EP1454127A1 - Substrat porteur a transparence optique pour dispositif de mesure maldi et son utilisation - Google Patents

Substrat porteur a transparence optique pour dispositif de mesure maldi et son utilisation

Info

Publication number
EP1454127A1
EP1454127A1 EP02804574A EP02804574A EP1454127A1 EP 1454127 A1 EP1454127 A1 EP 1454127A1 EP 02804574 A EP02804574 A EP 02804574A EP 02804574 A EP02804574 A EP 02804574A EP 1454127 A1 EP1454127 A1 EP 1454127A1
Authority
EP
European Patent Office
Prior art keywords
carrier substrate
optically transparent
layer
maldi
analytes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02804574A
Other languages
German (de)
English (en)
Inventor
Gerhard M. Kresbach
Peter Oroszlan
Martin SCHÄR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Zeptosens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeptosens AG filed Critical Zeptosens AG
Publication of EP1454127A1 publication Critical patent/EP1454127A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N21/774Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
    • G01N21/7743Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure the reagent-coated grating coupling light in or out of the waveguide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00378Piezoelectric or ink jet dispensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00387Applications using probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • B01J2219/00619Delimitation of the attachment areas by chemical means using hydrophilic or hydrophobic regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/0063Other, e.g. van der Waals forces, hydrogen bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00729Peptide nucleic acids [PNA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00731Saccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/12Libraries containing saccharides or polysaccharides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the invention relates to an optically transparent carrier substrate for a MALDI measuring arrangement (MALDI-MS: “Matrix Assisted Laser Desorption / Ionization Mass Spectrometry”) at at least one irradiated excitation wavelength, characterized in that said carrier substrate sequentially carries out one or more optical and one or one or allows several mass spectrometric measurements, as well as the correspondingly carried out coupled optical and mass spectrometric detection methods and their use.
  • MALDI-MS “Matrix Assisted Laser Desorption / Ionization Mass Spectrometry”
  • the invention also relates to a carrier substrate for a MALDI measuring arrangement which is optically transparent at at least one irradiated excitation wavelength, characterized in that the material of said carrier substrate comprises a metal oxide or a mixture of metal oxides, and mass spectrometric and coupled detection methods carried out with this carrier substrate and their use.
  • MALDI-MS Microwave Assisted Laser Desorption / Ionization Mass Spectrometry
  • the MALDI principle is based on the fact that the analyte, such as a peptide or protein, is embedded in a matrix of typically organic molecules of low molecular weight (eg sinapic acid) or is in contact with such a matrix.
  • the matrix material is selected so that it is highly absorbent at the excitation wavelength of a strong, stimulating laser pulse.
  • the sample matrix is evaporated into the vacuum of the MS apparatus.
  • the or embedded in the matrix associated analyte molecules are also converted into the gas phase and optionally also ionized by proton transfer from the sample matrix. In this way, even large molecules up to a molecular weight of several hundred thousand daltons can be converted into the gas phase.
  • time-of-flight (TOF) mass spectrometer In a typical mass spectrometric arrangement, the analyte ions are then accelerated for mass separation in an electrical field of a time-of-flight mass spectrometer ("time-of-flight (TOF) mass spectrometer").
  • TOF time-of-flight
  • a particular advantage of the MALDI method is that in the linear Little or no fragments of TOF-MS are detected, but they can be detected in a reflectron-TOF-MS, which can be used to determine both the molecular mass and structural elements of the measured compounds, which is a disadvantage of the fact that MALDI-MS predominantly only suitable for mass determination of larger molecules (with a molecular weight> 500 Da), whereas the presence of the sample matrix can have a disruptive effect in the range of small molecular weights.
  • the carrier or frame for the MALDI matrix traditionally consists of an electrically conductive material, i.e. H. a metallic plate or grid [see e.g. B. U.S. Patent No. 5,580,434].
  • a mass spectrometric apparatus based on the MALDI principle is referred to below as a "MALDI measuring arrangement".
  • MALDI like other mass spectrometric analysis methods, enables substances to be identified based on their molecular weight.
  • microarrays such as, for example, nucleic acid or protein microarrays
  • detection platforms are available all known as “biochips”.
  • biochips For this purpose, a large number of different biological or biochemical or synthetically producible recognition elements for the specific recognition and binding of the respective target analyte are immobilized in a two-dimensional arrangement on an essentially planar carrier.
  • the sample is then brought into contact with the analytes to be detected and, if appropriate, further reagents with the detection elements immobilized on the carrier surface in an assay comprising a single or several addition steps.
  • the qualitative and in many cases also quantitative detection of bound analyte molecules, from which their concentration in the sample under investigation is to be determined, can be carried out using a large number of different detection methods.
  • Fluorescence-based detection methods are widely used. Since the analyte molecules to be detected are only fluorescent in the rarest of cases, so-called fluorescence labels are generally used for fluorescence-based analyte detection, which are bound, for example, to the analyte or to one of its binding partners.
  • Arrays with a very high density of discrete measurement areas (“features”) are known based on simple glass or microscope plates. For example, US Pat. No. 5,445,934 describes and claims arrays of oligonucleotides with a density of more than 1000 features per square centimeter.
  • excitation and reading out of such arrays is based on classic optical arrangements and methods, and the entire array can be illuminated simultaneously with an expanded excitation light bundle, but this leads to a relatively low sensitivity since the excitation light intensities related to the area are relatively low under these conditions
  • confocal microscope measuring arrangements are often used and the various features sequ read out essentially by "scanning".
  • an analyte detection in the evanescent field of an optical waveguide in particular a thin-film waveguide: If a light wave is coupled into a planar thin-film waveguide , which is surrounded by optically thinner media, it is guided by total reflection at the interfaces of the waveguiding layer.
  • a planar thin-film waveguide consists of a three-layer system: carrier material, waveguiding layer, superstrate (or sample to be examined), the waveguiding layer having the highest refractive index. Additional intermediate layers can improve the effect of the planar waveguide.
  • the strength of the evanescent field depends very much on the thickness of the waveguiding layer itself, as well as on the ratio of the refractive indices of the waveguiding layer and the media surrounding it. With thin waveguides, ie layer thicknesses of the same or lower thickness than the wavelength to be guided, discrete modes of the guided light can be distinguished.
  • Different methods for the detection of analytes in the evanescent field of guided light waves in optical layer waveguides can be differentiated.
  • a distinction can be made, for example, between fluorescence or general luminescence methods on the one hand and refractive methods on the other.
  • methods for generating a surface plasmon resonance in a thin metal layer on a dielectric layer with a lower refractive index can be included in the group of refractive methods, provided that the resonance angle of the irradiated excitation light for generating the surface plasmon resonance serves as the basis for determining the measurement variable.
  • Surface plasmon resonance can also be used to enhance luminescence or to improve the signal-to-background ratio in a luminescence measurement.
  • the conditions for generating a surface plasmon resonance, as well as for combination with luminescence measurements, as well as with wave-guiding structures, are often described in the literature.
  • luminescence is used in this application to describe the spontaneous emission of photons in the ultraviolet to infrared range according to optical or non-optical, such as electrical or chemical or biochemical or thermal excitation.
  • chemiluminescence, bioluminescence, electroluminescence and in particular fluorescence and phosphorescence are included under the term “luminescence”. Fluorescence and phosphorescence are particularly preferred forms of luminescence.
  • the change in the so-called effective refractive index due to molecular adsorption or desorption on the waveguide is used to detect the analyte.
  • This change in the effective refractive index in the case of grating coupler sensors, is determined from the change in the coupling angle for the coupling in or out of light into or out of the grating coupler sensor, and in the case of interferometric sensors from the change in the phase difference between the a sensor arm and a reference arm of the interferometer-guided measurement light.
  • the refractive methods mentioned have the advantage that they can be used without the use of additional labeling molecules, so-called molecular labels.
  • the disadvantage of these label-free methods is, however, that the detection limits that can be achieved with them are limited to picosolar to nanomolar concentration ranges due to the low selectivity of the measurement principle, depending on the molecular weight of the analyte, which is not sufficient for many applications, for example for diagnostic applications.
