EP1448880A1 - Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau - Google Patents
Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eauInfo
- Publication number
- EP1448880A1 EP1448880A1 EP02760509A EP02760509A EP1448880A1 EP 1448880 A1 EP1448880 A1 EP 1448880A1 EP 02760509 A EP02760509 A EP 02760509A EP 02760509 A EP02760509 A EP 02760509A EP 1448880 A1 EP1448880 A1 EP 1448880A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine
- compressor
- gas turbine
- working medium
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical class O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 30
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 30
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000000203 mixture Substances 0.000 title claims abstract description 22
- 239000012530 fluid Substances 0.000 title abstract 2
- 239000007789 gas Substances 0.000 claims abstract description 32
- 238000002485 combustion reaction Methods 0.000 claims abstract description 12
- 230000004048 modification Effects 0.000 claims abstract description 12
- 238000012986 modification Methods 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000446 fuel Substances 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 5
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 5
- 239000011261 inert gas Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 230000006978 adaptation Effects 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 claims description 2
- 239000003570 air Substances 0.000 description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/10—Closed cycles
- F02C1/105—Closed cycles construction; details
Definitions
- the present invention relates to the field of gas turbine technology. It relates to a gas turbine plant for a working medium in the form of a carbon dioxide / water mixture according to the preamble of claim 1.
- Gas turbine systems are known from the prior art, which work in a circuit with a working medium in the form of a carbon dioxide / water mixture and are characterized in that they combust the combustion of hydrocarbon-containing fuels without releasing carbon dioxide to the Allow atmosphere.
- a gas turbine plant is described, for example, in US-A-5,247,791.
- a comparable gas turbine system 16 is shown with a largely closed C0 2 gas turbine cycle in a block diagram.
- the gas turbine system 16 comprises a compressor 1 and a turbine 3, which are connected to a generator 15 via a common shaft.
- the gas turbine system 16 further comprises a combustion chamber 2, a cooler and / or waste heat processor 4, a water separator 5 and a removal point 6 for CO 2 removal.
- a fuel 7 in the form of a hydrocarbon for example a natural gas with the main component methane, is subjected to an internal combustion in an atmosphere prepared from oxygen 8, carbon dioxide and possibly water.
- the water as shown in FIG. 1, can be condensed out in the water separator 5.
- the excess carbon dioxide can be separated off largely purely.
- the carbon dioxide can then be deposited in a suitable manner so that practically no carbon dioxide is released into the atmosphere.
- none or only part of the water can be condensed out in the water separator 5, so that a carbon dioxide / water mixture is removed at the extraction point 6.
- the oxygen 8 required for the combustion of the fuel 7 is generated in an air separation plant 9 from intake air 10.
- Residual gases 11 in the form of nitrogen (N 2 ) and argon (Ar), which are produced as waste products, can either be released into the atmosphere or used for other purposes.
- the steam 17 generated in the cooler / waste heat processor 4 can either be used in an independent process, for example in a downstream steam turbine are, or injected into the combustion chamber 2 as injection steam 12 in order to increase the mass flow in the turbine 3 and thus increase the efficiency and efficiency of the process.
- a partial stream 13 of the steam can be used for effective cooling of thermally loaded components in the turbine 3.
- compressors 1 and turbine 3 are specially designed and designed for the requirements of the respective working medium, there is no doubt about the technical feasibility of such a process. However, for economic reasons it will be necessary to operate corresponding gas turbine systems 16 at least temporarily with compressors 1 and turbines 3, which have been modified as little as possible on the basis of existing machines designed for operation with ambient air.
- the essence of the invention is a compressor and / or the turbine (3) to be used with a rotor and a housing which largely correspond to a rotor and a housing of a compressor designed for the working medium air or a turbine designed for the working medium air.
- the adaptation to the expansion behavior of the working medium, which is different from air, is then brought about essentially by modifications of the flow channels and / or the moving blades and / or the guide grids. This makes it possible to build on existing compressors or turbines, which are then adapted to the new working medium with comparatively minor changes.
- the necessary modification is brought about in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced in the form of blocked sectors by blocking part of the flow channels in the guide vane.
- the necessary modification is effected in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced by inserting annular flow obstacles in the guide vents.
