EP1450048B1 - Valve arrangement - Google Patents

Valve arrangement Download PDF

Info

Publication number
EP1450048B1
EP1450048B1 EP04100627A EP04100627A EP1450048B1 EP 1450048 B1 EP1450048 B1 EP 1450048B1 EP 04100627 A EP04100627 A EP 04100627A EP 04100627 A EP04100627 A EP 04100627A EP 1450048 B1 EP1450048 B1 EP 1450048B1
Authority
EP
European Patent Office
Prior art keywords
valve
hydraulic
chamber
pressure
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04100627A
Other languages
German (de)
French (fr)
Other versions
EP1450048A1 (en
Inventor
Marcus Bitter
David Price
Marlin Onnen
Steffen Schlemmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deere and Co
Original Assignee
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere and Co filed Critical Deere and Co
Publication of EP1450048A1 publication Critical patent/EP1450048A1/en
Application granted granted Critical
Publication of EP1450048B1 publication Critical patent/EP1450048B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/065Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted
    • B66F9/0655Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted with a telescopic boom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/321Directional control characterised by the type of actuation mechanically
    • F15B2211/324Directional control characterised by the type of actuation mechanically manually, e.g. by using a lever or pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40584Assemblies of multiple valves the flow control means arranged in parallel with a check valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41581Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/46Control of flow in the return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/47Flow control in one direction only
    • F15B2211/473Flow control in one direction only without restriction in the reverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • F15B2211/50581Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure using counterbalance valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5153Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5153Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve
    • F15B2211/5154Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve being connected to multiple ports of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/77Control of direction of movement of the output member
    • F15B2211/7741Control of direction of movement of the output member with floating mode, e.g. using a direct connection between both lines of a double-acting cylinder

Definitions

  • the invention relates to a hydraulic arrangement comprising a hydraulic cylinder having a first chamber and a second chamber and a valve arrangement, the valve arrangement comprising a control valve which selectively connects the first and second chambers of the hydraulic cylinder via a first and a second supply line to a hydraulic pressure source or a container connects, a first switching valve which controls the flow in a first hydraulic line extending between the first chamber and the container and which opens due to a switching signal, a second switching valve, the flow in a running between the second chamber and the container second Hydraulic line controls and which opens due to the switching signal parallel to the first switching valve, wherein by opening the switching valves a floating position is adjustable, in which the first chamber and the second chamber miteinand directly or indirectly via the container he associated with, and a load-holding valve assembly comprising a check valve, which is due to spring force in a closed position and opens in response to the pressure in the second supply line, and a parallel to the check valve arranged check valve, wherein the check valve opens in the direction of
  • Valve assemblies with implemented float positions, thereby allowing free movement of a hydraulic consumer are known in the art. Both connection sides of the hydraulic consumer are connected both with each other and with low pressure or without pressure with a tank or hydraulic tank.
  • Such valve arrangements found in construction or loading vehicles Use in which a boom or a loader arm can be raised or lowered by means of a lifting cylinder.
  • the function of the floating position is required, for example, to enable regardless of the position and position of the vehicle that a tool on the boom or loader can follow the contour of the ground contour. The tool is only pressed by gravity on the ground.
  • Such valve assemblies do not include load-holding valves that prevent or greatly slow down inadvertent lowering of the boom or loader arm for safety reasons when leakage occurs in the connection between cylinder and control valve. Since it requires opening or bypassing the load-holding valve of a control pressure, a solution for combining a load-holding valve with a floating position in which there is a non-pressurized state of the hydraulic consumer and thus no control pressure can be built up, is not known.
  • DE 101 49 787 A1 discloses a valve arrangement with floating position for controlling a double-acting consumer, in which a control valve is acted upon in a flow position and a floating position can be realized by a pressure-connected valve arrangement.
  • a throttling is brought about via the control edges of the control valve, wherein changes in the speed of movement of the consumer during the transition to the floating position should be effectively avoided.
  • the disadvantage here is that the throttling takes place via an elaborately constructed and fed via a pump pressure control of the control valve, whereby a high control inertia is given and it can come at high load when switching to a floating position despite throttling to unwanted or uncontrolled lowering movements.
  • the valve assembly contains no load-holding valve to ensure the hydraulic operation of the consumer.
  • DE 100 06 908 A1 discloses a hydraulic piston-cylinder unit for agricultural machines with a load-holding valve, in which a working position is reached, in which a constant pressure in the piston bottom side cylinder chamber is adjustable.
  • a boom or a tool located thereon can always rest with preselected contact force on the ground.
  • This working position is achieved by the pressure chambers of the piston-cylinder unit are brought together and via a pressure control valve, a pressure equalization between the two pressure chambers takes place. If the pressure falls below a preselected value, the pressure regulating valve closes.
  • a floating position is only possible if the preselected value is set to zero, so that no pressure control takes place.
  • a disadvantage then has the effect that when switching under load, the boom or the tool would descend unchecked.
  • DD 205 471 discloses a hydraulic circuit arrangement by means of which a floating position can be established at the driver's request by connecting the chambers of a cylinder to a container by means of a 3/2 valve.
  • a throttled check valve ensures a throttled outflow on the pressure side of the cylinder both in the operating position and in the floating position.
  • the disadvantage is that when switching to the floating position under load of the designed for the operation constant cross section of the throttle a drop in the pressure side is not controllable controlled.
  • a throttle check valve is not a load-holding valve, which can prevent an undesirable drop in operating position.
  • JP 09 317706 A discloses a hydraulic arrangement with a valve arrangement in which a resetable load-holding valve connected to a first chamber of a hydraulic cylinder is provided in order to prevent the hydraulic cylinder subjected to a load from falling down unintentionally.
  • the valve arrangement further comprises a special adjustment device for controlling a hydraulic flow effecting the resetting of the load-holding valve.
  • a disadvantage is that the hydraulic arrangement disclosed in JP 09 317706 A is structurally complex and there is no connection of the load-holding valve to the second chamber, with which a control of the load-holding valve by pressurizing the second chamber is made possible.
  • the object underlying the invention is seen to provide a valve assembly of the type mentioned, by which the aforementioned problems are overcome.
  • a valve arrangement is to be proposed with which a floating position can be realized and when switching from the operating position into the floating position, a controlled lowering or holding the pressure side can take place.
  • a further object of the invention is to combine the valve assembly effectively with a load-holding valve for an operating position.
  • a valve arrangement of the type mentioned above is provided with a volume flow-dependent control valve device arranged in the first hydraulic line.
  • a volume-flow-dependent control has the advantage that independent of the hydraulic pressure in the hydraulic line, the volume flow is controllable, so that passes only at a low and high hydraulic load only a certain flow through the hydraulic line and thus a safety function is offered. If, for example, while the first chamber of the hydraulic cylinder is pressurized, the valve assembly is brought into floating position by the switching valve is switched to flow position by a switching signal, then the volume flow-dependent controlling valve device ensures that regardless of the level of pressure, the flow only in certain Can change limits or will not exceed a certain value.
  • the valve device includes a flow opening changing adjusting means, such as a slide or closing elements, which is exposed on the one hand to a pressure of the first chamber and on the other hand, a pressure of the container and optionally a spring force.
  • a flow opening changing adjusting means such as a slide or closing elements
  • a pressure difference between the two flow sides which varies according to a prevailing one Volumetric flow adjusts or closes the flow opening of the actuating means.
  • the valve device contains means which reduce (expand) the flow cross-section with increasing (decreasing) pressure gradient across the valve device.
  • the valve device includes a flow control valve, which changes the flow rate flow-dependent and limited to a predetermined maximum value.
  • flow control valves are offered for example by the company "HYDAC International". A detailed description can be found in DIN-ISO 1219.
  • a flow control valve has a differential pressure regulator, which controls or regulates the flow volume-dependent via a control piston, a compression spring, a control orifice and a set screw for adjusting the control pressure difference. With increasing volume flow or increasing flow ie increasing pressure gradient of the cross section of the control panel is increased accordingly Reduced pressure drop until there is an equilibrium of forces again.
  • a constant volume flow is achieved in a control direction, wherein the control direction preferably the discharge direction of the hydraulic fluid from the high-pressure chamber of the hydraulic cylinder, preferably the lifting side of the hydraulic cylinder, in the direction of the container equivalent.
  • the valve can be flowed through unregulated.
  • Such a valve has the advantage that, even with extremely high pressure loads, a volume flow corresponding to the control pressure difference always sets, wherein the control pressure difference can be predetermined via the adjusting screw. This has the consequence that when switching from operating position to floating position under load, a controlled pressure decrease, largely independent of the height of the prevailing pressure, and thus a safety precaution when switching to the floating position is given.
  • the valve device includes a parallel to the flow control valve arranged check valve, which opens in the direction of the first chamber. This ensures that the hydraulic fluid flowing in the direction of the container is forced to flow through the flow control valve and accordingly flows out of the high-pressure chamber in a controlled manner, whereas an inflow from the opposite direction can take place unhindered.
  • the valve means includes means which when exceeded a predeterminable pressure gradient reduce or interrupt the flow. This ensures that upon reaching a volume flow, which causes the predeterminable pressure gradient, the connection is interrupted, so that the pressure in the high-pressure first chamber and in the first hydraulic line is maintained. If the pressure drops again, the connection is restored as soon as the predeterminable pressure gradient is reached or a volume flow is established which causes a pressure gradient which is less than or equal to the predefinable pressure gradient.
  • the valve device includes a raw rupture valve, which closes upon reaching or exceeding a predetermined pressure gradient or opens when falling below the predetermined pressure gradient.
  • a raw rupture valve which closes upon reaching or exceeding a predetermined pressure gradient or opens when falling below the predetermined pressure gradient.
  • Rohbruchtechnischsventile are offered for example by the company “HYDAC International” and are described in detail in a company catalog “HYDAC INTERNATIONAL - FLUTEC Pipe Fittings RBE".
  • "Flutec" pipe rupture valves are volume-flow-dependent switching flat seat valves that prevent inadmissible and uncontrolled movements of a load under load.
  • a pipe rupture valve has a closing element, for example a closing piston in the form of a poppet valve, which has an open switching position in the normal operating state.
  • the closing element is preferably held by a spring in the open state, as long as the spring force is greater than the force caused by the flow resistance when flowing through the closing element or on the plate surface of the poppet valve.
  • the valve remains open and can be flown through in both directions. Exceeds the prevailing Volume flow when flowing through the valve in a predetermined direction defined by the predeterminable pressure drop, maximum allowable value is overcome by the flow resistance increase the spring force and the closing element abruptly pressed onto the valve seat, so that the flow is interrupted.
  • the valve opens automatically as soon as a pressure equalization takes place and the pressure force in front of the valve falls below the force resulting from spring force and compressive force behind the valve.
  • the valve device includes a parallel to the pipe rupture valve arranged throttle or orifice, which allows a reduced volume flow when the pipe rupture valve is closed. This ensures that always a certain proportion of the volume flow is passed on, so that the pressure in front of the valve device can not build up.
  • the throttle or orifice can be arranged in a bypass line parallel to the pipe break safety valve or be formed, for example, in the form of a bore directly on the pipe rupture valve, in particular directly on the poppet valve. At high flow rates is thus ensured that the closing of the pipe rupture valve much of the flow is intercepted and only a small portion of the hydraulic fluid passes through the throttle, so that a total of controlled pressure decrease is achieved when switching to the floating position.
  • the control valve connects a second chamber of the hydraulic cylinder via a second supply line optionally with the hydraulic pressure source or the container.
  • a second switching valve is included, which controls the flow in a running between the second chamber and the container second hydraulic line, and which opens in parallel to the first switching valve due to the switching signal, whereby a floating position is adjustable, in which the first chamber and the second Chamber communicate directly or indirectly via the container with each other.
  • the hydraulic cylinder can be brought in this way from each operating position to a floating position or be brought immediately after accidental switching to a floating position without significant pressure loss back to an operating position.
  • the first and / or the second supply line includes a load-holding valve arrangement.
  • Load-holding valve arrangements are state of the art and are introduced in most modern valve arrangements as a safety precaution in supply lines in order to prevent an unwanted pressure drop in the consumer or in the hydraulic cylinder. If leaks occur, be it on the control valve, on the connecting lines or on seals, etc., it can, especially under load, come to rapid pressure losses in the hydraulic chambers of the hydraulic cylinder, which in turn represents a safety risk.
  • load-holding valve arrangements are as close as possible to the Positioned hydraulic cylinder, so that as few components are included between the hydraulic cylinder and load-holding valve assembly, which could have leaks.
  • load-holding valve assemblies are located directly on the hydraulic cylinder and are part of this assembly, so that no easily damaged components such. As hoses, must be used. Furthermore, load-holding valve arrangements make it possible to ensure a tight seal that prevents even the smallest pressure losses over a longer period under load. Intended pressure change is achieved by bypassing or opening such load hold valve assemblies by hydraulic circuitry.
  • first and second hydraulic line which connect the chambers of the hydraulic cylinder in floating position with the container, can be achieved in a particularly advantageous manner, on the one hand, an operating position with integrated load-holding valve arrangement, on the other hand in a floating position with the described safety features of a controlled flow control be switched.
  • the load holding valve assembly includes a check valve, such as a hydraulically releasable check valve, which is in a closed position and in response to the pressure of the first and / or the second Supply line opens. Furthermore, an additional check valve is included parallel to the check valve, wherein the additional check valve opens in the direction of the hydraulic cylinder.
  • the load holding valve arrangement is preferably arranged on the lifting side of the hydraulic cylinder, ie on the usually safety-relevant pressure side of the lifting cylinder, at which a high operating pressure due to a load will occur.
  • the first chamber of the hydraulic cylinder can be filled by the pump. The check valve effectively prevents escape of the hydraulic fluid from this filled chamber.
  • a first pressure line connects the second supply line to the check valve. If now the chamber to be emptied, the second chamber is filled via the second supply line, whereby a pressure builds up in the second supply line, which moves the check valve via the first pressure line from the closed position into a passage position. The hydraulic fluid can now flow from the first chamber into the container. As soon as the pressure in the second supply line degrades, for example by switching to another operating position, the check valve resumes its closed position. Furthermore, a second pressure line is provided as an overload protection hydraulic cylinder side in the first supply line, which opens at high pressure conditions on the lift side of the hydraulic cylinder, regardless of the switching position of the control valve, the check valve.
  • the first and second switching valve are designed as electromagnetically switchable seat valves.
  • the switching valves controlled and switched at any time in a floating position.
  • Conceivable here is the use of other types of switching valves, which are, for example, pneumatically, hydraulically or mechanically controlled switchable.
  • valve arrangements shown in the various embodiments are used for use for a hydraulic cylinder for raising and lowering a boom on a loader or construction vehicle, in particular on a telescopic loader.
  • a hydraulic cylinder for raising and lowering a boom on a loader or construction vehicle, in particular on a telescopic loader.
  • a floating position without described volume flow control would cause the boom would shut down more or less uncontrollably with increasing load, which represents an increased safety risk.
  • the floating position when working on the ground surface.
  • the hydraulic cylinder with raised boom by appropriate control via the control valve to pressurize the lower side, so that an accelerated shutdown of the boom entry. In all operating positions while a secure switching is given in a floating position.
  • a floating position for a telescopic loader while maintaining a safety-relevant load-holding valve assembly (pipe rupture protection). Furthermore, the realization of a floating position is given, which dispenses with elaborate designs, so that the most already existing on a telescopic loader Hubsetationen the main valve blocks do not need to be changed. Thereby, the number of valve blocks can be kept low and also be given the possibility of retrofitting or upgrading using the same lifting cylinder with different options. Furthermore, other variations are conceivable that combine a floating position function, for example, with a hydraulic suspension version, so that starting from a basic version with load-holding valve assembly a modular extension with floating position function and beyond a modular extension with suspension function is possible.
  • the circuit diagram shown in Fig. 1 shows an embodiment of a valve assembly 10 for the realization of a floating position.
  • the valve assembly 10 includes a switchable control valve 12, for example a slide valve, which is connected via hydraulic lines 14, 16 with a pump 18 and a hydraulic reservoir 20, wherein the control valve 12 in three operating positions, lift, neutral and lowered position, is switchable.
  • the switching of the control valve 12 is preferably carried out manually, but can also be done electrically, hydraulically or pneumatically.
  • the control valve 12 is connected to a hydraulic cylinder 26, wherein the first supply line 22 leads into a first chamber 28 of the hydraulic cylinder 26 and the second supply line 24 into a second chamber 30 of the hydraulic cylinder 26.
  • the first chamber 28 of the hydraulic cylinder 26 represents the piston bottom side and the stroke side chamber, whereas the second chamber 30 represents the piston rod side and the lower side chamber of the hydraulic cylinder.
  • a load holding valve assembly 32 In the first supply line 22, a load holding valve assembly 32 is provided.
  • the load-holding valve arrangement 32 includes a pressure-controlled and spring-controlled shut-off valve 34, and a non-return valve 36 which opens to the hydraulic cylinder side and is arranged parallel to the shut-off valve 34 via a bypass line 38.
  • a first pressure line 40 Via a first pressure line 40, a pressure connection is made from the check valve 34 to the hydraulic cylinder side portion of the first supply line 22.
  • Via second pressure line 42 is a further pressure connection from the check valve 34 to the second Supply line 24 made.
  • a spring 44 holds the check valve 34 in the closed position.
  • a first hydraulic line 46 connects the first chamber 28 and the first supply line 22 to the hydraulic tank 20, wherein the not connected to the hydraulic tank 20 end 48 of the first hydraulic line 46 between the first chamber 28 and the load-holding valve assembly 32 is arranged.
  • a first switching valve 50 and a in the direction of the hydraulic tank 20 connected in series valve means 52 is arranged.
  • the first switching valve 50 is an electrically switchable seat valve, which is held by a spring 54 in the closed position and can be brought via a magnetic coil 56 in an open passage position.
  • the switching valve 50 seals off in one or both directions without leakage.
  • the valve device 52 includes a flow control valve 58 which is arranged in parallel to a check valve 60, wherein the check valve 60 opens in the hydraulic cylinder direction. In this case, it is also possible to arrange the valve device 52 in the direction of the hydraulic container 20 upstream of the switching valve 50.
  • a second hydraulic line 62 is provided, which connects the second supply line 24 to the first hydraulic line 46, wherein the connection point 64 is arranged with the first hydraulic line 46 between the hydraulic tank 20 and the valve device 52.
  • the second hydraulic line 62 includes a second switching valve 66, which is similar to the first switching valve 50 in construction and function.
  • the individual operating states can now be controlled as follows via the control valve 12 and via the switching valves 50 and 66.
  • the control valve 12 is held by the control springs 68, 70 in neutral position.
  • the switching valves 50 and 66 are in a closed position.
  • the control valve 12 is brought out of the neutral position by means of an actuator 72 in the lifting or lowering position.
  • This may be a manual, electrical, hydraulic or pneumatic actuator 72.
  • the connection of the first supply line 22 to the hydraulic reservoir 20 and the connection of the second supply line 24 to the pump 18 is established.
  • the pump delivers oil into the second chamber 30 of the hydraulic cylinder 26, wherein the pressure building up in the second supply line 24 opens the check valve 34 via the second pressure line 42 of the load holding valve arrangement 32.
  • the piston 74 is moved in the direction of the first chamber 28, so that the oil flowing out of the first chamber 28 passes via the first supply line 22 and via the opened shut-off valve 34 into the hydraulic container 20.
  • the load holding valve assembly 32 thus ensures that the hydraulic cylinder 26 maintains its position in the neutral position or escape in the lifting and neutral position no oil from the pressurized first chamber 28 and that in the lowered position, the oil from the first chamber 28 can flow through the open check valve 34 ,
  • the load-holding valve arrangement should or should be arranged as shown on the lifting side of the hydraulic cylinder 26, wherein the lifting side is the side of the hydraulic cylinder 26, in which a pressure for lifting a load is built up.
  • the lifting side is the first chamber 28 of the hydraulic cylinder 26, wherein by turning the hydraulic cylinder 26 and the second chamber 30 could serve as a lifting side.
  • the first pressure line 40 is an overload protection, so that at high operating pressures in the first chamber 28 of the hydraulic cylinder 26, which may arise, for example, by excessive loads, in the first pressure line 40, a limiting pressure is reached, which opens the check valve 34 to reduce pressure ,
  • the switching valves 50 and 66 can be switched in any operating position in the floating position.
  • the switching valves 50 and 66 are driven in parallel by means of a switching signal, so that the magnetic coils 56 counteract the spring force of the springs 54 and the switching valves 50, 66 are brought out of the closed position substantially at the same time in the flow position.
  • the result of this is that the first chamber 28 and the second chamber 30 are communicated with one another and with the hydraulic tank 20 so that an exchange of the hydraulic fluid or of the oil takes place and the piston 74 can be moved freely. If switching takes place from an operating position under load, then the oil flows out of the pressurized first chamber 28 under increased pressure, which leads to an accelerated piston movement.
  • the flow control valve 58 comes into force, which limits the volume flow or controls the flow of the oil or regulates. If the volume flow exceeds an approved value, the passage cross-section of the flow control valve 58 narrows so that the volume flow does not increase any further. As a result, uncontrolled movements of the hydraulic cylinder piston 74 are effectively avoided.
  • the check valve 60 With an opposite pressure action in the direction of the first chamber 28, the check valve 60 allows bypassing the flow control valve 58 and thus an uncontrolled flow in the direction of the first chamber 28. Switching from the floating position to an operating position is at any time by switching the switching valves 50, 66 in a closed position possible.
  • a pipe rupture valve 76 is used in combination with a throttle 78 connected in parallel for the valve device 52 instead of the flow control valve 58 and the check valve 60.
  • a throttle 78 can also be used a similar effect aperture. Is switched by switching the switching valves 50, 66 in the floating position, the pipe rupture valve 76 also causes a flow-dependent reduction or limitation of the volume flow.
  • FIG. 3 shows a mobile telescopic loader 82 with a telescopically extendable boom 86 pivotably articulated to a housing 84 or frame of the telescopic handler 82.
  • a hydraulic cylinder 26 for raising and lowering the boom 86 is arranged between the arm 86 and the housing 84.
  • the hydraulic cylinder 26 is at a first and a second bearing point 88, 90th hinged pivotally, wherein the piston rod side 92 is hinged to the second bearing point 90 on the arm 86 and the piston bottom side 94 at the first bearing 88 on the housing 84.
  • the hydraulic tank 20, the pump 18 and the valve assembly 10 are positioned on or in the housing 84 and connected to each other via hydraulic lines 14, 16, 46, 96. Furthermore, the supply lines 22, 24 between valve assembly 10 and hydraulic cylinder 26 in Fig. 3 can be seen. Control or switching signals are generated by means of a control, not shown, with which the control valve 12 and the switching valves 50, 66 (see FIGS. 1 and 2) are controlled or switched. According to the operating positions described above, the hydraulic cylinder 26 can be operated such that the boom 86 can be raised, held or lowered. Further, it is possible to switch to floating position, so that the piston is freely movable and the boom 86 is floatingly movable.
  • the floating position ensures that a tool 98 fastened to the arm 86 and lowered onto the ground can float, following the ground contour, over the ground surface.
  • the contact pressure of the tool 98 relative to the ground is determined essentially by the weight of the arm 86 and the tool 98.
  • a safety function is given by the fact that a lowering of the boom 86 under load can be volume-controlled, so that no unwanted, sudden changes in movement occur. Is z.
  • the flow control valve 58 and the pipe rupture valve 76 in conjunction with the throttle 78 ensures that the boom 86 is lowered in a presettable, controllable speed becomes.
  • valve assembly 10 safety precaution for a floating position, can be switched from each operating position out in a floating position, without causing uncontrolled movement changes on the boom 86. Furthermore, hereby a valve arrangement 10 with integrated floating position is realized in conjunction with a load holding device 32, with which a pressurized lowering of the arm 86 by switching the control valve 12 in lowered position with closed switching valves 50, 66 is possible.
  • valve assembly can be applied to other vehicles, such as excavators or cranes, which have hydraulically actuated components that need to be raised or lowered and where a floating position seems useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Description

