EP1440828A2 - Method for determining the temperature of a motor vehicle passenger compartment, device for carrying out the method and temperature sensor - Google Patents

Method for determining the temperature of a motor vehicle passenger compartment, device for carrying out the method and temperature sensor Download PDF

Info

Publication number
EP1440828A2
EP1440828A2 EP03027969A EP03027969A EP1440828A2 EP 1440828 A2 EP1440828 A2 EP 1440828A2 EP 03027969 A EP03027969 A EP 03027969A EP 03027969 A EP03027969 A EP 03027969A EP 1440828 A2 EP1440828 A2 EP 1440828A2
Authority
EP
European Patent Office
Prior art keywords
sensor
temperature
determining
temperature sensor
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03027969A
Other languages
German (de)
French (fr)
Other versions
EP1440828B1 (en
EP1440828A3 (en
Inventor
Anton Rüttiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Preh GmbH
Original Assignee
Preh GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Preh GmbH filed Critical Preh GmbH
Publication of EP1440828A2 publication Critical patent/EP1440828A2/en
Publication of EP1440828A3 publication Critical patent/EP1440828A3/en
Application granted granted Critical
Publication of EP1440828B1 publication Critical patent/EP1440828B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/0075Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being solar radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0215Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/20Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4266Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2201/00Application of thermometers in air-conditioning systems
    • G01K2201/02Application of thermometers in air-conditioning systems in vehicles

Definitions

  • a manipulated variable is then formed, which is the deviation of the reflects the actual interior temperature from the desired interior temperature.
  • the manipulated variable is used to correct the difference.
  • DE 198 29 143 C1 is a further method for changing the interior temperature of a vehicle disclosed.
  • an indoor temperature sensor as well an outside temperature sensor is provided.
  • the interior temperature sensor is located itself in the control unit.
  • DE 197 28 803 C1 discloses an arrangement for temperature measurement and / or control with a housing which has a temperature sensor in its interior for measuring the room temperature given outside the housing, one or more heat sources being present in and / or on the housing ,
  • at least one auxiliary temperature sensor is provided within the housing at a point whose temperature is influenced more by the heat flow from the heat source than the temperature at the temperature sensor.
  • a disadvantage of the last-mentioned solution is the large deviation of the measured temperature signal from the actual interior temperature due to the large disturbing influences on the sensor, and the large inertia of the sensor, which experiences changes in the interior temperature only with a time delay and smoothed. In these cases, therefore, a great deal of effort is required to correct the temperature signal.
  • a device for indirect detection of the in the Interior of a vehicle is known to be incident solar radiation.
  • a used here Photosensor is attached to the housing so that it is not a direct one Sun exposure is exposed and therefore only reflected in the vehicle interior or transmitted radiation measures the solar radiation.
  • NTC resistor with negative temperature coefficient
  • DE 100 49 979 C2 describes a device for determining the temperature in the interior known a vehicle in which a temperature sensor behind one the interior wall is arranged.
  • a heat conduction element is used to measure the temperature of the air inside the vehicle near the wall.
  • the heat conduction element is in contact with the temperature sensor Thermal contact and is on or close to the wall or through an opening in the Wall attached. This device eliminates interference from partial Solar radiation recorded on the sensor housing and corrected accordingly.
  • the invention has for its object a method and an arrangement and Specify temperature sensor with which a satisfactory determination of the Indoor temperature taking into account a changing heat transfer resistance possible on the control panel surface to the surrounding air flow is.
  • the invention is based on the knowledge that, for example, in the case of solar radiation a sensor measuring this radiation when the air is still in front of the Sensor is heated up more than with moving air. The same effect occurs when measuring the temperature of a control panel surface due to the self-heating of the electronics on. Here too, measurement results are falsified by air circulation.
  • the design of the components with respect to one another is important in order to determine the influence of the air in front of the measuring location.
  • a heating element is attached in direct temperature coupling to a sensor, which is preferably already determining the temperature of the control panel surface.
  • the sensor is slightly heated by the heating element in short pulses and for this in relatively large time intervals.
  • the influence of the air flow can be determined from the difference in the step response in comparison to a reaction determined adaptively on the sensor when the air is still and the disturbance variables " control panel heating" and particularly " sun” can be weighted.
  • a correction signal resulting from the weighting is included in the determination of the manipulated variable and the regulation.
  • both components are integrated in a sensor housing which is attached as an Incar sensor to the surface of an air conditioning control panel.
  • the temperature sensor determining the control panel surface and the heating element are applied to a film in the housing, through which the desired temperature coupling of both is achieved.
  • the sensor has a pulse damping path between the two components, which is formed together with the film and conductor tracks.
  • the Incar sensor additionally includes or alternatively, besides the heating element and the NTC, a solar or light sensitive one Sensor that is used to determine the solar radiation at the measurement location.
  • the measurement can preferably one in the control system, i.e. in the control unit electronics NTC can be used, whereby the integration of an additional NTC in the Incar sensor is possible.
  • the proposed Incar sensor eliminates the need for a sensor fan are avoided, thereby avoiding known disadvantages such as pollution and noise become. Furthermore, there are new possibilities in the design and construction of the Control units.
  • 1a to c are a compact sensor manufactured using MID technology 1 shown as an Incar sensor or temperature sensor in different views.
  • 1 a shows it in a front view
  • FIG. 1 b in a side view
  • Fig. 1 c in a plan view, each in section.
  • the sensor 1 has a housing 2 which, for example, has a film 3 in the upper one, which acts as the substrate of the sensor 1.
  • the housing is at the bottom 2 closed by a kind of potting compound 4.
  • the film 3 consists for example of PC or Macrolon.
  • On the slide 3 are between the heating element 5 and the NTC 7 applied copper tracks or silver sheets to form a pulse damping section 8.
  • a thermal insulation material 9 which among other things. can also be air.
  • the electrical contact is made with a further not shown Signal processing unit via contact pins 10.
  • Fig. 1 c shows the contact pins 10, which in turn via conductor tracks 11 each with the individual components 5-7 are in electrical contact.
  • FIG. 2 shows a top view of an Incar sensor 20 manufactured using film technology.
  • the sensor 20 shown here preferably has a housing 21 with the outer dimensions 17 x 8 x 3 mm.
  • FIG. 2a shows the sensor 20 in section AA from FIG. 2.
  • a heating element 22, a pulse damping path 23, an NTC element 24 are integrated in the common sensor housing 21 and a film 25 is printed from behind.
  • the special flexibility of the film 25 enables the film 25 to be folded or kinked within the sensor housing 21. Chambers are formed by the folding.
  • the sensor 20 has a light-sensitive sensor 28, for example a photosensor.
  • the film 25 is IR-transmissive at least in the area of the photosensor 28 located underneath.
  • a film web 26 with a zero-force plug connector 27 serves as a contact to the evaluation unit (not shown in any more detail).
  • the attachment of a further NTC 29 within the sensor housing 21 is also positive. This can be used to determine the heating of the operating part of the control unit.
  • the housing 21 is open at this point.
  • the housing 21 is preferably in several parts and can be clipped into one another via snap projections.
  • the sensor 20 is preferably manufactured as follows:
  • the heating element 22 is brought directly onto the film 25 using thick-film technology.
  • the NTC 24 can then be glued or soldered onto the film 25 using conductive adhesive.
  • the heat conduction or damping section 23 is also directly on the film 25 applied.
  • the film 25 can be made of polycarbonate or polyimide etc. exist, which preferably has IR-transparent areas.
  • the foil 25 is then inserted into the sensor housing 21, preferably glued into it and injected. If the film material is not made of IR-transparent material exist, the film 25 can alternatively be covered with an IR-transparent lacquer become, completely or only partially, at least in the area of Photosensor 28.
  • FIG 3 shows a sketch of an operating part 30 in a vehicle interior of a motor vehicle (not shown in more detail). Also shown is an NTC 31 located in the control panel 30, which can be used to determine the control panel's own heating. Due to the fact that the upper area of the compact temperature sensor 1, 20 points into the interior, the solar radiation 6 or the light-sensitive sensor 28 can be measured in a known manner with the aid of the solar sensor 6 or the light-sensitive sensor 28.
  • the control panel surface temperature which corresponds to the air temperature in the interior, can be determined via the NTC element 7 or 24 located in the temperature sensor 1, 20.
  • Both information do not yet take into account the air circulation (arrow) in front of the control unit 30.
  • This determination is made with the help of the heating element 5, 22 and the NTC 7, 24 and based on the knowledge of the heat content of the mass of the film 3, 25 and the damping section 8 , 23, whose materials are known.
  • the reaction with still air L rest is determined and stored on the NTC element 7, 24.
  • Short pulses S are then normally applied to the heating element 5, 22 at relatively large time intervals, which slightly heats the NTC 7, 24.
  • One or no air flow is determined from the difference of the step response in comparison to the response when the air L rest is adaptively determined at the NTC 7.
  • the damping of the pulse S normal sent via the pulse damping path 8, 23 thus serves as information about the type of air movement.
  • Knowing whether it is moving or still air then leads to a weighting of the solar radiation and thus the weighting of the measured interior temperature. If moving air L bew is determined, the solar radiation into the passenger compartment is consequently higher than the measured one, and when the air L rest is at rest, the measured value corresponds to the current value of the interior temperature.
  • a correct interior temperature is determined with the aid of the weighted variables.
  • the weighted air movement is therefore used as a correction variable in the disturbance variables sun and control panel self-heating and thus in the control. Both can too are included separately or weighted as individual quantities in the regulation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The involves determining air circulation in front of a measurement point for use as a weighted correction value, determining and storing the sensor reaction with the air at rest in an adaptive measurement, applying a signal to an additional heating element, which is read out at the sensor as a step response and determining the presence/absence of an air flow from the difference between the step response and adaptively determined reaction. The method is based on a solar radiation parameter determined at a sensor and/or a surface temperature at the measurement position at a further sensor. It involves determining air circulation in front of the measurement point, which is fed into the determined solar radiation as a weighted correction value, determining and storing the sensor reaction with the air at rest in an adaptive measurement, applying a signal to an additional heating element, which is read out at the sensor as a step response and determining the presence/absence of an air flow from the difference between the step response and the adaptively determined reaction. Independent claims are also included for the following: (a) an arrangement for implementing the inventive method (b) and a temperature sensor for determining the interior temperature especially of a motor vehicle passenger compartment.