  • luminescence-based methods appear more suitable due to the greater selectivity of the signal generation.
  • the luminescence excitation is limited to the depth of penetration of the evanescent field into the optically thinner medium, i.e. to the immediate vicinity of the wave-guiding region with a depth of penetration of the order of a few hundred nanometers into the medium. This principle is called evanescent luminescence excitation. This method of excitation is of great importance for analysis, since it can be used to minimize disruptive influences from the depth of the medium.
  • optical detection methods mentioned have been expanded in recent years from sensor platforms for determining individual analytes on platforms with hundreds to thousands of different detection elements immobilized in discrete measurement areas (“spots”) for determining a large number of different analytes on a common platform (“microarrays”).
  • spots discrete measurement areas
  • microarrays common platform
  • kinetics of the interactions between analytes and their immobilized recognition elements can be monitored in real time using surface-based detection methods, for example based on interactions in the evanescent field of a waveguide or a surface plasmon.
  • optical detection methods mentioned do not enable identification of the bound analyte molecules, which is necessary, for example, for screening applications.
  • a second, more elegant approach is based on the direct use of the SPR chip after completion of the optical (SPR) measurement as a carrier (“probe”) in the MALDI device.
  • the MALDI matrix was placed on the SPR Chip applied [RW Nelson, JW Jarvik, BE Taillon and KA Tubbs, "BIA / MS of epitope-tagged peptides directly from E. CoZ lysate: multiplex detection and proetin identification at low-femtomole to subfemtomole levels", Analytical Chemistry 71 (1999 ) 2858-2865].
  • the carrier material (SPR chip surface) was gold, ie an optically non-transparent material (in the sense of the definition below).
  • Optical transparency of the material or of a carrier substrate should be understood to mean that the run length of a light guided in said material or in said carrier substrate or in the (highly refractive) waveguiding film of a carrier substrate designed as an optical waveguide is at least a portion of the visible spectrum (between 400 nm and 750 nm) is larger than 2 mm, unless this run length is limited by structures for changing the direction of propagation of said light.
  • the run length of optically visible light ie the distance on the path of the Light in the corresponding material, until the light intensity decreases to a value 1 / e of the original intensity when light enters this material, in the order of a few centimeters (e.g.
  • the propagation length of a light guided in the waveguiding layer can be limited to a few micrometers by a coupling-out diffractive grating (formed in the waveguiding layer).
  • this limitation of the barrel length is due to the structuring and not the material properties of the structure.
  • such a grating waveguide structure should be referred to as “optically transparent”.
  • the propagation length of a thin metal film is due to the high absorption of the metal in question, that is to say due to the material, over distances limited in the order of magnitude of at most 100 ⁇ m to 200 ⁇ m. Accordingly, such an SPR structure, based on a thin metal film for producing a surface plasmon resonance, should be referred to as “optically non-transparent”.
  • US Pat. Nos. 5,770,860 and 6,287,872 describe sample carriers with the basic dimensions of a microtiter plate to enable high-throughput measurements for screening applications. However, no information is given about the carrier material and its optical properties.
  • US Pat. No. 6,043,031 describes "chips" as sample carriers for the mass spectrometric determination of nucleic acid sequences. Glass chip filters, glass and metal surfaces (steel, gold, silver, aluminum, copper and silicon) are used as “chip” materials ) and plastic (polyethylene, polypropylene, polyamide, polyvinylidene fluoride membranes or microtiter plates). Again, however, there is no indication of a combination of the mass spectrometric detection method with optical detection methods.
  • an optically transparent carrier substrate the surface of which comprises a metal oxide, preferably TiO 2 or Ta 2 O 5 or Nb O 5 , is very suitable for a MALDI measuring arrangement.
  • the first object of the invention is an optically transparent carrier substrate for a MALDI measuring arrangement at at least one irradiated excitation wavelength, characterized in that said carrier substrate allows sequential execution of one or more optical and one or more mass spectrometric measurements.
  • the carrier substrate can comprise a material from the group of glass, quartz, optically transparent ceramics, metal oxides, optically transparent plastics, in particular transparent thermoplastic plastics, such as, for example, polycarbonates, acrylates, polyacrylates, in particular polymethyl methacrylates and polystyrenes. It is preferred that said optically transparent plastics are moldable, embossable, sprayable and / or millable.
  • the invention also relates to a carrier substrate for a MALDI measuring arrangement which is optically transparent at at least one irradiated excitation wavelength, characterized in that the surface of said carrier substrate comprises a metal oxide or a mixture of metal oxides.
  • the material of an optically transparent carrier substrate according to the invention for a MALDI measuring arrangement comprises a metal oxide from the group formed by TiO 2 , ZnO, Nb 2 O 5 , Ta 2 O 5 , HfO, and ZrO 2 , wherein TiO 2 , Ta 2 O 5 and Nb 2 O 5 are particularly preferred.
  • a MALDI matrix consisting of molecules strongly absorbing at the wavelength of a laser pulse irradiated in the desorption step, is applied to the surface of a carrier substrate according to the invention, directly as the first layer or to further layers applied to the carrier substrate surface.
  • Said MALDI matrix preferably comprises compounds from the group of hydroxybenzoic acids, such as, for example, gallic acid, gentisic acid (2,5-hydroxybenzoic acid) and 2- (4-hydroxyphenylazo) benzoic acid, succinic acid, 3-hydroxy-picolinic acid, caffeic acid, ferulic acid, 4-nitroaniline , Anthranilic acid, salicylamide, isovanillin, dithranol, 3-aminoquinoline, 1-hydroxyisoquinoline, nicotinic acid, sinapic acid, trans-3-indolacrylic acid, cinnamic acid and their derivatives, such as trans-3,5-dimethoxy-4-hydroxy-cinnamic acid as well as ⁇ -cyano-4-hydroxy-cinnamic acid, di- and trihydroxy-acetophenones (e.g., hydroxybenzoic acids, such as, for example, gallic acid, gentisic acid (2,5-hydroxybenzoic acid)
  • the MALDI matrix is designed as a self-assembled monolayer (“self-assembled monolayer”, SAM).
  • the analyte molecules to be determined by mass spectrometry can be embedded in the MALDI matrix. It is also possible for the MALDI matrix to be applied to the carrier substrate after the analyte molecules have been applied.
  • a likewise transparent adhesive layer is applied to said carrier substrate for immobilizing the analyte molecules, which preferably has a thickness of less than 200 nm, particularly preferably less than 20 nm.
  • an adhesion promoter layer compounds from the group of silanes, functionalized silanes, epoxides, functionalized, charged or polar polymers and "self-organized passive or functionalized mono- or multilayers", alkyl phosphates and phosphonates and multifunctional block copolymers, such as, for example Poly (L) lysine / polyethylene glycols.
  • adhesion promoter layer comprises compounds from the group of organophosphoric acids of the general formula I (A)
  • B is an alkyl, alkenyl, alkynyl, aryl, aralkyl, hetaryl or hetarylalkyl radical and Y is hydrogen or a functional group from the series hydroxyl, carboxy, amino, optionally mono- or substituted by lower alkyl Dialkylamino, thiol, or a negative acid group from the series consisting of ester, phosphate, phosphonate, sulfate, sulfonate, maleimide, succinimydyl, epoxy or acrylate, with B or Y being a biological, biochemical or synthetic producible recognition element can be docked by addition or substitution reaction, it also being possible to attach compounds which give the substrate surface resistance to protein adsorption and / or cell adhesion and in B in the chain optionally one or more ethylene oxide groups instead of one or more CH 2 groups can be included.
  • An important group of important embodiments of an optically transparent carrier substrate according to the invention is characterized in that biological or biochemical or synthetically producible recognition elements are immobilized on the surface of the carrier substrate or on the adhesion-promoting layer applied to the carrier substrate, for the recognition and binding of one or more analytes from one or more several samples which are brought into contact with said recognition elements.
  • analyte molecules prefferably be determined by mass spectrometry to be applied to the MALDI matrix located on the carrier substrate.
  • Biological or biochemical or synthetically producible recognition elements can also be immobilized on the MALDI matrix applied to the carrier substrate, for the recognition and binding of one or more analytes from one or more samples which are brought into contact with said recognition elements.
  • the MALDI matrix also has the function of an adhesion promoting layer or if an adhesion promoting layer applied to said carrier substrate has the function of a MALDI matrix.
  • a layer applied to the carrier substrate can also be present as a mixture of a MALDI matrix and an adhesion-promoting layer.
  • a mixture of the molecules to be formed and the one MALDI matrix is first Adhesion promoting layer to be formed molecules in liquid solution. This mixture solution is then applied to the carrier substrate, on which the mixed layer remains after the solvent has evaporated.