Die Erfindung betrifft eine Hydraulikanordnung, mit einem Hydraulikzylinder, welcher eine erste Kammer und eine zweite Kammer aufweist, und einer Ventilanordnung, wobei die Ventilanordnung ein Steuerventil, welches die erste und die zweite Kammer des Hydraulikzylinders über eine erste und eine zweite Versorgungsleitung wahlweise mit einer Hydraulikdruckquelle oder einem Behälter verbindet, ein erstes Schaltventil, welches den Durchfluss in einer zwischen der ersten Kammer und dem Behälter verlaufenden ersten Hydraulikleitung steuert und welches aufgrund eines Schaltsignals öffnet, ein zweites Schaltventil, welches den Durchfluss in einer zwischen der zweiten Kammer und dem Behälter verlaufenden zweiten Hydraulikleitung steuert und welches sich aufgrund des Schaltsignals parallel zum ersten Schaltventil öffnet, wobei durch Öffnen der Schaltventile eine Schwimmstellung einstellbar ist, in der die erste Kammer und die zweite Kammer direkt oder indirekt über den Behälter miteinander in Verbindung stehen, und eine Lasthalteventilanordnung umfasst, welche ein Sperrventil, das sich infolge Federkraft in einer Schließstellung befindet und in Abhängigkeit vom Druck in der zweiten Versorgungsleitung öffnet, und ein parallel zum Sperrventil angeordnetes Rückschlagventil aufweist, wobei das Rückschlagventil in Richtung des Hydraulikzylinders öffnet.The invention relates to a hydraulic arrangement comprising a hydraulic cylinder having a first chamber and a second chamber and a valve arrangement, the valve arrangement comprising a control valve which selectively connects the first and second chambers of the hydraulic cylinder via a first and a second supply line to a hydraulic pressure source or a container connects, a first switching valve which controls the flow in a first hydraulic line extending between the first chamber and the container and which opens due to a switching signal, a second switching valve, the flow in a running between the second chamber and the container second Hydraulic line controls and which opens due to the switching signal parallel to the first switching valve, wherein by opening the switching valves a floating position is adjustable, in which the first chamber and the second chamber miteinand directly or indirectly via the container he associated with, and a load-holding valve assembly comprising a check valve, which is due to spring force in a closed position and opens in response to the pressure in the second supply line, and a parallel to the check valve arranged check valve, wherein the check valve opens in the direction of the hydraulic cylinder ,