Description

Zur automatischen Regelung der Innenraumtemperatur in einem Fahrzeug ist es erforderlich, die tatsächliche Innenraumtemperatur zu einem bestimmten Zeitpunkt zu kennen. In der Regel wird dann eine Stellgröße gebildet, welche die Abweichung der tatsächlichen Innenraumtemperatur von der angestrebten Innenraumtemperatur widerspiegelt. Die Stellgröße dient zur Ausregelung der Differenz. Ein derartiges Verfahren wird in der DE 40 24 431 A1 beschrieben.To automatically regulate the interior temperature in a vehicle, it is necessary the actual indoor temperature at a given time know. As a rule, a manipulated variable is then formed, which is the deviation of the reflects the actual interior temperature from the desired interior temperature. The manipulated variable is used to correct the difference. Such a process is described in DE 40 24 431 A1.

Mit der DE 198 29 143 C1 wird ein weiteres Verfahren zur Änderung der Innenraumtemperatur eines Fahrzeuges offenbart. Zur Kompensation einer Veränderung des Istwertes der Innenraumtemperatur infolge von äußeren Einflüssen, wie beispielsweise niedrige Außentemperatur, sind ein Innenraum-Temperaturfühler sowie ein Außentemperatursensor vorgesehen. Der Innenraum-Temperaturfühler befindet sich im Steuerungsgerät.DE 198 29 143 C1 is a further method for changing the interior temperature of a vehicle disclosed. To compensate for a change the actual value of the interior temperature as a result of external influences, such as, for example low outside temperature, are an indoor temperature sensor as well an outside temperature sensor is provided. The interior temperature sensor is located itself in the control unit.

Die DE 197 28 803 C1 offenbart eine Anordnung zur Temperaturmessung und / oder - regelung mit einem Gehäuse, das in seinem Innern einen Temperaturfühler zur Messung der außerhalb des Gehäuses gegebenen Raumtemperatur aufweist, wobei eine oder mehrere Wärmequellen in und / oder an dem Gehäuse vorhanden sind. Zusätzlich ist zumindest ein Hilfstemperaturfühler innerhalb des Gehäuses an einer Stelle vorgesehen, deren Temperatur durch den Wärmestrom der Wärmequelle stärker beeinflußt wird als die Temperatur am Temperaturfühler.
Nachteilig bei der letztgenannten Lösung ist die große Abweichung des gemessenen Temperatursignals von der tatsächlichen Innenraumtemperatur aufgrund der großen Störeinflüsse auf den Sensor, sowie die große Trägheit des Sensors, welcher Änderungen der Innenraumtemperatur nur zeitlich verzögert und geglättet erfährt. Daher ist in diesen Fällen ein hoher Aufwand zur Korrektur des Temperatursignals erforderlich.
DE 197 28 803 C1 discloses an arrangement for temperature measurement and / or control with a housing which has a temperature sensor in its interior for measuring the room temperature given outside the housing, one or more heat sources being present in and / or on the housing , In addition, at least one auxiliary temperature sensor is provided within the housing at a point whose temperature is influenced more by the heat flow from the heat source than the temperature at the temperature sensor.
A disadvantage of the last-mentioned solution is the large deviation of the measured temperature signal from the actual interior temperature due to the large disturbing influences on the sensor, and the large inertia of the sensor, which experiences changes in the interior temperature only with a time delay and smoothed. In these cases, therefore, a great deal of effort is required to correct the temperature signal.

Aus der DE 100 16 419 C2 ist eine Vorrichtung zur indirekten Erfassung der in den Innenraum eines Fahrzeuges einfallenden Sonnenstrahlung bekannt. Ein hier verwendeter Photosensor ist so am Gehäuse angebracht, dass dieser keiner direkten Sonneneinstrahlung ausgesetzt wird und daher nur die im Fahrzeuginnenraum reflektierte bzw. transmittierte Strahlung der Sonnenstrahlung mißt.From DE 100 16 419 C2 a device for indirect detection of the in the Interior of a vehicle is known to be incident solar radiation. A used here Photosensor is attached to the housing so that it is not a direct one Sun exposure is exposed and therefore only reflected in the vehicle interior or transmitted radiation measures the solar radiation.

In der Entwicklung sind zur Zeit Messverfahren, welche die Innenraumtemperatur mittels einem NTC ( Widerstand mit negativem Temperaturkoeffizienten) direkt auf der Oberfläche des Bedienteils ohne Zwangslüftung messen. Die Unzuverlässigkeit dieses Messverfahrens resultiert aus der wechselnden Luftströmung an der Bedienteiloberfläche, welche die Messwerte am NTC selbst bei Berücksichtigung von Eigenerwärmung und Sonnenbeeinflussung stark relativieren.Measuring methods are currently being developed which determine the interior temperature directly by means of an NTC (resistor with negative temperature coefficient) measure the surface of the control panel without forced ventilation. The unreliability this measuring method results from the changing air flow on the control panel surface, which the measured values at the NTC even when taking self-heating into account and relativize the influence of the sun.