  • an optically transparent carrier substrate is therefore characterized in that the analyte molecules to be determined by mass spectrometry or the chemical or biological or synthetically producible detection elements are immobilized in discrete measurement areas (spots) on said carrier substrate or on an adhesion-promoting layer applied thereon or on the MALDI matrix are.
  • up to 1 000 000 measuring ranges can be arranged in a 2-dimensional arrangement.
  • a single measuring range can, for example, occupy an area of 0.001 - 6 mm 2 . It is preferred that in a 2-dimensional arrangement more than 100, preferably more than 1000, particularly preferably more than 10,000 measuring ranges are arranged per square centimeter.
  • the measuring ranges can therefore each comprise a multiplicity (i.e. two or more) of different types of analyte molecules to be determined by mass spectrometry or of (bio) chemical or biological or synthetically producible detection elements.
  • a special embodiment of an optically transparent carrier substrate according to the invention is characterized in that the surface thereof comprises pure or mixed oxides, nitrides or carbides of metals or semiconductors and then chemical structuring by local deposition of mono- or multilayers from organophosphates and / or organophosphonates (according to the preceding Description) is generated. It is preferred that the surface of said carrier substrate has a defined pattern with silicon oxide or transition metal oxides. For this embodiment, it is also advantageous if further mono- or multilayers composed of organophosphates and / or organophosphonates are applied to the silicon oxide regions by deposition from organic solvents.
  • an optically transparent carrier substrate according to the invention is characterized in that its surface comprises pure or mixed oxides, nitrides or carbides of metals or semiconductors and generates local hydrophobic or hydrophilic areas thereon by local deposition of mono- or multilayers from organophosphates and / or organophosphonates are and the surrounding substrate surface is covered with a terminally hydrophobic or hydrophilic monolayer.
  • said MALDI matrix or said adhesive layer or said monolayers or multilayers and / or said biological or biochemical or synthetically producible recognition elements are applied by means of a method which is selected from the group consisting of dipping, spraying, spreading, brushing, "inkjet spotting", mechanical spotting using a pen, Spring or capillary, "micro contact printing", fluidic contacting of the substrate surface with parallel or crossed microchannels, under the influence of pressure differences or electrical or electromagnetic potentials ", photolithographic immobilization methods etc. includes.
  • the biological or biochemical or synthetically producible recognition elements can be selected from the group consisting of nucleic acids (for example DNA, RNA, oligonucleotides) and nucleic acid analogs (for example PNA) and their derivatives with artificial bases, mono- or polyclonal antibodies, antibody fragments, Peptides, enzymes, aptamers, synthetic peptide structures, glycopeptides, glycoproteins, oligosaccharides, lectins, soluble, membrane-bound proteins isolated from a membrane, such as receptors, their ligands, antigens for antibodies (e.g. biotin for streptavidin), "histidine Tag components "and their complex formation partners, cavities generated by chemical synthesis for receiving molecular imprints, etc. is formed.
  • nucleic acids for example DNA, RNA, oligonucleotides
  • nucleic acid analogs for example PNA
  • the analyte molecules to be determined by mass spectrometry can be selected from the group consisting of nucleic acids (for example DNA, RNA, oligonucleotides) and nucleic acid analogs (for example PNA) and their derivatives with artificial bases, mono- or polyclonal antibodies, peptides, enzymes, Aptamers, synthetic peptide structures, glycopeptides, glycoproteins, oligosaccharides, lectins, soluble, membrane-bound proteins isolated from a membrane, such as receptors, their ligands, antigens for antibodies (e.g. biotin for streptavidin), "histidine tag components" and their complex formation partners are formed.
  • nucleic acids for example DNA, RNA, oligonucleotides
  • nucleic acid analogs for example PNA
  • both biological or biochemical or synthetically producible recognition elements and analyte molecules to be determined by mass spectrometry can each be selected from the group consisting of acetylenes, alkaloids (for example alkaloids with pyridines, pyperidines, tropanes, quinolines, isoquinolines, tropilidenes, imidazoles, indoles, purines, Ring structures containing fenantridines), alkaloid glycosides, amines, benzofurans, benzophenones, naphthoquinones, betaines, carbohydrates (e.g.
  • the recognition elements mentioned can be immobilized in isolated form or in an artificial or natural complex environment, for example as a component of cells, cell fragments, tissue (“tissue slices”) membranes etc.
  • areas between the spatially separated measuring areas are "passivated” to minimize non-specific binding of analytes or their detection substances, ie that between the spatially separated measuring areas (d) are "chemically” compared to the analyte neutral "connections are applied, preferably consisting for example of the Groups derived from albumins, in particular bovine serum albumin or human serum albumin, casein, non-specific, polyclonal or monoclonal, foreign or empirically unspecific antibodies (in particular for immunoassays) for the analyte (s) to be detected, detergents - such as from the Tween series, in particular Tween 20 - , not to be analyzed with polynucleotides that hybridize, fragmented natural or synthetic DNA, such as an extract of herring or salmon sperm (especially for polynucleotide hybridization assays), or also uncharged, but hydrophilic polymers, such as
  • a preferred embodiment of an optically transparent carrier substrate according to the invention is characterized in that it comprises an optical waveguide which is essentially planar.
  • Such an embodiment of an optically transparent carrier substrate is particularly preferred, which comprises an optical thin-film waveguide with a layer (a) which is transparent at at least one excitation wavelength on a layer (b) which is also transparent at at least this excitation wavelength and has a lower refractive index than layer (a).
  • the optically transparent layer (b) can comprise a material from the group consisting of silicates, e.g. B. glass or quartz, transparent thermoplastic or sprayable plastic, for example polycarbonates, polyimides, acrylates, in particular polymethyl methacrylates, or polystyrenes is formed.
  • the refractive index of the optically transparent layer (a) is preferably greater than 1.8.
  • the optically transparent layer (a)) be a material from the group of TiO, ZnO, Nb 2 O 5) Ta 2 ⁇ 5 , Hf0 2 , or ZrO 2 , but particularly preferably made of TiO or Ta 2 O 5 or Nb 2 O 5 .
  • the thickness of layer (a) is 40 nm - 1000 nm, preferably 100 nm - 300 nm.
  • Various methods for coupling an excitation light into a planar optical waveguide are known.
  • end face coupling using lenses placed in front of an end face of the waveguide, in particular cylindrical lenses is a widely used method.
  • a cylindrical lens which serves to couple light in can also itself be part of an end face of an optical waveguide.
  • Such a structure can be produced, for example, by injection molding a transparent plastic (such as polystyrene).
  • an optical waveguide and a coupling prism placed thereon can also be produced as a single component in a single production step by injection molding. It is more widespread that a prism, typically made of glass or a transparent plastic, is placed on a planar waveguide. In order to reduce reflections at the boundary layers and in particular the disturbance of air gaps between the waveguide and the prism, a liquid that adjusts the refractive index between the prism and the waveguide is often used. It is advantageous if the difference in the refractive indices of the liquid and the waveguiding layer is as small as possible.
  • the coupling of light using diffractive coupling gratings connected to the waveguiding layer is particularly advantageous.
  • An optically transparent carrier substrate which comprises an essentially planar optical waveguide and is characterized in that said carrier substrate comprises one or more optical coupling elements from the group of face-coupled cylindrical lenses or optical fibers as light guides, coupling prisms and optical coupling gratings preferred if said carrier substrate comprises one or more lattice structures (c) as coupling lattice, which as Surface relief grids are modulated in the optically transparent layer (a).
  • said carrier substrate comprises one or more optical coupling elements from the group of face-coupled cylindrical lenses or optical fibers as light guides, coupling prisms and optical coupling gratings preferred if said carrier substrate comprises one or more lattice structures (c) as coupling lattice, which as Surface relief grids are modulated in the optically transparent layer (a).
  • Such lattice structures (c) are advantageously mono- or multi-diffractive and have a depth of 2 nm - 100 nm, preferably of 10 nm - 30 nm, and a period of 200 nm - 1000 nm, preferably of 300 nm - 700 nm.
  • Another object of the invention is a coupled detection method for the qualitative and / or quantitative determination and mass spectrometric identification of one or more analytes, characterized in that an optically transparent carrier substrate according to the invention, according to one of the above-mentioned embodiments, with one or more samples with the detection therein Analyte is brought into contact and optical and mass spectrometric detection are carried out sequentially.
