EP1448880A1 - Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau - Google Patents

Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau

Info

Publication number
EP1448880A1
EP1448880A1 EP02760509A EP02760509A EP1448880A1 EP 1448880 A1 EP1448880 A1 EP 1448880A1 EP 02760509 A EP02760509 A EP 02760509A EP 02760509 A EP02760509 A EP 02760509A EP 1448880 A1 EP1448880 A1 EP 1448880A1
Authority
EP
European Patent Office
Prior art keywords
turbine
compressor
gas turbine
working medium
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02760509A
Other languages
German (de)
English (en)
Inventor
Hans Ulrich Frutschi
Timothy Griffin
Roland Span
Dieter Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1448880A1 publication Critical patent/EP1448880A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • F02C1/105Closed cycles construction; details

Definitions

  • the present invention relates to the field of gas turbine technology. It relates to a gas turbine plant for a working medium in the form of a carbon dioxide / water mixture according to the preamble of claim 1.
  • Gas turbine systems are known from the prior art, which work in a circuit with a working medium in the form of a carbon dioxide / water mixture and are characterized in that they combust the combustion of hydrocarbon-containing fuels without releasing carbon dioxide to the Allow atmosphere.
  • a gas turbine plant is described, for example, in US-A-5,247,791.
  • a comparable gas turbine system 16 is shown with a largely closed C0 2 gas turbine cycle in a block diagram.
  • the gas turbine system 16 comprises a compressor 1 and a turbine 3, which are connected to a generator 15 via a common shaft.
  • the gas turbine system 16 further comprises a combustion chamber 2, a cooler and / or waste heat processor 4, a water separator 5 and a removal point 6 for CO 2 removal.
  • a fuel 7 in the form of a hydrocarbon for example a natural gas with the main component methane, is subjected to an internal combustion in an atmosphere prepared from oxygen 8, carbon dioxide and possibly water.
  • the water as shown in FIG. 1, can be condensed out in the water separator 5.
  • the excess carbon dioxide can be separated off largely purely.
  • the carbon dioxide can then be deposited in a suitable manner so that practically no carbon dioxide is released into the atmosphere.
  • none or only part of the water can be condensed out in the water separator 5, so that a carbon dioxide / water mixture is removed at the extraction point 6.
  • the oxygen 8 required for the combustion of the fuel 7 is generated in an air separation plant 9 from intake air 10.
  • Residual gases 11 in the form of nitrogen (N 2 ) and argon (Ar), which are produced as waste products, can either be released into the atmosphere or used for other purposes.
  • the steam 17 generated in the cooler / waste heat processor 4 can either be used in an independent process, for example in a downstream steam turbine are, or injected into the combustion chamber 2 as injection steam 12 in order to increase the mass flow in the turbine 3 and thus increase the efficiency and efficiency of the process.
  • a partial stream 13 of the steam can be used for effective cooling of thermally loaded components in the turbine 3.
  • compressors 1 and turbine 3 are specially designed and designed for the requirements of the respective working medium, there is no doubt about the technical feasibility of such a process. However, for economic reasons it will be necessary to operate corresponding gas turbine systems 16 at least temporarily with compressors 1 and turbines 3, which have been modified as little as possible on the basis of existing machines designed for operation with ambient air.
  • the essence of the invention is a compressor and / or the turbine (3) to be used with a rotor and a housing which largely correspond to a rotor and a housing of a compressor designed for the working medium air or a turbine designed for the working medium air.
  • the adaptation to the expansion behavior of the working medium, which is different from air, is then brought about essentially by modifications of the flow channels and / or the moving blades and / or the guide grids. This makes it possible to build on existing compressors or turbines, which are then adapted to the new working medium with comparatively minor changes.
  • the necessary modification is brought about in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced in the form of blocked sectors by blocking part of the flow channels in the guide vane.
  • the necessary modification is effected in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced by inserting annular flow obstacles in the guide vents.
  • the necessary modification is effected in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced by adjustable guide grids.
  • FIG. 1 shows a system diagram of an exemplary gas turbine system working with a carbon dioxide / water mixture as the working medium
  • Fig. 2 shows the speed of sound in carbon dioxide / water mixtures