Ventilanordnungen mit implementierten Schwimmstellungen, wodurch ein freies Bewegen eines hydraulischen Verbrauchers ermöglicht wird, sind im Stand der Technik bekannt. Dabei werden beide Anschlussseiten des hydraulischen Verbrauchers sowohl miteinander als auch druckarm bzw. drucklos mit einem Tank oder Hydraulikbehälter verbunden. Derartige Ventilanordnungen finden in Bau- bzw. Laderfahrzeugen Verwendung, bei denen mittels eines Hubzylinders ein Ausleger oder ein Laderarm angehoben bzw. abgesenkt werden kann. Die Funktion der Schwimmstellung wird beispielsweise dazu benötigt, um unabhängig von der Position und Lage des Fahrzeugs zu ermöglichen, dass ein Werkzeug am Ausleger bzw. Laderarm der Bodenkontur konturgetreu folgen kann. Das Werkzeug wird dabei lediglich durch die Schwerkraft auf den Boden gedrückt. Derartige Ventilanordnungen enthalten keine Lasthalteventile, die aus Sicherheitsgründen bei Entstehung einer Leckage in der Verbindung zwischen Zylinder und Steuerventil ein unbeabsichtigtes Absenken des Auslegers bzw. Laderarms verhindern oder stark verlangsamen. Da es zum Öffnen bzw. Umgehen des Lasthalteventils eines Steuerdrucks bedarf, ist eine Lösung zur Kombination eines Lasthalteventils mit einer Schwimmstellung, in der ein druckloser Zustand des hydraulischen Verbrauchers vorliegt und somit kein Steuerdruck aufbaubar ist, nicht bekannt.Valve assemblies with implemented float positions, thereby allowing free movement of a hydraulic consumer, are known in the art. Both connection sides of the hydraulic consumer are connected both with each other and with low pressure or without pressure with a tank or hydraulic tank. Such valve arrangements found in construction or loading vehicles Use in which a boom or a loader arm can be raised or lowered by means of a lifting cylinder. The function of the floating position is required, for example, to enable regardless of the position and position of the vehicle that a tool on the boom or loader can follow the contour of the ground contour. The tool is only pressed by gravity on the ground. Such valve assemblies do not include load-holding valves that prevent or greatly slow down inadvertent lowering of the boom or loader arm for safety reasons when leakage occurs in the connection between cylinder and control valve. Since it requires opening or bypassing the load-holding valve of a control pressure, a solution for combining a load-holding valve with a floating position in which there is a non-pressurized state of the hydraulic consumer and thus no control pressure can be built up, is not known.

Die DE 101 49 787 A1 offenbart eine Ventilanordnung mit Schwimmstellung zur Steuerung eines doppelt wirkenden Verbrauchers, bei der ein Steuerventil in eine Durchflussstellung beaufschlagt wird und durch eine druckgeschaltete Ventilanordnung eine Schwimmstellung realisierbar ist. Über die Steuerkanten des Steuerventils wird eine Drosselung herbeigeführt, wobei Änderungen der Bewegungsgeschwindigkeit des Verbrauchers beim Übergang in die Schwimmstellung wirksam vermieden werden sollen. Nachteilig wirkt sich hierbei aus, dass die Drosselung über eine aufwändig konstruierte und über eine Pumpe gespeiste Drucksteuerung des Steuerventils erfolgt, wodurch eine hohe Steuerträgheit gegeben ist und es bei hoher Last bei Umschalten in eine Schwimmstellung trotz Drosselung zu ungewollten bzw. unkontrollierten Senkbewegungen kommen kann. Des Weiteren enthält die Ventilanordnung kein Lasthalteventil zur Absicherung des Hydraulikbetriebs des Verbrauchers.DE 101 49 787 A1 discloses a valve arrangement with floating position for controlling a double-acting consumer, in which a control valve is acted upon in a flow position and a floating position can be realized by a pressure-connected valve arrangement. A throttling is brought about via the control edges of the control valve, wherein changes in the speed of movement of the consumer during the transition to the floating position should be effectively avoided. The disadvantage here is that the throttling takes place via an elaborately constructed and fed via a pump pressure control of the control valve, whereby a high control inertia is given and it can come at high load when switching to a floating position despite throttling to unwanted or uncontrolled lowering movements. Furthermore the valve assembly contains no load-holding valve to ensure the hydraulic operation of the consumer.

Die DE 100 06 908 A1 offenbart eine hydraulische Kolbenzylindereinheit für landwirtschaftliche Arbeitsmaschinen mit einem Lasthalteventil, bei der eine Arbeitsstellung erreicht wird, in der ein gleichbleibender Druck im kolbenbodenseitigen Zylinderraum einstellbar ist. Dadurch kann ein Ausleger bzw. ein sich daran befindliches Werkzeug stets mit vorgewählter Auflagekraft auf dem Boden aufliegen. Diese Arbeitsstellung wird erreicht, indem die Druckkammern der Kolbenzylindereinheit miteinander in Verbindung gebracht werden und über ein Druckregelventil ein Druckausgleich zwischen den beiden Druckkammern erfolgt. Sinkt der Druck unter einen vorgewählten Wert, schließt das Druckregelventil. Eine Schwimmstellung ist hierbei nur möglich, wenn der vorgewählte Wert auf Null gesetzt wird, so dass keine Druckregelung erfolgt. Nachteilig wirkt sich dann aus, dass bei Umschalten unter Last der Ausleger bzw. das Werkzeug unkontrolliert herabsinken würde.DE 100 06 908 A1 discloses a hydraulic piston-cylinder unit for agricultural machines with a load-holding valve, in which a working position is reached, in which a constant pressure in the piston bottom side cylinder chamber is adjustable. As a result, a boom or a tool located thereon can always rest with preselected contact force on the ground. This working position is achieved by the pressure chambers of the piston-cylinder unit are brought together and via a pressure control valve, a pressure equalization between the two pressure chambers takes place. If the pressure falls below a preselected value, the pressure regulating valve closes. A floating position is only possible if the preselected value is set to zero, so that no pressure control takes place. A disadvantage then has the effect that when switching under load, the boom or the tool would descend unchecked.

Die DD 205 471 offenbart eine hydraulische Schaltungsanordnung, mit der auf Wunsch des Fahrers eine Schwimmstellung hergestellt werden kann, indem die Kammern eines Zylinders mittels eines 3/2-Ventils mit einem Behälter verbunden werden. Über ein Drosselrückschlagventil ist ein gedrosselter Abfluss an der Druckseite des Zylinders sowohl in Betriebsstellung als auch in Schwimmstellung gewährleistet. Nachteilig ist, dass bei Umschalten in die Schwimmstellung unter Last der auf den Betrieb ausgelegte konstante Querschnitt der Drossel ein Absinken der Druckseite nicht kontrolliert steuerbar ist. Des Weiteren stellt ein derartiges Drosselrückschlagventil kein Lasthalteventil dar, welches bei Betriebsstellung ein unerwünschtes Absinken verhindern kann.DD 205 471 discloses a hydraulic circuit arrangement by means of which a floating position can be established at the driver's request by connecting the chambers of a cylinder to a container by means of a 3/2 valve. A throttled check valve ensures a throttled outflow on the pressure side of the cylinder both in the operating position and in the floating position. The disadvantage is that when switching to the floating position under load of the designed for the operation constant cross section of the throttle a drop in the pressure side is not controllable controlled. Furthermore, such a throttle check valve is not a load-holding valve, which can prevent an undesirable drop in operating position.

Die JP 09 317706 A offenbart eine Hydraulikanordnung mit einer Ventilanordnung, in der ein mit einer ersten Kammer eines Hydraulikzylinders verbundenes, rückeinstellbares Lasthalteventil vorgesehen ist, um zu verhindern, dass der mit einer Last beaufschlagte Hydraulikzylinder ungewollt absinken kann. Die Ventilanordnung umfasst ferner eine spezielle Einstellvorrichtung zur Steuerung eines die Rückeinstellung des Lasthalteventils bewirkenden Hydraulikfluss. Nachteilig wirkt sich aus, dass die in JP 09 317706 A offenbarte Hydraulikanordnung konstruktiv aufwendig ist und keine Verbindung des Lasthalteventils zur zweiten Kammer gegeben ist, mit der eine Aufsteuerung des Lasthalteventils durch Druckbeaufschlagung der zweiten Kammer ermöglicht wird.JP 09 317706 A discloses a hydraulic arrangement with a valve arrangement in which a resetable load-holding valve connected to a first chamber of a hydraulic cylinder is provided in order to prevent the hydraulic cylinder subjected to a load from falling down unintentionally. The valve arrangement further comprises a special adjustment device for controlling a hydraulic flow effecting the resetting of the load-holding valve. A disadvantage is that the hydraulic arrangement disclosed in JP 09 317706 A is structurally complex and there is no connection of the load-holding valve to the second chamber, with which a control of the load-holding valve by pressurizing the second chamber is made possible.

Die der Erfindung zugrunde liegende Aufgabe wird darin gesehen, eine Ventilanordnung der eingangs genannten Art anzugeben, durch welches die vorgenannten Probleme überwunden werden. Insbesondere soll eine Ventilanordnung vorgeschlagen werden, mit der eine Schwimmstellung realisierbar ist und bei Umschalten von Betriebsstellung in die Schwimmstellung ein kontrolliertes Absinken bzw. Halten der Druckseite erfolgen kann. Ein Weiterer Gegenstand der Aufgabe besteht darin, die Ventilanordnung wirksam mit einem Lasthalteventil für eine Betriebsstellung zu kombinieren.The object underlying the invention is seen to provide a valve assembly of the type mentioned, by which the aforementioned problems are overcome. In particular, a valve arrangement is to be proposed with which a floating position can be realized and when switching from the operating position into the floating position, a controlled lowering or holding the pressure side can take place. A further object of the invention is to combine the valve assembly effectively with a load-holding valve for an operating position.

Die Aufgabe wird erfindungsgemäß durch die Lehre des Patentanspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.The object is achieved by the teaching of claim 1. Further advantageous embodiments and modifications of the invention will become apparent from the dependent claims.

Erfindungsgemäß wird eine Ventilanordnung der eingangs genannten Art mit einer in der ersten Hydraulikleitung angeordneten volumenstromabhängig steuernden Ventilvorrichtung versehen. Eine volumenstromabhängige Steuerung hat den Vorteil, dass unabhängig vom hydraulischen Druck in der Hydraulikleitung der Volumenstrom kontrollierbar ist, so dass sowohl bei geringer als auch bei hoher hydraulischer Belastung nur eine gewisse Durchflussmenge durch die Hydraulikleitung gelangt und damit eine Sicherheitsfunktion geboten wird. Wird beispielsweise, während die erste Kammer des Hydraulikzylinders druckbeaufschlagt ist, die Ventilanordnung in Schwimmstellung gebracht, indem durch ein Schaltsignal das Schaltventil in Durchflussstellung geschaltet wird, dann sorgt die volumenstromabhängig steuernde Ventilvorrichtung dafür, dass unabhängig von der Höhe des Drucks sich der Durchfluss nur in gewissen Grenzen ändern kann bzw. einen bestimmten Wert nicht überschreiten wird.According to the invention, a valve arrangement of the type mentioned above is provided with a volume flow-dependent control valve device arranged in the first hydraulic line. A volume-flow-dependent control has the advantage that independent of the hydraulic pressure in the hydraulic line, the volume flow is controllable, so that passes only at a low and high hydraulic load only a certain flow through the hydraulic line and thus a safety function is offered. If, for example, while the first chamber of the hydraulic cylinder is pressurized, the valve assembly is brought into floating position by the switching valve is switched to flow position by a switching signal, then the volume flow-dependent controlling valve device ensures that regardless of the level of pressure, the flow only in certain Can change limits or will not exceed a certain value.

In einer bevorzugten Ausgestaltung der Erfindung enthält die Ventilvorrichtung ein die Durchflussöffnung veränderndes Stellmittel, beispielsweise einen Schieber oder Schließelemente, das einerseits einem Druck der ersten Kammer und andererseits einem Druck des Behälters sowie gegebenenfalls einer Federkraft ausgesetzt ist. In Abhängigkeit von einer Druckdifferenz zwischen den beiden Durchflussseiten, die sich entsprechend eines vorherrschenden Volumenstromes einstellt, verändert bzw. schließt sich die Durchflussöffnung des Stellmittels.In a preferred embodiment of the invention, the valve device includes a flow opening changing adjusting means, such as a slide or closing elements, which is exposed on the one hand to a pressure of the first chamber and on the other hand, a pressure of the container and optionally a spring force. Depending on a pressure difference between the two flow sides, which varies according to a prevailing one Volumetric flow adjusts or closes the flow opening of the actuating means.