  • the characteristic of such an optical detection method according to the invention is that, as part of the optical method step for the simultaneous or sequential, qualitative and / or quantitative detection of one or more analytes in one or more samples, said samples and optionally further reagents with those on a carrier substrate (directly or mediated via one or more layers) of immobilized recognition elements for specific recognition and binding of said analytes are brought into contact and changes in optical or electronic signals resulting from the binding of these analytes or other detection substances used for analyte detection are measured.
  • the one or more samples are preincubated with a mixture of the various detection reagents to determine the analytes to be detected in said samples and these mixtures are then each in a single addition step with the immobilized recognition elements be brought into contact.
  • a preferred embodiment of a coupled detection method according to the invention is characterized in that the optical detection of one or several analytes is based on the determination of the change in the effective refractive index on the surface of the carrier substrate carrying the immobilized biological or biochemical or synthetically producible recognition elements, on the basis of molecular adsorption or deodorization.
  • a special embodiment of the coupled detection method is characterized in that the optical detection of the one or more analytes is based on the determination of the change in the phase difference between a light component of an incident detection light that interacts with the areas of the immobilized detection elements and a reference component.
  • Such a special embodiment can be carried out in such a way that the incident detection light is polychromatic and the optical detection of the one or more analytes is based on the determination of the change in the spectral distribution of interference maxima and minima, under a predetermined observation angle.
  • the method can also be carried out in such a way that the optical detection of the one or more analytes is based on the determination of the change in the spatial distribution of interference maxima and minima.
  • the incident detection light is monochromatic.
  • optical detection of the one or more analytes is based on the determination of the change in one or more luminescences.
  • the excitation light from one or more light sources is irradiated in an incident light excitation arrangement.
  • the excitation light from one or more light sources is irradiated in a transmission light excitation arrangement.
  • a particularly preferred embodiment of a coupled detection method according to the invention is characterized in that the biological or biochemical recognition elements, for the specific recognition and binding of one or more analytes, are immobilized on a preferably planar optical waveguide as a carrier substrate (directly or via one or more layers), immobilized that the one or more samples with the one or more analytes to be detected therein and possibly further detection reagents are brought into contact with said immobilized detection elements sequentially or after mixing with said samples in a single step and that the excitation light from one or more light sources is coupled into the optical waveguide with the help of one or more optical coupling elements from the group consisting of cylindrical lenses coupled to the end faces, optical fibers as Lic htleitern, coupling prisms and optical coupling grids is formed.
  • a possible variant was characterized in that the optical detection of the one or more analytes in the near field (evanescent field) of an optical layer waveguide as a carrier substrate, with a layer (a) transparent at least at one excitation wavelength on a layer which is also transparent at at least this excitation wavelength ( b) with a lower refractive index than layer (a), and over a grating structure (c) or (c ') which is pronounced in layer (a) of the optical layer waveguide, based on the biological immobilized on the analyte and / or other detection reagents or biochemical or synthetically producible detection elements, resulting changes in the resonance conditions for coupling an excitation light into the layer (a) of a carrier designed as a layer waveguide or for coupling out light carried in the layer (a).
  • Characteristic of a sub-variant is that the optical detection of the one or more analytes on the change in the coupling angle of an incident on a grating structure (c) embossed in the layer (a), essentially monochromatic detection light in layer (a), due to the binding of the analyte and / or further detection reagents, to whose biological or biochemical or synthetically producible detection elements immobilized in the area of this lattice structure.
  • “Essentially monochromatic” is understood to mean that the spectral bandwidth of an excitation light radiated onto the grating structure (c) is at most 20 nm, preferably at most 5 nm, particularly preferably at most 1 nm.
  • Essentially parallel is understood here to mean that the angle of convergence or divergence (opening angle) of an excitation light radiated onto the grating structure (c) is at most 5 °, preferably at most 1 °, particularly preferably at most 0.2 °.
  • the invention also relates to a coupled detection method, which is characterized in that the optical detection of the one or more analytes on a spatially resolved determination of changes in the resonance conditions for coupling an excitation light into the layer (a) or coupling out one in the layer ( a) based on a layer waveguide as the carrier substrate, with a two-dimensional array of at least four or more spatially separated measurement areas on this layer waveguide as the carrier substrate, with a first optically transparent layer (a) on a second optically transparent layer (b) with a lower refractive index than layer (a),
  • the density of the measurement areas on a common grid structure (c) being at least 10 measurement areas per square centimeter and said excitation light being simultaneously irradiated onto said array of measurement areas and the degree of fulfillment of the resonance condition for the light coupling into the layer (a) is measured simultaneously to said measuring ranges and crosstalk of excitation light carried in layer (a) from one measuring range to one or more adjacent measuring ranges by means of the coupling out of this excitation light in the middle ls the lattice structure (c) is prevented.
  • Another preferred object of the invention is a coupled detection method, wherein an optical waveguide is formed as a layer waveguide as a carrier substrate with a first optically transparent layer (a) on a second optically transparent layer (b) with a lower refractive index than layer (a), furthermore Excitation light with the aid of one or more grating structures (c) or (c '), which are pronounced in the optically transparent layer (a), is coupled into the optically transparent layer (a) and is guided as a guided wave to the measuring areas (d) located thereon, and wherein the luminescence of molecules capable of luminescence generated in the evanescent field of said guided wave is detected with one or more detectors and the relative amount or concentration of one or more analytes is determined from the intensity of these luminescence signals.
  • Such an embodiment of the coupled detection method according to the invention is particularly suitable for highly sensitive optical detection of one or more analytes in one or more samples, in that said samples with the analytes to be detected therein and optionally further detection reagents are added sequentially or after mixing with said samples in a single step on a planar optical waveguide as a carrier substrate (directly or via one or more layers) immobilized biological or biochemical or synthetically producible recognition elements, for specific recognition and binding of said analytes, and that the excitation light from one or more light sources in the optical Waveguide (ie the waveguiding layer (a)) is coupled in using one or more optical coupling elements (preferably using a grating structure (c) formed in layer (a)).
  • (1) the isotropically emitted luminescence or (2) luminescence coupled into the optically transparent layer (a) and coupled out via a lattice structure (c) or (c ') or luminescence of both portions (1) and (2) can be measured simultaneously.
  • the analyte molecules or the chemical or biological or synthetically producible recognition elements in discrete measurement areas (spots) on said carrier substrate or on an adhesion-promoting layer applied thereon or on the MALDI - Matrix are immobilized and that the light emanating from the discrete measuring areas is measured and recorded with one or more detectors in an imaging process.
  • Different or identical analytes or recognition elements can be used in different discrete measurement ranges Detection of different or the same analytes can be applied.
  • Several different analytes or detection elements for detecting different analytes can also be applied in a single measuring range.
  • an applied biological or biochemical or synthetically producible detection element typically serves for the specific detection of an individual analyte.
  • an immobilized recognition element can also be designed in such a way that it serves for the detection of several, ie of two or more, different analytes as a result of their binding to different discrete recognition regions of the recognition element.
  • discrete sections with different base sequences can serve to bind different (single-stranded) nucleic acids to be detected in a sample with sequences complementary to the discrete sections.
  • the data recorded in an (imaging) coupled detection method according to the invention are typically stored in a two-dimensional data matrix on a data carrier.
  • a luminescent dye or luminescent nanoparticle is used as the luminescent label, which is used at a wavelength between 300 nm and 1100 nm can be excited and emitted.
  • the luminescence label can be bound to the analyte or in a competitive assay to an analog of the analyte or in a multi-stage assay to one of the binding partners of the immobilized biological or biochemical or synthetically producible recognition elements or to the biological or biochemical or synthetically producible recognition elements.