Aus der DE 100 49 979 C2 ist eine Vorrichtung zur Ermittlung der Temperatur im Innenraum eines Fahrzeuges bekannt, bei dem ein Temperaturfühler hinter einer an den Innenraum angrenzenden Wand angeordnet ist. Ein Wärmeleitungselement dient zur Erfassung der Temperatur der Luft des Innenraums innerhalb von dessen wandnahen Bereichs. Das Wärmeleitungselement steht mit dem Temperaturfühler in Wärmeleitkontakt und ist an bzw. nahe an die Wand oder durch eine Öffnung in der Wand angebracht. Durch diese Vorrichtung wird die Störbeeinflussung durch partielle Sonnenstrahlung am Sensorgehäuse erfasst und entsprechend korrigiert.DE 100 49 979 C2 describes a device for determining the temperature in the interior known a vehicle in which a temperature sensor behind one the interior wall is arranged. A heat conduction element is used to measure the temperature of the air inside the vehicle near the wall. The heat conduction element is in contact with the temperature sensor Thermal contact and is on or close to the wall or through an opening in the Wall attached. This device eliminates interference from partial Solar radiation recorded on the sensor housing and corrected accordingly.

Die Erfindung stellt sich die Aufgabe, ein Verfahren sowie eine Anordnung und einen Temperatursensor anzugeben, mit denen eine zufriedenstellende Bestimmung der Innenraumtemperatur unter Berücksichtigung eines wechselnden Wärmeübergangswiderstandes der Bedienteiloberfläche zur umgebenen Luftströmung möglich ist.The invention has for its object a method and an arrangement and Specify temperature sensor with which a satisfactory determination of the Indoor temperature taking into account a changing heat transfer resistance possible on the control panel surface to the surrounding air flow is.

Gelöst wird die Aufgabe durch die Merkmale des Patentanspruchs 1, des Patentanspruchs 3 bzw. des Patentanspruchs 4.The problem is solved by the features of claim 1, the claim 3 or claim 4.

Der Erfindung liegt die Erkenntnis zugrunde, dass beispielsweise im Falle der Sonneneinstrahlung ein diese Strahlung messender Sensor bei ruhender Luft vor dem Sensor mehr aufgeheizt wird, als bei bewegter Luft. Gleicher Effekt tritt beim Messen der Temperatur einer Bedienteiloberfläche aufgrund der Eigenerwärmung der Elektronik ein. Auch hier werden Meßergebnisse durch Luftzirkulation verfälscht.The invention is based on the knowledge that, for example, in the case of solar radiation a sensor measuring this radiation when the air is still in front of the Sensor is heated up more than with moving air. The same effect occurs when measuring the temperature of a control panel surface due to the self-heating of the electronics on. Here too, measurement results are falsified by air circulation.

Um diese Verfälschung mit einfachen Mitteln aus dem Messergebnis zu eliminieren, wird vorgeschlagen, das Vorhandensein von bewegter oder ruhender Luft vor dem Messort festzustellen, d.h. die Intensität der Luftbewegung als solches zu ermitteln. Diese Information wird gewichtet und geht als Korrekturgröße in die Stellgröße der Regelung ein, mit dem Ziel, die Innenraumtemperatur eines Fahrzeuges unter Berücksichtigung des wechselnden Wärmeübergangswiderstandes der Bedienteiloberfläche zur umgebenden Luftströmung zu erfassen.In order to eliminate this falsification from the measurement result using simple means, It is suggested that the presence of moving or still air before Measuring location, i.e. to determine the intensity of the air movement as such. This information is weighted and is used as a correction variable in the manipulated variable Regulation one, with the aim of considering the interior temperature of a vehicle the changing heat transfer resistance of the control panel surface to capture the surrounding air flow.

Wichtig bei der praktischen Umsetzung der Idee ist die Gestaltung der Komponenten zueinander, um den Einfluß der Luft vor dem Messort ermitteln zu können. So wird ein Heizelement in direkter Temperaturankopplung zu einem, vorzugsweise bereits die Bedienteiloberflächentemperatur ermittelnden Sensor angebracht. Der Sensor wird durch das Heizelement in kurzen Pulsen und hierzu in relativ großen Zeitabständen geringfügig aufgeheizt. Aus der Differenz der Sprungantwort im Vergleich zu einer adaptiv am Sensor ermittelten Reaktion bei ruhender Luft kann der Einfluß durch die Luftströmung ermittelt und die Störgrößen "Bedienteilerwärmung" und ganz besonders "Sonne" gewichtet werden. Ein aus der Wichtung resultierendes Korrektursignal geht in die Ermittlung der Stellgröße und der Ausregelung ein.In the practical implementation of the idea, the design of the components with respect to one another is important in order to determine the influence of the air in front of the measuring location. For example, a heating element is attached in direct temperature coupling to a sensor, which is preferably already determining the temperature of the control panel surface. The sensor is slightly heated by the heating element in short pulses and for this in relatively large time intervals. The influence of the air flow can be determined from the difference in the step response in comparison to a reaction determined adaptively on the sensor when the air is still and the disturbance variables " control panel heating" and particularly " sun" can be weighted. A correction signal resulting from the weighting is included in the determination of the manipulated variable and the regulation.

In einer bevorzugten Ausführung sind beide Bauelemente in einem Sensorgehäuse integriert, welches als Incar - Sensor an der Oberfläche eines Klima-Bedienteils angebracht ist. Der die Bedienteiloberfläche ermittelnde Temperatursensor und das Heizelement sind auf einer Folie im Gehäuse aufgebracht, durch welche die gewünschte Temperaturankopplung beider erreicht wird.
Weiterhin weist der Sensor zwischen beiden Bauelementen eine Impulsdämpfungsstrecke auf, die zusammen mit der Folie und Leiterbahnen gebildet wird.
In a preferred embodiment, both components are integrated in a sensor housing which is attached as an Incar sensor to the surface of an air conditioning control panel. The temperature sensor determining the control panel surface and the heating element are applied to a film in the housing, through which the desired temperature coupling of both is achieved.
Furthermore, the sensor has a pulse damping path between the two components, which is formed together with the film and conductor tracks.

Mit Hilfe des so aufgebauten Incar-Sensors sind die wechselnden Wärmeübergangswiderstände der Bedienteiloberfläche zur umgebenen Luftströmung direkt ermittelbar. With the help of the Incar sensor constructed in this way, the changing heat transfer resistances of the control panel surface to the surrounding air flow can be determined directly.

In einer weiteren bevorzugten Ausführung beinhaltet der Incar -Sensor zusätzlich oder alternativ neben dem Heizelement und dem NTC einen Solar- bzw. lichtempfindlichen Sensor, der zur Ermittlung der Sonneneinstrahlung auf den Messort dient.In a further preferred embodiment, the Incar sensor additionally includes or alternatively, besides the heating element and the NTC, a solar or light sensitive one Sensor that is used to determine the solar radiation at the measurement location.

Soll die Bedienteileigenerwärmung zusätzlich berücksichtigt werden, kann zur Messung vorzugsweise ein im Regelsystem , d.h., in der Bedienteilelektronik, vorhandener NTC genutzt werden, wobei auch die Integration eines eigenen weiteren NTC im Incar - Sensor möglich ist.If the control panel's own heating is also to be taken into account, the measurement can preferably one in the control system, i.e. in the control unit electronics NTC can be used, whereby the integration of an additional NTC in the Incar sensor is possible.

Der Incar- bzw. Temperatursensor ist vorzugsweise in Folieneinspritztechnik (Folie mit Kunststoff hinterspritzt) oder in MID-Technik hergestellt (Molded Interconnect devices = Spritzgegossener Schaltungsträger, siehe dazu http://www.vdivde-it.de/smt/raeuml baugruppen.html). The Incar or temperature sensor is preferably manufactured using film injection technology (film injected with plastic) or using MID technology (Molded Interconnect devices = injection molded circuit carrier, see http://www.vdivde-it.de/smt/raeuml baugruppen.html) ).

Durch den vorgeschlagenen Incar-Sensor kann auf einen Sensorlüfter verzichtet werden, wodurch bekannte Nachteile, wie Verschmutzung und Geräusch, vermieden werden. Des Weiteren bieten sich neue Möglichkeiten beim Design und Aufbau der Bedienteile an.The proposed Incar sensor eliminates the need for a sensor fan are avoided, thereby avoiding known disadvantages such as pollution and noise become. Furthermore, there are new possibilities in the design and construction of the Control units.