In einer besonders bevorzugten Ausgestaltung der Erfindung enthält die Ventileinrichtung Mittel, die mit steigendem (abfallendem) Druckgefälle über der Ventileinrichtung den Durchflussquerschnitt reduzieren (erweitern). Dies hat den Vorteil, dass wenn aufgrund eines zunehmenden Drucks in der Hydraulikleitung der Volumenstrom zunimmt, auch das Druckgefälle zwischen der Durchflusseintritts- und Durchflussaustrittsseite ansteigt. Gleichzeitig reduziert sich dann der Durchflussquerschnitt über der Ventileinrichtung, so dass das Druckgefälle wieder abfällt. Als Folge des abfallenden Druckgefälles reduziert sich wiederum der Durchflussquerschnitt der Ventileinrichtung, so dass sich ein steuernder bzw. regelnder Zustand einstellt, der den Volumenstrom bei Vorhandensein eines Druckgefälles weitestgehend bzw. in gewissen Grenzen konstant hält.In a particularly preferred embodiment of the invention, the valve device contains means which reduce (expand) the flow cross-section with increasing (decreasing) pressure gradient across the valve device. This has the advantage that if, due to an increasing pressure in the hydraulic line, the volume flow increases, the pressure gradient between the flow inlet and the flow outlet side also increases. At the same time, the flow cross-section over the valve device is reduced so that the pressure gradient drops again. As a result of the falling pressure gradient, in turn, the flow cross-section of the valve device is reduced, so that a controlling or regulating state is established, which keeps the volume flow in the presence of a pressure gradient as far as possible or within certain limits constant.

In einer besonders bevorzugten Ausgestaltung der Erfindung enthält die Ventileinrichtung ein Stromregelventil, welches den Volumenstrom strömungsabhängig verändert und auf einen vorgebbaren Maximalwert begrenzt. Derartige Stromregelventile werden beispielsweise von der Firma "HYDAC International" angeboten. Eine genaue Beschreibung kann der DIN-ISO 1219 entnommen werden. Ein Stromregelventil verfügt über ein Differenzdruckregler, der volumenstromabhängig über einen Regelkolben, eine Druckfeder, eine Regelblende und über eine Stellschraube zum Einstellen der Regeldruckdifferenz den Durchfluss steuert bzw. regelt. Mit zunehmendem Volumenstrom bzw. steigendem Durchfluss d. h. größer werdendem Druckgefälle wird der Querschnitt der Regelblende entsprechend dem erhöhten Druckgefälle so lange verringert, bis wieder ein Kräftegleichgewicht vorliegt. Durch das kontinuierliche Nachregeln des Differenzdruckreglers, entsprechend dem jeweils herrschenden Druckgefälle, wird ein konstanter Volumenstrom in eine Regelrichtung erreicht, wobei die Regelrichtung vorzugsweise der Abflussrichtung der Hydraulikflüssigkeit aus der mit hohem Druck beaufschlagten Kammer des Hydraulikzylinders, vorzugsweise der Hubseite des Hydraulikzylinders, in Richtung des Behälters entspricht. In Gegenrichtung kann das Ventil ungeregelt durchströmt werden. Ein derartiges Ventil hat den Vorteil, dass auch bei extrem hohen Druckbelastungen sich stets ein der Regeldruckdifferenz entsprechender Volumenstrom einstellt, wobei die Regeldruckdifferenz über die Stellschraube vorgebbar ist. Dies hat zur Folge, dass beim Umschalten von Betriebsstellung in Schwimmstellung unter Last eine kontrollierte Druckabnahme, weitestgehend unabhängig von der Höhe des vorherrschenden Drucks, erfolgt und somit eine Sicherheitsvorkehrung beim Umschalten in die Schwimmstellung gegeben ist.In a particularly preferred embodiment of the invention, the valve device includes a flow control valve, which changes the flow rate flow-dependent and limited to a predetermined maximum value. Such flow control valves are offered for example by the company "HYDAC International". A detailed description can be found in DIN-ISO 1219. A flow control valve has a differential pressure regulator, which controls or regulates the flow volume-dependent via a control piston, a compression spring, a control orifice and a set screw for adjusting the control pressure difference. With increasing volume flow or increasing flow ie increasing pressure gradient of the cross section of the control panel is increased accordingly Reduced pressure drop until there is an equilibrium of forces again. By the continuous readjustment of the differential pressure regulator, according to the prevailing pressure gradient, a constant volume flow is achieved in a control direction, wherein the control direction preferably the discharge direction of the hydraulic fluid from the high-pressure chamber of the hydraulic cylinder, preferably the lifting side of the hydraulic cylinder, in the direction of the container equivalent. In the opposite direction, the valve can be flowed through unregulated. Such a valve has the advantage that, even with extremely high pressure loads, a volume flow corresponding to the control pressure difference always sets, wherein the control pressure difference can be predetermined via the adjusting screw. This has the consequence that when switching from operating position to floating position under load, a controlled pressure decrease, largely independent of the height of the prevailing pressure, and thus a safety precaution when switching to the floating position is given.

In einer besonders bevorzugten Ausgestaltung der Erfindung enthält die Ventileinrichtung ein parallel zum Stromregelventil angeordnetes Rückschlagventil, welches in Richtung der ersten Kammer öffnet. Dadurch wird gewährleistet, dass die in Richtung des Behälters fließende Hydraulikflüssigkeit gezwungen ist, durch das Stromregelventil zu strömen und dementsprechend kontrolliert aus der mit hohem Druck beaufschlagten Kammer abfließt, wohingegen ein Zufluss aus entgegengesetzter Richtung ungehindert stattfinden kann.In a particularly preferred embodiment of the invention, the valve device includes a parallel to the flow control valve arranged check valve, which opens in the direction of the first chamber. This ensures that the hydraulic fluid flowing in the direction of the container is forced to flow through the flow control valve and accordingly flows out of the high-pressure chamber in a controlled manner, whereas an inflow from the opposite direction can take place unhindered.

In einer anderen bevorzugten Ausgestaltung der Erfindung enthält die Ventileinrichtung Mittel, die bei Überschreiten eines vorgebbaren Druckgefälles den Volumenstrom reduzieren bzw. unterbrechen. Dadurch wird gewährleistet, dass bei Erreichen eines Volumenstroms, der das vorgebbare Druckgefälle hervorruft, die Verbindung unterbrochen wird, so dass der Druck in der mit hohem Druck beaufschlagten ersten Kammer bzw. in der ersten Hydraulikleitung gehalten wird. Fällt der Druck wieder ab, wird die Verbindung wieder hergestellt, sobald das vorgebbare Druckgefälle erreicht wird bzw. sich ein Volumenstrom einstellt, der ein Druckgefälle hervorruft, welches kleiner oder gleich dem vorgebbaren Druckgefälle ist.In another preferred embodiment of the invention, the valve means includes means which when exceeded a predeterminable pressure gradient reduce or interrupt the flow. This ensures that upon reaching a volume flow, which causes the predeterminable pressure gradient, the connection is interrupted, so that the pressure in the high-pressure first chamber and in the first hydraulic line is maintained. If the pressure drops again, the connection is restored as soon as the predeterminable pressure gradient is reached or a volume flow is established which causes a pressure gradient which is less than or equal to the predefinable pressure gradient.

In einer bevorzugten Ausgestaltung der Erfindung enthält die Ventileinrichtung ein Rohbruchsicherungsventil, welches bei Erreichen bzw. Überschreiten eines vorgebbaren Druckgefälles schließt bzw. bei Unterschreiten des vorgebbaren Druckgefälles öffnet. Derartige Rohbruchsicherungsventile werden beispielsweise von der Firma "HYDAC International" angeboten und werden detailliert in einem Firmenkatalog "HYDAC INTERNATIONAL - FLUTEC Rohrbruchsicherungen RBE" beschrieben. "Flutec"-Rohrbruchsicherungen sind volumenstromabhängig schaltende Flachsitzventile, die unzulässige und unkontrollierte Bewegungen eines unter Last stehenden Verbrauchers verhindern. Ein Rohrbruchsicherungsventil besitzt ein Schließelement, beispielsweise einen Schließkolben in Form eines Tellerventils, der im normalen Betriebszustand eine offene Schaltstellung aufweist. Das Schließelement, wird vorzugsweise durch eine Feder im geöffneten Zustand gehalten, solange die Federkraft größer ist als die durch den Durchflusswiderstand beim Durchströmen verursachte Kraft auf das Schließelement bzw. auf die Tellerfläche des Tellerventils. Das Ventil bleibt geöffnet und ist in beide Richtungen durchströmbar. Übersteigt der vorherrschende Volumenstrom beim Durchströmen des Ventils in eine vorgebbare Richtung den durch das vorgebbare Druckgefälle definierten, maximal zulässigen Wert, wird durch die Durchflusswiderstandszunahme die Federkraft überwunden und das Schließelement schlagartig auf den Ventilsitz gedrückt, so dass der Durchfluss unterbrochen wird. Das Ventil öffnet selbsttätig, sobald ein Druckausgleich stattfindet und die Druckkraft vor dem Ventil die sich aus Federkraft und Druckkraft hinter dem Ventil zusammensetzende Kraft unterschreitet.In a preferred embodiment of the invention, the valve device includes a raw rupture valve, which closes upon reaching or exceeding a predetermined pressure gradient or opens when falling below the predetermined pressure gradient. Such Rohbruchsicherungsventile are offered for example by the company "HYDAC International" and are described in detail in a company catalog "HYDAC INTERNATIONAL - FLUTEC Pipe Fittings RBE". "Flutec" pipe rupture valves are volume-flow-dependent switching flat seat valves that prevent inadmissible and uncontrolled movements of a load under load. A pipe rupture valve has a closing element, for example a closing piston in the form of a poppet valve, which has an open switching position in the normal operating state. The closing element, is preferably held by a spring in the open state, as long as the spring force is greater than the force caused by the flow resistance when flowing through the closing element or on the plate surface of the poppet valve. The valve remains open and can be flown through in both directions. Exceeds the prevailing Volume flow when flowing through the valve in a predetermined direction defined by the predeterminable pressure drop, maximum allowable value is overcome by the flow resistance increase the spring force and the closing element abruptly pressed onto the valve seat, so that the flow is interrupted. The valve opens automatically as soon as a pressure equalization takes place and the pressure force in front of the valve falls below the force resulting from spring force and compressive force behind the valve.

In einer bevorzugten Ausgestaltung der Erfindung enthält die Ventileinrichtung eine parallel zum Rohrbruchsicherungsventil angeordnete Drossel oder Blende, die bei geschlossenem Rohrbruchsicherungsventil einen reduzierten Volumenstrom erlaubt. Dadurch wird gewährleistet, dass stets ein gewisser Anteil des Volumenstroms weitergeleitet wird, so dass sich der Druck vor der Ventileinrichtung nicht weiter aufbauen kann. Die Drossel bzw. Blende kann in einer Beipassleitung parallel zum Rohbruchsicherungsventil angeordnet sein oder beispielsweise in Form einer Bohrung direkt am Rohrbruchsicherungsventil, insbesondere direkt am Tellerventil ausgebildet sein. Bei hohen Volumenströmen wird somit gewährleistet, dass durch das Schließen des Rohrbruchsicherungsventils ein Großteil des Volumenstroms abgefangen wird und nur ein kleiner Teil der Hydraulikflüssigkeit durch die Drossel gelangt, so dass insgesamt eine kontrollierte Druckabnahme bei Umschalten in die Schwimmstellung erreicht wird.In a preferred embodiment of the invention, the valve device includes a parallel to the pipe rupture valve arranged throttle or orifice, which allows a reduced volume flow when the pipe rupture valve is closed. This ensures that always a certain proportion of the volume flow is passed on, so that the pressure in front of the valve device can not build up. The throttle or orifice can be arranged in a bypass line parallel to the pipe break safety valve or be formed, for example, in the form of a bore directly on the pipe rupture valve, in particular directly on the poppet valve. At high flow rates is thus ensured that the closing of the pipe rupture valve much of the flow is intercepted and only a small portion of the hydraulic fluid passes through the throttle, so that a total of controlled pressure decrease is achieved when switching to the floating position.

In einer weiteren Ausgestaltung der Erfindung verbindet das Steuerventil eine zweite Kammer des Hydraulikzylinders über eine zweite Versorgungsleitung wahlweise mit der Hydraulikdruckquelle oder dem Behälter. Somit können beide Kammern eines doppeltwirkenden Hydraulikzylinders mit Druck beaufschlagt werden, was ein beschleunigtes Entleeren der Kammern ermöglicht und somit das Aus- und Einfahren eines Hydraulikzylinderkolbens in kürzeren Abständen ermöglicht wird. Vorzugsweise ist ein zweites Schaltventil enthalten, welches den Durchfluss in einer zwischen der zweiten Kammer und dem Behälter verlaufenden zweiten Hydraulikleitung steuert, und welches sich aufgrund des Schaltsignals parallel zum ersten Schaltventil öffnet, wodurch eine Schwimmstellung einstellbar ist, in der die erste Kammer und die zweite Kammer direkt oder indirekt über den Behälter miteinander in Verbindung stehen. Der Hydraulikzylinder kann auf diese Art aus jeder Betriebsstellung in eine Schwimmstellung gebracht werden bzw. nach versehentlichem Umschalten in eine Schwimmstellung ohne nennenswerten Druckverlust sofort wieder in eine Betriebsstellung gebracht werden.In a further embodiment of the invention, the control valve connects a second chamber of the hydraulic cylinder via a second supply line optionally with the hydraulic pressure source or the container. Thus, both chambers of a double-acting hydraulic cylinder can be pressurized, which allows accelerated emptying of the chambers and thus the extension and retraction of a hydraulic cylinder piston is made possible at shorter intervals. Preferably, a second switching valve is included, which controls the flow in a running between the second chamber and the container second hydraulic line, and which opens in parallel to the first switching valve due to the switching signal, whereby a floating position is adjustable, in which the first chamber and the second Chamber communicate directly or indirectly via the container with each other. The hydraulic cylinder can be brought in this way from each operating position to a floating position or be brought immediately after accidental switching to a floating position without significant pressure loss back to an operating position.