- the necessary modification is effected in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced by adjustable guide grids.
- FIG. 1 shows a system diagram of an exemplary gas turbine system working with a carbon dioxide / water mixture as the working medium
- Fig. 2 shows the speed of sound in carbon dioxide / water mixtures
- Fig. 3 shows the deviation of the volume flow in% during the expansion of
- Fig. 5 shows the inner structure of a schematic representation
- FIG. 6 seen in several partial figures in the axial direction, an exemplary guide grille without modification (FIG. 6a), with a partial partial application according to an embodiment of the invention (FIG. 6b), with a partial partial application according to another embodiment of the invention (FIG. 6c ) and with adjustable guide vanes according to a further embodiment of the invention
- the compressor 1 and the turbine 3 of the gas turbine system from FIG. 1 have the internal structure shown in simplified form in FIG. 5, the high-pressure side (for the compressor 1 the outlet side, for the turbine 3 the inlet side) being on the left side of the illustration.
- the compressor 1 or the turbine 3 has a rotor 18 which can be rotated about an axis 23 and has a multi-stage blading which consists of individual sets of rotor blades 21.
- the rotor 18 with the blading is surrounded by a housing 19.
- Fixed guide vanes 20 with corresponding guide vanes are arranged between the sets of rotor blades 21.
- Flow channels 22 run between the guide vanes of the guide grids 20 in the space between the rotor 18 and the housing 19 (see also FIG. 6a).
- rotor 18 and housing 19 of a compressor 1 designed for the working medium air and / or a turbine 3 designed for the working medium air are now retained.
- carbon dioxide / water different from air essential modifications of the flow channels 22 and / or the blades 21 and / or the guide vane 20 made.
- a first possibility for modification consists in reducing the free flow cross sections on the high pressure side of compressor 1 and / or turbine 3 in that part of the flow channels 22 in the associated guide vane 20 are closed by blocked sectors 24 arranged around the circumference ( 6b; sectoral partial loading).
- a second possibility of the modification is that the free flow cross sections on the high pressure side of the compressor 1 and / or turbine 3 are reduced by inserting annular flow obstacles 25 in the guide vents 20 (FIG. 6 c; partial radial loading).
- a third possibility of the modification is that the free flow cross sections on the high pressure side of compressor 1 and / or turbine 3 are reduced by adjustable guide grids 20 with adjustable guide vanes 26 (FIG. 6d; in the figure, for the sake of simplicity, only one exemplary adjustable guide vane is shown 26, whose adjustability is indicated by the dashed lines).
- FIG. 4 shows percentage deviations between axial speeds that occur in a turbine optimized for air and axial speeds in turbines modified according to the invention operated with different carbon dioxide / water mixtures.
- the extensive adjustment of the axial speeds is gradual reduction of the available flow cross-sections in the individual stages of the turbine.
- Table 1 summarizes the cross-sectional ratios chosen for the different compositions.
- guide vanes 26 of the guide vane 20 are provided in the compressor 1 and / or turbine 3 in order to compensate for variations in the thermodynamic properties of the working medium caused by the inert gases.
- the heat sink 4 is designed to generate steam and if a partial stream 13 of the steam generated is fed to the turbine 3 for cooling thermally loaded components.
