EP1455055B1 - Turbomachine mit gekühlten Mantelringsegmenten - Google Patents

Turbomachine mit gekühlten Mantelringsegmenten Download PDF

Info

Publication number
EP1455055B1
EP1455055B1 EP04100854A EP04100854A EP1455055B1 EP 1455055 B1 EP1455055 B1 EP 1455055B1 EP 04100854 A EP04100854 A EP 04100854A EP 04100854 A EP04100854 A EP 04100854A EP 1455055 B1 EP1455055 B1 EP 1455055B1
Authority
EP
European Patent Office
Prior art keywords
turbomachine
casing
ring segment
spacer
clamping screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04100854A
Other languages
English (en)
French (fr)
Other versions
EP1455055A1 (de
Inventor
Marc Roger Marchi
Paul Rodrigues
Patrice Jean-Marc Rosset
Jean Claude Christian Taillant
Jean Baptiste Arilla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1455055A1 publication Critical patent/EP1455055A1/de
Application granted granted Critical
Publication of EP1455055B1 publication Critical patent/EP1455055B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector

Definitions

  • the present invention relates generally to a turbomachine with cooled ring sectors.
  • the invention relates to a turbomachine comprising a housing, a rotor and a plurality of cooled ring sectors interposed between the housing and the rotor, each of these ring sectors being provided with at least one cooling cavity.
  • Ring sectors can be either turbine ring sectors, preferably high pressure turbine, or compressor ring sectors.
  • the invention finds a non-exclusive application but more particular when it relates to a turbine of the turbomachine, insofar as the significant thermal stresses surrounding require the presence of such cooled ring sectors .
  • FIG. 1 it is partially represented a high turbine portion pressure of a turbomachine 1 of the prior art, such as that described in the document FR-A-2,800,797 .
  • the high pressure turbine comprises a turbine casing 2, and a rotor 4, of which only one end of the blades 6 is shown.
  • the turbine is provided with a plurality of cooled ring sectors 8 mounted on the turbine casing 2, and forming a ring around the blades 6 of the rotor 4.
  • the latter comprises first, on the upstream side, a hook 10 intended to cooperate with a hook 12 belonging to the ring sector 8.
  • a hook 10 and 12 are interlocked, they allow the ring sector 8 to pivot until it abuts downstream against the turbine casing 2 by contacting flanges 14 and 16.
  • the post 18 is retained by a mortise 22, formed by means of the rim 16 of the housing, as well as by a resilient tab 24 which allows once the assembly made, to eliminate the axial play of the post 18.
  • each ring sector 8 with respect to the turbine casing 2 is carried out by means of a staple 26 whose branches serve to grip the flanges 14 and 16, these being respectively provided with notches facing 28 and 30 between which can be slid the core of the staple 26, pushing upstream.
  • the mounting system ring sectors on the housing is very complex design, and therefore generates relatively significant costs.
  • the tenon / mortise assembly implemented between the housing and each ring sector does not provide a perfect seal, so that leakage can be observed between these two elements, naturally to the detriment of the cooling of the elements. Ring sectors and thermal protection of the turbine housing.
  • the inner chamber 20 is supplied with cooling air by means of one or more cooling orifices 27 which pass through the casing 2, this cooling air being taken for example from one of the compressors (not shown) of the turbomachine 1.
  • the cooling air After introduction of the cooling air into the inner chamber 20, the latter passes through a perforated wall 23 of the ring sector 8 in order to penetrate into a cooling cavity 25 provided in this last.
  • the invention therefore aims to propose a turbomachine comprising a housing, a rotor and a plurality of cooled ring sectors interposed between the housing and the rotor, the turbomachine at least partially overcoming the disadvantages mentioned above relating to achievements of the prior art.
  • the subject of the invention is a turbomachine comprising a housing, a rotor and a plurality of cooled ring sectors interposed between the casing and the rotor, each ring sector comprising a main cooling cavity and being mounted on the turbine casing by means of fixing means.
  • the fixing means comprise a clamping screw positioned substantially radially and ensuring the plating of the ring sector against the housing, this clamping screw being traversed by a cooling air passage communicating with the cooling cavity. ring sector.
  • the fixing means have a largely simplified design compared to that of the means presented previously, insofar as they no longer require hooks or staples to extremely precise dimensions, but instead consist essentially of a single clamping screw.
  • the radially arranged clamping screw makes it possible to obtain a very precise axial and tangential positioning of the ring sector with respect to the turbine casing, thus considerably limiting the cooling air leaks between these elements. In this way, the turbine casing is better thermally protected, and the ring sectors can be cooled quite satisfactorily.
  • fastening means used in the invention provide a simplicity of assembly as well as a reduced cost compared with those of the prior art described above and shown in FIG. figure 1 .
  • the fact of providing one or more air passages through the screw advantageously allows the fastening means of each ring sector to be combined with the means necessary for conveying the cooling air to cooling cavity of the concerned ring.
  • the cooling air taken at the desired location such as for example at a compressor of the turbomachine, enters an outer radial end of the air passage, then passes through the latter. to be ejected by an inner radial end, to then integrate the main cooling cavity and thus ensure the cooling of the ring sector.
  • the clamping screw is traversed longitudinally by a single passage of cooling air, which therefore opens in particular at the screw head.