Anhand eines Ausführungsbeispiels mit Zeichnung soll die Erfindung näher erläutert werden.The invention will be explained in more detail using an exemplary embodiment with a drawing become.

Es zeigt

Fig. 1 a - c
den Aufbau eines Incar-Sensors in MID-Technik,
Fig. 2
einen Incar-Sensor in Folientechnik in Draufsicht,
Fig. 2a
den Sensor aus Fig. 2 im Schnitt A-A,
Fig. 2b
die Folie aus Fig. 2a in einer Draufsicht,
Fig. 3
ein Bedienteil mit Incar-Sensor in einer Draufsicht,
Fig. 4
ein Impulsdiagramm zur Darstellung des Einflusses der Luftzirkulation,
Fig. 5
eine Diagrammdarstellung der Sprünge der Lufttemperatur am Messort.
It shows
Fig. 1 a - c
the construction of an Incar sensor using MID technology,
Fig. 2
an Incar sensor in foil technology in top view,
Fig. 2a
2 in section AA,
Fig. 2b
2a in a top view,
Fig. 3
a control panel with Incar sensor in a top view,
Fig. 4
a pulse diagram to illustrate the influence of air circulation,
Fig. 5
a diagram of the jumps in air temperature at the measurement site.

In den Fig. 1a bis c sind ein in MID-Technik hergestellter, kompakt aufgebauter Sensor 1 als Incar-Sensor oder Temperatursensor in verschiedenen Ansichten dargestellt. Die Fig. 1 a zeigt ihn in einer Vorderansicht, Fig. 1 b in einer Seitenansicht und Fig. 1 c in einer Draufsicht, jeweils im Schnitt.1a to c are a compact sensor manufactured using MID technology 1 shown as an Incar sensor or temperature sensor in different views. 1 a shows it in a front view, FIG. 1 b in a side view and Fig. 1 c in a plan view, each in section.

Der Sensor 1 besitzt ein Gehäuse 2, das im oberen beispielsweise eine Folie 3 aufweist, welche als Substrat des Sensors 1 fungiert. Nach unten hin ist das Gehäuse 2 durch eine Art Vergußmasse 4 verschlossen. Erkennbar sind auf der Folie 3 in der bevorzugten Ausführung ein Heizelement 5, beispielsweise ein Heizwiderstand, ein Solarsensor 6 , beispielsweise ein Photosensor, sowie ein NTC-Element 7 von hinten aufgedruckt. Die Folie 3 besteht beispielsweise aus PC oder Macrolon. Auf der Folie 3 befinden sich zwischen dem Heizelement 5 und dem NTC 7 aufgebrachte Kupferbahnen oder Silberbahnen zur Bildung einer Impulsdämpfungsstrecke 8. Im Gehäuse 2 befindet sich zwischen der Folie 3 mit den Bauelementen 5, 6, 7 und der Vergußmasse 4 ein Wärmeisolationsmaterial 9, was u.a. auch Luft sein kann. Wie in Fig. 1 b näher aufgezeigt, erfolgt der elektrische Kontakt zur einer weiter nicht näher dargestellten Signalverarbeitungseinheit über Kontaktstifte 10. Fig. 1 c zeigt die Kontaktstifte 10, die ihrerseits über Leiterbahnen 11 jeweils mit den einzelnen Bauteilen 5-7 in elektrischen Kontakt stehen.The sensor 1 has a housing 2 which, for example, has a film 3 in the upper one, which acts as the substrate of the sensor 1. The housing is at the bottom 2 closed by a kind of potting compound 4. Can be seen on the slide 3 in the preferred embodiment, a heating element 5, for example a heating resistor Solar sensor 6, for example a photosensor, and an NTC element 7 from behind printed. The film 3 consists for example of PC or Macrolon. On the slide 3 are between the heating element 5 and the NTC 7 applied copper tracks or silver sheets to form a pulse damping section 8. In the housing 2 is located between the film 3 with the components 5, 6, 7 and the sealing compound 4 a thermal insulation material 9, which among other things. can also be air. As in Fig. 1 b shown in more detail, the electrical contact is made with a further not shown Signal processing unit via contact pins 10. Fig. 1 c shows the contact pins 10, which in turn via conductor tracks 11 each with the individual components 5-7 are in electrical contact.

Fig. 2 zeigt einen in Folientechnik hergestellten Incar-Sensor 20 in einer Draufsicht. Der hier dargestellte Sensor 20 besitzt vorzugsweise ein Gehäuse 21 mit den Auβenmaβen 17 x 8 x 3 mm.2 shows a top view of an Incar sensor 20 manufactured using film technology. The sensor 20 shown here preferably has a housing 21 with the outer dimensions 17 x 8 x 3 mm.

Fig. 2a zeigt den Sensor 20 im Schnitt A-A aus Fig. 2. Auch hier sind im gemeinsamen Sensorgehäuse 21 ein Heizelement 22, eine Impulsdämpfungsstrecke 23, ein NTC-Element 24 integriert und einer Folie 25 von hinten aufgedruckt. Die besondere Flexibilität der Folie 25 ermöglicht ein Falten bzw. Knicken der Folie 25 innerhalb des Sensorgehäuses 21. Dabei werden durch das Falten Kammern gebildet.
Des Weiteren weist der Sensor 20 in der bevorzugten Ausführung einen lichtempfindlichen Sensor 28, beispielsweise eine Photosensor auf. Die Folie 25 ist zumindest im Bereich des darunter befindlichen Photosensors 28 IR-druchlässig. Als Kontakt zur nicht näher dargestellten Auswerteeinheit dient eine Folienbahn 26 mit einem Nullkraftsteckverbinder 27. Ebenfalls positiv gestaltet sich das Anbringen eines weiteren NTC 29 innerhalb des Sensorgehäuses 21. Diese kann zur Bestimmung der Eigenteilerwärmung des Bedienteils herangezogen werden. Zu diesem Zweck ist das Gehäuse 21 an dieser Stelle offen. Das Gehäuse 21 ist vorzugsweise mehrteilig und über Schnappvorsprünge ineinander einklippsbar.
FIG. 2a shows the sensor 20 in section AA from FIG. 2. Here, too, a heating element 22, a pulse damping path 23, an NTC element 24 are integrated in the common sensor housing 21 and a film 25 is printed from behind. The special flexibility of the film 25 enables the film 25 to be folded or kinked within the sensor housing 21. Chambers are formed by the folding.
Furthermore, in the preferred embodiment, the sensor 20 has a light-sensitive sensor 28, for example a photosensor. The film 25 is IR-transmissive at least in the area of the photosensor 28 located underneath. A film web 26 with a zero-force plug connector 27 serves as a contact to the evaluation unit (not shown in any more detail). The attachment of a further NTC 29 within the sensor housing 21 is also positive. This can be used to determine the heating of the operating part of the control unit. For this purpose, the housing 21 is open at this point. The housing 21 is preferably in several parts and can be clipped into one another via snap projections.

Der Sensor 20 wird vorzugsweise wie folgt hergestellt:The sensor 20 is preferably manufactured as follows:

Das Heizelement 22 wird direkt in Dickschicht -Technik auf die Folie 25 gebracht. Der NTC 24 kann dann auf die Folie 25 mittels Leitkleber geklebt oder gelötet werden. Auch die Wärmeleit- bzw. Dämpfungsstrecke 23 wird direkt auf der Folie 25 aufgebracht. Wie bereits erwähnt, kann die Folie 25 aus Polycarbonat oder Polyimid etc. bestehen, welches vorzugsweise IR-lichtdurchlässige Bereiche aufweist. Die Folie 25 wird dann ins Sensorgehäuse 21 eingelegt, vorzugsweise in dieses eingeklebt und hinterspritzt. Sollte das Folienmaterial nicht aus IR-lichtdurchlässigem Material bestehen, kann alternativ die Folie 25 mit einem IR-lichtdurchlässigem Lack abgedeckt werden, vollständig oder auch nur teilweise, zumindest aber im Bereich des Photosensors 28.The heating element 22 is brought directly onto the film 25 using thick-film technology. The NTC 24 can then be glued or soldered onto the film 25 using conductive adhesive. The heat conduction or damping section 23 is also directly on the film 25 applied. As already mentioned, the film 25 can be made of polycarbonate or polyimide etc. exist, which preferably has IR-transparent areas. The foil 25 is then inserted into the sensor housing 21, preferably glued into it and injected. If the film material is not made of IR-transparent material exist, the film 25 can alternatively be covered with an IR-transparent lacquer become, completely or only partially, at least in the area of Photosensor 28.