- This heat sink 4 can also be designed to generate a quantity of steam for operating a steam turbine, not shown in the drawing. The required partial stream 13 can then be branched off from this amount of steam.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
L'invention concerne un système de turbine à gaz (16) composé d'un compresseur (1), d'une chambre de combustion (2), d'une turbine (3) et d'au moins une source froide (4), ledit système de turbine étant entraîné par un mélange dioxyde de carbone/eau. Dans la chambre de combustion (2), un hydrocarbure réagit en tant que combustible (7) avec de l'oxygène (8), et le dioxyde de carbone excédentaire ainsi produit et de l'eau (14) sont prélevés dans le circuit. Le compresseur (1) et la turbine (3) comportent respectivement un rotor présentant des augets, et un boîtier présentant des canaux d'écoulement et des grilles de guidage. Selon l'invention, le compresseur (1) et/ou la turbine (3) sont adaptés aux propriétés d'expansion du fluide de travail, différentes de celles de l'air, par modification des canaux d'écoulement, des augets et/ou des grilles de guidage.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH176501 | 2001-09-24 | ||
CH17652001 | 2001-09-24 | ||
PCT/IB2002/003912 WO2003027461A1 (fr) | 2001-09-24 | 2002-09-23 | Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1448880A1 true EP1448880A1 (fr) | 2004-08-25 |
Family
ID=4566177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02760509A Withdrawn EP1448880A1 (fr) | 2001-09-24 | 2002-09-23 | Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau |
Country Status (3)
Country | Link |
---|---|
US (2) | US20040200205A1 (fr) |
EP (1) | EP1448880A1 (fr) |
WO (1) | WO2003027461A1 (fr) |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004009963A1 (fr) * | 2002-07-14 | 2004-01-29 | RERUM COGNITIO Gesellschaft für Marktintegration deutscher Innovationen und Forschungsprodukte mbH | Procede permettant de separer des gaz residuels et un fluide de travail lors d'un processus a cycle combine eau/vapeur |
US7686567B2 (en) * | 2005-12-16 | 2010-03-30 | United Technologies Corporation | Airfoil embodying mixed loading conventions |
US20110185701A1 (en) * | 2007-09-28 | 2011-08-04 | Central Research Institute of Electric Power Indus try | Turbine equipment and power generating plant |
US8734545B2 (en) | 2008-03-28 | 2014-05-27 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
CN101981272B (zh) | 2008-03-28 | 2014-06-11 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
CN102177326B (zh) | 2008-10-14 | 2014-05-07 | 埃克森美孚上游研究公司 | 控制燃烧产物的方法与装置 |
SG176670A1 (en) | 2009-06-05 | 2012-01-30 | Exxonmobil Upstream Res Co | Combustor systems and methods for using same |
MX341477B (es) | 2009-11-12 | 2016-08-22 | Exxonmobil Upstream Res Company * | Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos. |
CN102959202B (zh) | 2010-07-02 | 2016-08-03 | 埃克森美孚上游研究公司 | 集成系统、发电的方法和联合循环发电系统 |
TWI554325B (zh) | 2010-07-02 | 2016-10-21 | 艾克頌美孚上游研究公司 | 低排放發電系統和方法 |
MY160833A (en) | 2010-07-02 | 2017-03-31 | Exxonmobil Upstream Res Co | Stoichiometric combustion of enriched air with exhaust gas recirculation |
MX352291B (es) | 2010-07-02 | 2017-11-16 | Exxonmobil Upstream Res Company Star | Sistemas y métodos de generación de potencia de triple ciclo de baja emisión. |
TWI593878B (zh) | 2010-07-02 | 2017-08-01 | 艾克頌美孚上游研究公司 | 用於控制燃料燃燒之系統及方法 |
WO2012018458A1 (fr) | 2010-08-06 | 2012-02-09 | Exxonmobil Upstream Research Company | Système et procédé destiné à l'extraction de gaz d'échappement |
CN103069130B (zh) | 2010-08-06 | 2016-02-24 | 埃克森美孚上游研究公司 | 优化化学计量燃烧的系统和方法 |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI563164B (en) * | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
US8453461B2 (en) * | 2011-08-25 | 2013-06-04 | General Electric Company | Power plant and method of operation |
US8713947B2 (en) | 2011-08-25 | 2014-05-06 | General Electric Company | Power plant with gas separation system |