  • the fixing means comprise a spacer mounted on the housing and traversed by the clamping screw, the spacer ensuring the axial and tangential positioning of the ring sector relative to the housing, and the prestressing sought.
  • the spacer has an inner diameter substantially equal to an outer diameter of at least a portion of the clamping screw lying opposite the spacer, and / or that the spacer has a lower end inserted in a bore provided on the ring sector, the lower end having an outer diameter substantially equal to an inner diameter of the bore.
  • the spacer constitutes a stop for this ring sector, so as to ensure the radial positioning of the latter relative to the housing.
  • a simple spacer judiciously arranged on the housing makes it possible to achieve a very precise positioning of the ring sector with respect to this housing, both axially, tangentially and radially.
  • each ring sector comprises a threaded portion cooperating with the clamping screw, the head of this clamping screw being abutted against an upper end of the spacer.
  • another solution for ensuring the plating of the ring sector against the housing could be to provide that each ring sector has an indentation within which is abutted the head of the clamping screw, the latter cooperating with a nut abuts against an upper end of the spacer passing through the housing.
  • each ring sector may comprise an upstream end as well as a downstream end, the upstream end being in contact with an upstream circular collar belonging to the casing, and the downstream end being in contact with a circular collar. downstream belonging to this same housing.
  • each ring sector further comprises a secondary cooling cavity separated from the main cooling cavity by a wall, these main and secondary cavities being superimposed radially.
  • turbomachine 100 With reference jointly to figures 2 and 3 it is partially shown a turbomachine 100, according to a first preferred embodiment of the present invention.
  • the turbomachine 100 comprises a casing 102 and a rotor 4 provided with blades 6.
  • the invention finding a very particular application when it is applied to a turbine of the turbomachine 100, it will be considered in the following description that the party represented on the figures 2 and 3 corresponds to a high pressure turbine this turbomachine, and that consequently, the housing 102 and rotor 4 respectively correspond to a turbine casing 102 and a turbine rotor 4 provided with blades 6. It is noted that this choice of application of the invention to a turbine, preferably to the high-pressure turbine subjected to significant thermal stresses, will be adopted for all of the preferred embodiments shown in the drawings. Figures 2 to 6 , and described below.
  • the turbine comprises a plurality of cooled ring sectors 108 mounted on the turbine casing 102 via fastening means 132, the ring sectors 108 forming a ring around the rotor blades 6 of the rotor. turbine 4.
  • the fastening means 132 comprise a clamping screw 134 positioned substantially radially relative to the turbine casing 102.
  • the clamping screw 134 is arranged so that its longitudinal axis (not shown) is substantially parallel to a radial direction of the turbomachine 100.
  • the fastening means 132 comprise a spacer 136, mounted integrally or with a calibrated clearance on the housing 102 that it passes through, this spacer 136 also called “guide sleeve” being traversed by the clamping screw 134 and thus also having a longitudinal axis positioned substantially radially.
  • the clamping screw 134 has a portion 138, located under the head 140 and facing the spacer 136, whose outer diameter is substantially equal to the inner diameter of the same spacer 136.
  • the ring sector 108 has a threaded portion 141 cooperating with the threaded portion 142 of the fixing screw 134. In this way, when the ring sector 108 cooperates with the fixing screw 134 it is also positioned axially and tangentially very precisely with respect to the turbine casing 102.
  • the spacer 136 has a lower end 136a inserted inside a bore 144 provided on the ring sector 108, the outer diameter of the lower end 136a being substantially equal to the inner diameter of the bore 144. With such an arrangement, it is then no longer necessary to provide the identity between the inside diameter of the spacer 136 and the outside diameter of the portion 138 of the clamping screw 134.
  • the head 140 of the screw 134 located radially outwardly relative to the threaded portion 142, abuts against an upper end 136b of the spacer 136.
  • An anti-rotation plate 146 may optionally be inserted between this end upper 136b and the head 140 of the screw 134, so that it can not loosen once assembled.
  • the lower end 136a of the spacer 136 may also constitute a stop for the ring sector 108, so as to ensure a very precise radial positioning of the latter relative to the turbine casing 102, or else controlled prestressing.
  • the spacer 136 is dimensioned so that when the ring sector 108 abuts against its lower end 136a, the bosses 148 and 150 of the same sector are simultaneously abutted against the housing 102.
  • the turbine is designed so that the ring sector 108 has an upstream end or upstream edge in contact with an upstream circular collar 152 belonging to the turbine housing. 102, and a downstream end or downstream edge in contact with a downstream circular flange 154 belonging to the same housing.
  • the contacts established by the flanges 152 and 154 with the sector 108 are preferably plane contacts, belonging to planes substantially perpendicular to a main longitudinal axis (not shown) of the turbomachine 100.
  • the ring sectors 108 are connected to each other by means of sealing tabs 156, limiting the gas flows in the axial and radial directions.
  • each ring sector 108 has an upper wall 158 and a lower wall 160 superimposed radially and defining a main cooling cavity 162, these two walls being indifferently made separately and assembled together, or made in one piece.