Fig. 3 zeigt skizzenhaft ein Bedienteil 30 in einem nicht näher dargestellten Fahrzeuginnenraum eines Kraftfahrzeuges. Dargestellt ist zudem ein im Bedienteil 30 befindlicher NTC 31, welcher zur Bestimmung der Bedienteileigenerwärmung herangezogen werden kann.
Durch den mit seinem oberen Bereich in den Innenraum weisend angebrachten kompakten Temperatursensor 1, 20 kann mit Hilfe des Solarsensors 6 bzw. des lichtempfindlichen Sensors 28 die Sonnenstrahlung auf den Messort / das Bedienteil 30 in bekannter Art und Weise gemessen werden. Über das im Temepratursensor 1, 20 befindliche NTC-Element 7 bzw. 24 kann die Bedienteiloberflächentemperatur ermittelt werden, die der Lufttemperatur im Innenraum entspricht.
3 shows a sketch of an operating part 30 in a vehicle interior of a motor vehicle (not shown in more detail). Also shown is an NTC 31 located in the control panel 30, which can be used to determine the control panel's own heating.
Due to the fact that the upper area of the compact temperature sensor 1, 20 points into the interior, the solar radiation 6 or the light-sensitive sensor 28 can be measured in a known manner with the aid of the solar sensor 6 or the light-sensitive sensor 28. The control panel surface temperature, which corresponds to the air temperature in the interior, can be determined via the NTC element 7 or 24 located in the temperature sensor 1, 20.

Beide Informationen berücksichtigen dabei noch nicht die Luftzirkulation (Pfeil) vor dem Bedienteil 30. Diese Bestimmung erfolgt mit Hilfe des Heizelementes 5, 22 und dem NTC 7, 24 und aufgrund der Kenntnis über die Wärmeinhalte der Masse der Folie 3, 25 und der Dämpfungsstrecke 8, 23, deren Materialien bekannt sind. In einer ersten adaptiven Messung wird am NTC-Element 7, 24 die Reaktion bei ruhender Luft Lruh ermittelt und abgespeichert. Auf das Heizelement 5, 22 werden dann in relativ großen Zeitabständen kurze Pulse Snormal gegeben, wodurch dieser geringfügig den NTC 7, 24 aufheizt. Aus der Differenz der Sprungantwort im Vergleich zu der adaptiv am NTC 7 ermittelten Reaktion bei ruhender Luft Lruh wird eine oder keine Luftströmung ermittelt.
Die Dämpfung des über die Impulsdämpfungsstrecke 8, 23 gesendeten Impulses Snormal dient somit als Informationen über die Art der Luftbewegung.
Praktisch hat sich gezeigt, dass je nach Luftbewegung die Sprungantwort am NTC-Element 7, 24 unterschiedlich verläuft, da die Wärmeinformation des Heizwiderstandes 5, 22 durch die sich bewegende Luft gedämpft wird. Der Kurvenverlauf bei ruhender Luft Lruh unterscheidet sich somit wesentlich vom Kurvenverlauf bei bewegter Luft Lbew, nämlich durch unterschiedliche Impulsbreiten und Impulshöhen, wie in Fig. 3 dargestellt.
Both information do not yet take into account the air circulation (arrow) in front of the control unit 30. This determination is made with the help of the heating element 5, 22 and the NTC 7, 24 and based on the knowledge of the heat content of the mass of the film 3, 25 and the damping section 8 , 23, whose materials are known. In a first adaptive measurement, the reaction with still air L rest is determined and stored on the NTC element 7, 24. Short pulses S are then normally applied to the heating element 5, 22 at relatively large time intervals, which slightly heats the NTC 7, 24. One or no air flow is determined from the difference of the step response in comparison to the response when the air L rest is adaptively determined at the NTC 7.
The damping of the pulse S normal sent via the pulse damping path 8, 23 thus serves as information about the type of air movement.
In practice, it has been shown that the step response on the NTC element 7, 24 varies depending on the air movement, since the heat information from the heating resistor 5, 22 is damped by the moving air. The course of the curve when the air is at rest L rest thus differs significantly from the curve when the air L is moving , namely by different pulse widths and pulse heights, as shown in FIG. 3.

Das Wissen, ob es sich um bewegte oder ruhende Luft handelt, führt dann zu einer Wichtung der Sonneneinstrahlung und damit der Wichtung der gemessenen Innenraumtemperatur. Wird bewegte Luft Lbew ermittelt, ist folglich die Sonneneinstrahlung in den Fahrgastraum höher als die gemessene, wobei bei ruhender Luft Lruh der gemessene Wert mit dem aktuellen Wert der Innenraumtemperatur übereinstimmt. In Weiterführung des Verfahrens und unter Berücksichtigung der ermittelten Eigenerwärmung des Messortes / Bedienteils 30 , beispielsweise mit zusätzlicher Hilfe eines NTC 31 des Bedienteils 30, wird mit Hilfe der gewichteten Größen eine korrekte Inneraumtemperatur bestimmt. Knowing whether it is moving or still air then leads to a weighting of the solar radiation and thus the weighting of the measured interior temperature. If moving air L bew is determined, the solar radiation into the passenger compartment is consequently higher than the measured one, and when the air L rest is at rest, the measured value corresponds to the current value of the interior temperature. In continuation of the method and taking into account the determined self-heating of the measuring location / control panel 30, for example with the additional help of an NTC 31 of the control panel 30, a correct interior temperature is determined with the aid of the weighted variables.

Die gewichtete Luftbewegung geht somit als Korrekturgröße in die Störgrößen Sonne und Bedienteileigenerwärmung und somit in die Regelung ein. Beide können auch getrennt oder nur als einzelne Größen gewichtet in die Regelung eingehen.The weighted air movement is therefore used as a correction variable in the disturbance variables sun and control panel self-heating and thus in the control. Both can too are included separately or weighted as individual quantities in the regulation.

Aufgrund der Trägheit von unbelüfteten Temperatursensoren können Sprünge der Lufttemperatur in der Fahrgastzelle nur verzögert erfasst werden. Infolge unterschiedlicher Luftströmungen an der Sensoroberfläche resultiert ein veränderlicher Wärmeübergangswiderstand zur Luft der Fahrgastzelle. Temperatursprünge bei bewegter Luft werden schneller übertragen als bei ruhender Luft (Fig. 5).
Aus der ermittelten Luftbewegung vor dem Bedienteil 30 (bzw. des Messortes für die Innenraumtemperatur allgemein) ergibt sich ein weiterer vorteilhafter Ansatz. Durch die Erfassung einer echten Zeitkonstante kann frühzeitig auf eine Änderung der Temperatur geschlossen werden, was einen schnellen Eingriff in die Regelung ermöglicht. Anhand der Sprungantwort kann zusätzlich ein zu erwartender Endwert bestimmt werden. Das bewirkt gleichfalls ein zielgerichtetes Eingreifen in die Klimaregelung.
Due to the inertia of unventilated temperature sensors, jumps in the air temperature in the passenger compartment can only be detected with a delay. As a result of different air flows on the sensor surface, there is a variable heat transfer resistance to the air in the passenger compartment. Temperature jumps in moving air are transmitted faster than in still air (Fig. 5).
A further advantageous approach results from the determined air movement in front of the control unit 30 (or the measurement location for the interior temperature in general). By recording a real time constant, a change in the temperature can be concluded at an early stage, which enables rapid intervention in the control. Based on the step response, an expected final value can also be determined. This also results in targeted intervention in the climate regulation.