US8453462B2 (en) | 2011-08-25 | 2013-06-04 | General Electric Company | Method of operating a stoichiometric exhaust gas recirculation power plant |
US9127598B2 (en) | 2011-08-25 | 2015-09-08 | General Electric Company | Control method for stoichiometric exhaust gas recirculation power plant |
US8347600B2 (en) | 2011-08-25 | 2013-01-08 | General Electric Company | Power plant and method of operation |
WO2013095829A2 (fr) | 2011-12-20 | 2013-06-27 | Exxonmobil Upstream Research Company | Production améliorée de méthane de houille |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US10100741B2 (en) | 2012-11-02 | 2018-10-16 | General Electric Company | System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9518734B2 (en) | 2013-01-28 | 2016-12-13 | General Electric Technology Gmbh | Fluid distribution and mixing grid for mixing gases |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
RU2637609C2 (ru) | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
CA2902479C (fr) | 2013-03-08 | 2017-11-07 | Exxonmobil Upstream Research Company | Production d'energie et recuperation de methane a partir d'hydrates de methane |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2565178A (en) * | 1942-10-13 | 1951-08-21 | Rateau Soc | Gas turbine |
US3579992A (en) * | 1969-01-03 | 1971-05-25 | United Aircraft Corp | Power plant variable geometry control |
US3841789A (en) * | 1973-09-17 | 1974-10-15 | Gen Motors Corp | Variable diffuser |
US4271664A (en) * | 1977-07-21 | 1981-06-09 | Hydragon Corporation | Turbine engine with exhaust gas recirculation |
US4245464A (en) * | 1979-06-20 | 1981-01-20 | General Motors Corporation | Quick release turbine gate valve |
US4387563A (en) * | 1979-06-20 | 1983-06-14 | General Motors Corporation | Articulated power turbine gate |
US4232514A (en) * | 1979-06-20 | 1980-11-11 | General Motors Corporation | Dump control for turbine engine gate valve actuator |
US4569195A (en) * | 1984-04-27 | 1986-02-11 | General Electric Company | Fluid injection gas turbine engine and method for operating |
FR2576974B1 (fr) * | 1985-02-06 | 1989-02-03 | Snecma | Dispositif de variation de section du col d'un distributeur de turbine |
SE452352B (sv) * | 1985-05-03 | 1987-11-23 | Olofsson Sven Bertil | Anordning vid turboaggregat for speciellt mindre forbrenningsmotorer sasom modellmotorer |
DE3540401A1 (de) * | 1985-11-14 | 1987-05-21 | Mtu Muenchen Gmbh | Leitschaufelkranz fuer turbomaschinen, insbesondere fuer gasturbinen |
US4813226A (en) * | 1987-01-12 | 1989-03-21 | Grosselfinger Robert A | Demand control of variable geometry gas turbine power plant |
US4856962A (en) * | 1988-02-24 | 1989-08-15 | United Technologies Corporation | Variable inlet guide vane |
US4874289A (en) * | 1988-05-26 | 1989-10-17 | United States Of America As Represented By The Secretary Of The Air Force | Variable stator vane assembly for a rotary turbine engine |
US4884944A (en) * | 1988-09-07 | 1989-12-05 | Avco Corporation | Compressor flow fence |
US5247791A (en) * | 1989-10-25 | 1993-09-28 | Pyong S. Pak | Power generation plant and power generation method without emission of carbon dioxide |
US5301500A (en) * | 1990-07-09 | 1994-04-12 | General Electric Company | Gas turbine engine for controlling stall margin |
GB9203168D0 (en) * | 1992-02-13 | 1992-04-01 | Rolls Royce Plc | Guide vanes for gas turbine engines |
DE4213709A1 (de) * | 1992-04-25 | 1993-10-28 | Asea Brown Boveri | Axialdurchströmte Turbine |
DE19516799B4 (de) * | 1995-05-08 | 2004-03-18 | Abb Schweiz Holding Ag | Verfahren zur Einstellung einer Hauptregelgröße beim Betrieb einer Gasturbogruppe |
US5724805A (en) * | 1995-08-21 | 1998-03-10 | University Of Massachusetts-Lowell | Power plant with carbon dioxide capture and zero pollutant emissions |
US5768884A (en) * | 1995-11-22 | 1998-06-23 | General Electric Company | Gas turbine engine having flat rated horsepower |
DK0953748T3 (da) * | 1998-04-28 | 2004-06-07 | Alstom Switzerland Ltd | Kraftværksanlæg med en CO2-proces |
DE59808650D1 (de) * | 1998-12-16 | 2003-07-10 | Alstom Switzerland Ltd | Modulare Dampfturbine mit Standardbeschaufelung |
