element consists of a porous material.
  • a porous metal foam or metal felt or a porous ceramic, insbesondre a ceramic foam or a ceramic fiber felt, think.
  • the seal assembly according to the invention becomes such stated that the outlet opening of the redundant coolant channel with respect to the flowing hot gas or the leakage flow is upstream of the sealing element, so that the coolant is passed over the sealing element.
  • the assembly has at least one chamber, which is in fluid communication with both the coolant feed and the gas-permeable seal member.
  • the task of the chamber is in particular to distribute the coolant over the entire sealing element.
  • the carrier has a plurality of chambers and a plurality of feeds, wherein in each chamber at least one feed opens, and each chamber is in communication with at least one sealing element.
  • Each chamber is assigned to a segment, each segment being completely separated from the other segments with regard to the coolant flow.
  • FIG. 1 shows an example of the use of an embodiment of a seal assembly according to the invention for the sealing of leakage flows between the tip of a blade 7, or a blade cover strip, and the housing of a turbomachine, not shown in detail.
  • the blade is flowed through by a hot gas flow 9.
  • the flow direction of the hot gas in this example runs from left to right.
  • a sealing gap is formed through which flows a leakage flow 10 to be sealed.
  • the seal assembly according to the invention together with a relatively moving component opposite a sealing surface, in the present case the sealing tips 8a of the bucket cover strip 8, forms a contactless sealing device which reduces the leakage mass flow.
  • a support 1 carries on the hot gas overflowed side directly opposite the sealing tips 8a sealing elements 2.
  • the sealing elements form with the sealing tips 8a narrowest cross-sections of the leakage gap. The closer they are sized, the lower the leakage current. Due to the narrow gap size, there is a risk of the rotating sealing tips rubbing against the stationary sealing elements in the event of deviations from the design point.
  • the sealing elements are therefore designed to tolerate attack, so that they can pick up a deformation by deformation, without causing a heavy machinery.
  • These sealing elements are preferably honeycombs, so-called “honeycombs", or porous metal or ceramic structures.
  • the sealing elements are overflowed during operation of hot gas, and are due to the porosity, among other things, sensitive to overheating and corrosion.
  • the porous and / or gas-permeable sealing elements are therefore flowed through by coolant, for example cooling air.
  • coolant for example cooling air.
  • the cooling air 11 flows through a feed 3, and in the embodiment, a partial flow 11a of the cooling air is guided into a chamber 5, and flows from there through cavities of the sealing element 2, wherein the sealing element is cooled.
  • the chamber distributes the coolant as evenly as possible over the sealing element. If there is now a closure of the flow-through cross-sections, the sealing element is no longer cooled in accordance with the design.
  • the invention therefore branches from the coolant flow path 3a and 5, which leads to the back of the sealing element, a redundant coolant channel, which opens in a redundant coolant port 4 on the hot gas side of the massive, gas-impermeable support itself.
  • This orifice is arranged upstream of the sealing element 2, viewed in the direction of the sealed flow, and the orifice takes place such that the redundant coolant partial flow 11b emerges from the second partial passage essentially parallel to the sealing element and to the leakage flow.
  • the redundant cooling air flow thus forms a cooling film, which lays over the sealing element.
  • the distribution of the design coolant mass flows can be selectively adjusted so that, for example, in undisturbed normal operation, a comparatively small partial flow, for example less than half of the total cooling mass flow of the seal assembly on the redundant channel and through the redundant coolant holes 4, flows. If now the coolant flow through the sealing element 2 is hindered, the coolant flow through the redundant flow path 3b increases, particularly on condition that the cooling system is designed such that a substantial pressure drop occurs upstream of the branch of the flow path, in particular in the region of the feed 3 on, and the increasing film cooling of the sealing element 2 compensates for the cooling decrease by the flow at least so far that a sufficient cooling of the sealing element and its functioning are ensured long-term.
  • FIG. 2 shows a cross section of the exemplified device.
  • the arrangement of the sealing elements is divided in the circumferential direction in segments 6.
  • Each of the sealing elements 2 in a segment is attached by a single chamber 5 with a separate feed 3, 3a with cooling air.
  • the chambers 5 are separated in the circumferential direction by webs of the carrier 1 from each other. From each feed 3 branches a not visible in this view redundant cooling channel 3b with a redundant coolant outlet opening 4 from.
  • the redundant coolant openings 4 are designed in the manner of oblong holes, so that each circumferential segment of the sealing elements 2 is as completely as possible covered by the film cooling air flow.
  • the cooling air supply of the sealing elements 2 is thus divided in the circumferential direction into a number of completely independent subsystems.
  • damage to the seal for example by tearing of individual segments, limited to the areas actually affected and a further temperature-induced damage to the remaining sealing sections Collapse of the cooling air pre-pressure prevented.
  • only the pressure of the cooling medium breaks down in the corresponding chamber concerned.
  • Adjacent chambers are not affected by this.
  • the feeds 3, 3a have a significantly smaller cross section than the chambers themselves, so that the feeds act as throttling points for metering the cooling air mass flow. Due to this design, the cooling effect in the remaining segments is not significantly influenced by damage to a segment, so that the remaining segments of the sealing element 2 continue to be cooled according to the design.
  • FIG. 3 Another preferred embodiment of the invention is in FIG. 3 shown.
  • the inventive assembly is shown for sealing the hot gas flow between moving parts of a gas turbine.
  • the guide vane 12 is shown in addition to the blade 7, this preceding in the flow direction.
  • the hot gas flow 9 is oriented from right to left.
  • a gas-permeable sealing element 2 is arranged on a support 1 in the stator, the sealing tip 8a and 8b the sealing element together should minimize the leakage flow 10.
  • the foot 13 of the vane is designed impact-cooled.
  • an impingement baffle 14 is disposed which is perforated and directs coolant at a high momentum to the cooling side of the blade root where the coolant absorbs heat from the material of the vane root 13.
  • the perforation of the impingement cooling insert or impingement cooling plate 14 serves here simultaneously as feed 3 for metering the coolant 11.
  • the coolant After flowing through the impingement cooling insert and cooling of the guide blade root, the coolant is in a substantially of the blade root 13, the impact cooling insert 14, the carrier 1, and The assembly of the assembly is again circumferentially symmetrical.
  • the chamber can advantageously also together with the impingement cooling insert analogous to the in FIG. 2 illustrated example, in particular be segmented in the circumferential direction.
  • the coolant flows to the sealing element 2.
  • a part 11a of the coolant flows through the seal member to the hot gas side
  • a second part 11b flows through the redundant coolant passage 3b as film cooling air over the side of the seal member facing the hot gas.
  • the cross-section of the redundant coolant channel is dimensioned, for example, by a throttle point such that the coolant 11 flows out of the chamber 5 substantially through the sealing element 2 during normal operation.
  • the pressure loss across the feeds 3 is quite large, and the significant pressure drop is in the illustrated Coolant guide incurred substantially over the impingement baffle 14, such that substantially the impact cooling insert independently of the downstream components of the total mass flow of the coolant 11 meters.
  • the inventively arranged redundant coolant passage thus ensures on the one hand a minimum cooling of the sealing element, and on the other hand, a maintenance of the flow through the impingement cooling insert 14 and thus the impingement cooling of the blade root thirteenth