  • each ring sector 108 comprises no other cooling cavity than the main cavity 162.
  • the clamping screw 134 is provided with one or more cooling air through passages 174, preferably only one, which is made to communicate with the same. main cavity 162. Indeed, cooling air can be taken for example at a compressor of the turbomachine 100, then be routed to an outer radial end (not referenced) of the passage 174, this outer end being located radially outwardly relative to the turbine casing 102.
  • the cooling air passage 174 is centered on the axis of the clamping screw 134, and has a cylindrical shape of circular section.
  • the interest of the latter solution lies in the fact that when it is desired to change the cooling air flow passing through the passages 174, it is only necessary to proceed to change the washers (not shown).
  • this platelet solution also makes it possible to have different air flows depending on the stages of the turbine, while using pierced screws of the same dimensions.
  • the upper wall 158 participates in delimiting the inner chamber 120, inside which can also be introduced cooling air.
  • the cooling air penetrating inside the chamber 120 can also reach the cooling cavity 162 by passing through orifices (not shown) formed in the upper wall 158, so as to allow the cooling of the cooling zones.
  • ring 108 by direct impact on the cavity wall.
  • the cooling cavity 162 is then supplied with air by two flows, taken for example respectively at the high-pressure compressor and at the low-pressure compressor of the turbomachine 100.
  • the ring sector 108 has an upper wall 164 defining a main cooling cavity 166 with an intermediate wall 168, also called "impact plate".
  • the sector 108 has a bottom wall 170 defining a secondary cooling cavity 172 with the aid of the intermediate wall 168.
  • the two cavities 166 and 172 are superimposed radially, the main cavity 166 being, for example, smaller dimension than the secondary cavity 172.
  • the cooling air ejected from the inner radial end of the passage 174 enters the main cavity 166 in a manner identical to that indicated above, and is then able to join the secondary cavity 172 through orifices. through-passages (not shown) formed in the intermediate wall 168. In this way, it is possible to achieve cooling of the ring sectors 108 by impact or convection.
  • the cooling air located in the inner chamber 120 is able to penetrate inside the cavity 166 through through orifices (not shown) formed in the upper wall 164.
  • the upper wall 164 has the threaded portion 141 necessary for fixing the ring sector 108 on the tightening screw 134, this threaded portion 141 opening into the main cavity 166.
  • turbomachine 200 according to the second preferred embodiment of the present invention is largely similar to the turbomachine 100 according to the first preferred embodiment.
  • the main difference lies in the fastening means 232 of the cooled ring sectors 208 on the turbine casing 102. Indeed, if the spacer 136 is similar to that presented in the first preferred embodiment, it is not not the same for the clamping screw 234.
  • This clamping screw 234 actually comprises a head 240 able to be precisely abutted in a footprint 276 belonging to an upper portion of the ring sector 208, this borrows 276 defining a space 280 with an upper wall 258 of the ring sector 208, located radially inwardly relative to the borrowed 276.
  • the clamping screw 234 has a threaded portion 242 projecting from the spacer 136 outwardly, and cooperating with a nut 278 positioned in abutment against the upper end 136b of the spacer 136, the nut 278. being thus located radially outwardly relative to the housing 102. Therefore, the tightening of the nut 278 causes a radial outward movement of the ring sector 208, until it comes into contact with the housing of turbine 102. As can be seen from the figure 6 , the contact is made at the upstream boss 148 and the downstream boss 150 provided on the upper part of the ring sector 208. Moreover, as indicated above, the movement in the radial direction of the ring sector 208 could be stopped simultaneously by the contacting of the latter with the lower end 136a of the spacer 136.
  • each ring sector 208 has the upper wall 258 and a lower wall 260 being radially superimposed, these walls 258 and 260 defining between them a main cooling cavity 262, and being indifferently made separately and then assembled together, or made in one piece.
  • the clamping screw 234 is provided with one or more cooling air through passages 274, preferably one, which is made to communicate with the same.
  • cooling air can be taken for example at a compressor of the turbomachine 200, then be routed to an outer radial end (not referenced) of the passage 274, this outer end being located radially outwardly relative to the turbine casing 102.
  • the passage 274 is in communication with the same space 280, which is itself in communication with the cavity 262 via one or more through-holes 282 formed in the upper wall 258
  • the cooling air passage 274 is in communication with the main cavity 262, so that the air ejected from the inner radial end can then penetrate inside this cavity 262, and cool down. the ring sector 208.
  • the path of the cooling air described above is shown schematically on the figure 6 , by the arrow 275.
  • the cooling air passage 274 is centered on the axis of the clamping screw 234, and also has a cylindrical shape of circular section. Again, it is noted that to achieve the desired airflow, it is possible to directly calibrate the passage 274, or to place calibrated washers (or pads) within these passages 274.
  • the spacers 136 are mounted on the turbine casing 102 so as to be traversed by the clamping screws 234.
  • the ring sectors 208 having been set up offset from their final position can then be rotated until the heads 240 penetrate the respective indentations 276.
  • turbomachines 100 and 200 which have just been described, by way of non-limiting examples only.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (12)