In einer weiteren Ausgestaltung der Erfindung enthält die erste und/oder die zweite Versorgungsleitung eine Lasthalteventilanordnung. Lasthalteventilanordnungen sind Stand der Technik und werden in den meisten modernen Ventilanordnungen als Sicherheitsvorkehrung in Versorgungsleitungen eingebracht, um einen ungewollten Druckabfall im Verbraucher bzw. im Hydraulikzylinder zu verhindern. Bei auftretenden Leckagen, sei es am Steuerventil, an den Verbindungsleitungen oder an Dichtungen etc., kann es, insbesondere unter Last, zu schnellen Druckverlusten in den Hydraulikkammern des Hydraulikzylinders kommen, was wiederum ein Sicherheitsrisiko darstellt. Um Druckabfälle unter Last zu verhindern werden derartige Lasthalteventilanordnungen möglichst in der Nähe des Hydraulikzylinders positioniert, so dass zwischen Hydraulikzylinder und Lasthalteventilanordnung möglichst wenig Komponenten enthalten sind, die Leckagen aufweisen könnten. Üblicherweise befinden sich diese Lasthalteventilanordnungen direkt am Hydraulikzylinder und sind Bestandteil dieser Baugruppe, so dass keinerlei leicht beschädigbare Bauteile, wie z. B. Schläuche, eingesetzt werden müssen. Ferner ermöglichen Lasthalteventilanordnungen eine Dichtigkeit, die unter Last selbst kleinste Druckverluste über einen längeren Zeitraum verhindern. Eine beabsichtigte Druckänderung wird erreicht, indem derartige Lasthalteventilanordnungen durch hydraulische Schaltungen umgangen oder geöffnet werden.In a further embodiment of the invention, the first and / or the second supply line includes a load-holding valve arrangement. Load-holding valve arrangements are state of the art and are introduced in most modern valve arrangements as a safety precaution in supply lines in order to prevent an unwanted pressure drop in the consumer or in the hydraulic cylinder. If leaks occur, be it on the control valve, on the connecting lines or on seals, etc., it can, especially under load, come to rapid pressure losses in the hydraulic chambers of the hydraulic cylinder, which in turn represents a safety risk. To prevent pressure drops under load such load-holding valve arrangements are as close as possible to the Positioned hydraulic cylinder, so that as few components are included between the hydraulic cylinder and load-holding valve assembly, which could have leaks. Usually, these load-holding valve assemblies are located directly on the hydraulic cylinder and are part of this assembly, so that no easily damaged components such. As hoses, must be used. Furthermore, load-holding valve arrangements make it possible to ensure a tight seal that prevents even the smallest pressure losses over a longer period under load. Intended pressure change is achieved by bypassing or opening such load hold valve assemblies by hydraulic circuitry.

In Kombination mit der ersten und zweiten Hydraulikleitung, welche die Kammern des Hydraulikzylinders in Schwimmstellung mit dem Behälter verbinden, kann in besonders vorteilhafter Weise zum einen eine Betriebsstellung mit integrierter Lasthalteventilanordnung erzielt werden, zum anderen aber auch in eine Schwimmstellung mit den beschriebenen Sicherheitsmerkmalen einer kontrollierten Volumenstromsteuerung umgeschaltet werden.In combination with the first and second hydraulic line, which connect the chambers of the hydraulic cylinder in floating position with the container, can be achieved in a particularly advantageous manner, on the one hand, an operating position with integrated load-holding valve arrangement, on the other hand in a floating position with the described safety features of a controlled flow control be switched.

Als Lasthalteventilanordnungen werden z. B. Rohrbruchsicherungen eingesetzt, die verschiedene Bauteile, wie z. B. Senkbremsventile, hydraulisch entsperrbare Rückschlagventile, Overcenter-Ventile öder Ähnliches enthalten.As load holding valve arrangements z. B. pipe rupture devices used, the various components such. B. lowering brake valves, hydraulically releasable check valves, Overcenter valves öder similar contain.

In einer besonders bevorzugten Ausgestaltung der Erfindung enthält die Lasthalteventilanordnung ein Sperrventil, beispielsweise ein hydraulisch entsperrbares Rückschlagventil, welches sich in einer Schließstellung befindet und in Abhängigkeit vom Druck der ersten und/oder der zweiten Versorgungsleitung öffnet. Des Weiteren ist parallel zum Sperrventil ein zusätzliches Rückschlagventil enthalten, wobei das zusätzliche Rückschlagventil in Richtung des Hydraulikzylinders öffnet. Die Lasthalteventilanordnung wird vorzugsweise an der Hubseite des Hydraulikzylinders angeordnet, d. h. an der üblicherweise sicherheitsrelevanten Druckseite des Hubzylinders, an der sich ein hoher Betriebsdruck aufgrund einer Last einstellen wird. Über die entsprechende Versorgungsleitung kann die erste Kammer des Hydraulikzylinders von der Pumpe befüllt werden. Das Rückschlagventil verhindert dabei wirksam ein Entweichen der Hydraulikflüssigkeit aus dieser befüllten Kammer. Eine erste Druckleitung verbindet die zweite Versorgungsleitung mit dem Sperrventil. Soll nun die Kammer entleert werden, wird die zweite Kammer über die zweite Versorgungsleitung befüllt, wodurch sich ein Druck in der zweiten Versorgungsleitung aufbaut, der das Sperrventil über die erste Druckleitung aus der Schließstellung in eine Durchlassstellung bewegt. Die Hydraulikflüssigkeit kann nun aus der ersten Kammer in den Behälter fließen. Sobald sich der Druck in der zweiten Versorgungsleitung abbaut, beispielsweise durch Umschalten in eine andere Betriebsstellung, nimmt das Sperrventil wieder seine Schließstellung ein. Des Weiteren ist hydraulikzylinderseitig in der ersten Versorgungsleitung eine zweite Druckleitung als Überlastsicherung vorgesehen, die bei überhöhten Druckverhältnissen an der Hubseite des Hydraulikzylinders, unabhängig von der Schaltstellung des Steuerventils, das Sperrventil öffnet.In a particularly preferred embodiment of the invention, the load holding valve assembly includes a check valve, such as a hydraulically releasable check valve, which is in a closed position and in response to the pressure of the first and / or the second Supply line opens. Furthermore, an additional check valve is included parallel to the check valve, wherein the additional check valve opens in the direction of the hydraulic cylinder. The load holding valve arrangement is preferably arranged on the lifting side of the hydraulic cylinder, ie on the usually safety-relevant pressure side of the lifting cylinder, at which a high operating pressure due to a load will occur. About the corresponding supply line, the first chamber of the hydraulic cylinder can be filled by the pump. The check valve effectively prevents escape of the hydraulic fluid from this filled chamber. A first pressure line connects the second supply line to the check valve. If now the chamber to be emptied, the second chamber is filled via the second supply line, whereby a pressure builds up in the second supply line, which moves the check valve via the first pressure line from the closed position into a passage position. The hydraulic fluid can now flow from the first chamber into the container. As soon as the pressure in the second supply line degrades, for example by switching to another operating position, the check valve resumes its closed position. Furthermore, a second pressure line is provided as an overload protection hydraulic cylinder side in the first supply line, which opens at high pressure conditions on the lift side of the hydraulic cylinder, regardless of the switching position of the control valve, the check valve.

In einer besonders bevorzugten Ausgestaltung der Erfindung sind das erste und zweite Schaltventil als elektromagnetisch schaltbare Sitzventile ausgebildet. Dadurch können durch Erzeugen eines elektrischen Schaltsignals die Schaltventile angesteuert und jederzeit in eine Schwimmstellung geschaltet werden. Denkbar ist hierbei auch der Einsatz andersartiger Schaltventile, die beispielsweise pneumatisch, hydraulisch oder auch mechanisch gesteuert schaltbar sind.In a particularly preferred embodiment of the invention, the first and second switching valve are designed as electromagnetically switchable seat valves. As a result, by generating an electrical switching signal, the switching valves controlled and switched at any time in a floating position. Conceivable here is the use of other types of switching valves, which are, for example, pneumatically, hydraulically or mechanically controlled switchable.

Vorzugsweise werden die in den verschiedenen Ausgestaltungen dargestellten Ventilanordnungen zur Verwendung für einen Hydraulikzylinder zum Heben und Senken eines Auslegers an einem Lader- oder Baufahrzeug, insbesondere an einem Teleskoplader eingesetzt. So kann beispielsweise bei einem Teleskoplader in jeder Betriebsstellung, auch unter Last bei angehobenen Ausleger, in Schwimmstellung umgeschaltet werden. Eine Schwimmstellung ohne beschriebener Volumenstromsteuerung würde dazu führen, dass mit zunehmender Last der Ausleger mehr oder weniger unkontrolliert herunterfahren würde, was ein erhöhtes Sicherheitsrisiko darstellt. Gleichzeitig wird ermöglicht, die Schwimmstellung bei Arbeiten an der Bodenoberfläche zu nutzen. Des Weiteren wird die Möglichkeit gegeben mit integriertem Lasthalteventil, den Hydraulikzylinder bei angehobenem Ausleger durch entsprechende Ansteuerung über das Steuerventil senkseitig mit Druck zu beaufschlagen, so dass ein beschleunigtes Herunterfahren des Auslegers Eintritt. In allen Betriebsstellungen ist dabei ein gesichertes Umschalten in eine Schwimmstellung gegeben.Preferably, the valve arrangements shown in the various embodiments are used for use for a hydraulic cylinder for raising and lowering a boom on a loader or construction vehicle, in particular on a telescopic loader. For example, in a telehandler in any operating position, even under load with raised boom, be switched to floating position. A floating position without described volume flow control would cause the boom would shut down more or less uncontrollably with increasing load, which represents an increased safety risk. At the same time it is possible to use the floating position when working on the ground surface. Furthermore, the possibility is given with integrated load-holding valve, the hydraulic cylinder with raised boom by appropriate control via the control valve to pressurize the lower side, so that an accelerated shutdown of the boom entry. In all operating positions while a secure switching is given in a floating position.

Von besonderem Vorteil ist, dass durch die erfindungsgemäße Ausgestaltungen eine Schwimmstellung für einen Teleskoplader unter Beibehaltung einer sicherheitsrelevanten Lasthalteventilanordnung (Rohrbruchsicherung) gegeben ist. Des Weiteren ist die Realisierung einer Schwimmstellung gegeben, die auf aufwändige Konstruktionsweisen verzichtet, so dass die meist schon an einem Teleskoplader vorhandenen Hubsektionen der Hauptventilblöcke nicht geändert werden müssen. Dadurch kann die Anzahl an Ventilblöcken gering gehalten werden und auch die Möglichkeit einer Nachrüstung bzw. Aufrüstung unter Verwendung desselben Hubzylinders bei unterschiedlichen Optionen gegeben sein. Ferner sind auch andere Variationen denkbar, die eine Schwimmstellungsfunktion beispielsweise mit einer hydraulischen Federungsversion kombinieren, so dass ausgehend von einer Basisversion mit Lasthalteventilanordnung eine modulare Erweiterung mit Schwimmstellungsfunktion und darüber hinaus eine modulare Erweiterung mit Federungsfunktion möglich ist.It is particularly advantageous that is given by the embodiments of the invention, a floating position for a telescopic loader while maintaining a safety-relevant load-holding valve assembly (pipe rupture protection). Furthermore, the realization of a floating position is given, which dispenses with elaborate designs, so that the most already existing on a telescopic loader Hubsektionen the main valve blocks do not need to be changed. Thereby, the number of valve blocks can be kept low and also be given the possibility of retrofitting or upgrading using the same lifting cylinder with different options. Furthermore, other variations are conceivable that combine a floating position function, for example, with a hydraulic suspension version, so that starting from a basic version with load-holding valve assembly a modular extension with floating position function and beyond a modular extension with suspension function is possible.

Anhand der Zeichnung, die zwei Ausführungsbeispiele der Erfindung zeigt, werden nachfolgend die Erfindung sowie weitere Vorteile und vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung näher beschrieben und erläutert.Reference to the drawing, which shows two embodiments of the invention, the invention and further advantages and advantageous developments and refinements of the invention are described and explained in more detail below.

Es zeigt:

Fig. 1
einen Schaltplan einer ersten erfindungsgemäßen Ventilanordnung mit einem Stromregelventil,
Fig. 2
einen Schaltplan einer zweiten erfindungsgemäßen Ventilanordnung mit einem Rohrbruchsicherungsventil und
Fig. 3
eine schematische Seitenansicht eines Teleskopladers mit erfindungsgemäßer Ventilanordnung zur Verwendung für einen Hydraulikzylinder.
It shows:
Fig. 1
a circuit diagram of a first valve assembly according to the invention with a flow control valve,
Fig. 2
a circuit diagram of a second valve assembly according to the invention with a pipe rupture valve and
Fig. 3
a schematic side view of a telescopic loader with inventive valve assembly for use for a hydraulic cylinder.