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (13)

  1. Agencement d'étanchéité, en particulier pour des composants d'une turbomachine, lequel agencement d'étanchéité présente un côté de refroidissement et un côté de gaz chauds et d'étanchéité balayé en fonctionnement par des gaz chauds (9, 10), comprenant au moins un élément d'étanchéité (2), perméable au gaz et supportant le frottement, sous la forme d'un joint à nid d'abeilles ou d'un élément métallique ou céramique poreux, qui est disposé sur le côté d'étanchéité de l'agencement, de telle manière que l'élément d'étanchéité présente un côté avant formant la face d'étanchéité et orienté vers le côté des gaz chauds et un côté arrière orienté vers le côté de refroidissement, dans lequel l'élément d'étanchéité peut en fonctionnement être traversé avec un courant massique d'agent de refroidissement (11a) à la manière d'un refroidissement par transpiration, et l'agencement présente au moins une alimentation (3) pour un agent de refroidissement, qui est en communication de fluide avec le côté arrière de l'élément d'étanchéité perméable au gaz, caractérisé en ce qu'au moins un canal d'agent de refroidissement redondant (3b) est branché dans le chemin d'écoulement (3a, 5) de l'agent de refroidissement entre l'alimentation (3) et le côté arrière de l'élément perméable au gaz (2), canal qui débouche avec un orifice d'agent de refroidissement redondant (4) sur le côté des gaz chauds d'un composant imperméable au gaz de l'agencement, à côté de l'élément d'étanchéité perméable au gaz (2), en vue du refroidissement par film redondant de l'élément perméable au gaz (2).
  2. Agencement d'étanchéité selon la revendication 1, caractérisé en ce que l'orifice d'agent de refroidissement redondant (4) est disposé sur le côté des gaz chauds, en amont de l'élément d'étanchéité (2) dans la direction d'écoulement des gaz chauds (9, 10).
  3. Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que le courant d'agent de refroidissement (11a) traversant l'élément perméable au gaz débouche dans un écoulement de fuite (10), et forme en l'occurrence avec l'écoulement de fuite un angle de plus de 45°.
  4. Agencement d'étanchéité selon la revendication 3, caractérisé en ce que le courant d'agent de refroidissement traversant l'élément perméable au gaz débouche essentiellement perpendiculairement à l'écoulement de fuite.
  5. Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'agent de refroidissement redondant (3b) est incliné dans la direction d'un écoulement de fuite (10).
  6. Agencement d'étanchéité selon la revendication 5, caractérisé en ce que le canal d'agent de refroidissement redondant est disposé de telle manière qu'un fluide de refroidissement (11b) sortant à travers l'orifice d'agent de refroidissement redondant (4) forme un angle de moins de 30° avec l'écoulement de fuite.
  7. Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'agent de refroidissement redondant (3b) est orienté de telle manière qu'un agent de refroidissement (11b) sortant à travers l'orifice d'agent de refroidissement redondant (4) s'écoule au moins en partie sur l'élément d'étanchéité (2).
  8. Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'agent de refroidissement redondant débouche sur le côté des gaz chauds au moins à peu près parallèlement au côté avant de l'élément d'étanchéité de l'agencement d'étanchéité.
  9. Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agencement comprend au moins une chambre (5), qui est en communication de fluide aussi bien avec l'alimentation (3) qu'avec l'élément d'étanchéité perméable au gaz (2).
  10. Agencement d'étanchéité selon la revendication 9, caractérisé en ce que l'agencement comprend plusieurs chambres (5) et plusieurs alimentations (3) séparées les unes des autres, dans lequel au moins une alimentation débouche dans chaque chambre et chaque chambre est en communication de fluide avec le côté arrière d'un élément d'étanchéité, et dans lequel chaque chambre est associée à un segment (6).