  • Fig. 3 shows the deviation of the volume flow in% during the expansion of
  • Fig. 5 shows the inner structure of a schematic representation
  • FIG. 6 seen in several partial figures in the axial direction, an exemplary guide grille without modification (FIG. 6a), with a partial partial application according to an embodiment of the invention (FIG. 6b), with a partial partial application according to another embodiment of the invention (FIG. 6c ) and with adjustable guide vanes according to a further embodiment of the invention
  • the compressor 1 and the turbine 3 of the gas turbine system from FIG. 1 have the internal structure shown in simplified form in FIG. 5, the high-pressure side (for the compressor 1 the outlet side, for the turbine 3 the inlet side) being on the left side of the illustration.
  • the compressor 1 or the turbine 3 has a rotor 18 which can be rotated about an axis 23 and has a multi-stage blading which consists of individual sets of rotor blades 21.
  • the rotor 18 with the blading is surrounded by a housing 19.
  • Fixed guide vanes 20 with corresponding guide vanes are arranged between the sets of rotor blades 21.
  • Flow channels 22 run between the guide vanes of the guide grids 20 in the space between the rotor 18 and the housing 19 (see also FIG. 6a).
  • rotor 18 and housing 19 of a compressor 1 designed for the working medium air and / or a turbine 3 designed for the working medium air are now retained.
  • carbon dioxide / water different from air essential modifications of the flow channels 22 and / or the blades 21 and / or the guide vane 20 made.
  • a first possibility for modification consists in reducing the free flow cross sections on the high pressure side of compressor 1 and / or turbine 3 in that part of the flow channels 22 in the associated guide vane 20 are closed by blocked sectors 24 arranged around the circumference ( 6b; sectoral partial loading).
  • a second possibility of the modification is that the free flow cross sections on the high pressure side of the compressor 1 and / or turbine 3 are reduced by inserting annular flow obstacles 25 in the guide vents 20 (FIG. 6 c; partial radial loading).
  • a third possibility of the modification is that the free flow cross sections on the high pressure side of compressor 1 and / or turbine 3 are reduced by adjustable guide grids 20 with adjustable guide vanes 26 (FIG. 6d; in the figure, for the sake of simplicity, only one exemplary adjustable guide vane is shown 26, whose adjustability is indicated by the dashed lines).
  • FIG. 4 shows percentage deviations between axial speeds that occur in a turbine optimized for air and axial speeds in turbines modified according to the invention operated with different carbon dioxide / water mixtures.
  • the extensive adjustment of the axial speeds is gradual reduction of the available flow cross-sections in the individual stages of the turbine.
  • Table 1 summarizes the cross-sectional ratios chosen for the different compositions.
  • guide vanes 26 of the guide vane 20 are provided in the compressor 1 and / or turbine 3 in order to compensate for variations in the thermodynamic properties of the working medium caused by the inert gases.
  • the heat sink 4 is designed to generate steam and if a partial stream 13 of the steam generated is fed to the turbine 3 for cooling thermally loaded components.
  • This heat sink 4 can also be designed to generate a quantity of steam for operating a steam turbine, not shown in the drawing. The required partial stream 13 can then be branched off from this amount of steam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un système de turbine à gaz (16) composé d'un compresseur (1), d'une chambre de combustion (2), d'une turbine (3) et d'au moins une source froide (4), ledit système de turbine étant entraîné par un mélange dioxyde de carbone/eau. Dans la chambre de combustion (2), un hydrocarbure réagit en tant que combustible (7) avec de l'oxygène (8), et le dioxyde de carbone excédentaire ainsi produit et de l'eau (14) sont prélevés dans le circuit. Le compresseur (1) et la turbine (3) comportent respectivement un rotor présentant des augets, et un boîtier présentant des canaux d'écoulement et des grilles de guidage. Selon l'invention, le compresseur (1) et/ou la turbine (3) sont adaptés aux propriétés d'expansion du fluide de travail, différentes de celles de l'air, par modification des canaux d'écoulement, des augets et/ou des grilles de guidage.
EP02760509A 2001-09-24 2002-09-23 Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau Withdrawn EP1448880A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH176501 2001-09-24
CH17652001 2001-09-24
PCT/IB2002/003912 WO2003027461A1 (fr) 2001-09-24 2002-09-23 Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau

Publications (1)

Publication Number Publication Date
EP1448880A1 true EP1448880A1 (fr) 2004-08-25

Family

ID=4566177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02760509A Withdrawn EP1448880A1 (fr) 2001-09-24 2002-09-23 Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau

Country Status (3)

