EP1456507B1 - Agencement d'etancheite pour composants d'une turbomachine - Google Patents
Agencement d'etancheite pour composants d'une turbomachine Download PDFInfo
- Publication number
- EP1456507B1 EP1456507B1 EP02805241.3A EP02805241A EP1456507B1 EP 1456507 B1 EP1456507 B1 EP 1456507B1 EP 02805241 A EP02805241 A EP 02805241A EP 1456507 B1 EP1456507 B1 EP 1456507B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sealing
- gas
- coolant
- redundant
- assembly according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007789 sealing Methods 0.000 title claims description 120
- 239000002826 coolant Substances 0.000 claims description 103
- 238000001816 cooling Methods 0.000 claims description 65
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 6
- 230000005068 transpiration Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 241000264877 Hippospongia communis Species 0.000 description 20
- 238000013461 design Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000009304 pastoral farming Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/10—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/127—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/205—Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/612—Foam
Definitions
- the present invention relates to a seal assembly, in particular for a turbomachine, according to the preamble of claim 1.
- the present seal assembly can be used in particular for non-contact sealing between mutually moved components in areas in which the seal is exposed to a high temperature load.
- a particular field of application here is the use in turbomachines, in particular in gas turbines, for the reduction of leakage currents which occur, for example, between the rotor blades and the housing or between the rotor blades and the rotor.
- turbomachines in particular in gas turbines
- leakage currents which occur, for example, between the rotor blades and the housing or between the rotor blades and the rotor.
- the efficiency of a gas turbine is influenced inter alia by leakage currents of the compressed gas which occur between rotating and non-rotating components of the turbine.
- the housing wall between the tips of the blades and the blades surrounding the blades necessarily existing gap plays an essential role here. A reduction of this column holds the latent risk of a grazing event.
- honeycomb seals or sealing elements of abrasion tolerant materials such as porous foams or felts, are used. Both the tips of the blades or guide vanes and the honeycomb seals used are exposed to very high temperatures in hot gas operation of the gas turbine. It is therefore desirable, and often even necessary, for the blade tips and the sealing elements to be cooled.
- the JP 61149506 shows a similar embodiment, in which the honeycomb seals are supported by a layer of porous metal, which is adjacent to a supply chamber for cooling air. Also in this embodiment, the cooling air is brought through the honeycomb seals to the blade tips.
- the cooling of a honeycomb seal has become known for sealing between the blade tips and the housing of a gas turbine.
- the seal assembly has two honeycomb-shaped sealing elements serving simultaneously as abradable coatings, one of which is arranged for sealing an axial leakage gap and one for sealing a radial leakage gap.
- the honeycomb-shaped sealing elements are arranged on a carrier ring, in which an annular space is formed, which has a fluid connection with sealing elements. The annular space is acted upon by supply channels with cooling medium, which flows through the cavities of the honeycomb seals.
- this embodiment achieves a homogeneous distribution of the cooling medium over the entire sealing ring.
- cooling of both the honeycomb and the sealing tips of the blades and / or blade shrouds is achieved by the coolant flowing through the honeycomb.
- the honeycomb seals can be smeared over large parts of the circumference, for example due to contamination, foreign bodies or even a grazing event, thereby considerably reducing the exiting cooling air mass flow. This leads to failure due to overheating and accelerated oxidation or corrosion of the honeycomb material.
- Serve the honeycomb seals at the same time as an outlet for an upstream Cooling system it may come through the blockage of these exit areas to a collapse of the upstream component cooling with the corresponding negative consequences.
- a gas turbine with a cooling device for the shroud of a blade ring is known in which on the one hand by first, radially oriented channels from the outside cooling air is injected into the sealed with a labyrinth seal gap between shroud and the outer wall of the hot gas channel, and on the other hand by upstream of the gap more axially oriented second channels cooling air is blown under and over the shroud to cool the shroud.
- the object of the present invention is to provide a seal assembly of the type mentioned, which avoids the disadvantages of the prior art.
- the object of the present invention is, in particular, that in the event of a blockage of the cooling medium permeable and comparatively soft, because it is tolerant to tolerances, structures of the seal assembly nevertheless ensure sufficient cooling.
- the inventive seal assembly proves to be particularly suitable for use in turbomachines, such as gas turbines, for non-contact sealing between rotating and stationary components in the hot gas range suitable.
- the core of the invention is to design the seal assembly so that a redundant coolant path is formed.