  • a special embodiment of the method is characterized in that a second or even further luminescence label with the same or different one Excitation wavelength as the first luminescence label and the same or different emission wavelength can be used.
  • the second or even more luminescent label can be excited at the same wavelength as the first luminescent dye, but emit at other wavelengths.
  • a variant of the method consists in that charge or optical energy transfer from a first luminescence label serving as donor to a second luminescence label serving as acceptor is used to detect the analyte.
  • a further embodiment of the method is characterized in that, in addition to the determination of one or more luminescences, changes in the effective refractive index on the measurement areas are determined.
  • a further development of the method is characterized in that the one or more luminescences and / or determinations of light signals are carried out polarization-selectively at the excitation wavelength.
  • the one or more luminescences are measured with a different polarization than that of the excitation light.
  • a coupled detection method according to the invention according to one of the embodiments mentioned can be used for simultaneous or sequential, quantitative or qualitative determination of one or more analytes from the group of proteins, such as, for example, antibodies or antibody fragments, antigens, receptors and their ligands, chelators, with additional binding sites of functionalized proteins (“tag proteins”, such as “histidine tag proteins”) ) and their complex formation partners, natural or modified nucleic acids, such as oligonucleotides, DNA or RNA strands, DNA or RNA analogs, enzymes, enzyme cofactors or inhibitors, lectins and primary or secondary metabolites of biological processes.
  • proteins such as, for example, antibodies or antibody fragments, antigens, receptors and their ligands, chelators, with additional binding sites of functionalized proteins (“tag proteins”, such as “histidine tag proteins”)
  • tag proteins such as “histidine tag proteins”
  • nucleic acids such as oligonucleotides, DNA or RNA strands, DNA or
  • the method can also be used to determine substances from the group of acetylenes, alkaloids (for example alkaloids with pyridines, pyperidines, tropanes, quinolines, isoquinolines, tropilidenes, imidazoles, indoles, purines, fenantridines-containing ring structures), alkaloid glycosides, amines, benzofurans, Benzophenones, naphthoquinones, betaines, carbohydrates (e.g.
  • the samples to be examined can be aqueous solutions, in particular buffer solutions or naturally occurring body fluids such as blood, serum, plasma, lymph or urine or tissue fluids or, for example, egg yolk his.
  • a sample to be examined can also be an optically cloudy liquid, surface water, a soil or plant extract or a bio or synthesis process broth.
  • the samples can also be prepared from biological tissue parts or cell cultures.
  • Another object of the invention is a method for the mass spectrometric determination of one or more analytes, characterized in that a carrier substrate according to the invention according to one of the above-mentioned embodiments is used in a MALDI measuring arrangement, the carrier substrate having a metal oxide surface, preferably from the group comprising TiO 2 , ZnO , Nb 2 O 5 , Ta 2 O 5 , HfO 2 , and ZrO 2 .
  • the mass spectrometric determination method according to the invention is preferably carried out in such a way that the signals from ions with a low mass-to-charge quotient, in particular from the MALDI matrix, are minimized by means of time-delayed application of the acceleration voltage in the time-of-flight tube of the MALDI measuring arrangement after the laser-induced deodorization step can.
  • the metal oxide of the carrier substrate surface is selected from the group comprising TiO 2 , ZnO, Nb 2 O 5 , Ta 2 O 5 , HfO 2 , and ZrO 2 .
  • a coupled detection method is also part of the present invention, which is characterized in that a carrier substrate according to one of the above-mentioned embodiments is used for the part of the mass spectrometric detection of one or more analytes in a MALDI measuring arrangement.
  • a carrier substrate according to one of the above-mentioned embodiments is used for the part of the mass spectrometric detection of one or more analytes in a MALDI measuring arrangement.
  • analyte molecules immobilized on a MALDI matrix applied to the carrier substrate or analyte molecules bound to biological or biochemical or synthetically producible recognition elements within the scope of the optical detection are analyzed by mass spectrometry after completion of the optical detection step in a MALDI measuring arrangement.
  • a preferred embodiment is characterized in that after the completion of the optical detection step on the carrier substrate with directly on said carrier substrate or on an adhesion-promoting layer immobilized on the carrier substrate or with analyte molecules immobilized on directly on said carrier substrate or on a biochemically bonded adhesion-promoting layer or on the carrier substrate or synthetically producible recognition elements, a MALDI matrix is applied to the bound analyte molecules and the immobilized or bound analyte molecules are analyzed by mass spectrometry in a MALDI measuring arrangement.
  • the method is preferably carried out in such a way that the signals from ions with a low mass-to-charge quotient, in particular from the MALDI matrix, can be minimized by applying the acceleration voltage in the time-of-flight tube of the MALDI measuring arrangement after the laser-induced deodorization step.
  • the metal oxide of the carrier substrate surface is selected from the group comprising TiO 2 , ZnO, Nb 2 O 5 , Ta 2 O 5 , HfO 2 , and ZrO 2 .
  • analyte molecules or the chemical or biological or synthetically producible recognition elements with analyte molecules possibly attached to them, to be immobilized in discrete measurement areas (spots) on said carrier substrate or on an adhesion-promoting layer or on the MALDI matrix, and that discrete measuring areas can be analyzed sequentially in a MALDI measuring arrangement using mass spectrometry.
  • measuring areas to comprise a large number of different types of analyte molecules to be determined by mass spectrometry or of (bio) chemical or biological or synthetically producible detection elements, which with spatial resolution within said Measuring ranges in a MALDI measuring arrangement are analyzed by mass spectrometry.
  • up to 1 000 000 measuring ranges are arranged in a 2-dimensional arrangement and that a single measuring range occupies an area of 0.001 - 6 mm 2 , and that said measuring ranges are analyzed sequentially in a MALDI measuring arrangement by mass spectrometry.
  • more than 100, preferably more than 1000, particularly preferably more than 10,000 measurement areas per square centimeter are arranged in a 2-dimensional arrangement, and that said measurement areas are analyzed sequentially in a MALDI measurement arrangement by mass spectrometry.
  • the method according to the invention is suitable for the mass spectrometric determination of one or more analytes from the group of proteins, such as, for example, antibodies or antibody fragments, antigens, receptors and their ligands, chelators, with additional binding sites of functionalized proteins (“tag proteins”, such as, for example, “histidine proteins, Tag proteins ”) and their complex formation partners, natural or modified nucleic acids, such as oligonucleotides, DNA or RNA strands, DNA or RNA analogs, enzymes, enzyme cofactors or inhibitors, lectins. Carbohydrates and primary or secondary metabolites of biological processes.
  • the method can also be used for the mass spectrometric determination of one or more analytes from the group consisting of ring structures containing acetylenes, alkaloids (for example alkaloids with pyridines, pyperidines, tropanes, quinolines, isoquinolines, tropilidenes, imidazoles, indoles, purines, fenantridines) , Amines, benzofurans, benzophenones, naphthoquinones, betaines, carbohydrates (e.g.
  • sugar, starch and cellulose derivatives carbolines, cardenolides, catechols, chalcones, coumarins, cyclic peptides and polypeptides, depsipeptides, diketopethernavins, diphenene , Isoflavanones, flavonoid Alkaloids, furanoquinoline alkaloids, gallocatechins, glycosides, antrachinones, flavonoids, lactones, phenols, hydroquinones, indoles, indoloquinones, alginic acids, lipids (for example oils, waxes and other fatty acid derivatives), macrolides, oligopeptides, oloxidenidenphenphenglyphenol, peroxylphenyl, phenol glycosides, Polyethers, "polyether antibiotics", pterocaphins, pyranocoumarins, pyrroles, quassins, quinolines, saframycines,
  • Another object of the invention is the use of an optically transparent carrier substrate and / or a method according to one of the above-mentioned embodiments for quantitative or qualitative analyzes for determining or enriching or identifying chemical, biochemical or biological analytes in screening processes in pharmaceutical research (in particular high-throughput screening, "High Trough-Put Screening HTS"), clinical and preclinical development, real-time binding studies and the determination of kinetic parameters in affinity screening and research, qualitative and quantitative analyte determinations, in particular for DNA and RNA analysis, for the preparation of Toxicity studies and for the determination of gene or protein expression profiles as well as for the detection of antibodies, antigens, pathogens or bacteria in pharmaceutical product development and research, human and veterinary diagnostics, agrochemis Chen product development and research, symptomatic and presymptomatic plant diagnostics, for patient stratification in pharmaceutical product development and for therapeutic drug selection, for the detection of pathogens, pollutants and pathogens, especially of Salmonella, prions, viruses and bacteria, in food and environmental analysis.
  • Optically transparent carrier substrate with a metal oxide surface, for a MALDI measuring arrangement and detection method carried out with it
  • a solution of the peptide melittin (molecular weight 2846.5 Da) is mixed with sinapic acid (MALDI matrix).