Country Link
US (2) US20040200205A1 (fr)
EP (1) EP1448880A1 (fr)
WO (1) WO2003027461A1 (fr)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009963A1 (fr) * 2002-07-14 2004-01-29 RERUM COGNITIO Gesellschaft für Marktintegration deutscher Innovationen und Forschungsprodukte mbH Procede permettant de separer des gaz residuels et un fluide de travail lors d'un processus a cycle combine eau/vapeur
US7686567B2 (en) * 2005-12-16 2010-03-30 United Technologies Corporation Airfoil embodying mixed loading conventions
US20110185701A1 (en) * 2007-09-28 2011-08-04 Central Research Institute of Electric Power Indus try Turbine equipment and power generating plant
US8734545B2 (en) 2008-03-28 2014-05-27 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CN101981272B (zh) 2008-03-28 2014-06-11 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
CN102177326B (zh) 2008-10-14 2014-05-07 埃克森美孚上游研究公司 控制燃烧产物的方法与装置
SG176670A1 (en) 2009-06-05 2012-01-30 Exxonmobil Upstream Res Co Combustor systems and methods for using same
MX341477B (es) 2009-11-12 2016-08-22 Exxonmobil Upstream Res Company * Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos.
CN102959202B (zh) 2010-07-02 2016-08-03 埃克森美孚上游研究公司 集成系统、发电的方法和联合循环发电系统
TWI554325B (zh) 2010-07-02 2016-10-21 艾克頌美孚上游研究公司 低排放發電系統和方法
MY160833A (en) 2010-07-02 2017-03-31 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
MX352291B (es) 2010-07-02 2017-11-16 Exxonmobil Upstream Res Company Star Sistemas y métodos de generación de potencia de triple ciclo de baja emisión.
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
WO2012018458A1 (fr) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company Système et procédé destiné à l'extraction de gaz d'échappement
CN103069130B (zh) 2010-08-06 2016-02-24 埃克森美孚上游研究公司 优化化学计量燃烧的系统和方法
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563164B (en) * 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
US8453461B2 (en) * 2011-08-25 2013-06-04 General Electric Company Power plant and method of operation
US8713947B2 (en) 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system
US8453462B2 (en) 2011-08-25 2013-06-04 General Electric Company Method of operating a stoichiometric exhaust gas recirculation power plant
US9127598B2 (en) 2011-08-25 2015-09-08 General Electric Company Control method for stoichiometric exhaust gas recirculation power plant
US8347600B2 (en) 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
WO2013095829A2 (fr) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Production améliorée de méthane de houille
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9518734B2 (en) 2013-01-28 2016-12-13 General Electric Technology Gmbh Fluid distribution and mixing grid for mixing gases
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
CA2902479C (fr) 2013-03-08 2017-11-07 Exxonmobil Upstream Research Company Production d'energie et recuperation de methane a partir d'hydrates de methane
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2565178A (en) * 1942-10-13 1951-08-21 Rateau Soc Gas turbine
US3579992A (en) * 1969-01-03 1971-05-25 United Aircraft Corp Power plant variable geometry control
US3841789A (en) * 1973-09-17 1974-10-15 Gen Motors Corp Variable diffuser
US4271664A (en) * 1977-07-21 1981-06-09 Hydragon Corporation Turbine engine with exhaust gas recirculation
US4245464A (en) * 1979-06-20 1981-01-20 General Motors Corporation Quick release turbine gate valve
US4387563A (en) * 1979-06-20 1983-06-14 General Motors Corporation Articulated power turbine gate
US4232514A (en) * 1979-06-20 1980-11-11 General Motors Corporation Dump control for turbine engine gate valve actuator
US4569195A (en) * 1984-04-27 1986-02-11 General Electric Company Fluid injection gas turbine engine and method for operating
FR2576974B1 (fr) * 1985-02-06 1989-02-03 Snecma Dispositif de variation de section du col d'un distributeur de turbine
SE452352B (sv) * 1985-05-03 1987-11-23 Olofsson Sven Bertil Anordning vid turboaggregat for speciellt mindre forbrenningsmotorer sasom modellmotorer
DE3540401A1 (de) * 1985-11-14 1987-05-21 Mtu Muenchen Gmbh Leitschaufelkranz fuer turbomaschinen, insbesondere fuer gasturbinen
US4813226A (en) * 1987-01-12 1989-03-21 Grosselfinger Robert A Demand control of variable geometry gas turbine power plant
US4856962A (en) * 1988-02-24 1989-08-15 United Technologies Corporation Variable inlet guide vane
US4874289A (en) * 1988-05-26 1989-10-17 United States Of America As Represented By The Secretary Of The Air Force Variable stator vane assembly for a rotary turbine engine
US4884944A (en) * 1988-09-07 1989-12-05 Avco Corporation Compressor flow fence
US5247791A (en) * 1989-10-25 1993-09-28 Pyong S. Pak Power generation plant and power generation method without emission of carbon dioxide
US5301500A (en) * 1990-07-09 1994-04-12 General Electric Company Gas turbine engine for controlling stall margin
GB9203168D0 (en) * 1992-02-13 1992-04-01 Rolls Royce Plc Guide vanes for gas turbine engines
DE4213709A1 (de) * 1992-04-25 1993-10-28 Asea Brown Boveri Axialdurchströmte Turbine
DE19516799B4 (de) * 1995-05-08 2004-03-18 Abb Schweiz Holding Ag Verfahren zur Einstellung einer Hauptregelgröße beim Betrieb einer Gasturbogruppe
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US5768884A (en) * 1995-11-22 1998-06-23 General Electric Company Gas turbine engine having flat rated horsepower
DK0953748T3 (da) * 1998-04-28 2004-06-07 Alstom Switzerland Ltd Kraftværksanlæg med en CO2-proces
DE59808650D1 (de) * 1998-12-16 2003-07-10 Alstom Switzerland Ltd Modulare Dampfturbine mit Standardbeschaufelung
GB0002257D0 (en) * 2000-02-02 2000-03-22 Rolls Royce Plc Rotary apparatus for a gas turbine engine
US6622470B2 (en) * 2000-05-12 2003-09-23 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
US6681558B2 (en) * 2001-03-26 2004-01-27 General Electric Company Method of increasing engine temperature limit margins
US6516603B1 (en) * 2001-06-06 2003-02-11 The United States Of America As Represented By The Secretary Of The Navy Gas turbine engine system with water injection
EP1681472A1 (fr) * 2005-01-14 2006-07-19 ALSTOM Technology Ltd Méthode pour modifier un compresseur multi-étages