- at least one redundant coolant channel branches off from the coolant feed of the gas-permeable seal assembly, such that a first Coolant flow path which leads to the sealing elements and through the sealing elements, which basically a transpiration cooling of the gas-permeable sealing elements is realized, and a redundant coolant flow path are formed, the redundant coolant channel seen in the direction of the sealed hot gas flow preferably upstream of the gas-permeable element on the hot gas side of the seal assembly opens in the hot gas flow.
- the first coolant path or transpiration cooling phad thus passes through gas-permeable soft sealing element, while the redundant coolant channel is guided in a non-gas-permeable and generally mechanically rigid support structure.
- the redundant coolant channel is designed so that the there emerging through redundant coolant openings coolant, in particular cooling air, at least approximately parallel to the wall of the hot gas side, such that the coolant exiting there as a cooling film on the gas-permeable sealing element, in particular a honeycomb seal , "Honeycomb", or a porous metal or ceramic element.
- a design-oriented transpiration cooling of the gas-permeable sealing elements is combined with a redundant film cooling of the gas-permeable sealing elements.
- the redundant coolant channel is inclined in the direction of the hot gas flow, in particular such that the passing coolant partial flow at an angle of preferably less than 30 ° to the overflowing leakage flow exits the redundant coolant openings.
- part of the coolant is passed on in a highly efficient manner for transpiration cooling directly through the gas-permeable sealing element, while a second coolant flow emerges through the redundant coolant openings.
- the passage cross sections of the sealing elements and the redundant coolant openings and / or channels may be dimensioned such that in normal operation only a relatively small part of the total mass flow of the coolant passing through the seal assembly of less than 50%, in particular less than 30%, passes through the redundant coolant holes. If there is now a blockage of passage openings in the gas-permeable sealing element, the pressure loss increases over the first coolant path, and the efficiency of the transpiration cooling is reduced.
- the gas-permeable member is preferably designed and arranged so that the passing coolant flow opens in the leakage flow, and with this encloses an angle of more than 45 °, and is preferably oriented normal to the leakage flow.
- the sealing element is designed as a honeycomb seal, "honeycomb” or the sealing element consists of a porous material.
- a porous metal foam or metal felt or a porous ceramic, insbesondre a ceramic foam or a ceramic fiber felt, think.
- the seal assembly according to the invention becomes such stated that the outlet opening of the redundant coolant channel with respect to the flowing hot gas or the leakage flow is upstream of the sealing element, so that the coolant is passed over the sealing element.
- the assembly has at least one chamber, which is in fluid communication with both the coolant feed and the gas-permeable seal member.
- the task of the chamber is in particular to distribute the coolant over the entire sealing element.
- the carrier has a plurality of chambers and a plurality of feeds, wherein in each chamber at least one feed opens, and each chamber is in communication with at least one sealing element.
- Each chamber is assigned to a segment, each segment being completely separated from the other segments with regard to the coolant flow.
- FIG. 1 shows an example of the use of an embodiment of a seal assembly according to the invention for the sealing of leakage flows between the tip of a blade 7, or a blade cover strip, and the housing of a turbomachine, not shown in detail.
- the blade is flowed through by a hot gas flow 9.
- the flow direction of the hot gas in this example runs from left to right.
- a sealing gap is formed through which flows a leakage flow 10 to be sealed.
- the seal assembly according to the invention together with a relatively moving component opposite a sealing surface, in the present case the sealing tips 8a of the bucket cover strip 8, forms a contactless sealing device which reduces the leakage mass flow.
- a support 1 carries on the hot gas overflowed side directly opposite the sealing tips 8a sealing elements 2.
- the sealing elements form with the sealing tips 8a narrowest cross-sections of the leakage gap. The closer they are sized, the lower the leakage current. Due to the narrow gap size, there is a risk of the rotating sealing tips rubbing against the stationary sealing elements in the event of deviations from the design point.
- the sealing elements are therefore designed to tolerate attack, so that they can pick up a deformation by deformation, without causing a heavy machinery.
- These sealing elements are preferably honeycombs, so-called “honeycombs", or porous metal or ceramic structures.
- the sealing elements are overflowed during operation of hot gas, and are due to the porosity, among other things, sensitive to overheating and corrosion.
- the porous and / or gas-permeable sealing elements are therefore flowed through by coolant, for example cooling air.
- coolant for example cooling air.