Bezugszeichenreference numeral

11
Incar-SensorIncar Sensor
22
Gehäusecasing
33
Foliefoil
44
Vergußmassesealing compound
55
Heizelement, HeizwiderstandHeating element, heating resistor
66
lichtempfindlicher Sensorphotosensitive sensor
77
NTC-ElementNTC element
88th
Wärmeleit- bzw. DämpfungsstreckeThermal conduction or damping section
99
WärmeisolationsmaterialThermal insulation material
1010
Kontaktstiftecontact pins
1111
Leiterbahnenconductor tracks
2020
I ncar-SensorI ncar sensor
2121
Gehäusecasing
2222
Heizelementheating element
2323
Wärmeleit- bzw. DämpfungsstreckeThermal conduction or damping section
2424
NTC-ElementNTC element
2525
Foliefoil
2626
FolienbahenFolienbahen
2727
NullkraftsteckverbinderZIF connector
2828
lichtempfindlicher Sensor (Photodiode, - transistor)light-sensitive sensor (photodiode, transistor)
2929
NTC-ElementNTC element

Claims (15)

Verfahren zur Bestimmung der Innenraumtemperatur insbesondere eines Fahrgastraumes, auf Grundlage einer an einem Sensor (6, 28) ermittelten Größe für die Sonneneinstrahlung und/oder einer an einem weiteren Sensor (7, 24) ermittelten Oberflächentemperatur am Messort (30), dadurch gekennzeichnet, dass eine Luftzirkulation vor dem Messort (30) ermittelt wird, welche als variabler Wärmeübergangswiderstand gewichtet als Korrekturgröße zumindest in die ermittelte Sonneneinstrahlung eingeht, wozu in einer ersten adaptiven Messung am Sensor (7, 24) die Reaktion am Sensor (7, 24) bei ruhender Luft (Lruh) ermittelt und abgespeichert wird, ein zusätzliches Heizelement (5, 22) mit einem Signal (Snormal) beaufschlagt wird, welches als Sprungantwort (Lruh, Lbew) am Sensor (7, 24) ausgelesen wird, wobei aus der Differenz der Sprungantwort im Vergleich zur adaptiv ermittelten Reaktion eine vorhandene oder nicht vorhandene Luftströmung ermittelt wird. Method for determining the interior temperature, in particular of a passenger compartment, on the basis of a quantity for the solar radiation determined on a sensor (6, 28) and / or a surface temperature at the measurement location (30) determined on a further sensor (7, 24), characterized in that an air circulation in front of the measuring location (30) is determined, which weighted as a variable heat transfer resistance is included as a correction quantity at least in the determined solar radiation, for which purpose in a first adaptive measurement at the sensor (7, 24) is determined, the reaction at the sensor (7, 24) with still air (L ruh) and stored, an additional heating element (5, 22) is subjected to a signal (S normal ), which is read out as a step response (L rest , L bew ) on the sensor (7, 24), whereby an existing or non-existent air flow is determined from the difference in the step response in comparison to the adaptively determined reaction. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei vorhandener Luftbewegung die Sprungantwort (Lbew) am Sensor (7, 24) eine kleinere Impulshöhe und kleinere Impulsbreite als die Sprungantwort (Lruh ) bei ruhender Luft aufweist.A method according to claim 1, characterized in that when there is air movement, the step response (L bew ) at the sensor (7, 24) has a smaller pulse height and a smaller pulse width than the step response (L rest ) when the air is still. Anordnung zur Durchführung des Verfahrens nach einem der Ansprüche 1 oder 2, aufweisend einen Sensor (6, 28) zur Messung der Sonneneinstrahlung und/oder wenigsten einen Sensor (7, 24) zur Ermittlung einer Oberflächentemperatur am Messort (30) sowie ein Heizelement (5, 22) in unmittelbarer Nähe und mit thermischer Ankopplung an diesen Sensor (7, 24).Arrangement for performing the method according to one of claims 1 or 2, having a sensor (6, 28) for measuring the solar radiation and / or at least one sensor (7, 24) for determining a surface temperature at the measuring location (30) and a heating element (5, 22) in the immediate vicinity and with thermal coupling to this sensor (7, 24). Temperatursensor zur Bestimmung der Innenraumtemperatur insbesondere eines Fahrgastraumes, aufweisend zumindest einen Sensor (7, 24) zur Ermittlung der Oberflächentemperatur des Messortes (30) sowie ein Heizelement (5, 22), welches mit dem Sensor (7, 24) thermisch gekoppelt ist. Temperature sensor for determining the interior temperature, in particular one Passenger compartment, comprising at least one sensor (7, 24) for determining the Surface temperature of the measuring location (30) and a heating element (5, 22), which is thermally coupled to the sensor (7, 24). Temperatursensor nach Anspruch 4, dadurch gekennzeichnet, dass die thermische Ankopplung über eine Dämpfungsstrecke (8, 23) erfolgt.Temperature sensor according to claim 4, characterized in that the thermal coupling takes place via a damping path (8, 23). Temperatursensor nach Anspruch 5, dadurch gekennzeichnet, dass die Dämpfungsstrecke (8, 23) durch eine Folie (3, 25) und darauf aufgebrachten Leiterbahnen gebildet wird.Temperature sensor according to claim 5, characterized in that the damping path (8, 23) is formed by a film (3, 25) and conductor tracks applied thereon. Temperatursensor nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Temperatursensor (1) in einem Gehäuse (2) untergebracht ist, im oberen Bereich die Folie (3) angeordnet ist, die als Substrat des Temperatursensors (1) fungiert und auf der zumindest der Sensor (7, 24) zur Ermittlung der Oberflächentemperatur des Messortes (30) und das Heizelement (5, 22) hinterspritzt aufgebracht sind und das Gehäuse (2) nach unten hin durch eine Vergußmasse (4) verschlossen ist, durch die Kontaktstifte (10) geführt sind. Temperature sensor according to one of claims 4 to 6, characterized in that the temperature sensor (1) is housed in a housing (2), In the upper area, the film (3) is arranged, which functions as the substrate of the temperature sensor (1) and on which at least the sensor (7, 24) for determining the surface temperature of the measuring location (30) and the heating element (5, 22) are back-injected are and the housing (2) is closed at the bottom by a sealing compound (4) through which contact pins (10) are guided. Temperatursensor nach Anspruch 7, dadurch gekennzeichnet, dass das Gehäuse (2) zumindest oberhalb eines auf der Folie (3) befindlichen weiteren Sensors (6) zur Messung der Sonneneinstrahlung aus einem IR-durchlässiges Material besteht.Temperature sensor according to claim 7, characterized in that the housing (2) at least above a further sensor (6) located on the film (3) for measuring the solar radiation consists of an IR-transparent material. Temperatursensor nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet. dass der Temperatursensor (20) in einem Gehäuse (21) untergebracht ist, die Folie (25) flexible ist und mit den darauf angebrachten Sensor (7, 24) zur Ermittlung der Oberflächentemperatur des Messortes (30) und dem Heizelement (5, 22) innerhalb des Gehäuses (21) geknickt geführt eingebunden ist und Folienbahnen (26) aus dem Gehäuse (21) geführt sind. Temperature sensor according to one of claims 4 to 6, characterized. that the temperature sensor (20) is accommodated in a housing (21), the film (25) is flexible and with the sensor (7, 24) mounted thereon for determining the surface temperature of the measurement location (30) and the heating element (5, 22) is integrated and folded inside the housing (21) and Foil webs (26) are guided out of the housing (21). Temperatursensor nach Anspruch 9, dadurch gekennzeichnet, dass ein weiterer NTC (29) zur Bestimmung einer Bedienteileigenerwärmung im Gehäuse (21) auf der Folie (25) angebracht ist und das Gehäuse (21) in diesem Bereich offen ist.Temperature sensor according to claim 9, characterized in that a further NTC (29) for determining a self-heating of the operating parts is mounted in the housing (21) on the film (25) and the housing (21) is open in this area. Temperatursensor nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der die Sonneneinstrahlung messender Sensor (28) auf der Folie (25) aufgebracht ist und das Gehäuse (21) im Bereich des Sensors (28) einen IR-lichtdurchlässigen Bereich aufweist.Temperature sensor according to claim 9 or 10, characterized in that the sensor (28) measuring the solar radiation is applied to the film (25) and the housing (21) in the region of the sensor (28) has an IR-transparent region. Temperatursensor nach Anspruch 11, dadurch gekennzeichnet, dass, wenn der Sensor (28) unterhalb der Folie (25) angeordnet ist, die Folie (25) in diesem Bereich aus IR-durchlässigem Material besteht.Temperature sensor according to claim 11, characterized in that when the sensor (28) is arranged below the film (25), the film (25) in this area consists of IR-transparent material. Temperatursensor nach einem der Ansprüche 7 oder 8 hergestellt in MID-Technik.Temperature sensor according to one of claims 7 or 8 manufactured in MID technology. Temperatursensor nach einem der Ansprüche 9 bis 12 hergestellt in Folieneinspritztechnik.Temperature sensor according to one of claims 9 to 12 manufactured in foil injection technology. Temperatursensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Heizelement der NTC (24) verwendet wird.Temperature sensor according to one of claims 1 to 3, characterized in that the NTC (24) is used as the heating element.
EP03027969A 2003-01-22 2003-12-05 Method for determining the temperature of a motor vehicle passenger compartment, device for carrying out the method and temperature sensor Expired - Lifetime EP1440828B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10302285A DE10302285B4 (en) 2003-01-22 2003-01-22 Method for determining the interior temperature of a motor vehicle passenger compartment, arrangement for carrying out the method and temperature sensor
DE10302285 2003-01-22