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03027461A1 *

Also Published As

Publication number Publication date
US20040200205A1 (en) 2004-10-14
US20080066443A1 (en) 2008-03-20
WO2003027461A1 (fr) 2003-04-03

Similar Documents

Publication Publication Date Title
EP1448880A1 (fr) Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau
DE102021201627A1 (de) Wärmekraftmaschine mit Dampfzufuhrvorrichtung
DE60133629T2 (de) Verfahren zum betrieb einer gasturbine mit verstellbaren leitschaufeln
EP2503106B1 (fr) Procédé de fonctionnement d'une centrale électrique avec le recyclage des gaz de combustion et gaz de refroidissement pauvre en oxygène
EP1752616A2 (fr) Installation de turbine à gaz
DE4301100C2 (de) Verfahren zum Betrieb eines Kombikraftwerkes mit Kohle- oder Oelvergasung
DE2042478A1 (de) Gasturbinenstrahltriebwerk für Flugzeuge mit Einrichtungen zur Bauteilkühlung und Verdichterregelung
EP1776516A1 (fr) Procede de production d'energie dans une installation de production d'energie comprenant une turbine a gaz et installation de production d'energie appropriee pour mettre ledit procede en oeuvre
DE1626137A1 (de) Zweikreis-Strahltriebwerk
DE2554010A1 (de) Vorrichtung und verfahren zur zufuehrung von kuehlluft zu turbinenleitschaufeln
DE4312078A1 (de) Abgasturbolader für eine aufgeladene Brennkraftmaschine
EP0735253A2 (fr) Méthode et dispositif pour la suralimentation par registre d'un moteur à combustion interne
EP2532898A1 (fr) Turbocompresseur axial
DE60110006T2 (de) Niederdrucksystem für gasförmigen Brennstoff
DE102016118779A1 (de) Turbofan-Triebwerk für ein ziviles Überschallflugzeug
DE102005046144A1 (de) Aufladungsvorrichtung eines Verbrennungsmotors, welche eine Abzweigungsleitung und einen Dämpfer für Schwingungen des Turbokompressors aufweist
DE102012200866A1 (de) Verdichter für die Aufladung einer Brennkraftmaschine
DE29723421U1 (de) Aufladeeinrichtung eines Verbrennungsmotors
WO2004010003A2 (fr) Procede de compression du fluide actif au cours d'un processus combine eau-vapeur
EP1375867B1 (fr) Procédé de refroidissement intermédiaire et turbine à gaz avec refroidissement intermédiaire
EP1541803B1 (fr) Turbine à gaz comprenant un agencement de soulagement des paliers
EP1771663B1 (fr) Procede de modification d'un turbocompresseur
EP0592817B1 (fr) Installation de turbine à gaz avec machine à ondes de pression
DE102017124689A1 (de) Axialverdichter, umfassend nebeneinander angeordnete Rotoren, die sich in entgegengesetzte Richtungen drehen
DE102022204160A1 (de) Verfahren zum Betreiben eines mehrstufigen Luftverdichtungssystems, mehrstufiges Luftverdichtungssystem sowie Brennstoffzellensystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20090520

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091001