Der in Fig. 1 dargestellte Schaltplan zeigt ein Ausführungsbeispiel für eine Ventilanordnung 10 zur Realisierung einer Schwimmstellung. Die Ventilanordnung 10 enthält ein schaltbares Steuerventil 12, beispielsweise ein Schieberventil, welches über Hydraulikleitungen 14, 16 mit einer Pumpe 18 und einem Hydraulikbehälter 20 verbunden ist, wobei das Steuerventil 12 in drei Betriebsstellungen, Hub-, Neutral- und Senkstellung, schaltbar ist. Das Schalten des Steuerventils 12 erfolgt vorzugsweise handgesteuert, kann aber auch elektrisch, hydraulisch oder pneumatisch erfolgen.The circuit diagram shown in Fig. 1 shows an embodiment of a valve assembly 10 for the realization of a floating position. The valve assembly 10 includes a switchable control valve 12, for example a slide valve, which is connected via hydraulic lines 14, 16 with a pump 18 and a hydraulic reservoir 20, wherein the control valve 12 in three operating positions, lift, neutral and lowered position, is switchable. The switching of the control valve 12 is preferably carried out manually, but can also be done electrically, hydraulically or pneumatically.

Über eine erste und zweite Versorgungsleitung 22, 24 ist das Steuerventil 12 mit einem Hydraulikzylinder 26 verbunden, wobei die erste Versorgungsleitung 22 in eine erste Kammer 28 des Hydraulikzylinders 26 und die zweite Versorgungsleitung 24 in eine zweite Kammer 30 des Hydraulikzylinders 26 führt. Die erste Kammer 28 des Hydraulikzylinders 26 stellt die kolbenbodenseitige bzw. hubseitige Kammer dar, wohingegen die zweite Kammer 30 die kolbenstangenseitige bzw. senkseitige Kammer des Hydraulikzylinders darstellt.Via a first and second supply line 22, 24, the control valve 12 is connected to a hydraulic cylinder 26, wherein the first supply line 22 leads into a first chamber 28 of the hydraulic cylinder 26 and the second supply line 24 into a second chamber 30 of the hydraulic cylinder 26. The first chamber 28 of the hydraulic cylinder 26 represents the piston bottom side and the stroke side chamber, whereas the second chamber 30 represents the piston rod side and the lower side chamber of the hydraulic cylinder.

In der ersten Versorgungsleitung 22 ist eine Lasthalteventilanordnung 32 vorgesehen. Die Lasthalteventilanordnung 32 enthält ein druck- und federgesteuertes Sperrventil 34, sowie ein zur Hydraulikzylinderseite öffnendes Rückschlagventil 36, welches über eine Beipassleitung 38 parallel zum Sperrventil 34 angeordnet ist. Über eine erste Druckleitung 40 ist eine Druckverbindung vom Sperrventil 34 zum hydraulikzylinderseitigen Abschnitt der ersten Versorgungsleitung 22 hergestellt. Über eine zweite Druckleitung 42 ist eine weitere Druckverbindung vom Sperrventil 34 zur zweiten Versorgungsleitung 24 hergestellt. Des Weiteren hält eine Stellfeder 44 das Sperrventil 34 in Schließstellung.In the first supply line 22, a load holding valve assembly 32 is provided. The load-holding valve arrangement 32 includes a pressure-controlled and spring-controlled shut-off valve 34, and a non-return valve 36 which opens to the hydraulic cylinder side and is arranged parallel to the shut-off valve 34 via a bypass line 38. Via a first pressure line 40, a pressure connection is made from the check valve 34 to the hydraulic cylinder side portion of the first supply line 22. Via a second pressure line 42 is a further pressure connection from the check valve 34 to the second Supply line 24 made. Furthermore, a spring 44 holds the check valve 34 in the closed position.

Eine erste Hydraulikleitung 46 verbindet die erste Kammer 28 bzw. die erste Versorgungsleitung 22 mit dem Hydraulikbehälter 20, wobei das nicht mit dem Hydraulikbehälter 20 verbundene Ende 48 der ersten Hydraulikleitung 46 zwischen der ersten Kammer 28 und der Lasthalteventilanordnung 32 angeordnet ist.A first hydraulic line 46 connects the first chamber 28 and the first supply line 22 to the hydraulic tank 20, wherein the not connected to the hydraulic tank 20 end 48 of the first hydraulic line 46 between the first chamber 28 and the load-holding valve assembly 32 is arranged.

In der ersten Hydraulikleitung 46 ist ein erstes Schaltventil 50 sowie eine in Richtung des Hydraulikbehälters 20 in Reihe geschaltete Ventileinrichtung 52 angeordnet. Das erste Schaltventil 50 stellt ein elektrisch schaltbares Sitzventil dar, welches über eine Stellfeder 54 in Schließstellung gehalten wird und über eine Magnetspule 56 in eine geöffnete Durchlassstellung gebracht werden kann. Das Schaltventil 50 dichtet dabei in eine oder auch in beide Richtungen leckagefrei ab. Die Ventileinrichtung 52 enthält ein Stromregelventil 58, welches in Parallelschaltung zu einem Rückschlagventil 60 angeordnet ist, wobei das Rückschlagventil 60 in Hydraulikzylinderrichtung öffnet. Hierbei ist es auch möglich die Ventileinrichtung 52 in Richtung des Hydraulikbehälters 20 vor dem Schaltventil 50 anzuordnen.In the first hydraulic line 46, a first switching valve 50 and a in the direction of the hydraulic tank 20 connected in series valve means 52 is arranged. The first switching valve 50 is an electrically switchable seat valve, which is held by a spring 54 in the closed position and can be brought via a magnetic coil 56 in an open passage position. The switching valve 50 seals off in one or both directions without leakage. The valve device 52 includes a flow control valve 58 which is arranged in parallel to a check valve 60, wherein the check valve 60 opens in the hydraulic cylinder direction. In this case, it is also possible to arrange the valve device 52 in the direction of the hydraulic container 20 upstream of the switching valve 50.

Des Weiteren ist eine zweite Hydraulikleitung 62 vorgesehen, welche die zweite Versorgungsleitung 24 mit der ersten Hydraulikleitung 46 verbindet, wobei die Verbindungsstelle 64 mit der ersten Hydraulikleitung 46 zwischen dem Hydraulikbehälter 20 und der Ventileinrichtung 52 angeordnet ist.Furthermore, a second hydraulic line 62 is provided, which connects the second supply line 24 to the first hydraulic line 46, wherein the connection point 64 is arranged with the first hydraulic line 46 between the hydraulic tank 20 and the valve device 52.

Ferner enthält die zweite Hydraulikleitung 62 ein zweites Schaltventil 66, welches dem ersten Schaltventil 50 in Bauweise und Funktion gleicht.Further, the second hydraulic line 62 includes a second switching valve 66, which is similar to the first switching valve 50 in construction and function.

Die einzelnen Betriebszustände können nun wie folgt über das Steuerventil 12 sowie über die Schaltventile 50 und 66 angesteuert werden. Wie in Fig. 1 dargestellt, wird das Steuerventil 12 durch die Stellfedern 68, 70 in Neutralstellung gehalten. Die Schaltventile 50 und 66 befinden sich in einer Schließstellung. Über ein Steuersignal wird das Steuerventil 12 mittels einer Betätigungsvorrichtung 72 aus der Neutralstellung heraus in die Hub- oder Senkstellung gebracht. Dabei kann es sich um eine manuelle, elektrische, hydraulische oder pneumatische Betätigungsvorrichtung 72 handeln.The individual operating states can now be controlled as follows via the control valve 12 and via the switching valves 50 and 66. As shown in Fig. 1, the control valve 12 is held by the control springs 68, 70 in neutral position. The switching valves 50 and 66 are in a closed position. Via a control signal, the control valve 12 is brought out of the neutral position by means of an actuator 72 in the lifting or lowering position. This may be a manual, electrical, hydraulic or pneumatic actuator 72.

In Hubstellung wird die Verbindung der ersten Versorgungsleitung 22 mit der Pumpe 18 und die Verbindung der zweiten Versorgungsleitung 24 mit dem Hydraulikbehälter 20 hergestellt. Die mit dem Hydraulikbehälter 20 verbundene Pumpe 18 befüllt über die erste Versorgungsleitung 22 und über das Rückschlagventil 36 der Lasthalteventilanordnung 32 (das Sperrventil 34 der Lasthalteanordnung 32 befindet sich in Schließstellung) die erste Kammer 28 des Hydraulikzylinders 26. In Folge dessen bewegt sich der Kolben 74 in Richtung der zweiten Kammer 30 und drückt das dort vorhandene Öl durch die zweite Versorgungsleitung 24 heraus in den Hydraulikbehälter 20. Wird nun wieder in die Neutralstellung geschaltet, so unterbricht das Steuerventil 12 die Verbindungen zur Pumpe 18 und zum Hydraulikbehälter 20, so dass der Druck in den beiden Kammern 28, 30 des Hydraulikzylinders 26 beibehalten und die Bewegung des Kolbens 74 aufgehoben wird. Der Kolben 74 bleibt stehen.In the stroke position, the connection of the first supply line 22 to the pump 18 and the connection of the second supply line 24 to the hydraulic container 20 is produced. The connected to the hydraulic tank 20 pump 18 filled via the first supply line 22 and the check valve 36 of the load-holding valve assembly 32 (the check valve 34 of the load-holding arrangement 32 is in the closed position), the first chamber 28 of the hydraulic cylinder 26. As a result, the piston 74 moves in the direction of the second chamber 30 and pushes the existing there oil through the second supply line 24 out in the hydraulic tank 20. If now switched back to the neutral position, the control valve 12 interrupts the connections to the pump 18 and the hydraulic tank 20, so that the pressure maintained in the two chambers 28, 30 of the hydraulic cylinder 26 and the movement of the piston 74 is released. The piston 74 stops.

In Senkstellung wird die Verbindung der ersten Versorgungsleitung 22 mit dem Hydraulikbehälter 20 und die Verbindung der zweiten Versorgungsleitung 24 mit der Pumpe 18 hergestellt. Die Pumpe fördert Öl in die zweite Kammer 30 des Hydraulikzylinders 26, wobei der sich in der zweiten Versorgungsleitung 24 aufbauende Druck das Sperrventil 34 über die zweite Druckleitung 42 der Lasthalteventilanordnung 32 öffnet. Gleichzeitig wird der Kolben 74 in Richtung der ersten Kammer 28 bewegt, so dass das aus der ersten Kammer 28 strömende Öl über die erste Versorgungsleitung 22 und über das geöffnete Sperrventil 34 in den Hydraulikbehälter 20 gelangt.In the lowered position, the connection of the first supply line 22 to the hydraulic reservoir 20 and the connection of the second supply line 24 to the pump 18 is established. The pump delivers oil into the second chamber 30 of the hydraulic cylinder 26, wherein the pressure building up in the second supply line 24 opens the check valve 34 via the second pressure line 42 of the load holding valve arrangement 32. At the same time, the piston 74 is moved in the direction of the first chamber 28, so that the oil flowing out of the first chamber 28 passes via the first supply line 22 and via the opened shut-off valve 34 into the hydraulic container 20.