  1. Turbomaschine (100, 200) mit einem Gehäuse (102), einem Rotor (4) sowie, zwischen dem Gehäuse (102) und dem Rotor (4), einer Vielzahl gekühlter Mantelringsegmente (108, 208), wobei jedes Mantelringsegment (108, 208) einen Hauptkühliungshohiraum (162, 166, 262) umfasst und mittels Befestigungseinrichtungen (132, 232) auf das Turbinengehäuse (102) montiert ist,
    dadurch gekennzeichnet, dass die Befestigungseinrichtungen (132, 232) eine Spannschraube (134, 234) umfassen, die im Wesentlichen radial positioniert ist und das Mantelringsegment (108, 208) gegen das genannte Gehäuse (102) presst, und dadurch, dass die genannte Spannschraube (134, 234) von einem Luftdurchgang (174, 274) durchquert wird, der mit dem genannten Hauptkühlungshohlraum (162, 166, 262) des Mantelringsegments (108, 208) kommuniziert.
  2. Turbomaschine (100, 200) nach Anspruch 1, dadurch gekennzeichnet, dass die genannte Spannschraube (134, 234) jedes Mantelringsegments (108, 208) von einem einzigen Kühlungsluftdurchgang (174, 274) longitudinal durchquert wird.
  3. Turbomaschine (100, 200) nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die Befestigungseinrichtungen (132, 232) jedes Mantelringsegments (108, 208) eine Distanzhülse (136) umfassen, die auf das Gehäuse (102) montiert ist und von der Spannschraube (134, 234) durchquert wird, wobei die genannte Distanzhülse (136) die axiale und tangentiale Positionierung des Mantelringsegments (108, 208) in Bezug auf das genannte Gehäuse (102) gewährleistet.
  4. Turbomaschine (100, 200) nach Anspruch 3, dadurch gekennzeichnet, dass die jedem Mantelringsegment (108, 208) zugeordnete Distanzhülse (136) einen Innendurchmesser hat, der im Wesentlichen einem Außendurchmesser wenigstens eines der Distanzhülse (136) gegenüberstehenden Teilstücks (138, 238) der genannten Spannschraube entspricht bzw. im Wesentlichen einem Außendurchmesser wenigstens eines Teilstücks (138, 238) der genannten Spannschraube in Höhe der Distanzhülse (136) entspricht.
  5. Turbomaschine (100, 200) nach Anspruch 3 oder Anspruch 4, dadurch gekennzeichnet, dass die jedem Mantelringsegment (108, 208) zugeordnete Distanzhülse (136) ein unteres Ende (136a) umfasst, das in einer in dem genannten Mantelringsegment (108, 208) vorgesehenen Bohrung (144) sitzt, wobei dieses untere Ende (136a) einen Außendurchmesser gleich einem Innendurchmesser der genannten Bohrung (144) hat.
  6. Turbomaschine (100, 200) nach Anspruch 3 bis 5, dadurch gekennzeichnet, dass die jedem Mantelringsegment (108, 208) zugeordnete Distanzhülse (136) einen Anschlag für das Mantelringsegment (108, 208) bildet, um dessen radiale Positionierung in Bezug auf das genannte Gehäuse (102) zu gewährleisten.
  7. Turbomaschine (100) nach Anspruch 3 bis 6, dadurch gekennzeichnet, dass jedes Mantelringsegment (108) einen Gewindeteil (141) aufweist, der mit der genannten Spannschraube (134) kooperiert, wobei ein oberes Ende (136b) der Distanzhülse (136) dem Kopf (140) dieser Spannschraube (134) als Anschlag dient.
  8. Turbomaschine (200) nach Anspruch 3 bis 6, dadurch gekennzeichnet, dass jedes Mantelringsegment (208) eine Vertiefung (276) umfasst, die dem in ihr sitzenden Kopf (240) der genannten Spannschraube (234) als Anschlag dient, wobei diese mit einer Mutter (278) kooperiert, der ein oberes Ende (136b) der Distanzhülse (136) als Anschlag dient.
  9. Turbomaschine (100, 200) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jedes Mantelringsegment (108, 208) ein Anströmungs-Ende sowie ein Abströmungs-Ende aufweist, wobei das Anströmungs-Ende Kontakt hat mit einem zum Gehäuse (102) gehörenden kreisrunden Anströmungs-Kragen (152) und das Abströmungs-Ende Kontakt hat mit einem zu diesem selben Gehäuse (102) gehörenden kreisrunden Abströmungs-Kragen (154).
  10. Turbomaschine (100, 200) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jedes Mantelringsegment (108, 208) außerdem einen Sekundärkühlungshohlraum (172) umfasst, der von dem Hauptkühlungshohlraum (166) durch eine Wand (168) getrennt ist, wobei der Sekundärkühlungshohlraum (172) und der Hauptkühlungshohlraum (166) radial übereinander liegen.
  11. Turbomaschine (100, 200) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mantelringsegmente (108, 208) durch Dichtleiste (156) miteinander verbunden sind.
  12. Turbomaschine (100, 200) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das genannte Gehäuse (102) ein Turbinengehäuse ist, und dadurch, dass der genannte Rotor (4) ein Turbinenrotor ist.
EP04100854A 2003-03-06 2004-03-03 Turbomachine mit gekühlten Mantelringsegmenten Expired - Lifetime EP1455055B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0302783 2003-03-06
FR0302783A FR2852053B1 (fr) 2003-03-06 2003-03-06 Turbine haute pression pour turbomachine