  11. Agencement d'étanchéité selon la revendication 10, caractérisé en ce qu'au moins un canal d'agent de refroidissement redondant (3b) avec un orifice d'agent de refroidissement redondant (4) est disposé dans chaque segment (6).
  12. Agencement d'étanchéité selon l'une des revendications 10 ou 11, caractérisé en ce qu'un élément d'étanchéité unique est disposé dans chaque segment.
  13. Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que l'alimentation (3) est intégrée dans un insert de refroidissement par impact (14).
EP02805241.3A 2001-12-13 2002-12-12 Agencement d'etancheite pour composants d'une turbomachine Expired - Lifetime EP1456507B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH22802001 2001-12-13
CH228001 2001-12-13
PCT/CH2002/000687 WO2003054359A1 (fr) 2001-12-13 2002-12-12 Unite d'etancheification de composants d'une turbomachine

Publications (2)

Publication Number Publication Date
EP1456507A1 EP1456507A1 (fr) 2004-09-15
EP1456507B1 true EP1456507B1 (fr) 2013-05-01

Family

ID=4568377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805241.3A Expired - Lifetime EP1456507B1 (fr) 2001-12-13 2002-12-12 Agencement d'etancheite pour composants d'une turbomachine

Country Status (5)

Country Link
US (1) US20040258523A1 (fr)
EP (1) EP1456507B1 (fr)
JP (1) JP2005513329A (fr)
AU (1) AU2002366847A1 (fr)
WO (1) WO2003054359A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH700320A1 (de) * 2009-01-30 2010-07-30 Alstom Technology Ltd Verfahren zum herstellen eines bauteils einer gasturbine.
EP2390466B1 (fr) * 2010-05-27 2018-04-25 Ansaldo Energia IP UK Limited Ensemble refroidissement d'une turbine à gaz
RU2547541C2 (ru) * 2010-11-29 2015-04-10 Альстом Текнолоджи Лтд Осевая газовая турбина
RU2547351C2 (ru) * 2010-11-29 2015-04-10 Альстом Текнолоджи Лтд Осевая газовая турбина
RU2547542C2 (ru) * 2010-11-29 2015-04-10 Альстом Текнолоджи Лтд Осевая газовая турбина
US20130315708A1 (en) * 2012-05-25 2013-11-28 Jacob Romeo Rendon Nozzle with Extended Tab
FR2999249B1 (fr) * 2012-12-07 2015-01-09 Snecma Compresseur pour turbomachine dote de moyens de refroidissement d'un joint tournant assurant l'etancheite entre un redresseur et un rotor
EP2921650B1 (fr) * 2014-03-20 2017-10-04 Ansaldo Energia Switzerland AG Aube de turbine avec congé de raccordement refroidi
CN104234947A (zh) * 2014-10-10 2014-12-24 中船重工(重庆)海装风电设备有限公司 海上风力发电机组舱内环境控制装置
CN115142905B (zh) * 2022-08-11 2024-08-06 杭州汽轮动力集团股份有限公司 带双预旋通道喷嘴的涡轮盘腔结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728039A (en) * 1966-11-02 1973-04-17 Gen Electric Fluid cooled porous stator structure
US3365172A (en) * 1966-11-02 1968-01-23 Gen Electric Air cooled shroud seal
US3825364A (en) * 1972-06-09 1974-07-23 Gen Electric Porous abradable turbine shroud
FR2280791A1 (fr) * 1974-07-31 1976-02-27 Snecma Perfectionnements au reglage du jeu entre les aubes et le stator d'une turbine
US3989410A (en) * 1974-11-27 1976-11-02 General Electric Company Labyrinth seal system
FR2401310A1 (fr) * 1977-08-26 1979-03-23 Snecma Carter de turbine de moteur a reaction
US4311431A (en) * 1978-11-08 1982-01-19 Teledyne Industries, Inc. Turbine engine with shroud cooling means
GB2125111B (en) * 1982-03-23 1985-06-05 Rolls Royce Shroud assembly for a gas turbine engine
US5584651A (en) * 1994-10-31 1996-12-17 General Electric Company Cooled shroud
US5993150A (en) * 1998-01-16 1999-11-30 General Electric Company Dual cooled shroud
DE19821365C2 (de) * 1998-05-13 2001-09-13 Man Turbomasch Ag Ghh Borsig Kühlung einer Wabendichtung im mit Heißgas beaufschlagten Teil einer Gasturbine
EP1124039A1 (fr) * 2000-02-09 2001-08-16 General Electric Company Dispositif de refroidissement par impact pour une bande de protection de turbine à gaz
US6340285B1 (en) * 2000-06-08 2002-01-22 General Electric Company End rail cooling for combined high and low pressure turbine shroud
GB0029337D0 (en) * 2000-12-01 2001-01-17 Rolls Royce Plc A seal segment for a turbine
AU2002366846A1 (en) * 2001-12-13 2003-07-09 Alstom Technology Ltd Hot gas path subassembly of a gas turbine