Publications (3)

Publication Number Publication Date
EP1440828A2 true EP1440828A2 (en) 2004-07-28
EP1440828A3 EP1440828A3 (en) 2004-08-11
EP1440828B1 EP1440828B1 (en) 2006-08-30

Family

ID=32520055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03027969A Expired - Lifetime EP1440828B1 (en) 2003-01-22 2003-12-05 Method for determining the temperature of a motor vehicle passenger compartment, device for carrying out the method and temperature sensor

Country Status (4)

Country Link
US (2) US7198402B2 (en)
EP (1) EP1440828B1 (en)
AT (1) ATE337926T1 (en)
DE (2) DE10302285B4 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009605A1 (en) * 2004-02-27 2005-09-15 Siemens Ag Temperature sensor and arrangement for climate control of a motor vehicle interior
WO2007115652A1 (en) * 2006-04-07 2007-10-18 Preh Gmbh Sensor arrangement for the climate control of a motor vehicle
EP2165866A1 (en) * 2006-04-10 2010-03-24 Nissan Motor Co., Ltd. Glass temperature detecting system, window fog detecting system, air-conditioning system for vehivles, and window for detecting method
EP2388158A1 (en) * 2009-01-14 2011-11-23 Calsonic Kansei Corporation Air conditioning device for vehicle
WO2012098236A3 (en) * 2011-01-21 2012-10-26 Excelitas Technologies Gmbh & Co. Kg Heated radiation sensor
GB2504854A (en) * 2011-04-07 2014-02-12 Baker Hughes Inc Borehole metal member bonding system and method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045330A (en) * 2002-07-15 2004-02-12 Ricoh Co Ltd Noncontact temperature detector
EP1457365B1 (en) * 2003-03-12 2007-05-16 Behr-Hella Thermocontrol GmbH Temperature detecting device in the passenger compartment of a vehicle
DE102004049855B3 (en) * 2004-10-06 2006-02-23 Visteon Global Technologies, Inc. Intellectual Property Department, Van Buren Township Acquisition method for the solar irradiation and ambient temperature in a vehicle cabin comprises switching an anode of a photodiode towards a mass and the cathode via a resistor towards a supply voltage
DE102005011053A1 (en) * 2005-03-10 2006-09-21 Preh Gmbh Sun sensor in MID technology
US7316507B2 (en) * 2005-11-03 2008-01-08 Covidien Ag Electronic thermometer with flex circuit location
US7830267B2 (en) * 2006-01-10 2010-11-09 Guardian Industries Corp. Rain sensor embedded on printed circuit board
US10173579B2 (en) 2006-01-10 2019-01-08 Guardian Glass, LLC Multi-mode moisture sensor and/or defogger, and related methods
US7504957B2 (en) * 2006-01-10 2009-03-17 Guardian Industries Corp. Light sensor embedded on printed circuit board
US8634988B2 (en) * 2006-01-10 2014-01-21 Guardian Industries Corp. Time, space, and/or wavelength multiplexed capacitive light sensor, and related methods
US9371032B2 (en) 2006-01-10 2016-06-21 Guardian Industries Corp. Moisture sensor and/or defogger with Bayesian improvements, and related methods
US7749170B2 (en) 2007-05-22 2010-07-06 Tyco Healthcare Group Lp Multiple configurable electronic thermometer
DE102007043424A1 (en) * 2007-09-12 2009-03-19 Preh Gmbh Sensor arrangement for determining an interior temperature in a motor vehicle
US8496377B2 (en) 2007-12-31 2013-07-30 Covidien Lp Thermometer having molded probe component
DE202009001069U1 (en) * 2009-01-28 2009-04-09 Visteon Global Technologies Inc., Van Buren Sensor for determining the temperature in the interior of a motor vehicle, air conditioning operating part for a motor vehicle air conditioning system and device for determining the temperature in a motor vehicle
US10757308B2 (en) 2009-03-02 2020-08-25 Flir Systems, Inc. Techniques for device attachment with dual band imaging sensor
US10389953B2 (en) * 2011-06-10 2019-08-20 Flir Systems, Inc. Infrared imaging device having a shutter
US10996542B2 (en) 2012-12-31 2021-05-04 Flir Systems, Inc. Infrared imaging system shutter assembly with integrated thermister
US20150025738A1 (en) * 2013-07-22 2015-01-22 GM Global Technology Operations LLC Methods and apparatus for automatic climate control in a vehicle based on clothing insulative factor
US10625324B2 (en) 2017-04-25 2020-04-21 Stolle Machinery Company, Llc Support arm—tool cradle module
KR20200041426A (en) * 2018-10-11 2020-04-22 현대자동차주식회사 Temperature sensor for vehicle
DE102019107338A1 (en) * 2019-04-03 2020-10-08 Valeo Schalter Und Sensoren Gmbh Sensor device, method of manufacturing a sensor device and vehicle
DE102021117871A1 (en) 2021-07-12 2023-01-12 Valeo Schalter Und Sensoren Gmbh Temperature measuring device, overhead control device and system for providing a temperature value for an air conditioning system of a motor vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024431A1 (en) 1989-08-03 1991-02-07 Zexel Corp DEVICE FOR CONTROLLING AN AIR CONDITIONING FOR A MOTOR VEHICLE
DE19829143C1 (en) 1998-06-30 1999-07-01 Hella Kg Hueck & Co Automobile interior temperature adjustment method
DE19728803C1 (en) 1997-07-05 1999-08-26 Eberle Controls Gmbh Arrangement for measuring and regulating temperature e.g. for adjusting a heating system
DE10016419C2 (en) 2000-04-01 2002-02-28 Behr Hella Thermocontrol Gmbh Device for the indirect detection of the solar radiation incident in the interior of a vehicle
DE10049979C2 (en) 2000-10-06 2002-08-14 Behr Hella Thermocontrol Gmbh Device for determining the temperature in the interior of a vehicle