- the cooling air 11 flows through a feed 3, and in the embodiment, a partial flow 11a of the cooling air is guided into a chamber 5, and flows from there through cavities of the sealing element 2, wherein the sealing element is cooled.
- the chamber distributes the coolant as evenly as possible over the sealing element. If there is now a closure of the flow-through cross-sections, the sealing element is no longer cooled in accordance with the design.
- the invention therefore branches from the coolant flow path 3a and 5, which leads to the back of the sealing element, a redundant coolant channel, which opens in a redundant coolant port 4 on the hot gas side of the massive, gas-impermeable support itself.
- This orifice is arranged upstream of the sealing element 2, viewed in the direction of the sealed flow, and the orifice takes place such that the redundant coolant partial flow 11b emerges from the second partial passage essentially parallel to the sealing element and to the leakage flow.
- the redundant cooling air flow thus forms a cooling film, which lays over the sealing element.
- the distribution of the design coolant mass flows can be selectively adjusted so that, for example, in undisturbed normal operation, a comparatively small partial flow, for example less than half of the total cooling mass flow of the seal assembly on the redundant channel and through the redundant coolant holes 4, flows. If now the coolant flow through the sealing element 2 is hindered, the coolant flow through the redundant flow path 3b increases, particularly on condition that the cooling system is designed such that a substantial pressure drop occurs upstream of the branch of the flow path, in particular in the region of the feed 3 on, and the increasing film cooling of the sealing element 2 compensates for the cooling decrease by the flow at least so far that a sufficient cooling of the sealing element and its functioning are ensured long-term.
- FIG. 2 shows a cross section of the exemplified device.
- the arrangement of the sealing elements is divided in the circumferential direction in segments 6.
- Each of the sealing elements 2 in a segment is attached by a single chamber 5 with a separate feed 3, 3a with cooling air.
- the chambers 5 are separated in the circumferential direction by webs of the carrier 1 from each other. From each feed 3 branches a not visible in this view redundant cooling channel 3b with a redundant coolant outlet opening 4 from.
- the redundant coolant openings 4 are designed in the manner of oblong holes, so that each circumferential segment of the sealing elements 2 is as completely as possible covered by the film cooling air flow.
- the cooling air supply of the sealing elements 2 is thus divided in the circumferential direction into a number of completely independent subsystems.
- damage to the seal for example by tearing of individual segments, limited to the areas actually affected and a further temperature-induced damage to the remaining sealing sections Collapse of the cooling air pre-pressure prevented.
- only the pressure of the cooling medium breaks down in the corresponding chamber concerned.
- Adjacent chambers are not affected by this.
- the feeds 3, 3a have a significantly smaller cross section than the chambers themselves, so that the feeds act as throttling points for metering the cooling air mass flow. Due to this design, the cooling effect in the remaining segments is not significantly influenced by damage to a segment, so that the remaining segments of the sealing element 2 continue to be cooled according to the design.
- FIG. 3 Another preferred embodiment of the invention is in FIG. 3 shown.
- the inventive assembly is shown for sealing the hot gas flow between moving parts of a gas turbine.
- the guide vane 12 is shown in addition to the blade 7, this preceding in the flow direction.
- the hot gas flow 9 is oriented from right to left.
- a gas-permeable sealing element 2 is arranged on a support 1 in the stator, the sealing tip 8a and 8b the sealing element together should minimize the leakage flow 10.
- the foot 13 of the vane is designed impact-cooled.
- an impingement baffle 14 is disposed which is perforated and directs coolant at a high momentum to the cooling side of the blade root where the coolant absorbs heat from the material of the vane root 13.
- the perforation of the impingement cooling insert or impingement cooling plate 14 serves here simultaneously as feed 3 for metering the coolant 11.
- the coolant After flowing through the impingement cooling insert and cooling of the guide blade root, the coolant is in a substantially of the blade root 13, the impact cooling insert 14, the carrier 1, and The assembly of the assembly is again circumferentially symmetrical.
- the chamber can advantageously also together with the impingement cooling insert analogous to the in FIG. 2 illustrated example, in particular be segmented in the circumferential direction.
- the coolant flows to the sealing element 2.
- a part 11a of the coolant flows through the seal member to the hot gas side
- a second part 11b flows through the redundant coolant passage 3b as film cooling air over the side of the seal member facing the hot gas.
- the cross-section of the redundant coolant channel is dimensioned, for example, by a throttle point such that the coolant 11 flows out of the chamber 5 substantially through the sealing element 2 during normal operation.