Also Published As

Publication number Publication date
WO2003054359A1 (fr) 2003-07-03
EP1456507A1 (fr) 2004-09-15
JP2005513329A (ja) 2005-05-12
AU2002366847A1 (en) 2003-07-09
US20040258523A1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
EP1740797B1 (fr) Turbine a gaz
EP1456508B1 (fr) Sous-groupe de parcours de gaz chauds de turbine a gaz
EP1320661B1 (fr) Aube de turbine a gaz
DE3028137C2 (fr)
EP1260678B1 (fr) Arrangement des segments pour plate-formes
EP1219781B1 (fr) Dispositif et méthode de refroidissement d'une plate-forme d'une aube de turbine
DE3930324C2 (de) Turbinenlaufschaufelkranz für eine Axialströmungsturbine
EP1347153B1 (fr) Système d'étanchéité sans contact pour turbines à gaz
EP2123860A2 (fr) Redresseur de tourbillons combiné
DE102009040758A1 (de) Umlenkvorrichtung für einen Leckagestrom in einer Gasturbine und Gasturbine
EP1709298A1 (fr) Aube refroidie pour une turbine a gaz
EP1456507B1 (fr) Agencement d'etancheite pour composants d'une turbomachine
EP2084368B1 (fr) Aube de turbine
EP1904717B1 (fr) Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz
CH702000A2 (de) Wirbelkammern zur Spaltströmungssteuerung.
EP3336313A1 (fr) Ensemble d'aube mobile pour turbines d'une turbine turbine à gaz et procédé de fourniture d'air sceau dans un ensemble d'aube mobile pour turbines
DE102016222720A1 (de) Dichtungssystem für eine axiale Strömungsmaschine und axiale Strömungsmaschine
EP2358979B1 (fr) Compresseur axial pour turbine a gaz, avec controle passif du jeu radial
EP1165942A1 (fr) Turbomachine avec un systeme d'elements de paroi pouvant etre refroidi et procede de refroidissement d'un systeme d'elements de paroi
DE19735172A1 (de) Verbessertes Turbinenscheiben-Eintrittsverhinderungsverfahren und -vorrichtung
DE19958809A1 (de) Leckstromkanal
EP2843194B1 (fr) Turbomachine avec un dispositif de refroidissement du compresseur
EP2453109A1 (fr) Agencement de turbine à gaz et procédé de fonctionnement d'un agencement de turbine à gaz
EP3587748B1 (fr) Structure de boîtier pour une turbomachine, turbomachine et procédé de refroidissement d'une section de boîtier d'une structure de boîtier d'une turbomachine
DE102012222379B4 (de) Dichtelement und Strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20041119

17Q First examination report despatched

Effective date: 20041119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215760

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215760

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215760

Country of ref document: DE

Effective date: 20130627

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215760

Country of ref document: DE

Effective date: 20140204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215760

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215760

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 15

Ref country code: GB

Payment date: 20161222

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215760

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50215760

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212