Publications (2)

Publication Number Publication Date
EP1455055A1 EP1455055A1 (de) 2004-09-08
EP1455055B1 true EP1455055B1 (de) 2008-11-26

Family

ID=32799640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04100854A Expired - Lifetime EP1455055B1 (de) 2003-03-06 2004-03-03 Turbomachine mit gekühlten Mantelringsegmenten

Country Status (9)

Country Link
US (1) US7011493B2 (de)
EP (1) EP1455055B1 (de)
JP (1) JP4129240B2 (de)
CA (1) CA2459473C (de)
DE (1) DE602004017921D1 (de)
ES (1) ES2316922T3 (de)
FR (1) FR2852053B1 (de)
RU (1) RU2347079C2 (de)
UA (1) UA80536C2 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0318609D0 (en) * 2003-08-08 2003-09-10 Rolls Royce Plc An arrangement for mounting a non-rotating component
DE502005010381D1 (de) * 2005-04-28 2010-11-25 Siemens Ag Verfahren und Vorrichtung zur Einstellung eines Radialspaltes eines axial durchströmten Verdichters einer Strömungsmaschine
FR2899274B1 (fr) * 2006-03-30 2012-08-17 Snecma Dispositif de fixation de secteurs d'anneau autour d'une roue de turbine d'une turbomachine
FR2914017B1 (fr) * 2007-03-20 2011-07-08 Snecma Dispositif d'etancheite pour un circuit de refroidissement, carter inter-turbine en etant equipe et turboreacteur les comportant
US8128343B2 (en) * 2007-09-21 2012-03-06 Siemens Energy, Inc. Ring segment coolant seal configuration
FR2922589B1 (fr) * 2007-10-22 2009-12-04 Snecma Controle du jeu en sommet d'aubes dans une turbine haute-pression de turbomachine
FR2931196B1 (fr) * 2008-05-16 2010-06-18 Snecma Organe de verrouillage de secteurs d'anneau sur un carter de turbomachine, comprenant des passages radiaux permettant sa prehension
FR2931197B1 (fr) * 2008-05-16 2010-06-18 Snecma Organe de verrouillage de secteurs d'anneau sur un carter de turbomachine, comprenant des passages axiaux pour sa prehension
CH699232A1 (de) * 2008-07-22 2010-01-29 Alstom Technology Ltd Gasturbine.
EP2180148A1 (de) * 2008-10-27 2010-04-28 Siemens Aktiengesellschaft Gasturbine mit Kühleinsatz
US8099962B2 (en) * 2008-11-28 2012-01-24 Pratt & Whitney Canada Corp. Mid turbine frame system and radial locator for radially centering a bearing for gas turbine engine
ES2398727T3 (es) * 2009-03-09 2013-03-21 Snecma Conjunto de anillo de turbina
US8360716B2 (en) * 2010-03-23 2013-01-29 United Technologies Corporation Nozzle segment with reduced weight flange
JP4916560B2 (ja) * 2010-03-26 2012-04-11 川崎重工業株式会社 ガスタービンエンジンの圧縮機
US8905709B2 (en) * 2010-09-30 2014-12-09 General Electric Company Low-ductility open channel turbine shroud
FR2972483B1 (fr) * 2011-03-07 2013-04-19 Snecma Carter de turbine comportant des moyens de fixation de secteurs d'anneau
RU2490478C2 (ru) * 2011-10-11 2013-08-20 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Статор турбомашины
US9726043B2 (en) 2011-12-15 2017-08-08 General Electric Company Mounting apparatus for low-ductility turbine shroud
US9175579B2 (en) * 2011-12-15 2015-11-03 General Electric Company Low-ductility turbine shroud
US9133724B2 (en) * 2012-01-09 2015-09-15 General Electric Company Turbomachine component including a cover plate
US9316117B2 (en) * 2012-01-30 2016-04-19 United Technologies Corporation Internally cooled spoke