- the pressure loss across the feeds 3 is quite large, and the significant pressure drop is in the illustrated Coolant guide incurred substantially over the impingement baffle 14, such that substantially the impact cooling insert independently of the downstream components of the total mass flow of the coolant 11 meters.
- the inventively arranged redundant coolant passage thus ensures on the one hand a minimum cooling of the sealing element, and on the other hand, a maintenance of the flow through the impingement cooling insert 14 and thus the impingement cooling of the blade root thirteenth
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Claims (13)
- Agencement d'étanchéité, en particulier pour des composants d'une turbomachine, lequel agencement d'étanchéité présente un côté de refroidissement et un côté de gaz chauds et d'étanchéité balayé en fonctionnement par des gaz chauds (9, 10), comprenant au moins un élément d'étanchéité (2), perméable au gaz et supportant le frottement, sous la forme d'un joint à nid d'abeilles ou d'un élément métallique ou céramique poreux, qui est disposé sur le côté d'étanchéité de l'agencement, de telle manière que l'élément d'étanchéité présente un côté avant formant la face d'étanchéité et orienté vers le côté des gaz chauds et un côté arrière orienté vers le côté de refroidissement, dans lequel l'élément d'étanchéité peut en fonctionnement être traversé avec un courant massique d'agent de refroidissement (11a) à la manière d'un refroidissement par transpiration, et l'agencement présente au moins une alimentation (3) pour un agent de refroidissement, qui est en communication de fluide avec le côté arrière de l'élément d'étanchéité perméable au gaz, caractérisé en ce qu'au moins un canal d'agent de refroidissement redondant (3b) est branché dans le chemin d'écoulement (3a, 5) de l'agent de refroidissement entre l'alimentation (3) et le côté arrière de l'élément perméable au gaz (2), canal qui débouche avec un orifice d'agent de refroidissement redondant (4) sur le côté des gaz chauds d'un composant imperméable au gaz de l'agencement, à côté de l'élément d'étanchéité perméable au gaz (2), en vue du refroidissement par film redondant de l'élément perméable au gaz (2).
- Agencement d'étanchéité selon la revendication 1, caractérisé en ce que l'orifice d'agent de refroidissement redondant (4) est disposé sur le côté des gaz chauds, en amont de l'élément d'étanchéité (2) dans la direction d'écoulement des gaz chauds (9, 10).
- Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que le courant d'agent de refroidissement (11a) traversant l'élément perméable au gaz débouche dans un écoulement de fuite (10), et forme en l'occurrence avec l'écoulement de fuite un angle de plus de 45°.
- Agencement d'étanchéité selon la revendication 3, caractérisé en ce que le courant d'agent de refroidissement traversant l'élément perméable au gaz débouche essentiellement perpendiculairement à l'écoulement de fuite.
- Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'agent de refroidissement redondant (3b) est incliné dans la direction d'un écoulement de fuite (10).
- Agencement d'étanchéité selon la revendication 5, caractérisé en ce que le canal d'agent de refroidissement redondant est disposé de telle manière qu'un fluide de refroidissement (11b) sortant à travers l'orifice d'agent de refroidissement redondant (4) forme un angle de moins de 30° avec l'écoulement de fuite.
- Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'agent de refroidissement redondant (3b) est orienté de telle manière qu'un agent de refroidissement (11b) sortant à travers l'orifice d'agent de refroidissement redondant (4) s'écoule au moins en partie sur l'élément d'étanchéité (2).
- Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'agent de refroidissement redondant débouche sur le côté des gaz chauds au moins à peu près parallèlement au côté avant de l'élément d'étanchéité de l'agencement d'étanchéité.
- Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agencement comprend au moins une chambre (5), qui est en communication de fluide aussi bien avec l'alimentation (3) qu'avec l'élément d'étanchéité perméable au gaz (2).
- Agencement d'étanchéité selon la revendication 9, caractérisé en ce que l'agencement comprend plusieurs chambres (5) et plusieurs alimentations (3) séparées les unes des autres, dans lequel au moins une alimentation débouche dans chaque chambre et chaque chambre est en communication de fluide avec le côté arrière d'un élément d'étanchéité, et dans lequel chaque chambre est associée à un segment (6).
- Agencement d'étanchéité selon la revendication 10, caractérisé en ce qu'au moins un canal d'agent de refroidissement redondant (3b) avec un orifice d'agent de refroidissement redondant (4) est disposé dans chaque segment (6).