  • a drop of the mixture (approx. 1 ⁇ l) is applied to the unstructured part of the tantalum pentoxide surface of the carrier substrate according to the invention.
  • a drop of the pure sinapic acid is applied to another point on the tantalum pentoxide surface. After the drops have dried to “spots”, each about 1 mm in diameter, mass spectra are recorded from the areas of the two spots.
  • experiment a) is repeated on a glass surface (AF 45, rear side of the optically transparent substrate described under a) and on a substrate with a gold surface, as is conventionally used as a MALDI substrate carrier.
  • the result is mass spectra of comparable but not better quality than that described under a) (FIG. 3). In the case of these surfaces, however, the signals of the sample matrix cannot be completely vanished by applying the acceleration voltage with a time delay.
  • Example 2 A similar carrier substrate as described at the beginning of Example 1 is used. Ten discrete measuring areas (spots) are applied to the tantalum pentoxide surface by applying 1 ⁇ l of an antibody solution (120 ⁇ g / ml anti-interleukin 4 antibodies in 1:10 diluted phosphate salt buffer ("1/10 PBS").
  • 2 reference spots without biochemical recognition elements for an analyte, are applied by applying 1 ⁇ l BSA solution in buffer (for passivation non-specific, free binding sites on the surface with bovine serum albumin (BSA), 1/10 PBS with 3% BSA, which is not binding for the analyte), the carrier substrate is incubated for one hour at room temperature with the applied droplets in a humidity chamber, then with 1/10 PBS buffer rinsed and then incubated again with passivation buffer for one hour.
  • BSA bovine serum albumin
  • sample solution with human interleukin 4 (h-IL 4, 1 ⁇ g / ml) in assay buffer (PBS / 10) are in contact with the entire surface of the carrier substrate brought and incubated for one hour. Then the surface of the carrier substrate is rinsed three times with 1 mL assay buffer and then extensively with water.
  • h-IL 4 human interleukin 4
  • MALDI matrix sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) in 50% AcCN / 0.1% TFA (acetonitrile / tri-fluoro-acetic acid) is applied to the substrate support.
  • Both the spots provided for the analyte detection and the spots provided as a reference are then analyzed by mass spectrometry using a MALDI measuring arrangement.
  • the mass spectra from the area provided for the analyte detection show clear signals at an (m / z) value of 15 kDa (corresponding to the molecular weight of h -IL 4), which demonstrates the selective detection and binding of the analyte in the intended measuring areas (spots) on the carrier substrate (FIG. 6).
  • the signals of the sample matrix can be completely suppressed by applying the acceleration voltage with a time delay, and the spectra quality can thus be significantly increased.
  • improved resolution of the spectra ie a reduced peak width and an improved signal-to-noise ratio, were observed.
  • the intensity of the incident laser pulses for laser-induced desorption can be reduced under these conditions.
  • the conditions of the MALDI measuring arrangement can be set for a carrier substrate according to the invention in such a way that the analytes bound in a bioaffinity assay can be selectively released during the deodorization step and identified by mass spectrometry, while their recognition elements immobilized as specific binding partners remain on the carrier substrate.
  • Example 2 Optically transparent carrier substrate for a MALDI measuring arrangement, which sequentially enables an optical and a mass spectrometric measurement to be carried out, and a coupled detection method performed therewith
  • two surface relief gratings with a grid period of 318 nm (with orientation of the grating lines parallel to the width of the plate) and a grating depth of (12 +/- 3) nm are structured at a distance of 9 mm, which are involved in the coating process transferred the tantalum pentoxide film on a scale of 1: 1 to its surface.
  • the length of these lattice structures (parallel to the length of the plate) is 0.5 mm in each case.
  • the binding of human interleukin 4 (h-IL 4, R&D Systems, 7) can be quantified and identified as an analyte.
  • the preparation of the carrier substrate, including the immobilization of the recognition elements, is carried out as described in example ld).
  • the sample solution with h-IL 4 to be detected is preincubated (60 minutes) with a biotinylated, secondary anti-h-IL 4 antibody and Cy5-labeled streptavidin (to generate a fluorescence signal).
  • the solution mixture thus produced is then applied in a single step to the carrier substrate with the immobilized primary anti-h-IL 4 antibodies.
  • the carrier substrate is then inserted into an optical measuring arrangement for the excitation and detection of fluorescence in a planar optical waveguide.
  • a suitable optical measuring arrangement is described, for example, in the application PCT / EP 01/10012, the content of which is considered to be a complete part of the present application.
  • Possible embodiments and the individual steps of the optical detection method are described, for example, in the application PCT / EP 01/05995, the content of which is also regarded as a complete part of the present application.
  • the excitation light of a laser (for example at 635 nm) is coupled into the highly refractive, wave-guiding tantalum pentoxide layer with the aid of the first coupling grating structured as a relief grating in the carrier substrate according to the invention and conducted there until it is coupled out again on the second grating strip.
  • Fluorescent molecules bound to the measuring areas (spots) are excited to fluoresce along the path of the light conduction of the guided light in the evanescent field (on the surface of the tantalum pentoxide film).
  • a MALDI matrix is again applied, as described under example ld), and the carrier substrate modified in this way is then analyzed in a MALDI measuring arrangement by mass spectrometry.
  • FIG. 1 shows the MALDI mass spectrum (positive ions) of the peptide melittin (Img / mL in H 2 O dist.)
  • a carrier substrate consisting of 150 nm tantalum pentoxide on AF45 glass.
  • Sinapic acid saturated solution in 50% acetonitrile, 0.1% trifluoroacetic acid
  • the time delay (“delay time”) between the laser-induced deodorization step and the application of the acceleration voltage of the MALDI time-of-flight tube was 100 nsec.
  • the mass calibration (m / z) of the MALDI measuring arrangement was used as a carrier substrate for a “normal” gold plate the (m / z) values measured with the optically transparent carrier substrate according to the invention changed slightly.
  • FIG. 2 shows a measurement of the same sample with a delay time increased to 800 nsec.
  • the signals of the sample matrix in the range of small (m / z) values, completely disappear under these conditions, and a higher spectral resolution in the form of a reduced peak width is observed.
  • FIG. 3 shows the MALDI mass spectrum (positive ions) of the peptide melittin (Img / mL in H 2 O dist.) On the gold surface of a conventional carrier substrate.
  • a MALDI matrix in which the peptide is embedded by mixing the solutions was used, sinapic acid (saturated solution in 50% acetonitrile, 0.1% trifluoroacetic acid). The delay time was 100 nsec.
  • the mass calibration (mz) of the MALDI measuring arrangement for a "normal" gold plate was used as the carrier substrate. As expected, the measured (m / z) value of 2848 agrees well with the literature value.
  • the mass spectrum is of a similar quality to the spectrum generated in FIG. 1 on a metal oxide surface.
  • FIG. 4 shows a MALDI mass spectrum (positive ions) from the range of reference spots, which by applying BSA solution in buffer (for passivation of non-specific, free binding sites) with bovine serum albumin, BSA, which is non-binding for an analyte, is diluted 1:10 in phosphate salt.
  • Buffer solution PBS / 10
  • Sinapic acid saturated solution in 50% acetonitrile, 0.1% trifluoroacetic acid
  • the delay time was 100 nsec.
  • the mass calibration (m / z) of the MALDI measuring arrangement for a "normal" gold plate was used as the carrier substrate. Taking into account an expected shift in the measured absolute (m / z) values due to the calibration for another carrier material, the measured spectrum corresponds to the signals characteristic of BSA.
  • FIG. 5 shows a section of the spectrum from FIG. 4 for the (m / z) range from 10,000 to 20,000 (corresponding to FIG. 6).
  • FIG. 6 shows a MALDI mass spectrum (positive ions) from the range of the measuring ranges (spots) for the detection of human interleukin 4 (h-IL 4) after carrying out the assay: anti-h-IL 4 antibodies were found on the metal oxide surface of a carrier substrate according to the invention, consisting of a tantalum pentoxide layer on AF45 glass, immobilized in discrete measurement areas (spots). After passivating free, non-specific binding sites on the metal oxide surface, the carrier substrate surface was incubated for one hour with a solution of h-IL 4 (1 ⁇ g / ml) as the analyte to be detected in buffer (PBS / 10), then with buffer and subsequently with water washed.
  • a carrier substrate according to the invention consisting of a tantalum pentoxide layer on AF45 glass, immobilized in discrete measurement areas (spots).
  • the carrier substrate surface was incubated for one hour with a solution of h-IL 4 (1
  • the matrix was then applied with sinapic acid (saturated solution in 50% acetonitrile, 0.1% trifluoroacetic acid). The delay time was 100 nsec.
  • the mass calibration (m / z) of the MALDI measuring arrangement for a "normal" gold plate was used as the carrier substrate. Taking into account an expected shift in the measured absolute (m / z) values due to the calibration for another carrier material, the measured peak at approximately (m / z) corresponding to 15 kDa corresponds to a signal of hH 4 that may be expected at this point. The signal at around 13 kDa is due to an unknown component that is frequently observed for BSA samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