WO2013163581A1 (en) * 2012-04-27 2013-10-31 General Electric Company System and method of limiting axial movement between a hanger and a fairing assembly in a turbine assembly
GB201213039D0 (en) * 2012-07-23 2012-09-05 Rolls Royce Plc Fastener
US20140271154A1 (en) * 2013-03-14 2014-09-18 General Electric Company Casing for turbine engine having a cooling unit
CN105612313B (zh) 2013-05-17 2017-11-21 通用电气公司 燃气涡轮机的cmc护罩支撑系统
JP6529013B2 (ja) 2013-12-12 2019-06-12 ゼネラル・エレクトリック・カンパニイ Cmcシュラウド支持システム
FR3015554B1 (fr) 2013-12-19 2016-01-29 Snecma Secteur d'anneau de turbine pour turbomachine d'aeronef, presentant des orifices de prehension ameliores
JP6574208B2 (ja) 2014-06-12 2019-09-11 ゼネラル・エレクトリック・カンパニイ シュラウドハンガアセンブリ
EP3155231B1 (de) 2014-06-12 2019-07-03 General Electric Company Ummantelungsaufhängeranordnung
EP3155236A1 (de) 2014-06-12 2017-04-19 General Electric Company Ummantelungsaufhängeranordnung
EP3045674B1 (de) 2015-01-15 2018-11-21 Rolls-Royce Corporation Turbinenummantelung mit rohrförmigen laufradpositionierungseinsätzen
US9856750B2 (en) * 2015-01-16 2018-01-02 United Technologies Corporation Cooling passages for a mid-turbine frame
US9874104B2 (en) 2015-02-27 2018-01-23 General Electric Company Method and system for a ceramic matrix composite shroud hanger assembly
US10422244B2 (en) * 2015-03-16 2019-09-24 General Electric Company System for cooling a turbine shroud
US10184352B2 (en) * 2015-06-29 2019-01-22 Rolls-Royce North American Technologies Inc. Turbine shroud segment with integrated cooling air distribution system
GB201518131D0 (en) 2015-10-14 2015-11-25 Rolls Royce Plc Shroud assembly for a gas turbine engine
US10132194B2 (en) * 2015-12-16 2018-11-20 Rolls-Royce North American Technologies Inc. Seal segment low pressure cooling protection system
US20170248030A1 (en) * 2016-02-26 2017-08-31 General Electric Company Encapsulated Cooling for Turbine Shrouds
US10801354B2 (en) 2016-04-25 2020-10-13 Raytheon Technologies Corporation Gas turbine engine having high pressure compressor case active clearance control system
US11021986B2 (en) * 2018-03-20 2021-06-01 Raytheon Technologies Corporation Seal assembly for gas turbine engine
US10774742B2 (en) * 2018-03-21 2020-09-15 Raytheon Technologies Corporation Flared anti-vortex tube rotor insert
US10753220B2 (en) * 2018-06-27 2020-08-25 Raytheon Technologies Corporation Gas turbine engine component
US10822986B2 (en) * 2019-01-31 2020-11-03 General Electric Company Unitary body turbine shrouds including internal cooling passages
US10830050B2 (en) 2019-01-31 2020-11-10 General Electric Company Unitary body turbine shrouds including structural breakdown and collapsible features
US10927693B2 (en) 2019-01-31 2021-02-23 General Electric Company Unitary body turbine shroud for turbine systems
US10927694B2 (en) * 2019-03-13 2021-02-23 Raytheon Technologies Corporation BOAS carrier with cooling supply
US11131215B2 (en) * 2019-11-19 2021-09-28 Rolls-Royce North American Technologies Inc. Turbine shroud cartridge assembly with sealing features
KR102299165B1 (ko) * 2020-03-31 2021-09-07 두산중공업 주식회사 터빈 블레이드의 팁 클리어런스 제어장치 및 이를 포함하는 가스 터빈
CN114278385A (zh) * 2021-12-16 2022-04-05 北京航空航天大学 一种带有遮热板和空气夹层的新型涡轮盘腔隔热结构