GB0002257D0 (en) * | 2000-02-02 | 2000-03-22 | Rolls Royce Plc | Rotary apparatus for a gas turbine engine |
US6622470B2 (en) * | 2000-05-12 | 2003-09-23 | Clean Energy Systems, Inc. | Semi-closed brayton cycle gas turbine power systems |
US6681558B2 (en) * | 2001-03-26 | 2004-01-27 | General Electric Company | Method of increasing engine temperature limit margins |
US6516603B1 (en) * | 2001-06-06 | 2003-02-11 | The United States Of America As Represented By The Secretary Of The Navy | Gas turbine engine system with water injection |
EP1681472A1 (fr) * | 2005-01-14 | 2006-07-19 | ALSTOM Technology Ltd | Méthode pour modifier un compresseur multi-étages |
-
2002
- 2002-09-23 WO PCT/IB2002/003912 patent/WO2003027461A1/fr not_active Application Discontinuation
- 2002-09-23 EP EP02760509A patent/EP1448880A1/fr not_active Withdrawn
-
2004
- 2004-03-23 US US10/806,225 patent/US20040200205A1/en not_active Abandoned
-
2007
- 2007-08-27 US US11/845,182 patent/US20080066443A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO03027461A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20040200205A1 (en) | 2004-10-14 |
US20080066443A1 (en) | 2008-03-20 |
WO2003027461A1 (fr) | 2003-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1448880A1 (fr) | Systeme de turbine a gaz destine a un fluide de travail se presentant sous la forme d'un melange dioxyde de carbone/eau | |
DE102021201627A1 (de) | Wärmekraftmaschine mit Dampfzufuhrvorrichtung | |
DE60133629T2 (de) | Verfahren zum betrieb einer gasturbine mit verstellbaren leitschaufeln | |
EP2503106B1 (fr) | Procédé de fonctionnement d'une centrale électrique avec le recyclage des gaz de combustion et gaz de refroidissement pauvre en oxygène | |
EP1752616A2 (fr) | Installation de turbine à gaz | |
DE4301100C2 (de) | Verfahren zum Betrieb eines Kombikraftwerkes mit Kohle- oder Oelvergasung | |
DE2042478A1 (de) | Gasturbinenstrahltriebwerk für Flugzeuge mit Einrichtungen zur Bauteilkühlung und Verdichterregelung | |
EP1776516A1 (fr) | Procede de production d'energie dans une installation de production d'energie comprenant une turbine a gaz et installation de production d'energie appropriee pour mettre ledit procede en oeuvre | |
DE1626137A1 (de) | Zweikreis-Strahltriebwerk | |
DE2554010A1 (de) | Vorrichtung und verfahren zur zufuehrung von kuehlluft zu turbinenleitschaufeln | |
DE4312078A1 (de) | Abgasturbolader für eine aufgeladene Brennkraftmaschine | |
EP0735253A2 (fr) | Méthode et dispositif pour la suralimentation par registre d'un moteur à combustion interne | |
EP2532898A1 (fr) | Turbocompresseur axial | |
DE60110006T2 (de) | Niederdrucksystem für gasförmigen Brennstoff | |
DE102016118779A1 (de) | Turbofan-Triebwerk für ein ziviles Überschallflugzeug | |
DE102005046144A1 (de) | Aufladungsvorrichtung eines Verbrennungsmotors, welche eine Abzweigungsleitung und einen Dämpfer für Schwingungen des Turbokompressors aufweist | |
DE102012200866A1 (de) | Verdichter für die Aufladung einer Brennkraftmaschine | |
DE29723421U1 (de) | Aufladeeinrichtung eines Verbrennungsmotors | |
WO2004010003A2 (fr) | Procede de compression du fluide actif au cours d'un processus combine eau-vapeur | |
EP1375867B1 (fr) | Procédé de refroidissement intermédiaire et turbine à gaz avec refroidissement intermédiaire | |
EP1541803B1 (fr) | Turbine à gaz comprenant un agencement de soulagement des paliers | |
EP1771663B1 (fr) | Procede de modification d'un turbocompresseur | |
EP0592817B1 (fr) | Installation de turbine à gaz avec machine à ondes de pression | |
DE102017124689A1 (de) | Axialverdichter, umfassend nebeneinander angeordnete Rotoren, die sich in entgegengesetzte Richtungen drehen | |
DE102022204160A1 (de) | Verfahren zum Betreiben eines mehrstufigen Luftverdichtungssystems, mehrstufiges Luftverdichtungssystem sowie Brennstoffzellensystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040426 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20090520 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20091001 |