- Agencement d'étanchéité selon l'une des revendications 10 ou 11, caractérisé en ce qu'un élément d'étanchéité unique est disposé dans chaque segment.
- Agencement d'étanchéité selon l'une quelconque des revendications précédentes, caractérisé en ce que l'alimentation (3) est intégrée dans un insert de refroidissement par impact (14).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH22802001 | 2001-12-13 | ||
CH228001 | 2001-12-13 | ||
PCT/CH2002/000687 WO2003054359A1 (fr) | 2001-12-13 | 2002-12-12 | Unite d'etancheification de composants d'une turbomachine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1456507A1 EP1456507A1 (fr) | 2004-09-15 |
EP1456507B1 true EP1456507B1 (fr) | 2013-05-01 |
Family
ID=4568377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02805241.3A Expired - Lifetime EP1456507B1 (fr) | 2001-12-13 | 2002-12-12 | Agencement d'etancheite pour composants d'une turbomachine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20040258523A1 (fr) |
EP (1) | EP1456507B1 (fr) |
JP (1) | JP2005513329A (fr) |
AU (1) | AU2002366847A1 (fr) |
WO (1) | WO2003054359A1 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH700320A1 (de) * | 2009-01-30 | 2010-07-30 | Alstom Technology Ltd | Verfahren zum herstellen eines bauteils einer gasturbine. |
EP2390466B1 (fr) * | 2010-05-27 | 2018-04-25 | Ansaldo Energia IP UK Limited | Ensemble refroidissement d'une turbine à gaz |
RU2547541C2 (ru) * | 2010-11-29 | 2015-04-10 | Альстом Текнолоджи Лтд | Осевая газовая турбина |
RU2547351C2 (ru) * | 2010-11-29 | 2015-04-10 | Альстом Текнолоджи Лтд | Осевая газовая турбина |
RU2547542C2 (ru) * | 2010-11-29 | 2015-04-10 | Альстом Текнолоджи Лтд | Осевая газовая турбина |
US20130315708A1 (en) * | 2012-05-25 | 2013-11-28 | Jacob Romeo Rendon | Nozzle with Extended Tab |
FR2999249B1 (fr) * | 2012-12-07 | 2015-01-09 | Snecma | Compresseur pour turbomachine dote de moyens de refroidissement d'un joint tournant assurant l'etancheite entre un redresseur et un rotor |
EP2921650B1 (fr) * | 2014-03-20 | 2017-10-04 | Ansaldo Energia Switzerland AG | Aube de turbine avec congé de raccordement refroidi |
CN104234947A (zh) * | 2014-10-10 | 2014-12-24 | 中船重工(重庆)海装风电设备有限公司 | 海上风力发电机组舱内环境控制装置 |
CN115142905B (zh) * | 2022-08-11 | 2024-08-06 | 杭州汽轮动力集团股份有限公司 | 带双预旋通道喷嘴的涡轮盘腔结构 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3728039A (en) * | 1966-11-02 | 1973-04-17 | Gen Electric | Fluid cooled porous stator structure |
US3365172A (en) * | 1966-11-02 | 1968-01-23 | Gen Electric | Air cooled shroud seal |
US3825364A (en) * | 1972-06-09 | 1974-07-23 | Gen Electric | Porous abradable turbine shroud |
FR2280791A1 (fr) * | 1974-07-31 | 1976-02-27 | Snecma | Perfectionnements au reglage du jeu entre les aubes et le stator d'une turbine |
US3989410A (en) * | 1974-11-27 | 1976-11-02 | General Electric Company | Labyrinth seal system |
FR2401310A1 (fr) * | 1977-08-26 | 1979-03-23 | Snecma | Carter de turbine de moteur a reaction |
US4311431A (en) * | 1978-11-08 | 1982-01-19 | Teledyne Industries, Inc. | Turbine engine with shroud cooling means |
GB2125111B (en) * | 1982-03-23 | 1985-06-05 | Rolls Royce | Shroud assembly for a gas turbine engine |
US5584651A (en) * | 1994-10-31 | 1996-12-17 | General Electric Company | Cooled shroud |
US5993150A (en) * | 1998-01-16 | 1999-11-30 | General Electric Company | Dual cooled shroud |
DE19821365C2 (de) * | 1998-05-13 | 2001-09-13 | Man Turbomasch Ag Ghh Borsig | Kühlung einer Wabendichtung im mit Heißgas beaufschlagten Teil einer Gasturbine |
EP1124039A1 (fr) * | 2000-02-09 | 2001-08-16 | General Electric Company | Dispositif de refroidissement par impact pour une bande de protection de turbine à gaz |
US6340285B1 (en) * | 2000-06-08 | 2002-01-22 | General Electric Company | End rail cooling for combined high and low pressure turbine shroud |
GB0029337D0 (en) * | 2000-12-01 | 2001-01-17 | Rolls Royce Plc | A seal segment for a turbine |