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126149A (en) * 1964-03-24 Foamed aluminum honeycomb motor
DE734440C (de) * 1941-12-14 1943-04-15 Turbinenfabrik Brueckner Kanis Leitschaufeltraeger fuer axial beaufschlagte Dampf-UEberdruckturbinen
NL103792C (de) * 1954-12-16
US2843357A (en) * 1955-05-06 1958-07-15 Westinghouse Electric Corp Rotary fluid handling apparatus
BE556215A (de) * 1956-03-28 1957-04-15
US3000552A (en) * 1957-05-28 1961-09-19 Gen Motors Corp Compressor vane mounting
GB856599A (en) * 1958-06-16 1960-12-21 Gen Motors Corp Improvements relating to axial-flow compressors
DE1172900B (de) * 1962-04-17 1964-06-25 Gasturbinenbau Veb Verfahren zum Zusammenbau einer mehrstufigen Axialstroemungsmaschine
US3864056A (en) * 1973-07-27 1975-02-04 Westinghouse Electric Corp Cooled turbine blade ring assembly
GB2047354B (en) * 1979-04-26 1983-03-30 Rolls Royce Gas turbine engines
US4522559A (en) * 1982-02-19 1985-06-11 General Electric Company Compressor casing
GB2115487B (en) * 1982-02-19 1986-02-05 Gen Electric Double wall compressor casing
GB2117843B (en) * 1982-04-01 1985-11-06 Rolls Royce Compressor shrouds
US5131811A (en) * 1990-09-12 1992-07-21 United Technologies Corporation Fastener mounting for multi-stage compressor
US5088888A (en) * 1990-12-03 1992-02-18 General Electric Company Shroud seal
FR2683851A1 (fr) * 1991-11-20 1993-05-21 Snecma Turbomachine equipee de moyens facilitant le reglage des jeux du stator entree stator et rotor.
FR2782539B1 (fr) * 1998-08-20 2000-10-06 Snecma Turbomachine comportant un dispositif de fourniture de gaz pressurise
FR2800797B1 (fr) * 1999-11-10 2001-12-07 Snecma Assemblage d'un anneau bordant une turbine a la structure de turbine
RU2272151C2 (ru) * 2000-12-28 2006-03-20 Альстом Текнолоджи Лтд Лопатка статора осевой турбины