Die Lasthalteventilanordnung 32 stellt somit sicher, dass der Hydraulikzylinder 26 in Neutralstellung seine Position beibehält bzw. in Hub- und Neutralstellung kein Öl aus der druckbeaufschlagten ersten Kammer 28 entweichen und dass in Senkstellung das Öl aus der ersten Kammer 28 über das geöffnete Sperrventil 34 abfließen kann. Um dies zu gewährleisten sollte bzw. muss die Lasthalteventilanordnung sinnvoller Weise wie abgebildet auf der Hubseite des Hydraulikzylinders 26 angeordnet sein, wobei die Hubseite die Seite des Hydraulkzylinders 26 ist, in der ein Druck zum Heben einer Last aufgebaut wird. In den hier dargestellten Ausführungsbeispielen ist die Hubseite die erste Kammer 28 des Hydraulikzylinders 26, wobei durch Umdrehen des Hydraulikzylinders 26 auch die zweite Kammer 30 als Hubseite dienen könnte. Die erste Druckleitung 40 stellt eine Überlastsicherung dar, so dass bei zu hohen Betriebsdrücken in der ersten Kammer 28 des Hydraulikzylinders 26, die beispielsweise durch zu hohe Traglasten entstehen können, in der ersten Druckleitung 40 ein Grenzdruck erreicht wird, der das Sperrventil 34 zum Druckabbau öffnet.The load holding valve assembly 32 thus ensures that the hydraulic cylinder 26 maintains its position in the neutral position or escape in the lifting and neutral position no oil from the pressurized first chamber 28 and that in the lowered position, the oil from the first chamber 28 can flow through the open check valve 34 , To ensure this, the load-holding valve arrangement should or should be arranged as shown on the lifting side of the hydraulic cylinder 26, wherein the lifting side is the side of the hydraulic cylinder 26, in which a pressure for lifting a load is built up. In the embodiments shown here, the lifting side is the first chamber 28 of the hydraulic cylinder 26, wherein by turning the hydraulic cylinder 26 and the second chamber 30 could serve as a lifting side. The first pressure line 40 is an overload protection, so that at high operating pressures in the first chamber 28 of the hydraulic cylinder 26, which may arise, for example, by excessive loads, in the first pressure line 40, a limiting pressure is reached, which opens the check valve 34 to reduce pressure ,

Über die Schaltventile 50 und 66 kann in jeder beliebigen Betriebsstellung in die Schwimmstellung geschaltet werden. Dazu werden mittels eines Schaltsignals die Schaltventile 50 und 66 parallel angesteuert, so dass die Magnetspulen 56 der Federkraft der Federn 54 entgegenwirken und die Schaltventile 50, 66 aus der Schließstellung heraus im Wesentlichen zeitgleich in Durchflussstellung gebracht werden. Dies hat zur Folge, dass die erste Kammer 28 und die zweite Kammer 30 zum einen miteinander und zum anderen mit dem Hydraulikbehälter 20 in Verbindung gebracht werden, so dass ein Austausch der Hydraulikflüssigkeit bzw. des Öls stattfinden und der Kolben 74 freischwimmend bewegt werden kann. Findet ein Umschalten aus einer Betriebsstellung unter Last statt, so strömt das Öl unter erhöhtem Druck aus der druckbeaufschlagten ersten Kammer 28 heraus, was zu einer beschleunigten Kolbenbewegung führt. Um diese Kolbenbewegung in ihrer Geschwindigkeit zu begrenzen tritt das Stromregelventil 58 in Kraft, welches den Volumenstrom begrenzt bzw. den Durchfluss des Öls steuert bzw. regelt. Überschreitet der Volumenstrom einen zugelassenen Wert, verengt sich der Durchlassquerschnitt des Stromregelventils 58, so dass der Volumenstrom nicht weiter ansteigt. Hierdurch werden unkontrollierte Bewegungen des Hydraulikzylinderkolbens 74 wirksam vermieden. Bei einer entgegengesetzten Druckwirkung in Richtung der ersten Kammer 28 ermöglicht das Rückschlagventil 60 die Umgehung des Stromregelventils 58 und somit einen ungeregelten Durchfluss in Richtung der ersten Kammer 28. Ein Umschalten aus der Schwimmstellung in eine Betriebsstellung ist jederzeit durch Schalten der Schaltventile 50, 66 in eine geschlossene Stellung möglich.About the switching valves 50 and 66 can be switched in any operating position in the floating position. For this purpose, the switching valves 50 and 66 are driven in parallel by means of a switching signal, so that the magnetic coils 56 counteract the spring force of the springs 54 and the switching valves 50, 66 are brought out of the closed position substantially at the same time in the flow position. The result of this is that the first chamber 28 and the second chamber 30 are communicated with one another and with the hydraulic tank 20 so that an exchange of the hydraulic fluid or of the oil takes place and the piston 74 can be moved freely. If switching takes place from an operating position under load, then the oil flows out of the pressurized first chamber 28 under increased pressure, which leads to an accelerated piston movement. In order to limit this piston movement in its speed, the flow control valve 58 comes into force, which limits the volume flow or controls the flow of the oil or regulates. If the volume flow exceeds an approved value, the passage cross-section of the flow control valve 58 narrows so that the volume flow does not increase any further. As a result, uncontrolled movements of the hydraulic cylinder piston 74 are effectively avoided. With an opposite pressure action in the direction of the first chamber 28, the check valve 60 allows bypassing the flow control valve 58 and thus an uncontrolled flow in the direction of the first chamber 28. Switching from the floating position to an operating position is at any time by switching the switching valves 50, 66 in a closed position possible.

Anhand der Fig. 2 wird ein zweites Ausführungsbeispiel beschrieben. Dabei werden für gleichartige Bauteile die selben Bezugsziffern wie in Fig. 1 verwendet. Gemäß Fig. 2 wird für die Ventileinrichtung 52 an Stelle des Stromregelventils 58 und des Rückschlagventils 60 ein Rohrbruchsicherungsventil 76 in Kombination mit einer parallel geschalteten Drossel 78 eingesetzt. An Stelle der Drossel 78 kann auch eine gleichwirkende Blende eingesetzt werden. Wird durch Schalten der Schaltventile 50, 66 in Schwimmstellung geschaltet, bewirkt das Rohrbruchsicherungsventil 76 ebenfalls eine strömungsabhängige Reduzierung bzw. Begrenzung des Volumenstroms. Erreicht der Volumenstrom in Schwimmstellung in der ersten Hydraulikleitung 46, aufgrund eines zu hohen Drucks in der ersten Kammer 28, einem am Rohrbruchsicherungsventil 76 vorgebbaren Grenzwert, dann wirkt eine sich aus der einstellenden Druckdifferenz resultierende Kraft der am Rohrbruchsicherungsventil 76 wirkenden Federkraft einer Schließfeder 80 entgegen und schließt das Rohrbruchsicherungsventil 76. Gleichzeitig wird das aus der ersten Kammer 28 strömende Öl durch die Drossel 78 umgeleitet, so dass ein stark reduzierter, kontrollierbarer Volumenstrom fließt und nur geringe Bewegungsgeschwindigkeiten des Kolbens 74 zugelassen werden. Hierbei ist es auch möglich die Ventileinrichtung 52 in Richtung des Hydraulikbehälters 20 vor dem Schaltventil 50 anzuordnen.2, a second embodiment will be described. This will be the same for similar components Reference numerals as used in Fig. 1. 2, a pipe rupture valve 76 is used in combination with a throttle 78 connected in parallel for the valve device 52 instead of the flow control valve 58 and the check valve 60. Instead of the throttle 78 can also be used a similar effect aperture. Is switched by switching the switching valves 50, 66 in the floating position, the pipe rupture valve 76 also causes a flow-dependent reduction or limitation of the volume flow. If the volume flow in the floating position in the first hydraulic line 46, due to excessive pressure in the first chamber 28, a limit value predeterminable on the pipe rupture valve 76, then acting from the adjusting pressure difference force acting on the pipe rupture valve 76 spring force of a closing spring 80 counteracts and At the same time, the oil flowing out of the first chamber 28 is diverted through the throttle 78, so that a greatly reduced, controllable volume flow flows and only low movement speeds of the piston 74 are permitted. In this case, it is also possible to arrange the valve device 52 in the direction of the hydraulic container 20 upstream of the switching valve 50.

Eine Verwendung für die in Fig. 1 und Fig. 2 dargestellten Ausführungsbeispiele wird in Fig. 3 verdeutlicht. Fig. 3 zeigt einen fahrbaren Teleskoplader 82 mit einem an einem Gehäuse 84 bzw. Rahmen des Teleskopladers 82 schwenkbar angelenkten, teleskopartig ausfahrbaren, Ausleger 86. Zwischen Ausleger 86 und Gehäuse 84 ist ein Hydraulikzylinder 26 zum Heben und Senken des Auslegers 86 angeordnet. Der Hydraulikzylinder 26 ist dabei an einer ersten und einer zweiten Lagerstelle 88, 90 schwenkbar angelenkt, wobei die Kolbenstangenseite 92 an der zweiten Lagerstelle 90 am Ausleger 86 und die Kolbenbodenseite 94 an der ersten Lagerstelle 88 am Gehäuse 84 angelenkt ist. Des Weiteren sind der Hydraulikbehälter 20, die Pumpe 18 sowie die Ventilanordnung 10 am bzw. im Gehäuse 84 positioniert und über Hydraulikleitungen 14, 16, 46, 96 miteinander verbunden. Ferner sind die Versorgungsleitungen 22, 24 zwischen Ventilanordnung 10 und Hydraulikzylinder 26 in Fig. 3 zu sehen. Über eine nicht gezeigte Steuerung werden Steuer- bzw. Schaltsignale generiert, mit denen das Steuerventil 12 sowie die Schaltventile 50, 66 (siehe Fig. 1 und Fig. 2) gesteuert bzw. geschaltet werden. Entsprechend der vorhergehend beschriebenen Betriebsstellungen kann der Hydraulikzylinder 26 derart betätigt werden, dass der Ausleger 86 angehoben, gehalten oder abgesenkt werden kann. Ferner ist es möglich in Schwimmstellung zu schalten, so dass der Kolben frei bewegbar ist und der Ausleger 86 schwimmend beweglich ist. Durch die Schwimmstellung wird gewährleistet, dass ein sich am Ausleger 86 befestigtes und auf den Boden abgesenktes Werkzeug 98 schwimmend, der Bodenkontur folgend, über die Bodenoberfläche bewegt werden kann. Der Anpressdruck des Werkzeugs 98 gegenüber dem Boden wird dabei im Wesentlichen durch das Eigengewicht des Auslegers 86 und des Werkzeugs 98 bestimmt. Eine Sicherheitsfunktion ist dabei dadurch gegeben, dass ein Absenken des Auslegers 86 unter Last volumengesteuert erfolgen kann, so dass keine ungewollten, plötzlichen Bewegungsänderungen eintreten. Befindet sich z. B. der Ausleger 86 in angehobener Stellung unter Last und wird dann in Schwimmstellung geschaltet, so sorgt das Stromregelventil 58 bzw. das Rohrbruchsicherungsventil 76 in Verbindung mit der Drossel 78 dafür, dass der Ausleger 86 in einer voreinstellbaren, kontrollierbaren Geschwindigkeit abgesenkt wird. Mit dieser durch die Ventilanordnung 10 realisierten Sicherheitsvorkehrung für eine Schwimmstellung, kann aus jeder Betriebsstellung heraus in eine Schwimmstellung geschaltet werden, ohne dass es zu unkontrollierten Bewegungsänderungen am Ausleger 86 kommt. Des Weiteren wird hiermit eine Ventilanordnung 10 mit integrierter Schwimmstellung in Verbindung mit einer Lasthaltevorrichtung 32 realisiert, mit der auch ein druckbeaufschlagtes Absenken des Auslegers 86 durch Schalten des Steuerventils 12 in Senkstellung bei geschlossenen Schaltventilen 50, 66 möglich ist.A use for the embodiments illustrated in FIG. 1 and FIG. 2 is illustrated in FIG. 3. FIG. 3 shows a mobile telescopic loader 82 with a telescopically extendable boom 86 pivotably articulated to a housing 84 or frame of the telescopic handler 82. A hydraulic cylinder 26 for raising and lowering the boom 86 is arranged between the arm 86 and the housing 84. The hydraulic cylinder 26 is at a first and a second bearing point 88, 90th hinged pivotally, wherein the piston rod side 92 is hinged to the second bearing point 90 on the arm 86 and the piston bottom side 94 at the first bearing 88 on the housing 84. Furthermore, the hydraulic tank 20, the pump 18 and the valve assembly 10 are positioned on or in the housing 84 and connected to each other via hydraulic lines 14, 16, 46, 96. Furthermore, the supply lines 22, 24 between valve assembly 10 and hydraulic cylinder 26 in Fig. 3 can be seen. Control or switching signals are generated by means of a control, not shown, with which the control valve 12 and the switching valves 50, 66 (see FIGS. 1 and 2) are controlled or switched. According to the operating positions described above, the hydraulic cylinder 26 can be operated such that the boom 86 can be raised, held or lowered. Further, it is possible to switch to floating position, so that the piston is freely movable and the boom 86 is floatingly movable. The floating position ensures that a tool 98 fastened to the arm 86 and lowered onto the ground can float, following the ground contour, over the ground surface. The contact pressure of the tool 98 relative to the ground is determined essentially by the weight of the arm 86 and the tool 98. A safety function is given by the fact that a lowering of the boom 86 under load can be volume-controlled, so that no unwanted, sudden changes in movement occur. Is z. As the boom 86 in the raised position under load and is then switched to floating position, the flow control valve 58 and the pipe rupture valve 76 in conjunction with the throttle 78 ensures that the boom 86 is lowered in a presettable, controllable speed becomes. With this realized by the valve assembly 10 safety precaution for a floating position, can be switched from each operating position out in a floating position, without causing uncontrolled movement changes on the boom 86. Furthermore, hereby a valve arrangement 10 with integrated floating position is realized in conjunction with a load holding device 32, with which a pressurized lowering of the arm 86 by switching the control valve 12 in lowered position with closed switching valves 50, 66 is possible.

Auch wenn die Erfindung lediglich anhand von zwei Ausführungsbeispielen beschrieben wurde, erschließen sich für den Fachmann im Lichte der vorstehenden Beschreibung sowie der Zeichnung viele verschiedenartige Alternativen, Modifikationen und Varianten, die unter die vorliegende Erfindung fallen. So kann beispielsweise die Ventilanordnung auch an anderen Fahrzeugen angewendet werden, beispielsweise an Baggern oder Kränen, die hydraulisch betätigbare Komponenten aufweisen, welche angehoben bzw. wie abgesenkt werden müssen und bei denen eine Schwimmstellung sinnvoll erscheint.Although the invention has been described by way of two embodiments only, many different alternatives, modifications and variations that are within the scope of the present invention will become apparent to those skilled in the art in light of the foregoing description and the drawings. Thus, for example, the valve assembly can be applied to other vehicles, such as excavators or cranes, which have hydraulically actuated components that need to be raised or lowered and where a floating position seems useful.