AU2002366846A1 (en) * | 2001-12-13 | 2003-07-09 | Alstom Technology Ltd | Hot gas path subassembly of a gas turbine |
-
2002
- 2002-12-12 JP JP2003555047A patent/JP2005513329A/ja not_active Withdrawn
- 2002-12-12 AU AU2002366847A patent/AU2002366847A1/en not_active Abandoned
- 2002-12-12 EP EP02805241.3A patent/EP1456507B1/fr not_active Expired - Lifetime
- 2002-12-12 WO PCT/CH2002/000687 patent/WO2003054359A1/fr active Application Filing
-
2004
- 2004-06-14 US US10/865,761 patent/US20040258523A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2003054359A1 (fr) | 2003-07-03 |
EP1456507A1 (fr) | 2004-09-15 |
JP2005513329A (ja) | 2005-05-12 |
AU2002366847A1 (en) | 2003-07-09 |
US20040258523A1 (en) | 2004-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1740797B1 (fr) | Turbine a gaz | |
EP1456508B1 (fr) | Sous-groupe de parcours de gaz chauds de turbine a gaz | |
EP1320661B1 (fr) | Aube de turbine a gaz | |
DE3028137C2 (fr) | ||
EP1260678B1 (fr) | Arrangement des segments pour plate-formes | |
EP1219781B1 (fr) | Dispositif et méthode de refroidissement d'une plate-forme d'une aube de turbine | |
DE3930324C2 (de) | Turbinenlaufschaufelkranz für eine Axialströmungsturbine | |
EP1347153B1 (fr) | Système d'étanchéité sans contact pour turbines à gaz | |
EP2123860A2 (fr) | Redresseur de tourbillons combiné | |
DE102009040758A1 (de) | Umlenkvorrichtung für einen Leckagestrom in einer Gasturbine und Gasturbine | |
EP1709298A1 (fr) | Aube refroidie pour une turbine a gaz | |
EP1456507B1 (fr) | Agencement d'etancheite pour composants d'une turbomachine | |
EP2084368B1 (fr) | Aube de turbine | |
EP1904717B1 (fr) | Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz | |
CH702000A2 (de) | Wirbelkammern zur Spaltströmungssteuerung. | |
EP3336313A1 (fr) | Ensemble d'aube mobile pour turbines d'une turbine turbine à gaz et procédé de fourniture d'air sceau dans un ensemble d'aube mobile pour turbines | |
DE102016222720A1 (de) | Dichtungssystem für eine axiale Strömungsmaschine und axiale Strömungsmaschine | |
EP2358979B1 (fr) | Compresseur axial pour turbine a gaz, avec controle passif du jeu radial | |
EP1165942A1 (fr) | Turbomachine avec un systeme d'elements de paroi pouvant etre refroidi et procede de refroidissement d'un systeme d'elements de paroi | |
DE19735172A1 (de) | Verbessertes Turbinenscheiben-Eintrittsverhinderungsverfahren und -vorrichtung | |
DE19958809A1 (de) | Leckstromkanal | |
EP2843194B1 (fr) | Turbomachine avec un dispositif de refroidissement du compresseur | |
EP2453109A1 (fr) | Agencement de turbine à gaz et procédé de fonctionnement d'un agencement de turbine à gaz | |
EP3587748B1 (fr) | Structure de boîtier pour une turbomachine, turbomachine et procédé de refroidissement d'une section de boîtier d'une structure de boîtier d'une turbomachine | |
DE102012222379B4 (de) | Dichtelement und Strömungsmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040609 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
17Q | First examination report despatched |
Effective date: 20041119 |
|
17Q | First examination report despatched |
Effective date: 20041119 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50215760 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50215760 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50215760 Country of ref document: DE Effective date: 20130627 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140204 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50215760 Country of ref document: DE Effective date: 20140204 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50215760 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50215760 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161213 Year of fee payment: 15 Ref country code: GB Payment date: 20161222 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170727 AND 20170802 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50215760 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50215760 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171212 |