Also Published As

Publication number Publication date
FR2852053A1 (fr) 2004-09-10
EP1455055A1 (de) 2004-09-08
ES2316922T3 (es) 2009-04-16
US20040219009A1 (en) 2004-11-04
CA2459473A1 (en) 2004-09-06
JP2004270694A (ja) 2004-09-30
RU2347079C2 (ru) 2009-02-20
DE602004017921D1 (de) 2009-01-08
UA80536C2 (en) 2007-10-10
FR2852053B1 (fr) 2007-12-28
CA2459473C (en) 2011-11-08
US7011493B2 (en) 2006-03-14
JP4129240B2 (ja) 2008-08-06
RU2004106713A (ru) 2005-08-10

Similar Documents

Publication Publication Date Title
EP1455055B1 (de) Turbomachine mit gekühlten Mantelringsegmenten
EP1918511B1 (de) Ausgleichssystem für einen Strömungsmaschinenrotor
EP2028375B1 (de) Nasenhaube für eine Turbomaschine mit integrierter Auswuchtvorrichtung
EP2425100A1 (de) Verstärkter gebläseschaufelblock
EP3247946A1 (de) Abdichtungsvorrichtung zwischen einem einspritzsystem und einer kraftstoffeinspritzdüse eines flugzeugturbinenmotors
EP2060746A1 (de) Ablassventil in einem Turbotriebwerk
FR2935429A1 (fr) Aubage fixe de turbomachine a masse reduite et turbomachine comportant au moins un tel aubage fixe
FR2968363A1 (fr) Rotor de turbomachine avec une cale anti-usure entre un disque et un anneau
FR3038351B1 (fr) Redresseur de soufflante pour turbomachine a double flux
FR3014964A1 (fr) Redresseur a calage variable en materiaux composites
FR2993599A1 (fr) Disque labyrinthe de turbomachine
FR2862338A1 (fr) Dispositif de liaison entre un distributeur et une enceinte d'alimentation pour injecteurs de fluide de refroidissement dans une turbomachine
FR3005693A1 (fr) Turbomachine d'aeronef a double flux comprenant une virole inter-veine a maintien aval simplifie
EP3983650A1 (de) Turbomaschinenturbine mit cmc-düse mit lastverteilung
FR2992018A1 (fr) Montage d'un distributeur de turbine haute-pression sur une chambre a combustion d'une turbomachine
FR2950116A1 (fr) Redresseur de compresseur pour turbomachine, comprenant des tetes d'aubes montees a l'aide d'un materiau amortisseur de vibrations sur la virole exterieure
WO2022096820A1 (fr) Fixation d'un cône d'éjection dans une tuyère de turbomachine
WO2021219949A1 (fr) Carter intermediaire de redressement avec bras structural monobloc
FR3097200A1 (fr) Cone d’entree pour une turbomachine d’aeronef
EP3568638B1 (de) Brennkammer für einen turbinenmotor
EP4111036B1 (de) Schaufel eines leitapparats für strömungsmaschine, hoch- oder niederdruck-leitapparat für strömungsmaschine, strömungsmaschine und verfahren zur herstellung einer schaufel eines leitapparats für strömungsmaschine
FR3000521A1 (fr) Tube de liaison a recouvrement
FR3115819A1 (fr) Ensemble de stator de turbomachine d’aéronef, comprenant une structure externe formée de deux tronçons annulaires entourant une couronne aubagée de stator
WO2023247903A1 (fr) Ensemble aubagé pour turbomachine, turbine pour turbomachine et turbomachine
WO2024013444A1 (fr) Ensemble de turbine de turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050226

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004017921

Country of ref document: DE

Date of ref document: 20090108

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2316922

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120309

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170222

Year of fee payment: 14

Ref country code: SE

Payment date: 20170224

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170224

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170221

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004017921

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180304

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180303

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 20