L'invention concerne un substrat porteur transparent qui est optiquement transparent, quand il est irradié par un rayonnement d'au moins une longueur d'onde d'excitation destiné à un dispositif de mesure MALDI, caractérisé en ce qu'il permet de réaliser de manière séquentielle une ou plusieurs mesures optiques ou une ou plusieurs mesures spectrométriques de masse. L'invention concerne en outre des procédés d'identification réalisés avec ce substrat, couplés, optiques et spectrométriques de masse, ainsi que leur mise en oeuvre. Ledit substrat porteur optiquement transparent, quand il est irradié par un rayonnement d'au moins une longueur d'onde d'excitation destiné à un dispositif de mesure MALDI est caractérisé en ce que la matière le constituant comprend un oxyde métallique ou un mélange d'oxyde métallique. L'invention concerne également des procédés d'identification réalisés au moyen dudit substrat porteur, spectrométriques de masse et couplés, ainsi que leur mise en oeuvre.
EP02804574A 2001-12-13 2002-11-26 Substrat porteur a transparence optique pour dispositif de mesure maldi et son utilisation Withdrawn EP1454127A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH229601 2001-12-13
CH22962001 2001-12-13
PCT/EP2002/013312 WO2003050517A1 (fr) 2001-12-13 2002-11-26 Substrat porteur a transparence optique pour dispositif de mesure maldi et son utilisation