Claims (10)

  1. Hydraulic arrangement, having a hydraulic cylinder (26), which has a first chamber (28) and a second chamber (30), and having a valve arrangement, the valve arrangement comprising a control valve (12), which connects the first and the second chamber (28, 30) of the hydraulic cylinder (26) via a first and a second supply line (22, 24) optionally to a hydraulic pressure source (18) or to a container (20), a first on-off valve (50), which controls the flow in a first hydraulic line (46) extending between the first chamber (28) and the container (20) and which opens on the basis of a switch signal, a second on-off valve (66), which controls the flow in a second hydraulic line (62) extending between the second chamber (30) and the container (20) and which opens on the basis of the switch signal parallel to the first on-off valve (50), a floating position being able to be set by opening the on-off valves (50, 66), in which floating position the first chamber (28) and the second chamber (30) are in communication directly or indirectly with each other via the container (20), and a load-holding valve arrangement (32), which has a stop valve (34), which is in a closed position as a result of spring force and opens as a function of the pressure in the second supply line (24), and has a check valve (36) disposed parallel to the stop valve (34), the check valve (36) opening in the direction of the hydraulic cylinder (26), characterised in that the valve arrangement has a valve device (52) which is disposed in the first hydraulic line (46) and controls as a function of the volume flow.
  2. Hydraulic arrangement according to claim 1, characterised in that the valve arrangement (52) contains an adjustment means (58, 76, 78) which changes the flow opening, said adjustment means being subjected on the one hand to a pressure of the first chamber (28) and on the other hand to a pressure of the container (20) and also if necessary to a spring force.
  3. Hydraulic arrangement according to one of the preceding claims, characterised in that the valve device (52) contains means (58, 76, 78) which, with increasing (reducing) pressure head across the valve device (52), reduce (increase) the flow cross-section.
  4. Hydraulic arrangement according to one of the preceding claims, characterised in that the valve device (52) contains a flow-control valve (58) which changes the volume flow as a function of the flow and restricts it to a prescribable maximum value.
  5. Hydraulic arrangement according to claim 4, characterised in that the valve device (52) contains a check valve (60) which is disposed parallel to the flow-control valve (58) and opens in the direction of the first chamber (28).
  6. Hydraulic arrangement according to one of the claims 1 to 3, characterised in that the valve device (52) contains means (76, 78) which reduce or interrupt the volume flow when a prescribable pressure head is exceeded.
  7. Hydraulic arrangement according to claim 6, characterised in that the valve device (52) contains an isolating safety valve (76) which closes when a prescribable pressure head is reached or exceeded or opens when the prescribable pressure head is fallen below.
  8. Hydraulic arrangement according to claim 7, characterised in that the valve device (52) contains a throttle (78) or diaphragm which is disposed parallel to the isolating safety valve (76) and permits a reduced volume flow with a closed isolating safety valve (76).
  9. Hydraulic arrangement according to one of the preceding claims, characterised in that the first and/or second on-off valve (50, 66) are electromagnetically switchable seat valves.
  10. Hydraulic arrangement according to one of the preceding claims for use with a hydraulic cylinder (26) for raising and lowering a jib (86) on a loader or construction vehicle, in particular on a telescopic loader (82).
EP04100627A 2003-02-21 2004-02-17 Valve arrangement Expired - Lifetime EP1450048B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10307346 2003-02-21
DE10307346A DE10307346A1 (en) 2003-02-21 2003-02-21 valve assembly

Publications (2)

Publication Number Publication Date
EP1450048A1 EP1450048A1 (en) 2004-08-25
EP1450048B1 true EP1450048B1 (en) 2006-06-14

Family

ID=32731084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04100627A Expired - Lifetime EP1450048B1 (en) 2003-02-21 2004-02-17 Valve arrangement

Country Status (5)

Country Link
US (1) US7104181B2 (en)
EP (1) EP1450048B1 (en)
CA (1) CA2457980C (en)
DE (2) DE10307346A1 (en)
ES (1) ES2262091T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4350088A1 (en) * 2022-10-07 2024-04-10 Kramer-Werke GmbH Hydraulic machine with a boom pivotable about a pivot axis

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012382B4 (en) 2004-03-13 2014-03-13 Deere & Company Hydraulic arrangement
US7207164B2 (en) * 2005-05-10 2007-04-24 Deere & Company Header hydraulic float suspension
US7430846B2 (en) * 2005-05-10 2008-10-07 Deere & Company Floating header with integrated float system for use with an agricultural windrower or combine
DE102005043447A1 (en) * 2005-09-13 2007-03-15 Deere & Company, Moline Charger and method for a charger
DE102006010696B4 (en) * 2006-03-08 2009-01-22 Sauer-Danfoss Aps Hydraulic steering
DE102006010697B4 (en) 2006-03-08 2009-01-22 Sauer-Danfoss Aps Hydraulic steering
DE102006010695B4 (en) * 2006-03-08 2009-05-14 Sauer-Danfoss Aps Hydraulic steering
DE102006051541B4 (en) * 2006-11-02 2009-06-04 Sauer-Danfoss Aps Hydraulic steering device
ES2332382T3 (en) * 2007-04-27 2010-02-03 Hawe Hydraulik Se ELECTRO HYDRAULIC REGULATION DEVICE FOR A SOLAR PANEL SUPPORT.
US7827787B2 (en) 2007-12-27 2010-11-09 Deere & Company Hydraulic system
US8028613B2 (en) * 2009-04-29 2011-10-04 Longyear Tm, Inc. Valve system for drilling systems
US8858151B2 (en) * 2011-08-16 2014-10-14 Caterpillar Inc. Machine having hydraulically actuated implement system with down force control, and method
EP2570301B1 (en) * 2011-09-16 2015-11-11 Cargotec Finland Oy Hydraulic arrangement and method for lowering a tipping frame of a hooklift
CN102583173B (en) * 2011-12-19 2014-06-04 徐州重型机械有限公司 Suspension arm telescopic hydraulic control system and crane with same
US9085873B2 (en) * 2011-12-23 2015-07-21 Caterpillar Inc. Hydraulic system for controlling a work implement
CN102900731B (en) * 2012-10-31 2014-12-31 长沙中联消防机械有限公司 Hydraulic control system for emergency withdraw of arm support
EP2937472A4 (en) * 2012-12-20 2016-09-07 Volvo Constr Equip Ab Construction machine with floating function
CN103836021A (en) * 2014-03-24 2014-06-04 徐州重型机械有限公司 Balance combined valve, hydraulic lifting system and fire fighting truck
US9708796B2 (en) 2014-09-25 2017-07-18 Cnh Industrial America Llc Hydraulic valve
US9790964B2 (en) 2014-09-25 2017-10-17 Cnh Industrial America Llc Hydraulic system
JP6502076B2 (en) * 2014-12-11 2019-04-17 古河ユニック株式会社 Speed increasing valve and bending crane provided with the same
CN105443464B (en) * 2015-12-01 2017-08-08 湖北江山重工有限责任公司 Differential hydro cylinder control loop
US10914322B1 (en) 2016-05-19 2021-02-09 Steven H. Marquardt Energy saving accumulator circuit
US11015624B2 (en) 2016-05-19 2021-05-25 Steven H. Marquardt Methods and devices for conserving energy in fluid power production
US10550863B1 (en) 2016-05-19 2020-02-04 Steven H. Marquardt Direct link circuit
CA3046808A1 (en) 2016-12-16 2018-06-21 Clark Equipment Company Loader with telescopic lift arm
USD832551S1 (en) 2017-10-12 2018-10-30 Clark Equipment Company Loader
USD832552S1 (en) 2017-10-12 2018-10-30 Clark Equipment Company Lift arm for loader
CN111519677B (en) * 2020-04-28 2022-03-01 三一重机有限公司 Floating hydraulic system and engineering machinery
DE102020207104B4 (en) 2020-06-05 2023-08-10 Hawe Hydraulik Se Hydraulic power trim lift device for a boat drive and boat drive
US12085099B1 (en) * 2020-06-18 2024-09-10 Vacuworx Global, LLC Flow control block for use with a vacuum material handler
CN112922915A (en) * 2021-02-08 2021-06-08 徐工消防安全装备有限公司 Platform gravity descending control system and method
US11976675B2 (en) * 2021-02-11 2024-05-07 Xtreme Manufacturing, Llc Systems and methods for bleed down and retraction of a construction machine boom
CN215058526U (en) * 2021-03-19 2021-12-07 湖南星邦智能装备股份有限公司 Control loop of double-acting floating oil cylinder
CN114109946A (en) * 2021-12-03 2022-03-01 中船重工重庆液压机电有限公司 Multi-point synchronous positioning hydraulic device for jack and control method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472127A (en) * 1967-12-12 1969-10-14 Caterpillar Tractor Co Control circuit for bulldozers used in pushing
US4024796A (en) * 1975-09-24 1977-05-24 Caterpillar Tractor Co. Float control electrical circuit for a blade
DE3216580A1 (en) * 1981-05-07 1983-02-24 Hiab-Foco AB, 82401 Hudiksvall Load-holding and load-lowering brake valve
DD205471A1 (en) 1982-06-24 1983-12-28 Peter Prusseit HYDRAULIC CIRCUIT ARRANGEMENT FOR ACHIEVING A FLOATING POSITION OF A STROKE CYLINDER
DE3840246A1 (en) * 1988-06-22 1990-01-04 Edelhoff Polytechnik WASTE COLLECTING VEHICLE WITH CONTAINERS DESIGNED AS INTERCHANGEABLE CONTAINERS ON A TIPPER FRAME
DE4129509C2 (en) * 1991-09-05 1994-06-16 Rexroth Mannesmann Gmbh Hydraulic control arrangement for construction machines
US5415076A (en) * 1994-04-18 1995-05-16 Caterpillar Inc. Hydraulic system having a combined meter-out and regeneration valve assembly
JPH09317706A (en) * 1996-05-27 1997-12-09 Hitachi Constr Mach Co Ltd Fall prevention valve device with regenerative function
JPH10168949A (en) * 1996-12-06 1998-06-23 Kobelco Kenki Eng Kk Floating device of hydraulic cylinder
US6092454A (en) * 1998-07-23 2000-07-25 Caterpillar Inc. Controlled float circuit for an actuator
DE10006908A1 (en) 2000-02-16 2001-08-23 Caterpillar Sarl Genf Geneva Hydraulic cylinder unit for raising and lowering front arm on root harvester has branch pipe leading back to oil tank which is fitted with shut-off valve and pressure-regulating valve
DE10149787B4 (en) 2000-10-23 2012-06-06 Linde Material Handling Gmbh Valve arrangement with floating position

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4350088A1 (en) * 2022-10-07 2024-04-10 Kramer-Werke GmbH Hydraulic machine with a boom pivotable about a pivot axis
DE102022126009A1 (en) 2022-10-07 2024-04-18 Kramer-Werke Gmbh Hydraulic machine with a boom that can be pivoted around a pivot axis

Also Published As

Publication number Publication date
US7104181B2 (en) 2006-09-12
CA2457980C (en) 2007-08-28
ES2262091T3 (en) 2006-11-16
CA2457980A1 (en) 2004-08-21
US20040221714A1 (en) 2004-11-11
DE10307346A1 (en) 2004-09-02
DE502004000729D1 (en) 2006-07-27
EP1450048A1 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
EP1450048B1 (en) Valve arrangement
DE102004012382B4 (en) Hydraulic arrangement
EP1766146B1 (en) Lifting gear valve arrangement
EP1496009B1 (en) Hydraulic suspension
DE19956717B4 (en) Hydraulic control device
DE2352742C2 (en) Hydraulic lowering brake shut-off valve
EP1672225B1 (en) Valve arrangement and method of controlling a double-acting hydraulic consumer
EP1781952B1 (en) Hydraulic control arrangement
EP1701042B1 (en) Hydraulic control device
DE102006060333B3 (en) Hydraulic valve arrangement
EP1743981A1 (en) Hydraulic arrangement
DE20208577U1 (en) Electro-hydraulic lift control device for industrial trucks
EP0141301B1 (en) Hydraulic circuit for a load-driving motor
DE102007027567B4 (en) Control arrangement with pipe rupture function
DE60225805T2 (en) CONTROL SYSTEM FOR SUSPENSION OF A VEHICLE
EP2142808B1 (en) Hydraulic control arrangement
CH628117A5 (en) Brake-valve device
EP2404493B1 (en) Hoisting gear
DE69520585T2 (en) VALVE DEVICE FOR PREVENTING THE CONSTRUCTION OF A CONSTRUCTION MACHINE TOOL
EP2157320B1 (en) Hydraulic device for a hydro motor
DE9210647U1 (en) Hydraulic control device
EP2908013B1 (en) Hydraulic system for a lowering operation that can be constantly controlled with a tilting valve with a lowering speed that is not limited by the tilting valve
EP0816689B1 (en) Hydraulic control system
WO1999024720A1 (en) Hydraulic circuit
EP0778419B1 (en) Hydraulic valve control with pressure piloted two ways valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050225

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20050407

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060614

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004000729

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060830

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2262091

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140220

Year of fee payment: 11

Ref country code: ES

Payment date: 20140226

Year of fee payment: 11

Ref country code: IT

Payment date: 20140224

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140227

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004000729

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150217

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150217

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150218