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US125332A (en) * 1872-04-02 Improvement in methods for forcing plants
DE2048489A1 (en) * 1969-10-03 1971-04-15 Vyzk Ustav Organickysch Syntez Temperature surface sensor
US4441405A (en) * 1981-03-12 1984-04-10 Nissan Motor Company, Limited Solar radiation heat influx sensor for an automotive vehicle
JPS588422A (en) * 1981-07-07 1983-01-18 Nippon Denso Co Ltd Controller for air conditioning of automobile
JP3411298B2 (en) * 1991-09-30 2003-05-26 マツダ株式会社 Vehicle air conditioner
DE4397190T1 (en) * 1993-02-11 1996-01-11 Saab Automobile Device and method for air conditioning the interior of a vehicle
US5400964A (en) * 1993-11-29 1995-03-28 Delco Electronics Corporation Infra-red comfort sensor
JP3533716B2 (en) * 1994-09-09 2004-05-31 株式会社デンソー Vehicle air conditioner
US5531377A (en) * 1995-02-01 1996-07-02 Delco Electronics Corporation Method and apparatus for calibration of comfort control IR sensor
JP3671522B2 (en) * 1995-08-29 2005-07-13 株式会社デンソー Air conditioner for vehicles
DE19617562C1 (en) * 1996-05-02 1997-05-15 Daimler Benz Ag Vehicle air conditioning unit
JP3309742B2 (en) * 1996-11-29 2002-07-29 株式会社デンソー Vehicle air conditioner
CN1233750A (en) * 1998-04-30 1999-11-03 陈敬弘 Electronic clinical thermometer for quick measuring
DE19842895C2 (en) * 1998-09-18 2001-10-18 Mannesmann Vdo Ag Arrangement for regulating the interior temperature in the passenger compartment of a motor vehicle
JP2001191779A (en) * 1999-09-03 2001-07-17 Denso Corp Air conditioner for vehicle
DE10019103C1 (en) * 2000-04-18 2002-08-01 Behr Hella Thermocontrol Gmbh Device for determining the temperature and the speed of the air flowing into the interior of a vehicle from an air outlet opening
DE10121192A1 (en) * 2000-05-09 2001-11-15 Denso Corp Air conditioning with non-contact temperature sensor
JP3965999B2 (en) * 2001-02-02 2007-08-29 株式会社デンソー Vehicle solar radiation detection device and vehicle air conditioner using the same
US6840053B2 (en) * 2003-01-27 2005-01-11 Behr America, Inc. Temperature control using infrared sensing
US6782945B1 (en) * 2003-02-26 2004-08-31 Nissan Technical Center North America, Inc. Dual zone automatic climate control algorithm utilizing heat flux analysis
US6966498B2 (en) * 2004-04-22 2005-11-22 Delphi Technologies, Inc. Solar radiation compensation method for a vehicle climate control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024431A1 (en) 1989-08-03 1991-02-07 Zexel Corp DEVICE FOR CONTROLLING AN AIR CONDITIONING FOR A MOTOR VEHICLE
DE19728803C1 (en) 1997-07-05 1999-08-26 Eberle Controls Gmbh Arrangement for measuring and regulating temperature e.g. for adjusting a heating system
DE19829143C1 (en) 1998-06-30 1999-07-01 Hella Kg Hueck & Co Automobile interior temperature adjustment method
DE10016419C2 (en) 2000-04-01 2002-02-28 Behr Hella Thermocontrol Gmbh Device for the indirect detection of the solar radiation incident in the interior of a vehicle
DE10049979C2 (en) 2000-10-06 2002-08-14 Behr Hella Thermocontrol Gmbh Device for determining the temperature in the interior of a vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009605A1 (en) * 2004-02-27 2005-09-15 Siemens Ag Temperature sensor and arrangement for climate control of a motor vehicle interior
DE102007009672B4 (en) * 2006-04-07 2014-02-20 Preh Gmbh Climate control unit with a sensor arrangement
US7841768B2 (en) 2006-04-07 2010-11-30 Preh Gmbh Sensor arrangement for the climate control of a motor vehicle
WO2007115652A1 (en) * 2006-04-07 2007-10-18 Preh Gmbh Sensor arrangement for the climate control of a motor vehicle
EP2165866A1 (en) * 2006-04-10 2010-03-24 Nissan Motor Co., Ltd. Glass temperature detecting system, window fog detecting system, air-conditioning system for vehivles, and window for detecting method
US9539878B2 (en) 2006-04-10 2017-01-10 Nissan Motor Co., Ltd. Glass temperature detecting system, window fog detecting system, air-conditioning system for vehicles, and window fog detecting method
EP2388158A1 (en) * 2009-01-14 2011-11-23 Calsonic Kansei Corporation Air conditioning device for vehicle
EP2388158A4 (en) * 2009-01-14 2012-10-24 Calsonic Kansei Corp Air conditioning device for vehicle
US9327580B2 (en) 2009-01-14 2016-05-03 Calsonic Kansei Corporation Vehicle air-conditioning system
WO2012098236A3 (en) * 2011-01-21 2012-10-26 Excelitas Technologies Gmbh & Co. Kg Heated radiation sensor
GB2501441A (en) * 2011-01-21 2013-10-23 Excelitas Technologies Singapore Pte Ltd Heated radiation sensor
GB2504854A (en) * 2011-04-07 2014-02-12 Baker Hughes Inc Borehole metal member bonding system and method
GB2504854B (en) * 2011-04-07 2019-01-09 Baker Hughes Inc Borehole metal member bonding system and method

Also Published As

Publication number Publication date
DE10302285A1 (en) 2004-08-19
US20070076781A1 (en) 2007-04-05
US7325972B2 (en) 2008-02-05
US7198402B2 (en) 2007-04-03
DE50304841D1 (en) 2006-10-12
ATE337926T1 (en) 2006-09-15
EP1440828B1 (en) 2006-08-30
EP1440828A3 (en) 2004-08-11
US20040151229A1 (en) 2004-08-05
DE10302285B4 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
EP1440828B1 (en) Method for determining the temperature of a motor vehicle passenger compartment, device for carrying out the method and temperature sensor
DE102006035000B4 (en) Sensor device and method for its production
EP3014218B1 (en) Method for operating a sensor assembly
DE69631931T2 (en) Temperature measuring system and sensor unit for it
DE102007041195A1 (en) Infrared gas detector
EP1380481A2 (en) Sensor arrangement
DE10051558C2 (en) Sensor unit with an air humidity sensor and with an air temperature sensor
EP1505387A1 (en) Humidity measuring device and method
DE102014224609B4 (en) Flow measuring device
DE10152999A1 (en) Sensor for the detection of a tendency to fogging and use in a sensor module
EP1457365A2 (en) Temperature detecting device in the passenger compartment of a vehicle
DE10242813A1 (en) Fluid flow measuring device
DE4130063C2 (en) Device for measuring the interior temperature in motor vehicles
EP0276380B1 (en) Device for temperature compensation in a thermal mass flow meter
EP1564044B1 (en) Mounting means with a sensor for determining the humidity and incipient fogging in a compartment
WO2005025903A1 (en) Condensation sensor
EP0981737B1 (en) Sensor for determining moisture content
DE10311521B4 (en) Sensor element, in particular oil level sensor element, and fluid sensor so
WO2004005942A1 (en) Temperature sensing device for detecting an acceleration or shock provided with a heating unit, and associated method
EP1627208B1 (en) Cover for a dew point sensor mounted on a printed circuit board
DE102013206406B4 (en) Room air conditioner and control device
DE10022229B4 (en) Infrared waveguide device
EP3454027B1 (en) Sensor for determining moisture
DE10254852A1 (en) Circuit arrangement for sensor evaluation and method for evaluating a plurality of sensors
DE10150320A1 (en) Precipitation detection method has an array of two moisture sensors that are used with an external temperature sensor in such a way that both fluid and solid precipitation can be detected

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050205

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50304841

Country of ref document: DE

Date of ref document: 20061012

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070212

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060830

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070531

BERE Be: lapsed

Owner name: PREH G.M.B.H.

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061201

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070301

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304841

Country of ref document: DE

Representative=s name: LOHMANNS, BERNARD, DIPL.-PHYS., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221221

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50304841

Country of ref document: DE