Publications (1)

Publication Number Publication Date
EP1454127A1 true EP1454127A1 (fr) 2004-09-08

Family

ID=4568440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02804574A Withdrawn EP1454127A1 (fr) 2001-12-13 2002-11-26 Substrat porteur a transparence optique pour dispositif de mesure maldi et son utilisation

Country Status (3)

Country Link
EP (1) EP1454127A1 (fr)
AU (1) AU2002357547A1 (fr)
WO (1) WO2003050517A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2525324T3 (es) 2005-04-26 2014-12-22 Bayer Intellectual Property Gmbh Nuevo aparato y procedimiento de recubrimiento de sustratos portadores para la detección de analitos mediante un procedimiento de detección por afinidad
JP5907539B2 (ja) * 2011-07-08 2016-04-27 国立大学法人九州大学 Maldi質量分析用マトリックスおよびmaldi質量分析法
CN102866132B (zh) * 2012-09-27 2014-10-29 广州高通生物技术有限公司 一种芯片、制备方法、用途及筛选药物的方法
CN110108780B (zh) * 2019-05-15 2020-06-05 浙江大学 3-肼基苯甲酸衍生化葡聚糖在maldi-tof-ms质量校准中的应用
DE102021105327B3 (de) 2021-03-05 2022-05-12 Bruker Daltonics GmbH & Co. KG Desorptions-Ionenquelle mit Postdesorptions-Ionisierung in Transmissionsgeometrie

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1287360A2 (fr) * 2000-06-02 2003-03-05 Zeptosens AG Kit et procede pour la detection d'une pluralite d'analytes
AU2001289859A1 (en) * 2000-09-05 2002-03-22 Zeptosens Ag Method for precipitating mono and multiple layers of organophosphoric and organophosphonic acids and the salts thereof in addition to use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03050517A1 *

Also Published As

Publication number Publication date
AU2002357547A1 (en) 2003-06-23
WO2003050517A1 (fr) 2003-06-19

Similar Documents

Publication Publication Date Title
EP1274986B1 (fr) Dispositif et procede de determination de plusieurs substances a analyser
EP1556695B1 (fr) Plate-forme analytique et procede d'identification par des analytes a deceler dans un echantillon eventuellement apres fractionnement et se presentant sous forme de partenaires de liaison specifiques
DE19725050C2 (de) Anordnung zur Detektion biochemischer oder chemischer Substanzen mittels Fluoreszenzlichtanregung und Verfahren zu deren Herstellung
EP0918984B1 (fr) Dispositif de detection optique
DE112005001895B4 (de) Methoden und Systeme für die Detektion biomolekularer Bindung mithilfe von Terahertz-Strahlung
EP0732583B1 (fr) Capteur de fluorescence optochimique et procédé de mesure de la concentration d'au moins un analyte dans un échantillon
WO2001092870A2 (fr) Kit et procede pour la detection d'une pluralite d'analytes
EP1057008B1 (fr) Procede et dispositif de mesure de la luminescence
WO2000075644A9 (fr) Plate-forme de capteurs et procede permettant de determiner plusieurs substances a analyser
WO2001055691A2 (fr) Plaque de guide d'ondes et plates-formes de capteurs obtenues a partir d'une telle plaque, systemes de recipients d'echantillonnage et procedes de mise en evidence
EP1941276A1 (fr) Procédé pour la détermination d une ou plusieurs substances à analyser dans des échantillons de composition complexe d'origine biologique et son application
DE10012793C2 (de) Sensorelement zur optischen Detektion von chemischen oder biochemischen Analyten
WO2002040998A2 (fr) Kit et procede permettant la detection d'analytes multiples avec des mesures permettant la referenciation de la densite d'elements de reconnaissance immobilises
EP1506403A2 (fr) Trousse de mise au point de dosage et d'analyses en serie
EP1257809A1 (fr) Detecteur spr et dispositif de detection spr
EP1272829A1 (fr) Structure reseau de guide d'onde destine a intensifier un champ d'excitation et son utilisation
WO2002046756A1 (fr) Kit et procede de detection d'analytes multiples comprenant des mesures de referenciation a resolution locale d'une intensite de lumiere d'excitation
EP1561109A1 (fr) Plate-forme analytique et procede d'identification avec des substances d'analyse a identifier dans un echantillon, se presentant sous forme de partenaires de liaison specifiques immobilises
EP0872735B1 (fr) Méthode d'application de tâches d'agents
WO2003050517A1 (fr) Substrat porteur a transparence optique pour dispositif de mesure maldi et son utilisation
DE19903576A1 (de) Quantitative Bestimmung von Analyten in einem heterogenen System
DE10210737A1 (de) Einkanal-Mehrfarben-Korrelationsanalyse
WO1999054497A1 (fr) Procede et dispositif de determination de concentration, determination de cinetiques d'adsorption et de liaison, et constantes d'equilibre et de liaison de molecules par des mesures par luminescence
EP1421367A1 (fr) Analyse de correlation a plusieurs couleurs et a un canal
EP0784794A1 (fr) Matrice de liaison et element d'analyse pour analyser simultanement differents analytes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

19U Interruption of proceedings before grant

Effective date: 20041103

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20060703

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER TECHNOLOGY SERVICES GMBH

17Q First examination report despatched

Effective date: 20091111

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100323